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Quantum and nonlinear effects in light transmitted
through planar atomic arrays
Robert J. Bettles1,2, Mark D. Lee3, Simon A. Gardiner1 & Janne Ruostekoski 4✉

Understanding strong cooperative optical responses in dense and cold atomic ensembles is

vital for fundamental science and emerging quantum technologies. Methodologies for

characterizing light-induced quantum effects in such systems, however, are still lacking. Here

we unambiguously identify significant quantum many-body effects, robust to position fluc-

tuations and strong dipole–dipole interactions, in light scattered from planar atomic

ensembles by comparing full quantum simulations with a semiclassical model neglecting

quantum fluctuations. We find pronounced quantum effects at high atomic densities, light

close to saturation intensity, and around subradiant resonances. Such conditions also max-

imize spin–spin correlations and entanglement between atoms, revealing the microscopic

origin of light-induced quantum effects. In several regimes of interest, our approximate model

reproduces light transmission remarkably well, permitting analysis of otherwise numerically

inaccessible large ensembles, in which we observe many-body analogues of resonance power

broadening, vacuum Rabi splitting, and significant suppression in cooperative reflection from

atomic arrays.
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Light can mediate strong interactions between atoms, indu-
cing strong position-dependent correlations, even in the
limit of low light intensity, when the response (for the case

of a simple level structure) is entirely classical. Such a correlated
optical response can differ dramatically from that predicted by
standard electrodynamics of continuous media, where resonant-
light-induced dipole–dipole (DD) interactions between atoms are
treated in an averaged sense1,2. Beyond the limit of low light
intensity, an isolated atom can scatter light quantum-
mechanically (such as in the incoherent Mollow spectrum3),
and quantum effects in the interactions of light with dilute atomic
ensembles have been utilized in, e.g., quantum information pro-
tocols4. In strongly interacting dense systems the possible role of
quantum and cooperative effects is less clear and has been the
subject of long-standing debate1,5–8. A particularly promising
system to explore and utilize strong light-induced DD interactions
is a regular planar array of scatterers, such as atoms. As shown
both theoretically and experimentally, in the linear low-excitation
limit these manifest a wealth of phenomena, e.g., subdiffraction
features9,10, nontrivial topological phases11,12, transmission varying
from complete reflection to full transparency13–19, narrow reso-
nances, and subradiance15–17,20–27, as well as quantum technolo-
gical applications28,29 and other collective effects30–35.

We show that we can identify quantum effects in the light
transmitted through planar arrays and uniform-density disks of
cold and dense atomic ensembles. Many-body quantum correla-
tions are induced by light-atom coupling, which, surprisingly,
survive even strong many-body resonant DD interactions and
atomic position fluctuations. Specifically, comparing the corre-
lated optical response determined using the quantum master
equation (QME) to simulations neglecting any quantum fluc-
tuations between atomic levels in different atoms [referred to as
the "semiclassical” equations (SCEs)36], we systematically identify
light-established quantum effects between atoms in the trans-
mitted light as a function of atom confinement, density, and
driving intensity. The effect of many-body quantum fluctuations
on the scattering manifests most prominently at high densities
when the light is close to saturation intensity, and especially
significantly in the vicinity of subradiant resonances. We find that
these conditions also produce maximal spin–spin correlations
and entanglement of formation in the underlying atomic system,
further confirming the role of many-body quantum correlations
and entanglement in observing a difference in light transmission
between QME and SCEs models. Incorporating the single-atom
quantum description of light emission into the semiclassical
scattering, we can typically use SCEs also for incoherent scat-
tering to qualitatively reproduce the full quantum scattering even
in the regimes where quantum effects in coherent scattering are
most pronounced, and elsewhere also quantitatively. SCEs there-
fore allow us to analyze cooperative transmission of light through
large atomic arrays and disks beyond the limit of low light
intensity, without needing to solve the full strongly-interacting
quantum dynamics. Doing so, we find collective phenomena due
to DD interactions that are many-body analogs of power
broadening and vacuum Rabi splitting of atomic resonances in
cavities37,38, and demonstrate a significant effect of intensity on
the transmission that may ultimately restrict the utilization of
atomic arrays as highly reflective cooperative mirrors.

Results
An appealing feature of light scattering from cold atoms39–50 is
that light-mediated strong DD interactions can establish corre-
lations between atoms at fluctuating positions, which are most
simply described using atomic field operators for the ground and
excited states ψ̂g;eðrÞ. Hence, hP̂þðrÞi ¼ hψ̂y

gðrÞdgeψ̂eðrÞi denotes

the positive frequency component of the light-induced atomic
polarization, where dge ¼ d�eg is the dipole matrix element, and

the populations are hψ̂y
gðrÞψ̂gðrÞi and hψ̂y

eðrÞψ̂eðrÞi. Because of the
DD interactions, the polarization and populations also depend on
two-body correlations hψ̂y

aðrÞψ̂y
bðr0Þψ̂cðr0Þψ̂dðrÞi, where

a, b, c, d ∈ {g, e}, representing the correlations in the optical
response of an atom at r given the presence of a second atom at r0.
These in turn depend on three-body correlations, etc., resulting in
a hierarchy of equations of motion for correlation functions51,52.
In a cold, dense ensemble (Fig. 1) this hierarchy can significantly
and nonperturbatively modify the scattering behavior even in the
classical regime, invalidating attempts to truncate it1. This is a key
ingredient in, e.g., Anderson localization of light, which has been
a subject of considerable controversy and debate53,54.

Quantum master equation. A numerical device for solving this
correlation function hierarchy is to treat the atoms as discrete
point particles, meaning for a particular configuration of atomic
positions {r1, …, rN} that two-body correlation functions take the
form

ψ̂y
aðrÞψ̂y

bðr0Þψ̂cðr0Þψ̂dðrÞ
D E

fr1;¼ ;rNg

¼ P
j‘ðj≠‘Þ

ρðj;‘Þad;bcδðr� rjÞδðr0 � r‘Þ;
ð1Þ

where ρðj;‘Þad;bc denote correlation functions of the internal atomic
energy levels only36. We then solve the internal atom dynamics at
discrete positions, and the new correlation functions simply
emerge from the N-body density matrix ρ � ρfr1;¼ ;rNg. This
evolves according to QME:

_ρ ¼ � i
_

X
j

Hsys;j �
X
j‘ðj≠‘Þ

_Ωj‘σ̂
ðjÞ
þ σ̂ð‘Þ� ; ρ

2
4

3
5

þ
X
j‘

γj‘ 2σ̂ðjÞ� ρ σ̂ð‘Þþ � σ̂ð‘Þþ σ̂ðjÞ� ρ� ρσ̂ð‘Þþ σ̂ðjÞ�
� �

;

ð2Þ

where the collective scattering is represented by the dispersive Ωjℓ

and dissipative γjℓ DD interactions, the single-atom half-width at
half-maximum (HWHM) linewidth by γjj = γ, and

σ̂ðjÞþ ¼ ðσ̂ðjÞ� Þy ¼ ej ijj gh j. For simplicity, we consider two-level

Fig. 1 Schematic illustration. A laser beam (waist w0) focused onto an
ensemble of atoms arranged in: (i) a planar square array with interatomic
spacing a; (ii) as in (i) but with standard deviation σ normally-distributed
fluctuations around their mean positions; (iii) random positions within a
radius R uniform-density thin disk.
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atoms and the Hamiltonian

Hsys;j ¼ �_Δσ̂ðjÞee � deg � EþðrjÞσ̂ðjÞþ � dge � E�ðrjÞσ̂ðjÞ� ; ð3Þ
where Eþ ¼ ðE�Þ� is the positive-frequency-component of the
frequency ω= kc= 2πc/λ laser field, detuned from the atomic
resonance frequency ωge by Δ= ω− ωge and σ̂ðjÞee ¼ ej ijj eh j. We
take the polarization of the incident field to be parallel to the
orientation of the atomic dipoles. Spatial correlations are
numerically synthesized by ensemble-averaging over stochastic
realizations of atomic positions sampled from the density
distribution36,55. Solving Eq. (2) for large systems is numerically
taxing, although few-atom ensembles already demonstrate many-
body effects in their spectra56.

Semiclassical model. In the limit of low light intensity, where the
excited state population vanishes, the internal level correlations,

such as those described by ρðj;‘Þad;bc in Eq. (1), also vanish for two-
level atoms. The stochastic electrodynamics simulations are then
formally exact36,55, reproducing the many-atom spatial correla-
tions, which are identical to those occurring in the classical
electrodynamics of coupled linear electric dipoles. Beyond the
limit of low light intensity, the full dynamics of Eq. (2) can be
greatly simplified by factorizing the internal atomic level corre-
lation functions:

ρðj;‘Þad;bc ’ ρðjÞadρ
ð‘Þ
bc : ð4Þ

Following the formalism of ref. 36 we then obtain coupled non-
linear equations:

d
dt

ρðjÞge ¼ðiΔ� γÞρðjÞge �
i
_

2ρðjÞee � 1
� �

deg � EþðrjÞ

� i 2ρðjÞee � 1
� �X

‘≠j

Ωj‘ þ iγj‘

� �
ρð‘Þge ;

ð5Þ

d
dt

ρðjÞee ¼ �2γ ρðjÞee þ
2
_
Im E�ðrjÞ � dge ρðjÞge

h i

þ 2 Im
X
‘≠j

ρðjÞge Ωj‘ � iγj‘

� �
ρð‘Þge

�
" #

:
ð6Þ

Note the relatively small number of equations 2N compared to
the full quantum system size 2N. This formalism has been applied
to the modeling of pumping of atoms in dense clouds50, and has
also been extended to cavity quantum electrodynamics (QED)57.

Spatially correlated scattering between different atoms is
accounted for in Eqs. (5) and (6) viaΩjℓ and γjℓ (forΩj≠ℓ= γj≠ℓ= 0
they reduce to the independent-atom optical Bloch equations). In
the limit of low light intensity the ensemble-averaged response of
SCEs coincides with the exact classical electrodynamics; beyond
this limit, the model incorporates nonlinear internal level
dynamics of the atoms. However, because of the factorization
in Eq. (4), they cannot account for many-body quantum
entanglement between different atoms’ internal levels. Finding
situations in which the predictions of SCEs observably differ from
the full QME solution therefore identifies light-induced quantum
effects in the transmitted light. Conversely, regimes where
quantum fluctuations are minimal allow for the simulation of
much larger systems than are accessible with QME , and also test
the validity of related approaches in other contexts, based, e.g., on
mean-field approximations, intensity expansions, or truncations
of the correlations58–62.

Light-established quantum effects in transmitted light. We
begin by calculating the coherent (Fig. 2a–c) and incoherent
(Fig. 2d–f) forward transmission, Tcoh and Tinc (see “Methods”

section), through planar square arrays and thin disks of N= 4
atoms (Fig. 1), and the corresponding relative differences
(Fig. 3a–c) between quantum and semiclassical results (for the
effects of a larger 3 × 3 array, see Supplementary Note 1). The
array could be realized, e.g., by an optical lattice63 or dipole
traps64,65. Unless otherwise stated, we consider lattice spacing
a = 0.25λ and disk radius R = 0.28λ. Physically, we calculate the
far-field light intensity in the same mode as the driving field
E ± ðrÞ, integrated over the polar angle sin θ ≲ 0:24 (see “Meth-
ods” section and Supplementary Note 2). We account for the
fluctuations in atomic positions due to finite trap confinement by
ensemble-averaging over many stochastic realizations of position
configurations (see “Methods” section)10. Light-induced position-
dependent correlations between the atoms (see earlier “hierarchy
of correlation functions”) exist also classically, since the DD
interactions depend on the precise interatomic separations. These
classical many-body position correlations are therefore present in
both the full quantum TQM

coh and semiclassical TSC
coh transmissions,

but all quantum effects have been neglected in TSC
coh. Hence, we

unambiguously identify quantum effects in the coherent trans-
mission by the difference TQM

coh � TSC
coh. Moreover, since the

coherent scattering for a single atom is always purely classical,
TQM
coh � TSC

coh cannot depend on the single-atom response, and
therefore represents quantum correlations solely due to many-
body effects.

To obtain the incoherently scattered light hδÊ�
d ðrÞ δÊ

þ
d ðrÞi, we

write the scattered light field as Ê
þ
d ¼ hÊþ

d i þ δÊ
þ
d , where δÊ

þ
d

denotes the fluctuations66. This yields the incoherent transmis-
sion (see “Methods” section), from which we also isolate quantum
behavior by TQM

inc � TSC
inc, in which case all the quantum effects

have again been systematically neglected in TSC
inc. Although the

coherent scattering of a single atom is classical, this is not the case
for the incoherent emission. We can improve the semiclassical
incoherent model, without increasing the computational com-
plexity, by adding the single-atom quantum description of
incoherent light emission for all the atoms. In a single stochastic
realization of atomic positions, the incoherent scattering
contribution to intensity from independent quantum-

mechanical atoms / P
jAjðhσ̂ðjÞee i � jhσ̂ðjÞþ ij2Þ, where Aj encapsu-

lates the light propagation effects (see “Methods” section)66.
Augmenting the semiclassical model with this single-atom
quantum description integrated over the sample yields the
incoherent transmission TSAQ

inc . The quantum effects of the
incoherent signal solely due to many-body processes are then
encapsulated in TQM

inc � TSAQ
inc .

The optical depth of the coherent transmission (Figs. 2a–c, 3a,
c) corresponds physically to the degree to which extinction of the
incident laser field by the averaged scattered field acts to reduce
the transmission. The incoherent fluctuations in the scattered
field (Figs. 2d–f, 3b) then counteract this reduction. In Fig. 2b, we
identify many-body quantum fluctuations in the coherent
transmission (TQM

coh � TSC
coh) that increase with increasing DD

interaction (Fig. 3a, c), reaching normalized residuals of over 10%
at a = 0.25λ and I ≃ Isat (when the dipole amplitudes are
greatest), where I ¼ 2ϵ0cjEþðr ¼ 0Þj2 is the peak incident laser
intensity and Isat = 4π2ℏγc/3λ3 is the saturation intensity.
Remarkably, even for a fully random disk quantum effects on
the scattering do not wash out, but can produce residuals between
the models of a few percent. On the other hand, there are also
regimes where TSC

coh accurately describes transmitted light. For
example, in Fig. 3c the difference between TQM

coh and TSC
coh is less

than 5% for a ≳ 0.4λ or I/Isat ≳ 16.
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In Fig. 3c we observe two distinct peaks in the quantum many-
body signatures of the coherent scattering for a = 0.25λ. The peak
at

ffiffiffiffiffiffiffiffiffiffiffi
I=Isat

p � 0:3 results from a Fano interference between a
narrow and an overlapping broad resonance (Fig. 3c inset),
originating from an underlying highly subradiant
(HWHM = 0.1γ) and superradiant (HWHM = 2.7γ) low light
intensity eigenmode, respectively. The incident light couples to
the phase-matched uniform superradiant eigenmode, but due to
nonorthogonality of the non-Hermitian eigenmodes (Supple-
mentary Note 3), the subradiant mode with rapid phase variation
(“checkerboard” phase pattern, with dipoles at adjacent sites π
out-of-phase) becomes populated at the narrow resonance
(Fig. 2a). Strikingly, around this narrow resonance quantum
effects constitute over 30% of the coherent scattering signal. We
observe in Fig. 3c that, with increasing lattice spacing, the narrow
Fano peak at

ffiffiffiffiffiffiffiffiffiffiffi
I=Isat

p � 0:3 disappears, as the corresponding
eigenmode becomes less subradiant.

In Fig. 2e, f, on the other hand, we see the incoherent
transmission is almost entirely dominated by quantum fluctua-
tions when I ≳ Isat (T

SC
inc ! 0). However, once we incorporate the

single-atom quantum description into the scattering and there-
fore transmission TSAQ

inc , the difference becomes much smaller and
the many-body quantum fluctuations are, as with the coherent
scattering, maximal around I ~ Isat. Hence, using the improved
model TSAQ

inc , it is possible, even for incoherent scattering, to
obtain excellent qualitative, and frequently quantitative agree-
ment with the full quantum scattering (see Supplementary Note 4
for further demonstration of the different roles of quantum
fluctuations in the incoherent scattering).

Spin correlations and entanglement. Up until now, we have
identified many-body quantum effects via the transmitted light.
These originate from the light-induced quantum correlations
between internal levels of different atoms that do not satisfy the
factorization assumption [given in Eq. (4)] of SCEs. In Fig. 4 we
explicitly show these induced spin–spin correlations, and in
Fig. 5a–c we show the many-body entanglement of formation
(for a pair of atoms, using the formalism of ref. 67—see Supple-
mentary Note 5). The spin–spin correlations and entanglement
exhibit behavior qualitatively similar to the quantum many-body
correlations observed in the light scattering. As in Fig. 3c, both
the correlations (Fig. 4) and entanglement (Fig. 5a–c) are max-
imal at I ~ Isat, where the intensity at which this peak occurs and
the peak’s amplitude decrease for increasing atomic spacing. The
correlations and entanglement also both manifest linesplitting for
I ≳ Isat, corresponding to when the atomic excited state popula-
tion starts to increase. This is consistent with Fig. 2, where the
observed quantum effects in transmitted light change from being
maximal close to zero detuning when I ~ Isat, to being maximal
off resonance when I ≫ Isat. The purity of the atomic state
(Fig. 5d) decreases to the limiting value 1/4 (Supplementary
Note 5) for increasing I and is less sensitive to the array spacing
than the entanglement E.

Large ensembles. When conditions are such that quantum effects
on the light scattering are minimal, we can neglect quantum
fluctuations, employing SCEs [Eqs. (5) and (6)] to analyze the
coherent transmission through much larger ensembles, for which
the full QME is inaccessible. In Fig. 6a–c we show how the

Fig. 2 Quantum effects in the optical transmission through a strongly coupled atomic ensemble. Curves for the coherent optical depth (a–c) and
incoherent light transmission (d–f), from bottom to top: atoms in a 2 × 2 square array in the xy plane with lattice constant a = 0.25λ and normally
distributed position fluctuations (rms width σx,y/a = 0, 0.1, 0.2, respectively); and 4 atoms randomly distributed within a radius R = 0.28λ (peak density
1.0k3) thin disk. The shaded regions show the standard sampling error of atomic position fluctuations. For clarity each line is offset from that below it by 0.5
(a–c) or 0.2 (d–f). Fluctuations in z are characterized by a σz = 0.025λ normal distribution, except when atoms are fixed (σx,y = σz = 0). The incident beam
has waist w0 = 10λ, polarization ðx̂þ ŷÞ=

ffiffiffi
2

p
, and intensity I/Isat = 0.0001 (a, d), I/Isat = 4 (b, e), or I/Isat = 100 (c, f). Red arrows in a show the atomic

dipoles in the xy plane for the uniform superradiant and checkerboard-patterned subradiant eigenmodes.
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transmission lineshapes of a 10 × 10 array differ significantly
from the Lorentzian of independent atoms. For a single atom the
linewidth is power broadened γPBðIÞ ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I=Isat

p
. For spa-

cings a ≳ 0.3λ, the coherent optical depth for a 10 × 10 interacting
array can also be fitted well to a single Lorentzian (ignoring the
small structure present at low light intensity due to interfering
eigenmodes, Fig. 6a), with a linewidth which also scales with
intensity. If the linewidth at low light intensity is superradiant
(e.g., a = 1.1λ) or subradiant (e.g., a = 0.8λ), it will also be
correspondingly larger or smaller than γPB for high intensities
(Fig. 6c). For smaller spacings (e.g., a = 0.25λ), at high intensity
the lineshape splits into a double resonance, producing a dip or
“hole burning” (Fig. 6b). This dip is analogous to vacuum Rabi
splitting37,38, where the interatomic DD coupling has now taken
the role of the cavity coupling. In cavity QED, the mirrors create
images of an atom inside the cavity, mimicking a periodic array,
and the resonance doublet can be understood as a splitting of the
excited state (Supplementary Note 6). While the dip in Fig. 6b

only occurs at sufficiently high density, it can interestingly still
exist even in the fully random ensemble. With increasing light
intensity, the incoherent scattering lineshape tends to that of the
independent atom (Supplementary Note 7).

Fig. 3 Quantum many-body effects in optical transmission. a Relative
differences, diffðSÞ � maxfjSSCEsðΔÞ � SQMEðΔÞj=SQMEðΔÞg, between quantum
and semiclassical coherent optical depths (ODQM

coh ¼ �log ðTQM
coh Þ and ODSC

coh,
respectively) for a 2 × 2 array with lattice constant a = 0.25λ and normally
distributed position fluctuations with varying rms width σx,y = σ, σz = 0.025λ
(solid markers and thin solid lines). The open markers and thick solid lines are
for a disk of randomly distributed atoms with radius R = 0.28λ and
σz = 0.025λ. The light intensity is

ffiffiffiffiffiffiffiffiffiffi
I=Isat

p
¼ 0:3 (circles), 2 (squares), and 10

(triangles). b Relative differences between quantum and semiclassical
(augmented by a single-atom quantum description) incoherent transmission,
TQM
inc and TSAQ

inc respectively, for the same parameters as in a. c Relative
differences between quantum and semiclassical coherent optical depth as a
function of light intensity, for fixed atomic positions and for different spacings.
The inset shows ODQM

coh (solid) and ODSC
coh (dashed) for a fixed array with

a = 0.25λ and
ffiffiffiffiffiffiffiffiffiffi
I=Isat

p
¼ 0:3. The incident beam has waist w0 = 10λ,

polarization ðx̂þ ŷÞ=
ffiffiffi
2

p
, and detuning Δ/γ ∈ [−4, 4] (a, b) and

Δ/γ ∈ [−20, 20] (c).

Fig. 4 Spin–spin correlations showing the emergence of light-induced
quantum correlations and deviations from the semiclassical
approximation. We calculate the one- and two-body spin expectations, ρðjÞab
and ρðj;‘Þad;bc respectively, for a 2 × 2 array with spacing a = 0.25λ and atom
indices (j, ℓ), as illustrated in a. For fixed atomic positions, the correlations
are of solely quantum origin, occurring between internal levels of different
atoms. a The correlation lineshape for increasing intensity

ffiffiffiffiffiffiffiffiffiffi
I=Isat

p
¼ 1 (red-

dotted), 2 (blue-dashed), 5 (green-dot-dashed) exhibits an energy splitting.
b The correlations peak around I ~ Isat, tending to zero at very low and high
light intensities. The behavior is qualitatively similar for other spin/atom
pairs. The incident beam has waist w0 = 10λ and polarization ðx̂þ ŷÞ=

ffiffiffi
2

p
.

Fig. 5 Entanglement of formation E and trace purity for a pair of atoms.
a, b E (see ref. 67, Supplementary Note 5) for two atoms separated by
a = 0.25λ and polarized along the separation axis as a function of detuning
and intensity [

ffiffiffiffiffiffiffiffiffiffi
I=Isat

p
¼ 1 (red-dotted), 1.5 (blue-dashed), and 2 (green-

dot-dashed)]. The entanglement resonance splits for high intensities I > Isat,
and E is no longer maximal at the atomic resonance. c Similarly, the
maximum entanglement decreases for increasing atomic spacing
(decreasing interactions) [a = 0.25λ (red-solid), 0.3λ (blue-dotted), and
0.35λ (green-dashed)], and peaks around I = Isat, decreasing to 0 asffiffiffiffiffiffiffiffiffiffi

I=Isat
p

! 0 or∞. d The purity of the atomic state decreases to the limiting
value 1/4 (Supplementary Note 5) for increasing I and is less sensitive to
the array spacing than E (spacings the same as in c). The black dot-dashed
line shows the purity for a single atom.
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A key feature of general subwavelength-spaced resonant emitter
arrays is that they can exhibit perfect reflection13,14, which may
typically be modeled using point-dipole scatterers15–17,19. Dipolar
planar arrays can act as cooperative antennae68, with applications
to quantum information processing29, making understanding

nonlinear transmission essential. We calculate this for large arrays
in Fig. 6d, and find that the reduction in the extinction as a
function of light intensity is considerable—although less promi-
nent with smaller spacings. This may ultimately restrict the
application of atomic arrays as highly reflective cooperative
mirrors to weak light intensities only.

Discussion
By comparing different descriptions of atom-light dynamics and
light scattering, we have identified light-induced quantum effects,
spin–spin correlations, and quantum entanglement in the light
transmitted through planar arrays and disks which survive both
position fluctuations and strong DD interactions. At narrow sub-
radiant resonances, quantum fluctuations can be over 30%. Outside
these resonances, provided we improve the model by incorporating
the single-atom quantum description, SCEs typically still reproduce,
also for incoherent scattering, the full quantum behavior at least
qualitatively. This provides a methodology to calculate transmission
of light through large arrays, consisting of hundreds of atoms,
which can exhibit striking many-body phenomena (even without
any quantum effects) reminiscent of single-atom power broadening
and vacuum Rabi splitting. The existence of many-body quantum
effects despite strong driving, high densities, and even with sig-
nificant atomic position fluctuations is surprising. It suggests that
optical quantum information processing in atomic ensembles4 need
not necessarily be restricted to dilute systems. Subradiant resonance
narrowing has now been experimentally observed in the trans-
mitted light through an optical lattice of atoms in a Mott-insulator
state in the classical limit of low light intensity69. Several of our
findings could also be verified in this setup by increasing the
intensity of the incident light. The presence, even in uniform disks,
of many-body effects attracting considerable interest1,2,49,70 further
relaxes the conditions necessary for their experimental observation.

Methods
Dynamics and correlation functions. We simulate the optical response of N-atom
ensembles by stochastically sampling fixed positions {r1, …, rN} of stationary atoms,
as the atomic center-of-mass dynamics are assumed negligible. In the full quantum
dynamics, for each stochastic realization we solve the equations of motion for the N-
atom density matrix ρfr1 ;¼ ;rNgðtÞ with the atoms at fixed positions {r1, …, rN},
obeying QME [Eq. (2)]. In the Hamiltonian in Eq. (3) we use slowly-varying field
amplitudes and atomic variables where the rapid rotation at the laser frequency ω has
been factored out by substitutions Eþeiωt ! Eþ , σ̂ðjÞ� ðtÞ eiωt ! σ̂ðjÞ� ðtÞ, etc. The
collective coupling matrices Ωjℓ and γjℓ, resulting, respectively, in collective resonance
line shifts and linewidths in Eq. (2) (see Supplementary Note 3), are the real and
imaginary parts of the dipole radiation kernel G(r):

1
_ϵ0

deg � Gðrj � r‘Þdge
h i

¼ Ωj‘ þ iγj‘; ð7Þ

where

GðrÞd̂ ¼ k3

4π
ðn̂ ´ d̂Þ ´ n̂

eikr

kr
þ 3n̂ðn̂ � d̂Þ � d̂
h i 1

ðkrÞ3 �
i

ðkrÞ2
" #

eikr
( )

� d̂ δðrÞ
3

ð8Þ
is the electric field amplitude for an oscillating electric dipole d̂ at the origin and
n̂ ¼ r=r. Note that we typically drop the contact interaction term36.

Once ρfr1 ;¼ ;rNgðtÞ is known, the one-body ρðjÞab (jth atom), two-body ρðj;‘Þad;bc (jth
and ℓth atoms), etc., expectation values for this stochastic realization are given by:

ρðjÞge ¼ σ̂ðjÞ�
D E

¼ Tr σ̂ðjÞ� ρfr1 ;¼ ;rNg
n o

; ð9Þ

ρðjÞee ¼ 1� ρðjÞgg ¼ σ̂ðjÞee
D E

¼ Tr σ̂ðjÞee ρfr1 ;¼ ;rNg
n o

; ð10Þ

ρðj;‘Þge;eg ¼ σ̂ðjÞ� σ̂ð‘Þþ
D E

ð1� δj‘Þ ¼ Tr σ̂ðjÞ� σ̂ð‘Þþ ρfr1 ;¼ ;rNg
n o

ð1� δj‘Þ; ð11Þ

and so forth. Here ρðjÞge represents the correlations hψ̂y
gψ̂ei of Eq. (14), and

corresponds to the matrix element 〈e∣ρ1∣g〉 of the one-body density matrix ρ1.

Fig. 6 Semiclassically evaluated optical depth, resonance Rabi splitting,
power broadening, and maximum extinction for 100 atoms. a, b From
bottom to top: semiclassical coherent optical depth ODSC

coh for a
10 × 10 square array with lattice constant a = 0.25λ and normally distributed
position fluctuations (rms width σx,y/a = 0, 0.1, 0.2, respectively); and
100 atoms randomly distributed within a radius R = 1.4λ (peak density 1.0k3)
thin disk. The standard sampling errors (shaded regions) are too small to see.
For clarity each line is offset from that below it by 0.5. Fluctuations in z are
characterized by a σz = 0.025λ normal distribution, except when atoms are
fixed (σx,y = σz = 0). The incident beam has waist w0 = 10λ, polarization
ðx̂þ ŷÞ=

ffiffiffi
2

p
, and intensity I/Isat= 10−4 (a), and I/Isat = 100 (b). Black dashed

lines show normalized lineshapes for a single atom with power-broadened
γPB ¼ γð1þ I=IsatÞ1=2. c HWHM of ODSC

coh for atoms at fixed positions with
a = 0.8λ (squares), 1.1λ (circles), and for a single atom (black dashed line).
The beam (w0 = 30a) is nearly uniform over the atoms and the light is
collected over a solid angle sin θ ≲ 0:04 (a = 0.8λ) and 0.03 (a = 1.1λ).
d Peak extinction (1� TSC

coh) with fixed positions: a = 0.8λ (squares), 1.1λ
(circles), and 0.4λ (triangles). We set the beam waists to optimize extinction
(3λ for a/λ = 0.8, 1.1 and 1.5λ for a/λ = 0.4) over a collection solid angle
sin θ ≲ 0:37 using circular polarization �ðx̂þ iŷÞ=

ffiffiffi
2

p
.
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In each stochastic realization, the N-atom configuration of positions {r1, …, rN}
is obtained by sampling from a joint probability distribution P(r1, …, rN), taken to
be the initial distribution of stationary atoms. Ensemble-averaging over many such

realizations then transforms the expectation values ρðjÞab ðtÞ, ρðj;‘Þad;bcðtÞ, etc., to spatial
correlation functions for the atoms at any given time t:

ψ̂y
aðr; tÞψ̂bðr; tÞ

D E
¼

Z
d3r1 ¼ d3rN ψ̂y

aðr; tÞψ̂bðr; tÞ
D E

fr1 ;¼ ;rNg
Pðr1; ¼ ; rNÞ;

ð12Þ

ψ̂y
aðr; tÞψ̂y

bðr0; tÞψ̂cðr0; tÞψ̂dðr; tÞ
D E
¼

Z
d3r1 ¼ d3rN ψ̂y

aðr; tÞψ̂y
bðr0; tÞψ̂cðr0; tÞψ̂dðr; tÞ

D E
fr1 ;¼ ;rNg

Pðr1; ¼ ; rNÞ;
ð13Þ

and so-forth for higher-order correlations. The atomic correlation functions for a

single realization of fixed atomic positions are given in terms of ρðjÞab and ρðj;‘Þad;bc by

ψ̂y
aðr; tÞψ̂bðr; tÞ

D E
fr1 ;¼ ;rNg

¼
X
j

ρðjÞab ðtÞδðr� rjÞ; ð14Þ

ψ̂y
aðr; tÞψ̂y

bðr0; tÞψ̂cðr0; tÞψ̂dðr; tÞ
D E

fr1 ;¼ ;rNg
¼

X
j‘

ρðj;‘Þad;bcðtÞδðr� rjÞδðr0 � r‘Þ;

ð15Þ
and it is through solving the coupled dynamics between the light and atoms for
each stochastic run and ensemble-averaging over many such realizations that we
establish the light-induced spatial correlations between atoms36,55.

For a single, isolated atom at the laser focus, the solutions to Eqs. (5), (6) (i.e.,
the optical Bloch equations) in the steady state are

ρge ¼
deg � Eþð0Þ

_

�Δþ iγ

Δ2 þ γ2ð1þ I=IsatÞ
; ð16Þ

ρee ¼
I
Isat

γ2=2

Δ2 þ γ2ð1þ I=IsatÞ
; ð17Þ

where I=Isat ¼ 2jdeg � Eþð0Þj2=ð_γÞ2. The effective linewidth in the denominators

of Eqs. (16) and (17) is now power broadened, i.e., γPB ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I=Isat

p
.

We compare the full quantum solution of QME [Eq. (2)] with SCEs [Eqs. (5)

and (6)] for the one-body terms ρðjÞab based on the factorization ρðj;‘Þad;bc ’ ρðjÞadρ
ð‘Þ
bc ,

which neglects quantum fluctuations. In terms of the stochastic sampling
procedure, we express this semiclassical factorization as:

ψ̂y
aðrÞψ̂y

bðr0Þψ̂cðr0Þψ̂dðrÞ
D E

SC
¼

Z
d3r1 ¼ d3rN

ψ̂y
aðrÞψ̂dðrÞ

D E
fr1 ;¼ ;rNg

ψ̂y
bðr0Þψ̂cðr0Þ

D E
fr1 ;¼ ;rNg

Pðr1; ¼ ; rNÞ 1� δðr� r0Þ½ �;
ð18Þ

where the ½1� δðr� r0Þ� term is necessary to exclude the case where the
annihilation operators refer twice to the same atom. Despite the factorization
of the internal atomic correlation functions, we generally have

hψ̂y
aðrÞψ̂y

bðr0Þψ̂cðr0Þψ̂dðrÞiSC ≠ hψ̂y
aðrÞψ̂dðrÞihψ̂y

bðr0Þψ̂cðr0Þi, as the fluctuations of the
atomic positions that are included in SCEs approach can result in strong light-
induced correlations.

In general for the atomic distribution before the light enters the sample we have
P(r1, …, rN) = ∣Ψ(r1, …, rN)∣2, where Ψ(r1, …, rN) denotes the N-body atomic
wave function in position representation. For the initially uncorrelated atoms, each
atom is sampled independently. We consider two different geometries: (i) atoms
trapped in a two-dimensional array with precisely one atom per site; and (ii) a
random, uniform distribution of atoms inside a thin, cylindrical disk of radius R
and thickness Z. For the former case, we can sample the stochastic position of
an atom in each site10, obtaining P(r1, …, rN) = ϱ1(r1)…ϱN(rN), where the
density distribution of the jth array site, centered at rj = Rj, is approximated
by a Gaussian:

ϱjðrjÞ ¼
1ffiffiffiffiffiffiffi

8π3
p

σxσyσz
exp �

xj � Xj

h i2
2σ2x

�
yj � Yj

h i2
2σ2y

�
zj � Zj

h i2
2σ2z

0
B@

1
CA; ð19Þ

where the standard deviations σx, σy, σz quantify the spatial confinement of the
trapped atoms in all three directions.

Scattered light. The total electric field operator Ê
± ðrÞ ¼ E ± ðrÞ þ Ê

±
d ðrÞ is the

sum of the laser field and the fields scattered from all atoms

ϵ0Ê
þ
d ðrÞ ¼

Z
d3RGðr�RÞP̂þðRÞ: ð20Þ

To analyze the different contributions in the scattered light, we write it as

Ê
þ
d ¼ hÊþ

d i þ δÊ
þ
d , where δÊ

þ
d denotes the fluctuations. We then obtain,�

Ê
�ðrÞÊþðrÞ� ¼E�ðrÞEþðrÞ þ E�ðrÞ�Êþ

d ðrÞ
�þ �

Ê
�
d ðrÞ

�
EþðrÞ þ �

Ê
�
d ðrÞ

��
Ê
þ
d ðrÞ

�
þ �

δÊ
�
d ðrÞδÊ

þ
d ðrÞ

�
;

ð21Þ

here Ê
�
Ê
þ
is a dyadic product with elements Ê

�
α Ê

þ
β , with α, β ∈ {1, 2, 3} cycling

over the different polarization components, where the intensity is proportional
to its diagonal elements. The first term on the right hand side of Eq. (21) yields the
incident light intensity, the second, third, and fourth terms produce the coherent
scattering, and the final term produces incoherent scattering dependent on
fluctuations. Rearranging Eq. (21) to solve for the incoherent scattering gives:�

δÊ
�
d ðrÞ δÊ

þ
d ðrÞ

� ¼ �
Ê
�
d ðrÞ Ê

þ
d ðrÞ

�� �
Ê
�
d ðrÞ

��
Ê
þ
d ðrÞ

�
; ð22Þ

which describes correlations in the scattered light.
Consider first a single atom at the origin R ¼ 0. According to Eq. (20), the

coherently scattered light consists of expectation values

Ê
þ
d ðrÞ

D E
¼ 1

ϵ0
GðrÞdge
h i

hσ̂�i; ð23Þ

and there is no difference between the quantum and semiclassical coherent
scattering. Hence, any difference between the quantum and semiclassical coherent
scattering for a many-atom ensemble is due solely to many-body quantum effects.
The incoherent contribution in Eq. (22) is more subtle, as

Ê
�
d ðrÞÊ

þ
d ðrÞ

D E
¼ 1

ϵ20
GðrÞdge
h i�

GðrÞdge
h i

σ̂þσ̂�
� �

ð24Þ

means the incoherently scattered light from a single atom yields

δÊ
�
d ðrÞδÊ

þ
d ðrÞ

D E
¼ 1

ϵ20
GðrÞdge
h i�

GðrÞdge
h i

hσ̂eei � hσ̂þi
�� ��2� �

; ð25Þ

where we have used σ̂þσ̂� ¼ σ̂ee. In the semiclassical approximation, where the
quantum fluctuations are ignored, one then replaces σ̂þ by hσ̂þi in Eq. (24)66, such
that

Ê
�
d ðrÞÊ

þ
d ðrÞ

D E
SC

¼ 1
ϵ20

GðrÞdge
h i�

GðrÞdge
h i

hσ̂þi
�� ��2; ð26Þ

and the incoherently scattered light intensity in Eq. (25) vanishes. Unlike the
coherent scattering, the incoherent scattering for a single atom therefore differs
depending on whether we treat it in a quantum or semiclassical manner.

Generalizing to the many-atom case, Eq. (24) now becomes

Ê
�
d ðrÞÊ

þ
d ðrÞ

D E
¼ 1

ϵ20

Z
d3Rd3R0 Gðr�RÞ½ �� Gðr�R0Þ½ � P̂

�ðRÞP̂þðR0Þ
D E

;

ð27Þ
where, as in Eq. (20), ½Gðr�RÞ�� acts on P̂

�ðRÞ and likewise Gðr�R0Þ on
P̂
þðR0Þ. When calculating the full quantum solution, the correlation functions are

evaluated using the solution to QME [Eq. (2)] and by ensemble-averaging over
many realizations of atomic positions. However, we can also introduce the many-
body version of the single-atom semiclassical approximation [Eq. (26)] to light
scattering:

P̂
�ðRÞP̂þðR0Þ

D E
’

Z
d3r1 ¼ d3rN P̂

�ðRÞ� �
fr1 ;¼ ;rNg

P̂
þðR0Þ

D E
fr1 ;¼ ;rNg

Pðr1; ¼ ; rNÞ;
ð28Þ

substituting this back into Eq. (27) to give the semiclassical scattered field

Ê
�
d ðrÞÊ

þ
d ðrÞ

D E
SC

¼ 1
ϵ20

Z
d3Rd3R0 Gðr�RÞ½ �� Gðr�R0Þ½ �Z

d3r1 ¼ d3rN P̂
�ðRÞ� �

fr1 ;¼ ;rNg

P̂
þðR0Þ

D E
fr1 ;¼ ;rNg

Pðr1; ¼ ; rNÞ:

ð29Þ

Deriving the semiclassical scattered light in Eq. (29) corresponds to a systematic
way of neglecting all quantum fluctuations when the atomic response is first
calculated from SCEs [Eqs. (5) and (6)]. Hence, comparing the scattered light of
Eq. (29) with the equivalent full quantum solution of Eq. (27) provides a signature
for quantum effects in the collective atomic response. Alternatively, if our goal is to
determine a computationally efficient and accurate approximation to the full
quantum solution, we can instead try to improve the semiclassical approximation.
A simple way to achieve this without increasing computational demands is to
include the single-atom quantum description to incoherent scattering [Eq. (25)]
integrated over the extent of the sample, which is sufficient in a number of cases to
capture the leading quantum contributions.

We begin this procedure by placing the atomic operators in Eq. (27) in the
normal order. This yields for the expectation term on the right hand side of
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Eq. (27) (for both fermionic and bosonic atoms)

ψ̂y
eðRÞψ̂gðRÞψ̂y

gðR0Þψ̂eðR0Þ
D E

¼ ψ̂y
eðRÞψ̂eðR0Þ

D E
δðR�R0Þ

þ ψ̂y
eðRÞψ̂y

gðR0Þψ̂eðR0Þψ̂gðRÞ
D E

:
ð30Þ

Substituting this into Eq. (27) and using the semiclassical factorization
approximation of Eq. (18) we obtain

Ê
�
d ðrÞÊ

þ
d ðrÞ

D E
SAQ

¼ 1
ϵ20

Z
d3R Gðr�RÞdge

h i�
Gðr�RÞdge
h i

ψ̂y
eðRÞψ̂eðRÞ

D E

þ 1
ϵ20

Z 0
d3Rd3R0

(
Gðr�RÞ½ �� Gðr�R0Þ½ �

Z
d3r1 ¼ d3rN P̂

�ðRÞ� �
fr1 ;¼ ;rNg

P̂
þðR0Þ

D E
fr1 ;¼ ;rNg

Pðr1; ¼ ; rNÞ
)
;

ð31Þ
where

R 0 denotes a double integral over all fR;R0g excluding R ¼ R0. The
difference between this augmented (semiclassical plus single-atom quantum)
expression and the semiclassical expression of Eq. (29) in the scattered intensity is
effectively the contributions of the single atom incoherent (quantum) scattering
from Eq. (25) integrated over the extent of the sample:

Ê
�
d ðrÞÊ

þ
d ðrÞ

D E
SAQ

� Ê
�
d ðrÞÊ

þ
d ðrÞ

D E
SC

¼ 1
ϵ20

Z
d3R Gðr�RÞdge

h i�
Gðr�RÞdge
h i

ψ̂y
eðRÞψ̂eðRÞ

D E

� 1
ϵ20

Z
d3R

(
Gðr�RÞ½ �� Gðr�RÞ½ �

Z
d3r1 ¼ d3rN P̂

�ðRÞ� �
fr1 ;¼ ;rNg P̂

þðRÞ
D E

fr1 ;¼ ;rNg
Pðr1; ¼ ; rNÞ

)
:

ð32Þ
This improved description includes both the semiclassical contribution and the
single-body quantum fluctuations, meaning any difference in the incoherent
scattering between this improved model and the full quantum model is solely due
to many-body quantum effects.

Transmission. Coherently and incoherently transmitted light is calculated through a
disk of cross-sectional area S perpendicular to the optical axis a distance f = 500λ
downstream of the atoms. We consider light transmitted in the same spatial mode as
the driving field, motivated by a typical experimental scheme of collecting transmitted
light into a single-mode optical fiber, although, for simplicity, we ignore any explicit
refocussing or fiber coupling. The transmitted light therefore has the form

T ¼
R

dS
R
dS0EþðrÞ � Ê

�ðrÞÊþðr0Þ
D E

� E�ðr0ÞR
dS EþðrÞ � E�ðrÞ�� ��2 : ð33Þ

Note that because of the double integral over S and S0 the expectation term is now a
function of r and r0 , although substituting r0 into the preceding equations does not
affect our discussion of coherent and incoherent scattering.

To calculate the coherent transmission Tcoh (plotted as optical depth
ODcoh � �logTcoh), we substitute the first four terms on the right hand side of
Eqs. (21) into (33). This gives quantum TQM

coh or semiclassical TSC
coh coherent

transmission, depending on whether we use the solutions to QME or SCEs . To
calculate the incoherent contribution to the transmission, we replace the two-field
expectation in Eqs. (33) with (22). Evaluating Eq. (22) using Eqs. (27) and (30),
along with the solutions to QME , results in the quantum incoherent transmission
TQM
inc . Using instead the solutions to SCEs and either Eqs. (29) or (31), respectively,

produces the semiclassical incoherent transmission TSC
inc, or the improved model for

incoherent transmission TSAQ
inc where the independent-atom quantum description is

added to the semiclassical model.
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