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Optimal and naive diversification in an emerging market: Evidence 

from China’s A-shares market 

Abstract: This paper empirically investigates the out-of-sample performance of the 1/N naive rule 

and the Markowitz mean-variance strategies in the largest emerging market (i.e., China’s A-shares 

market) and provides three new findings. First, we show that some mean-variance optimization 

strategies can outperform the 1/N rule in China’s A-shares market, while minimum-variance 

strategies cannot. Using Certainty Equivalent Return (CER) instead of Sharpe ratios do not change 

our results qualitatively. Second, we find an obvious advantage of mean-variance optimization 

when N is large. Third, when transaction costs are taken into account, the profitability of the 

unconstrained mean-variance optimizations almost vanishes, while the profitability of the mean-

variance optimizations with the short-sale constraint remains. Our results are robust to using a 

shorter estimation window of about 60 months. These results provide support for the use of optimal 

diversification strategies in emerging markets. 
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1. Introduction 

The relative performance of the mean-variance strategies and 1/N rule depends on the tradeoff 

between bias and variance. On the one hand, since Markowitz’s (1952) seminal paper, mean-

variance optimization has become a cornerstone of modern portfolio theory (Brandt, 2009). On the 

other hand, the simple naive 1/N diversification rule, which is arguably from the ancient 

Babylonian Talmud 1500 years ago and states that an investor should always equally divide her 

wealth across N assets under consideration, has been surprisingly widely used by individual 

investors (Benartzi and Thaler, 2001; Huberman and Jiang, 2006). The former is theory-based and 

usually asymptotically unbiased, but requires estimating model parameters from the data and thus 

has sizeable variance in small samples: the well-known parameter uncertainty or estimation error 

problem. The latter does not rely on any theory or data, is biased but has zero variance.  

Although there is a growing body of research on the relative performance of the mean-

variance strategies and 1/N rule1, there are still many open questions. For example, many observers 

have documented evidence of the lukewarm performance of mean-variance strategies from 

Developed Markets (DMs) 2, but there is little empirical evidence as to whether mean-variance 

strategies outperform the 1/N rule in Emerging Markets (EMs), probably because the assets in 

EMs do not have a sufficiently long data history to form mean-variance strategies. This is an 

important question given the substantial mispricing but short history in EMs. A couple of papers 

conjecture that the magnitude of mispricing may promote the performance of the mean-variance 

 

1 For recent examples, pls refer to Wang et al. (2015), Ackermann et al. (2017), Bessler et al. (2017), Yan and 

Zhang (2017), and Platanakis et al. (2018). 

2 For instance, DeMiguel et al. (2009, p1915) find that “none is consistently better than the 1/N rule in terms 

of Sharpe ratio…”, by evaluating 14 variants of mean-variance optimization across both simulated and real datasets 

from DMs. 
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strategies (Tu and Zhou, 2011; Yan and Zhang, 2017), while short history for assets prevent a 

precise estimation of the moments and hence deteriorate the performance of the mean-variance 

strategies (see, c.f., DeMiguel et al., 2009).  

Furthermore, there is a debate about the role of N in the literature. For instance, Huberman 

and Jiang (2006) note that "Participants tend to allocate their contributions evenly across the funds 

they use, with the tendency weakening with the number of funds used", which is in stark contrast 

with DeMiguel et al. (2009, p1920) who find "the results show that the naive 1/N strategy is more 

likely to outperform the strategies from the optimizing models when: (i) N is large", while Yan and 

Zhang (2017) propose that "As the number of assets N increases, there is a tradeoff between 

precisely estimating the covariance matrix and exploiting mispriced assets". 

Finally, although it has been argued that mean-variance strategies with the short-sale 

constraint perform better than the unconstrained mean-variance strategies and the minimum-

variance strategies3 perform better than the mean-variance strategies in DMs, it remains unclear 

whether these strategies perform better than the mean-variance strategies and the 1/N rule in EMs. 

To answer these questions, we focus on the equity market from the largest EM in the world 

(i.e., China4), while the extant literature mostly relies on simulated data and/or data from DMs. 

China’s A-shares market has the largest capitalization among EMs, and relatively long enough 

 

3 Minimum-variance strategies can be seen as a special case of the mean-variance strategies. For instance, 

DeMiguel et al. (2009) note “Also, although this strategy does not fall into the general structure of mean-variance 

expected utility, its weights can be thought of as a limiting case of Equation (3), if a mean-variance investor either 

ignores expected returns or, equivalently, restricts expected returns so that they are identical across all assets”. 

4 Currently, China is one of the largest economies in the world and the largest EM. In 2014, the IMF ranks 

China as the largest economy by purchasing power parity, and the second largest by nominal GDP. China has the 

largest population, and is the engine of the world economy over the past three decades, with an average GDP growth 

rate above 8%. China is not only the largest exporter of goods, but also the second largest importer of goods.  
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history to form mean-variance strategies. We contribute to the prior literature by providing three 

new findings. First, we show that some mean-variance optimization strategies (i.e., "mv-c" and 

"dp-c") can outperform the 1/N rule in China’s A-shares market, while minimum-variance 

strategies cannot (in consistency with Wang et al., 2015; Yan and Zhang, 2017). This is not 

surprising, since only minimum risk is of concern and the information about expected returns is 

sacrificed, although the minimum-variance type of strategies require estimating only the variance-

covariance matrix but not the expected returns, and is less vulnerable to estimation risk than other 

sample-based mean-variance efficient portfolios (e.g., Green and Hollifield, 2002; Jagannathan 

and Ma, 2003; DeMiguel et al., 2009). Using Certainty Equivalent Return (CER) instead of Sharpe 

ratios do not change our results qualitatively.  

Second, we find an obvious advantage of some mean-variance optimizations (i.e., "mv-c" 

and "dp-c") when N is large, which is different from the case of non-mispricing in DeMiguel et al. 

(2009) but in consistency with Huberman and Jiang (2006) and Yan and Zhang (2017). According 

to Yan and Zhang (2017), as N grows, there is a tradeoff between the estimation of the covariance 

matrix and the potential benefits of exploiting mispriced assets. While the former makes it difficult 

for Markowitz strategies to outperform the 1/N rule, the latter offers Markowitz strategies 

advantages over the 1/𝑁 rule in the presence of mispricing. Given a sufficiently large mispricing, 

the increase of N always leads to Markowitz strategies a big advantage over the 1/𝑁 rule.  

Finally, when transaction costs are taken into account, the profitability of the unconstrained 

mean-variance optimizations almost vanishes, while the profitability of the mean-variance 

optimizations with the short-sale constraint remains. Our results are robust to using a shorter 

estimation window of about 60 months.  
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Our paper speaks to three strands of the literature. It relates to studies that investigate the 

underperformance of the Markowitz strategies relative to the 1/N rule, from the perspective of 

estimation errors (Brown, 1979; Jobson and Korkie, 1980; Michaud, 1989; Jorion, 1992). As 

estimation errors can lead to unstable portfolio weights away from optimal over time, it is not 

uncommon to argue that the Markowitz strategies can be outperformed by the 1/N rule. For 

instance, the contribution of DeMiguel et al. (2009) is "to show that because the effect of estimation 

error on the weights is so large, even the models designed explicitly to reduce the effect of 

estimation error achieve only modest success". We show that the underperformance of Markowitz 

strategies brought by the estimation errors might be offset by the benefits of exploring the 

considerable mispricing in EMs, which is less discussed in this area.  

A small but growing literature has attempted to explain the dominant role of the 1/N rule, 

including Tu and Zhou (2011), Fletcher (2011), Kirby and Ostdiek (2012), Pflug et al. (2012), and 

Yan and Zhang (2017). Fletcher (2011) examines whether optimal diversification strategies 

outperform the 1/N strategy in U.K. stock returns. We add to Fletcher (2011) as the market 

efficiency (mispricing) may vary from country to country, and urge for further search of 

international evidence, especially from less efficient markets such as China. We rely on real data 

from China’s A-shares market, while Tu and Zhou (2011), Yan and Zhang (2017) focus on 

mispricing with simulated data.  

Finally, this study also connects to the strand of literature regarding active versus passive 

management in the markets with different extents of efficiency. We directly test the conjecture 

that (due to larger mispricing in EMs) mean-variance strategies should be more successful in EMs 

than in DMs and provide supportive empirical evidence, especially for two mean-variance 

optimizations with the short-sale constraint (i.e., "mv-c" and "dp-c"). This finding is in line with 
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the literature such as Harvey (1995), Morck et al. (2000), Van der Hart et al. (2003), Griffin et al. 

(2010), and Dyck et al. (2013). 

The rest of the paper unfolds as follows. In section 2, we describe our datasets. Section 3 

describes the portfolio rules under our consideration. Section 4 presents empirical results while 

Section 5 concludes. 

2. Datasets 

In this section, we list the five datasets of monthly returns in China’s A-shares market which we 

use to study the out-of-sample performance of the relative performance of the mean-variance 

strategies and 1/N rule. The five empirical datasets are listed in Table 1. Although China’s stock 

trading started from 1990, the period of 1990 to 1995 is only the priming stage, the amount and 

scale of stocks are small, and their ups and downs are too noisy at this stage. We focus on the 

sample of excess returns of China’s A-shares market from January 1996 to December 2016 in our 

empirical analysis (252 months). We use risk-free returns to compute excess returns on portfolios 

and obtain the risk-free returns from the CSMAR database, which uses treasury bonds as basis.  

2.1 SMB, HML and MKT portfolios 

The "MKT/SMB/HML" is also called "Fama-French benchmark factors". We obtain these three 

variables for China’s A-shares market via the Resset database: 

1) MKT: The market premium of China’s A-shares market. 

2) HML: The average return of the portfolio that consists of two value portfolios minus two 

growth portfolios (high minus low). 

3) SMB: The average return of the portfolio that includes three small portfolios minus three big 

portfolios (small minus big). 
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2.2 Industry portfolios 

The "Industry" dataset includes monthly excess returns on 15 industry portfolios in China’s A-

shares market. The 15 industries in this dataset are picked from the 19 classes which are classified 

according to the Industry Classification Standard produced by China Securities Regulatory 

Commission (CSRC). These 15 industries we consider are Agriculture, Forestry, Animal 

Husbandry and Fishery; Mining; Manufacturing; Electric Power, Heat, Gas and Water Production 

and Supply; Construction; Wholesale and Retail Trade; Transport, Storage and Postal Service; 

Accommodation and Catering; Information Transmission, Software and Information Technology 

Services; Financial Industry; Real Estate; Leasing and Commercial Service; Water Conservancy, 

Environment and Public Facility Management; Culture, Sports and Entertainment; Diversified 

Industry. We obtain this dataset from the Resset Database. 

2.3 Size and book-to-market-sorted portfolios 

The "P25" consists of the portfolios which are the intersections of 5 portfolios formed on size 

(market equity, ME) and 5 portfolios formed on the ratio of book equity divided by market equity 

(BE/ME). We obtain this dataset of monthly returns on 25 portfolios from the Resset Database. 

Following Wang (2005), we exclude the five portfolios which contain the largest firms and 

form a dataset ("P20") that consists of 20 portfolios because the 25 portfolios are almost linear 

correlated with MKT, SMB and HML. We use this dataset to construct the "FF-1 factor" dataset, 

in which we add the MKT into the "P20" and let the investor take CAPM into account. 

3. Methodology 

This section describes the portfolio strategies and the measures of portfolio strategies in this paper. 

The portfolio strategies cover the 1/N rule and the major Markowitz strategies utilized in DeMiguel 

et al. (2009) and Tu and Zhou (2011). One of the most important characteristics of China’s stock 
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market is that it prohibits short-selling until very recently. Thus, short-sale constrained portfolios 

may be particularly suitable for China’s stock market. Following DeMiguel et al. (2009), we report 

the results for the short-sale constrained portfolios, but neither for the multi-prior robust portfolio 

rule such as the one in Garlappi et al. (2007), nor for the portfolios shrinking the elements of the 

variance-covariance matrix such as Best and Grauer (1991, 1992), Chan, Karceski, and 

Lakonishok (1999) and Ledoit and Wolf (2004a, 2004b), as Jagannathan and Ma (2003) show that 

these portfolios are equivalent to imposing a short-sale constraint on the minimum-variance 

portfolio. Regarding Tu and Zhou (2011), we only consider the optimal combination of the 1/N 

rule and the sample tangency strategy and the optimal combination of the 1/N rule and Kan and 

Zhou (2007), as (i) they are the only two analytically tractable; (ii) they are the only two considered 

in latter literature such as Fletcher (2011) or Moorman (2014). We further exclude the VT and 

RRT strategies proposed by Kirby and Ostdiek (2012), as they require neither optimization nor 

covariance matrix inversion, two most notable characteristics of the Markowitz strategies. 

Different from DeMiguel et al. (2009), we consider an additional portfolio for the purely statistical 

approach relying on Bayesian diffuse-priors (Barry, 1974, Bawa et al., 1979) as well as its short-

sale constrained variant. As a result, we have 13 representative portfolio rules in total. 

3.1 Portfolio rules  

In this subsection, we briefly discuss the portfolio rules considered in this study. 

The Naive Portfolio ("𝑵𝒂𝒊𝒗𝒆, 𝟏/𝑵, 𝒐𝒓 𝒆𝒘") 

The naive portfolio is an even allocation of wealth across 𝑁 risky assets  

 𝑥𝑒 = 𝟏𝑁/𝑁 (1) 
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It is equivalent to holding an equally weighted index consisting of the 𝑁 risky assets. It 

involves no estimation risk since it does not require parameter estimation and model optimization. 

In theory, it normally deviates from the mean-variance optimal portfolio and thus has suboptimal 

performance. In practice, its performance depends on the trade-off between its sub-optimality and 

immunity to estimation risk.  

 The Tangency Portfolio ("𝒎𝒗" ) 

Suppose that an investor can invest in 𝑁 risky assets and one risk-free asset. Let 𝑅𝑡 denote 

the 𝑁-vector of excess returns at 𝑡 and assume that they are independent and identically distributed 

with mean equal to the 𝑁-dimensional vector 𝜇  and covariance 𝛴 . Let 𝑥  denote the vector of 

fractions of wealth allocated to risky assets. The remainder (1 − 𝟏𝑁
′ 𝑥) is invested in the risk-free 

asset where 𝟏 is the 𝑁 × 1 vector of ones. The relative weights in the investor’s portfolio with only 

risky assets are 

 𝑤 =
𝑥

|𝟏𝑁
′ 𝑥|

 (2) 

where we take the absolute value of the sum of portfolio weights to make sure that the relative 

weights 𝑤 have the same signs as 𝑥 in exceptional cases, in which, the sum of portfolio weights 

𝟏𝑁
′ 𝑥 is negative. 

The investor's preference is represented by the general form of quadratic utility function: 

 𝑈(𝑥) = 𝑥′𝜇 −
𝛾

2
𝑥′Σ𝑥 (3) 

where 𝛾 is the investor's risk aversion coefficient. 

The optimal portfolio weights that maximize the above objective function are 

 𝑥∗ =
Σ−1μ

𝛾
 (4) 
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𝑥∗  is known as respectively the tangency portfolio and has the highest Sharpe ratio. In 

practice, we have to estimate 𝜇 and 𝛴. The simplest way to do that is using their sample analogs  

�̂� =
1

𝑇
∑ 𝑅𝑡

𝑇
𝑡=1 , �̂� =

1

𝑇−𝑁−2
∑ (𝑅𝑡 − �̂�)(𝑅𝑡 − �̂�)′𝑇

𝑡=1  (5) 

where 𝑅𝑡 , 𝑡 = 1, … , 𝑇 are historical excess returns. 

Alternatively, we can estimate 𝛴 as follows  

�̃� =
1

𝑇
∑ (𝑅𝑡 − �̂�)(𝑅𝑡 − �̂�)′𝑇

𝑡=1   or   𝛴 =
1

𝑇−1
∑ (𝑅𝑡 − �̂�)(𝑅𝑡 − �̂�)′𝑇

𝑡=1  (6) 

They are known as the maximum likelihood estimator and the unbiased estimator of 𝛴. 

They differ from �̂� by a scale factor and are asymptotically equivalent to �̂�.  

Theoretically, the tangency portfolio is obtained by plugging the true mean and covariance 

matrix of excess returns into (4), and it should have the largest Sharpe ratio. In practice, we can 

estimate the tangency portfolio by plugging sample estimates �̂� and �̂� in (6) into (4). The resulting 

portfolio is the sample tangency portfolio ("mv"): 

 �̂�∗ =
�̂�−1�̂�

𝛾
 (7) 

The portfolio obtained by substituting sample estimates of 𝜇 and 𝛴 into (3) is known as the 

plug-in estimator. It has poor out-of-sample performance and extremely unstable weights over 

time. Many extensions of the plug-in rule are essentially different ways of refining the plug-in 

estimators.  

 The Minimum-Variance Portfolio ("𝒎𝒊𝒏") 

Theoretically, the minimum-variance portfolio is  

 𝑥𝑚𝑖𝑛 =
𝛴−1𝟏𝑵

𝟏𝑵
′ 𝛴−1𝟏𝑵

 (8) 

It is the solution to the following minimization problem 
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 Minimize 𝑥′Σ𝑥, s.t. 1N
′ 𝑥=1 (9) 

Plugging the estimate of covariance �̂� into 𝑥𝑀𝑉𝑃, we obtain its sample counterpart ("min") 

 �̂�𝑚𝑖𝑛 =
�̂�−1𝟏𝑵

 𝟏𝑁
′ �̂�−1𝟏𝑵

 (10) 

This portfolio can be considered as a special case of mean-variance portfolios, as shown in 

DeMiguel et al. (2009). This portfolio differs from other Markowitz strategies in that it requires 

estimating only the covariance matrix of asset returns and is less vulnerable to estimation risk than 

other sample mean-variance efficient portfolios; however, it may well have a lower Sharpe ratio 

since it has the minimum risk. 

Bayesian Diffuse-Prior Portfolio ("𝒅𝒑") 

This approach assumes a diffuse prior about the unknown mean and the variance-covariance 

matrix, which results in an optimal portfolio that allocates less weight to risky assets. Barry (1974), 

Klein and Bawa (1976), and Brown (1979) show that if the prior is chosen to be diffuse, and the 

conditional likelihood is normal, then the predictive distribution is a student-t distribution. Hence, 

while still using the historical mean to estimate expected returns, this approach inflates the 

covariance matrix by a factor of (1+1/M). 

Jorion’s (1986) Bayes-Stein Shrinkage Estimators ("𝑱𝒐𝒓𝒊𝒐𝒏, 𝒐𝒓 𝒃𝒔") 

Jorion’s (1986) Bayes-Stein estimators of mean and covariance are 

 �̂�𝑏𝑠 = (1 − 𝛿)�̂� + 𝛿�̂�𝑚𝑖𝑛𝟏𝑵 (11) 

�̂�𝑏𝑠 = (1 +
1

𝑇+�̂�
) �̂� +

�̂�

𝑇(𝑇+1+�̂�)

𝟏𝑁𝟏𝑁
′

𝟏𝑁
′ �̂�−1𝟏𝑁

 (12) 

where  

 �̂� =
𝑇�̂�

1−�̂�
                                                                                            (13) 
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 𝛿 =
𝑁+2

𝑁+2+𝑇(�̂�−�̂�𝑚𝑖𝑛)′�̂�−1(�̂�−�̂�𝑚𝑖𝑛𝟏𝑵)
 (14) 

We see that the estimator �̂�𝑏𝑠 shrinks the sample average return �̂� to �̂�𝑚𝑖𝑛, the return on the 

sample global minimum-variance portfolio. The resulting portfolio ("Jorion, or bs") is obtained 

by plugging �̂�𝑏𝑠 and �̂�𝑏𝑠 into (10). Jorion (1986) reports that this portfolio outperforms the global 

minimum-variance portfolio, the Bayesian diffuse-prior portfolio and the plug-in estimators in 

terms of expected utility loss. 

 Kan and Zhou(2007)’s Three-Fund Rule ("Kan-Zhou, or kz3") 

If estimation errors in two risky portfolios are not perfectly correlated, the estimation risk 

can be reduced by combining them. Kan and Zhou (2007) use the sample global minimum-

variance to diversify the estimation risk of the sample tangency portfolio. Their optimal portfolio 

can be expressed as  

𝑥𝐾𝑎𝑛−𝑍ℎ𝑜𝑢 =
(𝑇−𝑁−1)(𝑇−𝑁−4)

𝛾𝑇(𝑇−2)
[𝜂�̂�−1�̂� + (1 − 𝜂)𝜇𝑚𝑖𝑛�̂�−1𝟏𝑁] (15) 

where  

 𝜂 =
𝜓2

𝜓2+
𝑁

𝑇

 (16) 

 𝜓2 = (𝜇 − 𝜇𝑚𝑖𝑛)′𝛴−1(𝜇 − 𝜇𝑚𝑖𝑛) (17) 

𝜇𝑚𝑖𝑛 is the expected excess return on the global minimum-variance portfolio.  

This rule implies that investors just need to allocate their wealth into three funds: the sample 

global minimum-variance portfolio, the sample tangency portfolio and the risk-free asset. For this 

reason, Kan and Zhou (2007) name their portfolio the three-fund rule. According to this rule, the 

higher 𝑁/𝑇 is, the larger the fraction of wealth invested in the global minimum-variance portfolio 

will be. The reason is as the number of assets increases relative to the sample length, the tangency 
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portfolio will become more difficult to estimate. Consequently, the optimal portfolio will have a 

greater reliance on the global minimum-variance portfolio.  

In theory, this portfolio is superior to either the sample tangency portfolio or the sample 

global minimum-variance portfolio. However, 𝜇 and 𝛴 are unknown and thus 𝑥𝐾𝑎𝑛−𝑍ℎ𝑜𝑢 in (15) 

have to be estimated using sample data. Following Kan and Zhou (2007), we calculate �̂�𝐾𝑎𝑛−𝑍ℎ𝑜𝑢 

("Kan-Zhou or kz3") using the following estimates of 𝜂 and 𝜓 

 �̂� =
�̂�2

�̂�2+
𝑁

𝑇

 (18) 

�̂�2 =
(𝑇−𝑁−1)�̅�2−(𝑁−1)

𝑇
+

2(�̅�2)
𝑁−1

2 (1+�̅�2)
−

𝑇−2
2

𝑇𝐵�̅�2/(1+�̅�2)((𝑁−1)/2,(𝑇−𝑁+1)/2)
 (19) 

 �̅�2 = (�̂� − �̂�𝑚𝑖𝑛)′Σ̂−1(�̂� − �̂�𝑚𝑖𝑛) (20) 

where 𝐵𝑥(𝑎, 𝑏) = ∫ 𝑦𝑎−1(1 − 𝑦)𝑏−1𝑑𝑦
𝑥

0
 is the incomplete 𝐵𝑒𝑡𝑎 function. 

Since �̂�𝐾𝑎𝑛−𝑍ℎ𝑜𝑢 is subject to estimation risk, there is no guarantee that it outperforms the 

sample tangency portfolio and the sample global minimum-variance portfolio. 

 Combination of 𝟏/𝑵 with the Sample Tangency Portfolio ("𝑪𝑴𝑳, 𝒐𝒓 𝒆𝒘 − 𝒎𝒗,") 

DeMiguel et al. (2009) find that the seemingly naive equally weighted portfolio 𝑥𝑒 in (3) 

shows very impressive performance relative to the sophisticated ones under their consideration. In 

view of this, Tu and Zhou (2011) propose using the 1/𝑁 portfolio 𝑥𝑒 to hedge the estimation risk 

in the sample tangency portfolio. The resulting rule ("ew − mv") is  

 �̂�𝐶𝑀𝐿 =
�̂�2

�̂�1+�̂�2
𝑥𝑒 +

�̂�1

�̂�1+�̂�2
�̂�∗ (21) 

where  

 �̂�1 = 𝑥𝑒
𝑇Σ̂𝑥𝑒 −

2

𝛾
𝑥𝑒

′ �̂� +
1

𝛾2 𝜃2 (22) 
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 �̂�2 =
1

𝛾2 (𝑐1 − 1)𝜃2 +
𝑐1

𝛾2

𝑁

𝑇
 (23) 

 𝑐1 =
(𝑇−2)(𝑇−𝑁−2)

(𝑇−𝑁−1)(𝑇−𝑁−4)
 (24) 

𝜃2 =
(𝑇−𝑁−2)�̅�2−𝑁

𝑇
+

2(�̅�2)
𝑁
2 (1+�̅�2)

−
𝑇−2

2

𝑀𝐵�̅�2/(1+�̅�2)(𝑁/2,(𝑇−𝑁)/2)
 (25) 

 �̅�2 = �̂�′�̂�−1�̂� (26) 

𝑥𝑒 = 𝟏𝑁/𝑁 is the weight vector of the 1/𝑁 portfolio, �̂�∗ refers to the sample tangency portfolio 

and 𝐵𝑥(𝑎, 𝑏) = ∫ 𝑦𝑎−1(1 − 𝑦)𝑏−1𝑑𝑦
𝑥

0
 is the incomplete 𝐵𝑒𝑡𝑎 function. 

 Combination of 𝟏/𝑵 with the Three-Fund Portfolio ("𝑪𝑲𝒁, 𝒐𝒓 𝒆𝒘 − 𝒌𝒛𝟑") 

Tu and Zhou (2011) also mix the 1/𝑁 rule 𝑥𝑒 with the three-fund rule 𝑥𝐾𝑎𝑛−𝑍ℎ𝑜𝑢 in (15). 

Using sample analogs of 𝜇 and 𝛴, this mixture ("ew − 𝐤𝐳𝟑") can be written as 

�̂�𝐶𝐾𝑍 = (1 −
�̂�1−�̂�13

�̂�1−2�̂�13+�̂�3
) 𝑥𝑒 +

�̂�1−�̂�13

�̂�1−2�̂�13+�̂�3
�̂�𝐾𝑎𝑛−𝑍ℎ𝑜𝑢 (27) 

where 

 �̂�3 =
�̂�2

𝛾2 −
1

𝛾2𝑐1
(𝜃2 −

𝑁�̂�

𝑇
) (28) 

�̂�13 =
𝜃2

𝛾2
−

1

𝛾
𝑤𝑒

′�̂� +
1

𝛾𝑐1
(�̂�𝑤𝑒

′�̂� + (1 − �̂�)�̂�𝑚𝑖𝑛𝑤𝑒
′𝟏𝑁 −

1

γ
[η̂μ̂′Σ̂−1μ̂ + (1 − η̂)μ̂𝑚𝑖𝑛μ̂′Σ̂−11N]) 

                                                               (29) 

where �̂�𝐾𝑎𝑛−𝑍ℎ𝑜𝑢 is the three-fund rule estimated using (18), (19) and (20), and �̂�, �̂�1, 𝑐1 and 𝜃2  

are given respectively by (18), (22), (24) and (25). Since shrinkage factors in (51) are estimated 

using sample analogs, this rule may fail to beat the 1/𝑁  rule or the three-fund rule due to 

estimation errors. 

 Short-sale constrained portfolios 
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In this paper, we consider four strategies that constrain short selling, i.e., the constrained 

mean-variance, constrained minimum-variance, constrained Bayesian diffuse-prior, and Bayes-

Stein shrinkage portfolios. They are constructed by adding a non-negativity constraint on the 

weights of the assets in the optimizing process. 

To constrain the portfolios, we impose the constraint: 𝑥𝑖 ≥ 0, 𝑖 = 1, … , 𝑁  in the 

optimization. When it comes to the classic mean-variance portfolio, we can yield the Lagrangian: 

ℒ = 𝑥𝑡
𝑇𝜇𝑡 −

𝛾

2
𝑥𝑡

𝑇Σ𝑡𝑥𝑡 + 𝑥𝑡
𝑇𝜆𝑡,                                                (30) 

where 𝜆𝑡 is the N × 1 vector of Lagrange multipliers for the short-sale constraints. Then, after we 

rearrange the mentioned equation, we can find that the difference between constrained weights and 

unconstrained weights is the adjusted mean vector which is shown as follows: 𝜇𝑡 = 𝜇𝑡 + 𝜆𝑡. As 

the constraint for asset i binds, 𝜆𝑡,𝑖 > 0, the expected excess returns is thus increased by the 

multiplier from 𝜇𝑡,𝑖  to 𝜇𝑡,𝑖 = 𝜇𝑡,𝑖 + 𝜆𝑡,𝑖 . This change of mean is equivalent to the "shrinkage" 

approach. 

When it comes to the minimum-variance portfolio, Jagannathan and Ma (2003) studied the 

impact of imposing short-sale constraints on this portfolio and indicated that we can replace the 

covariance matrix using: 

Σ̂min−c = Σ̂t − 𝜆𝑡1𝑁
𝑇 − 1𝑁𝜆𝑡

𝑇 ,                                          (31) 

where 𝜆𝑡  plays the same role as it does in mean-variance portfolios. This time the sample 

covariance is reduced by the multiplier. 

Apart from the constrained mean-variance portfolios and constrained minimum-variance 

portfolios, we also consider the approach to constrain Bayesian diffuse-prior and Bayes-Stein 

portfolios, and we find that is similar to that of mv portfolio and min portfolio. 
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Table 2 provides an overview of all the portfolio rules described above. Among all rules, 

the 1/𝑁 rule is the only one free from parameter estimation. However, it may deviate substantially 

from the mean-variance optimal portfolio. All the other rules require estimating input parameters 

and thus are vulnerable to estimation risk. 

3.2 Sharpe ratio and Certainty Equivalent Return (CER) 

In this subsection we present the methods we use in this paper to evaluate the performance of the 

trading strategies above, namely the out-of-sample Sharpe ratio, and Certainty Equivalent Return 

(CER). We consider both the pre-cost and post-cost cases.  

 Sharpe ratio 

Sharpe ratio is a measure for the excess return which is adjusted by the risk: 

SR̂i =
�̂�𝑖

σ̂i
.                                                                        (32) 

For model 𝑖, we use the sample standard deviation σ̂i to divide the sample mean of out-of-

sample excess returns �̂�𝑖, to obtain the out-of-sample Sharpe ratio.  

 Certainty Equivalent Return (CER) 

The second measure we use to evaluate the performance of the portfolios is the Certainty 

Equivalent Return (CER). This is defined as the fixed return that an investor would like to accept 

rather than investing in a specific portfolio of risky assets. Thus, CER represents the risk tolerance 

of an investor: 

CER̂i = �̂�𝑖 −
γ

2
�̂�𝑖

2.                                                              (33) 

where �̂�𝑖  is the sample mean of out-of-sample excess returns of model i and �̂�𝑖
2  is the sample 

covariance of these returns. In addition, γ is the risk aversion, which is the same as we set before. 
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The definition of CER comes from the equation that computes the expected utility of an investor 

in Markowitz portfolios and we assume that all investors tend to maximize their utilities in all 

strategies. The value of CER represents the rate of return an investor is willing to accept instead 

of investing in the risky asset. If the risk is huge and leads to a negative CER, in practice investor 

will not invest in portfolios that have negative CER. 

 Transaction costs 

In practice, the expenses always exist when transactions happen, no matter the investor 

purchases or sells the asset. The size of the transaction costs depends on the size of the commission 

fee and the bid/ask spread. If a portfolio has great change in its weights of assets every time it is 

rebalanced, the impact can be obvious on the excess return of the whole portfolio. As the return is 

reduced by trading volume, the cost of trading will inevitably influence the investor’s decision 

making. In order to minimize transaction costs, investors may accept little deviations from the 

"optimal" weights they calculate to reduce the trading volume. We define turnover as the average 

amount of trading across N assets: 

Turnover =
1

𝑇 − 𝑀
∑ ∑(|�̂�𝑘,𝑗,𝑡+1 − �̂�𝑘,𝑗,𝑡+|)

𝑁

𝑗=1

𝑇−𝑀

𝑡=1

,                                      (34) 

where we use �̂�𝑘,𝑗,𝑡 to denote the weight of asset j at time t in model k; �̂�𝑘,𝑗,𝑡+ is the weight after 

generating the return and before rebalancing between t and t + 1; and �̂�𝑘,𝑗,𝑡+1 is the weight after 

rebalancing at the beginning of time t + 1. Turnover is computed based on the absolute difference 

between weights because the directions of the transaction could be different when rebalancing. In 

the case of naive portfolio, at the beginning of every period we rebalance the weight of every asset 

to 1/N, but �̂�𝑘,𝑗,𝑡+ may be different because prices of assets may change differently between t and 
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t + 1. Turnover can be seen as the average percentage of assets traded in each period. We consider 

the performance after transaction fee is paid. We set the rate of transaction cost equal to 48.7 basis 

points, which is the same as the rules produced by China Securities Regulatory Commission 

(CSRC). 

Let 𝑅𝑘,𝑝 be the vector of returns from model k which contains N assets before rebalancing, 

so 𝑅𝑘,𝑝,𝑡+1 = ∑ 𝑅𝑗,𝑡+1�̂�𝑘,𝑗,𝑡.𝑁
𝑗=1  After the portfolio is rebalanced at time t + 1 , the transaction 

appears and the transaction fee is paid. The proportion of the absolute change of weight is 

|�̂�𝑘,𝑗,𝑡+1 − �̂�𝑘,𝑗,𝑡+| . Assuming that s  is the proportional transaction fee, the cost is s ×

∑ |�̂�𝑘,𝑗,𝑡+1 − �̂�𝑘,𝑗,𝑡+|𝑁
𝑗=1 . The return after the transaction cost is: 

𝑅𝑘,𝑝,𝑡+1
∗ = 𝑅𝑘,𝑝,𝑡+1 − s × ∑ |�̂�𝑘,𝑗,𝑡+1 − �̂�𝑘,𝑗,𝑡+|

𝑁

𝑗=1
.                             (35) 

4. Empirical results  

In this section we evaluate the performance of different portfolios in China’s A-shares market by 

Sharpe ratio, and CER, respectively. We focus on the case in which the risk-aversion parameter 

γ = 3 and the estimation window of 120 months (M = 120) but also consider the alternatives such 

as M = 60, γ = 1. 

4.1 Sharpe ratios 

We present the Sharpe ratios of our baseline models in Tables 3 and 4, where we follow the 

literature in this area and use the estimation window of 120 months (M = 120) and 60 months 

(M = 60), respectively. Panel A and B report the pre-cost and post-cost cases, respectively. 

Several interesting observations can be made. First, in terms of the pre-cost out-of-sample Sharpe 

ratio, the naive strategy ("ew") outperforms the sample mean-variance portfolio ("mv") for first 
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two datasets ("MKT/SMB/HML" and "Industry") but not the latter three datasets based on size 

and book-to-market-sorted portfolios, which is in contrast with DeMiguel et al. (2009). We 

speculate that it is due to the different number of investable assets (i.e., N) in each dataset. 

Specifically, there are only 3 (15) investable assets in the first (second) dataset, but at least 20 

assets in the latter three assets. 

Second, the above finding carries to several other mean-variance strategies such as the 

"kz3", "ew-mv", "ew-kz3", "dp", "bs", "mv-c" and "dp-c", while the minimum-variance type of 

strategies (i.e., "min", "ew-min" and "min-c") cannot outperform the 1/N rule (in consistency with 

Wang et al., 2015; Yan and Zhang, 2017). This is not surprising, since only minimum risk is of 

concern and the information about expected returns is sacrificed, although the minimum-variance 

type of strategies requires estimating only the variance-covariance matrix but not the expected 

returns. 

Third, in the first two datasets (i.e., "MKT/SMB/HML" and "Industry"), we find that the 

three combinations of mean-variance portfolios (i.e., "kz3", "ew-mv", "ew-kz3") can improve the 

performance of mean-variance portfolio, which is in consistency with Kan and Zhou (2007), and 

Tu and Zhou (2011). However, we disagree with Kan and Zhou (2007), and Tu and Zhou (2011) 

as we find the extent of improvement is not large enough to outperform the naive portfolio in 

China’s A-shares market. In the latter three datasets based on size and book-to-market-sorted 

portfolios, however, the three combinations of mean-variance portfolios (i.e., "kz3", "ew-mv", 

"ew-kz3") cannot improve the mean-variance portfolio. 

Fourth, constraints improve the out-of-sample Sharpe ratio, especially in the post-cost case. 

For instance, the first three short-sale constrained strategies (i.e., "mv-c", "min-c", "dp-c") almost 

always outperform their unconstrained counterparts (i.e., "mv", "min", "dp") in terms of the post-
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cost out-of-sample Sharpe ratio, although it is less the case in terms of the pre-cost out-of-sample 

Sharpe ratio.  

Fifth, although the post-cost out-of-sample Sharpe ratio is to some extent disheartening 

relative to the pre-cost out-of-sample Sharpe ratio, two short-sale constrained strategies (i.e., "mv-

c", "dp-c") can still outperform the 1/N rule across the latter three datasets based on size and book-

to-market-sorted portfolios. 

Finally, the above results are robust to using a shorter estimation window of about 60 

months, although the magnitude of both the pre-cost and post-cost Sharpe ratios decline with the 

length of estimation window, which reflects the effects of the estimation risk and confirms the 

results in the prior literature. 

4.2 Certainty Equivalent Return (CER) 

We present the Certainty Equivalent Return (CER) of our baseline models using the estimation 

window of 120 months (M = 120) in Table 5 and 6, where we follow Tu and Zhou (2011) and set 

the risk-aversion parameter of 3 (γ = 3) and 1(γ = 1), respectively. Panel A and B report the pre-

cost and post-cost cases, respectively. Several interesting observations can be made.  

First, in Table 5 the sample mean-variance portfolio ("mv") has the smallest CERs across 

all five datasets, no matter in the pre-cost or post-cost case. This means that all the variants of the 

sample mean-variance portfolio ("mv") can improve its out-of-sample CER. In fact, in the pre-cost 

case, "mv-c" and "dp-c" have higher CERs than equally weighted portfolio in "P25", "P20", and 

"FF-1 Factor", while "bs-c" has higher CERs than 1/N strategy in "P20" and "FF-1 Factor". 

However, in the post-cost case, only "mv-c" and "dp-c" can outperform the 1/N strategy. 

Second, we present the CER of our models using the alternative estimation window of 60 

months (M = 60) in Tables 7 and 8, where we follow Tu and Zhou (2011) and set the risk-aversion 
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parameter of 3 (γ = 3) and 1(γ = 1), respectively. We find that in general shorter estimation 

window may lead to lower CERs in Markowitz rules, and may cause extreme value in the 

combination of equally weighted portfolio and mean-variance portfolio since short length of 

estimation window may cause larger estimation error.  

Third, constraints improve the out-of-sample CER, especially in the post-cost CER. For 

instance, the first three short-sale constrained strategies (i.e., "mv-c", "min-c", "dp-c") almost 

always outperform their unconstrained counterparts (i.e., "mv", "min", "dp") in terms of the post-

cost out-of-sample CER, although it is less the case in terms of the pre-cost out-of-sample CER.  

Finally, although the post-cost out-of-sample CER is to some extent disheartening relative 

to the pre-cost out-of-sample CER, two short-sale constrained strategies (i.e., "mv-c", "dp-c") can 

still outperform the 1/N rule across the latter three datasets based on size and book-to-market-

sorted portfolios. 

4.3 Statistical significance 

Although we have found that the outperformance of the two models (mv-c and dp-c) relative to 

the naive rule in all 6 scenarios with a large N (larger than 20) is of large economic significance, 

the statistical significance of the difference between the Sharpe ratio (or the CER) of each strategy 

from that of the simple 1/N naive rule has not been tested yet. There is a possibility that the 

previous results are driven by the high estimation error, due to the relatively short history of China's 

A-shares market. To this end, we have used two ways to compute the P-values of the difference 

between the Sharpe ratio of each strategy and that of the simple 1/N naive rule and selectively 

report the results with an estimation window of 120 months. On the one hand, we follow the 16th 

footnote on page 1928 of DeMiguel et al. (2009a) and compute the p-value of the difference 

between the Sharpe ratio of each strategy and that of the simple 1/N naive rule, using the approach 
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suggested by Jobson and Korkie (1981) after making the correction pointed out in Memmel (2003). 

On the other hand, we follow we follow the 6th footnote on page 1035 of DeMiguel et al. (2014) 

and compute the p-values for the Sharpe ratios using the bootstrapping methodology proposed in 

Ledoit and Wolf (2008) that is designed for the case in which portfolio returns have fat tails. To 

be specific, we follow Ledoit and Wolf (2008, Remark 3.2) to generate the resulting bootstrap p-

values. We use the codes available at http://www.iew.uzh.ch/chairs/wolf.html, setting B = 1,000 

bootstrap resamples and an expected block size b = 5. 

The results are reported in Table 9 and Table 10, respectively. According to Table 9, the 

outperformance of the two models (mv-c and dp-c) relative to the naive rule in all 6 scenarios with 

a large N (larger than 20) is always statistically significant at conventional level (i.e., 5%), no 

matter whether we take transaction costs into account or not. Although it has been documented in 

the literature (Auer and Schuhmacher, 2013, and the papers thereafter) that it is more challenging 

to survive the bootstrapping methodology proposed in Ledoit and Wolf (2008), we find that the 

outperformance of the two models (mv-c and dp-c) relative to the naive rule in all 6 scenarios with 

a large N (larger than 20) is statistically significant at 10% level without transaction costs, and at 

15% level with transaction costs. Our main results remain qualitatively the same when we try 

alternative performance measure such as CER, alternative estimation length such as 60 months, 

alternative black bootstrap size or alternative number of bootstrap resamples.  

 

5. Concluding remarks 

In this paper, we investigate the relative performance of the 1/N naive rule and the Markowitz 

mean-variance strategies in the largest emerging market (i.e., China’s A-shares market) and 

provide several new findings.  
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First, we show that two mean-variance optimization strategies (i.e., "mv-c" and "dp-c") can 

outperform the 1/N rule in China’s A-shares market, while minimum-variance strategies cannot 

(in consistency with Wang et al., 2015; Yan and Zhang, 2017). Using Certainty Equivalent Return 

(CER) instead of Sharpe ratios do not change our results qualitatively.  

Second, we find an obvious advantage of the mean-variance optimization when N is large, 

which is different from the case of non-mispricing in DeMiguel et al. (2009) but in consistency 

with Huberman and Jiang (2006) and Yan and Zhang (2017).  

Finally, when transaction costs are taken into account, the profitability of the unconstrained 

mean-variance optimizations almost vanishes, while the profitability of the mean-variance 

optimizations with the short-sale constraint remains. Our results are robust to using a shorter 

estimation window of about 60 months.  

These findings have a couple of important implications. First, our results reaffirm the 

usefulness of some of the Markowitz mean-variance optimization strategies (i.e., "mv-c" and "dp-

c") in practice, especially in less efficient EMs with large mispricing. Second, minimum-variance 

strategies may be attractive to the most conservative investors only, and less attractive to investors 

who pursue high expected returns. While the minimum-variance optimization may be more stable 

over time, it tends to result in more conservative portfolios than traditional mean-variance 

optimizations.   
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Table 1. An Overview of the datasets 

This table lists all the datasets that we consider in this paper. The last column of the table gives the 

abbreviations used to refer to the datasets in the tables. 

   
 

 

 

Table 2. An Overview of the Portfolio Rules 

This table lists all the portfolio rules that we consider in this paper. The last column of the table 

gives the abbreviations used to refer to the strategy in the tables. 

     

No. Dataset N Source Time period Abbreviation

1 SMB, HML and China equity market portfolios 2+1 CSMAR 01/1996-12/2016 MKT/SMB/HML

2 Fifteen industry portfolios 15 Resset 01/1996-12/2016 Industry

3 Twenty size and book-to-market portfolios 20 Resset 01/1996-12/2016 P20

4
Twenty size and book-to-market portfolios and 

the MKT portfolio
20+1 Resset 01/1996-12/2016 FF+1 factor

5 Twenty-five Fama-French portfolios 25 Resset 01/1996-12/2016 P25

No. Name of model Abbreviation

1 Equally weighted model (benchmark) Naive, 1/N, ew

2 Sample-based mean-variance (Markowitz model) mv

3 Kan and Zhou's (2007) three-fund model Kan-Zhou, kz3

4 Combination of 1/N and minimum-variance models ew-min

5 Combination of 1/N and Markowitz models CML, ew-mv

6 Combination of 1/N and Kan and Zhou's (2007) three-fund models CKZ, ew-kz3

7 Bayesian diffuse-prior model dp

8 Bayes-Stein Shrinkage model Jorion, bs

9 Minimum-variance model min

10 Sample-based mean-variance model with short-sale constraints mv-c

11 Minimum-variance model with short-sale constraints min-c

12 Bayesian diffuse-prior model with short-sale constraints dp-c

13 Bayes-Stein Shrinkage model with short-sale constraints bs-c

Short-sale constrained models

Naïve portfolio model

Mean-variance models and optimal combinations of portfolios

Bayesian approach to estimation error

Moment restrictions



28 

 

Table 3. Sharpe ratios of the portfolios with a window of 120 months 
This table reports the monthly Sharpe ratios for the 13 portfolios formed at the estimation window of 120 

months. Shaded area indicates a better performance than the 1/N rule.  

   
 

Panel A: Without transaction costs

ew 0.223 0.147 0.210 0.209 0.194

Mean-variance models and optimal combinations of portfolios

mv 0.101 -0.034 0.320 0.305 0.269

kz3 0.133 0.063 0.265 0.278 0.239

ew-min 0.141 0.133 0.155 0.185 0.164

ew-mv 0.148 0.113 0.238 0.274 0.246

ew-kz3 0.147 0.066 0.264 0.225 0.207

Bayesian approach to estimation error

dp 0.102 -0.034 0.320 0.305 0.269

bs 0.140 0.031 0.283 0.297 0.258

Moment restrictions

min 0.128 0.088 0.096 0.158 0.122

Short-sale constrained models

mv-c 0.122 0.106 0.266 0.244 0.233

min-c 0.128 0.139 0.167 0.165 0.130

dp-c 0.123 0.106 0.265 0.243 0.233

bs-c 0.140 0.118 0.229 0.199 0.167

Panel B: With transaction costs

ew 0.217 0.143 0.207 0.205 0.190

Mean-variance models and optimal combinations of portfolios

mv 0.091 -0.085 0.216 0.214 0.152

kz3 0.126 0.032 0.183 0.205 0.142

ew-min 0.133 0.118 0.120 0.143 0.124

ew-mv 0.139 0.087 -0.019 0.146 0.125

ew-kz3 0.110 0.032 0.177 0.160 0.098

Bayesian approach to estimation error

dp 0.092 -0.085 0.216 0.214 0.152

bs 0.133 -0.004 0.196 0.218 0.156

Moment restrictions

min 0.120 0.057 0.031 0.089 0.048

Short-sale constrained models

mv-c 0.111 0.097 0.257 0.236 0.227

min-c 0.120 0.132 0.160 0.160 0.124

dp-c 0.112 0.097 0.257 0.236 0.227

bs-c 0.121 0.021 -0.007 -0.104 -0.193

P20 N=20 FF-1 factor N=21MKT/SMB/HML N=3Model\Dataset Industry N=15 P25 N=25
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Table 4. Sharpe ratios of the portfolios with a window of 60 months  

This table reports the monthly Sharpe ratios for the 13 portfolios formed at the estimation window of 60 
months. Shaded area indicates a better performance than the 1/N rule.  

    

Panel A: Without transaction costs

ew 0.152 0.066 0.110 0.109 0.098

Mean-variance models and optimal combinations of portfolios

mv -0.024 0.079 0.178 0.235 0.155

kz3 -0.046 0.119 0.159 0.234 0.160

ew-min 0.115 0.084 0.087 0.118 0.105

ew-mv -0.117 0.071 0.027 0.095 0.130

ew-kz3 -0.090 0.081 0.177 0.247 0.151

Bayesian approach to estimation error

dp -0.024 0.079 0.178 0.235 0.155

bs -0.036 0.110 0.165 0.240 0.168

Moment restrictions

min 0.115 0.081 0.049 0.106 0.096

Short-sale constrained models

mv-c 0.104 0.060 0.150 0.138 0.148

min-c 0.119 0.074 0.082 0.063 0.062

dp-c 0.105 0.059 0.150 0.137 0.148

bs-c 0.064 0.062 0.128 0.097 0.094

Panel B: With transaction costs

ew 0.145 0.062 0.106 0.105 0.095

Mean-variance models and optimal combinations of portfolios

mv -0.041 -0.001 -0.008 0.048 -0.073

kz3 -0.069 0.055 -0.015 0.050 -0.059

ew-min 0.105 0.059 0.038 0.055 0.047

ew-mv -0.134 0.049 -0.102 -0.082 -0.155

ew-kz3 -0.108 -0.190 -0.006 0.068 -0.066

Bayesian approach to estimation error

dp -0.041 -0.001 -0.008 0.048 -0.073

bs -0.058 0.043 -0.005 0.063 -0.047

Moment restrictions

min 0.106 0.023 -0.088 -0.039 -0.075

Short-sale constrained models

mv-c 0.096 0.046 0.140 0.126 0.138

min-c 0.109 0.064 0.072 0.054 0.052

dp-c 0.096 0.045 0.140 0.126 0.138

bs-c 0.008 -0.293 -0.653 -0.824 -1.076

Model\Dataset MKT/SMB/HML N=3 Industry N=15 P25 N=25FF-1 factor N=21P20 N=20
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Table 5. CERs of the portfolios with a window of 120 months and a gamma of 3 
This table reports the monthly Certainty Equivalent Return (CER) in percentage points for the 13 portfolios 

formed at the estimation window of 120 months and the gamma of 3. Shaded area indicates a better 

performance than the 1/N rule.  

    
  

Model\Dataset MKT/SMB/HML N=3 Industry N=15 P20 N=20 FF-1 factor N=21 P25 N=25

Panel A: Without transaction costs

ew 0.60% 0.03% 0.44% 0.44% 0.32%

Mean-variance models and optimal combinations of portfolios

mv 0.07% -5.67% -2.33% -6.57% -6.83%

kz3 0.28% -0.84% 0.56% 0.15% 0.13%

ew-min 0.24% -0.06% -0.11% 0.37% 0.14%

ew-mv 0.33% -0.36% -11.98% -2.02% -0.17%

ew-kz3 0.31% -0.74% 0.45% -4.82% -0.73%

Bayesian approach to estimation error

dp 0.08% -5.60% -2.24% -6.39% -6.66%

bs 0.29% -1.34% 0.63% 0.30% 0.08%

Moment restrictions

min 0.21% -0.61% -0.82% 0.13% -0.30%

Short-sale constrained models

mv-c 0.25% -0.51% 1.01% 0.83% 0.70%

min-c 0.21% -0.03% 0.02% 0.23% -0.18%

dp-c 0.25% -0.51% 1.00% 0.82% 0.70%

bs-c 0.29% -0.26% 0.59% 0.50% 0.11%

Panel B: With transaction costs

ew 0.58% 0.00% 0.39% 0.40% 0.28%

Mean-variance models and optimal combinations of portfolios

mv 0.01% -6.63% -5.07% -9.83% -10.66%

kz3 0.25% -1.14% -0.66% -1.21% -1.36%

ew-min 0.22% -0.20% -0.48% -0.03% -0.26%

ew-mv 0.30% -0.61% -17.60% -5.20% -2.38%

ew-kz3 0.20% -1.05% -0.91% -6.79% -2.54%

Bayesian approach to estimation error

dp 0.02% -6.55% -4.97% -9.62% -10.46%

bs 0.27% -1.71% -0.76% -1.23% -1.63%

Moment restrictions

min 0.19% -0.89% -1.52% -0.51% -1.04%

Short-sale constrained models

mv-c 0.20% -0.60% 0.90% 0.74% 0.63%

min-c 0.19% -0.10% -0.05% 0.19% -0.23%

dp-c 0.20% -0.60% 0.89% 0.74% 0.62%

bs-c 0.23% -1.18% -2.17% -2.44% -3.60%
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Table 6. CERs of the portfolios with a window of 120 months and a gamma of 1 
This table reports the monthly Certainty Equivalent Return (CER) in percentage points for the 13 portfolios 

formed at the estimation window of 120 months and the gamma of 1. Shaded area indicates a better 

performance than the 1/N rule.  

    

Model\Dataset MKT/SMB/HML N=3 Industry N=15 P20 N=20 FF-1 factor N=21 P25 N=25

Panel A: Without transaction costs

ew 0.73% 0.95% 1.76% 1.72% 1.52%

Mean-variance models and optimal combinations of portfolios

mv 0.42% -2.31% 4.99% 4.60% 3.49%

kz3 0.39% 0.14% 2.86% 3.39% 2.50%

ew-min 0.29% 0.81% 1.10% 1.34% 1.14%

ew-mv 0.42% 0.63% -2679.31% -1339.49% -668.38%

ew-kz3 -2.80% -6547.43% -1097.60% -599.12% -90.82%

Bayesian approach to estimation error

dp 0.43% -2.28% 4.98% 4.61% 3.50%

bs 0.38% -0.23% 3.28% 3.82% 2.94%

Moment restrictions

min 0.26% 0.38% 0.45% 1.05% 0.73%

Short-sale constrained models

mv-c 0.43% 0.56% 2.50% 2.13% 2.02%

min-c 0.26% 0.87% 1.23% 1.10% 0.80%

dp-c 0.43% 0.56% 2.50% 2.13% 2.02%

bs-c 0.38% 0.68% 2.02% 1.47% 1.20%

Panel B: With transaction costs

ew 0.71% 0.91% 1.71% 1.68% 1.48%

Mean-variance models and optimal combinations of portfolios

mv 0.37% -3.25% 2.19% 1.53% -0.29%

kz3 0.37% -0.17% 1.62% 2.07% 1.00%

ew-min 0.27% 0.66% 0.72% 0.92% 0.73%

ew-mv 0.39% 0.40% -2642.77% -2875.68% -446.14%

ew-kz3 -5.37% -55585.16% -1034.18% -854.27% -42379.87%

Bayesian approach to estimation error

dp 0.37% -3.21% 2.20% 1.56% -0.24%

bs 0.36% -0.60% 1.87% 2.33% 1.21%

Moment restrictions

min 0.24% 0.08% -0.28% 0.40% -0.03%

Short-sale constrained models

mv-c 0.39% 0.47% 2.39% 2.05% 1.95%

min-c 0.24% 0.80% 1.16% 1.05% 0.73%

dp-c 0.39% 0.47% 2.39% 2.04% 1.94%

bs-c 0.32% -0.26% -0.78% -1.49% -2.53%
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Table 7. CERs of the portfolios with a window of 60 months and a gamma of 3 
This table reports the monthly Certainty Equivalent Return (CER) in percentage points for the 13 portfolios 

formed at the estimation window of 60 months and the gamma of 3. Shaded area indicates a better 

performance than the 1/N rule.  

    
  

Model\Dataset MKT/SMB/HML N=3 Industry N=15 P20 N=20 FF-1 factor N=21 P25 N=25

Panel A: Without transaction costs

ew 0.44% 0.20% 0.60% 0.59% 0.48%

Mean-variance models and its extensions

mv -0.85% -4.35% -3.48% -2.20% -9.01%

kz3 -0.43% 0.64% 0.97% 2.74% 0.88%

ew-min 0.21% 0.36% 0.38% 0.67% 0.54%

ew-mv -94.12% -696.17% -15.28% -20.86% -0.42%

ew-kz3 -12.03% -69.12% 1.44% 3.04% 1.02%

Bayesian approach to estimation error

dp -0.82% -4.16% -3.25% -1.92% -8.58%

bs -0.30% 0.46% 1.24% 2.87% 1.32%

Moment restrictions

min 0.20% 0.32% -0.04% 0.56% 0.46%

Short-sale constrained models

mv-c 0.38% 0.10% 1.05% 0.88% 0.99%

min-c 0.21% 0.27% 0.33% 0.18% 0.16%

dp-c 0.38% 0.10% 1.05% 0.88% 0.99%

bs-c 0.16% 0.17% 0.80% 0.47% 0.44%

Panel B: With transaction costs

ew 0.42% 0.16% 0.56% 0.55% 0.45%

Mean-variance models and its extensions

mv -1.04% -7.26% -12.66% -12.57% -22.12%

kz3 -0.57% -0.34% -3.21% -1.79% -4.47%

ew-min 0.19% 0.14% -0.10% 0.08% 0.02%

ew-mv -114.36% -590.86% -31.51% -41.38% -10.98%

ew-kz3 -19.66% -151.09% -2.67% -1.02% -3.27%

Bayesian approach to estimation error

dp -1.00% -7.03% -12.28% -12.13% -21.48%

bs -0.41% -0.63% -2.43% -1.01% -3.15%

Moment restrictions

min 0.19% -0.21% -1.48% -0.81% -1.15%

Short-sale constrained models

mv-c 0.34% -0.04% 0.94% 0.76% 0.89%

min-c 0.19% 0.19% 0.23% 0.10% 0.08%

dp-c 0.34% -0.04% 0.94% 0.76% 0.89%

bs-c -0.03% -2.92% -8.59% -10.02% -13.66%
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Table 8. CERs of the portfolios with a window of 60 months and a gamma of 1 
This table reports the monthly Certainty Equivalent Return (CER) in percentage points for the 13 portfolios 

formed at the estimation window of 60 months and the gamma of 1. Shaded area indicates a better 

performance than the 1/N rule.  

    
  

Model\Dataset MKT/SMB/HML N=3 Industry N=15 P20 N=20 FF-1 factor N=21 P25 N=25

Panel A: Without transaction costs

ew 0.33% -0.56% -0.48% -0.46% -0.49%

Mean-variance models and its extensions

mv -2.02% -19.13% -28.08% -32.36% -45.89%

kz3 -0.76% -1.80% -4.66% -3.30% -5.35%

ew-min 0.17% -0.34% -0.58% -0.18% -0.28%

ew-mv -0.91% -2.41% -74990.35% -12047.28% -1167.68%

ew-kz3 -9.10% -5.25% -3.37% -2.02% -3.19%

Bayesian approach to estimation error

dp -1.95% -18.50% -27.11% -31.15% -44.32%

bs -0.53% -2.26% -3.38% -1.93% -3.19%

Moment restrictions

min 0.17% -0.53% -1.17% -0.35% -0.45%

Short-sale constrained models

mv-c 0.16% -0.87% -0.18% -0.14% -0.06%

min-c 0.17% -0.40% -0.59% -0.54% -0.57%

dp-c 0.16% -0.86% -0.18% -0.14% -0.06%

bs-c 0.05% -0.57% -0.30% -0.36% -0.37%

Panel B: With transaction costs

ew 0.31% -0.59% -0.52% -0.50% -0.53%

Mean-variance models and its extensions

mv -2.22% -21.72% -37.20% -42.98% -57.66%

kz3 -0.90% -2.71% -8.91% -7.87% -10.50%

ew-min 0.15% -0.55% -1.06% -0.75% -0.80%

ew-mv -1.30% -3.32% -83147.18% -119166.30% -4428.13%

ew-kz3 -9.99% -6.32% -7.07% -5.81% -7.29%

Bayesian approach to estimation error

dp -2.15% -21.05% -36.08% -41.59% -55.93%

bs -0.65% -3.28% -7.05% -5.80% -7.50%

Moment restrictions

min 0.15% -1.06% -2.59% -1.70% -2.03%

Short-sale constrained models

mv-c 0.12% -1.00% -0.28% -0.26% -0.16%

min-c 0.16% -0.48% -0.69% -0.61% -0.65%

dp-c 0.12% -1.00% -0.28% -0.26% -0.16%

bs-c -0.14% -3.67% -10.04% -11.31% -15.10%
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Table 9. Comparing the Sharpe ratio of each strategy with that of the 1/N rule using the 

DeMiguel et al. (2009) methodology 
This table reports the p-values of the difference between the Sharpe ratio of each strategy from that of the 

1/N rule formed at the estimation window of 120 months, which is computed using the DeMiguel et al. 

(2009) methodology.  

    
  

ew NA NA NA NA NA

mv NA NA NA NA NA

kz3 0.051 0.033 0.091 0.114 0.144

ew-min 0.067 0.153 0.008 0.114 0.084

ew-mv 0.036 0.050 0.052 0.006 0.167

ew-kz3 0.004 0.013 0.071 0.007 0.030

dp 0.029 0.011 0.048 0.092 0.113

bs 0.055 0.014 0.063 0.086 0.110

min 0.059 0.070 0.004 0.080 0.053

mv-c 0.031 0.075 0.000 0.019 0.029

min-c 0.059 0.180 0.005 0.061 0.011

dp-c 0.031 0.075 0.000 0.020 0.029

bs-c 0.055 0.055 0.048 0.179 0.063

ew NA NA NA NA NA

mv NA NA NA NA NA

kz3 0.049 0.012 0.172 0.250 0.139

ew-min 0.065 0.089 0.001 0.013 0.009

ew-mv 0.034 0.044 0.007 0.003 0.049

ew-kz3 0.002 0.007 0.003 0.001 0.001

dp 0.026 0.003 0.227 0.233 0.177

bs 0.053 0.004 0.218 0.223 0.172

min 0.057 0.031 0.000 0.007 0.004

mv-c 0.026 0.064 0.001 0.027 0.035

min-c 0.057 0.151 0.003 0.057 0.009

dp-c 0.027 0.063 0.001 0.028 0.036

bs-c 0.039 0.000 0.000 0.000 0.000

P20 N=20 FF-1 factor N=21 P25 N=25

Panel A: Without transaction costs

Model\Dataset MKT/SMB/HML N=3 Industry N=15

Mean-variance models and optimal combinations of portfolios

Bayesian approach to estimation error

Moment restrictions

Short-sale constrained models

Panel B: With transaction costs

Mean-variance models and optimal combinations of portfolios

Bayesian approach to estimation error

Moment restrictions

Short-sale constrained models
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Table 10. Comparing the Sharpe ratio of each strategy with that of the 1/N rule using the 

Ledoit and Wolf (2008) methodology 
This table reports the p-values of the difference between the Sharpe ratio of each strategy from that of the 

1/N rule formed at the estimation window of 120 months, which is computed using the Ledoit and Wolf 

(2008) methodology. To be specific, we follow Ledoit and Wolf (2008, Remark 3.2) to generate the 

resulting bootstrap p-values. We use the codes available at http://www.iew.uzh.ch/chairs/wolf.html, setting 

B = 1,000 bootstrap resamples and an expected block size b = 5. 

  

ew NA NA NA NA NA

mv NA NA NA NA NA

kz3 0.141 0.109 0.215 0.240 0.360

ew-min 0.190 0.321 0.016 0.242 0.172

ew-mv 0.136 0.109 0.188 0.014 0.360

ew-kz3 0.095 0.175 0.249 0.046 0.095

dp 0.082 0.042 0.142 0.230 0.313

bs 0.153 0.070 0.145 0.184 0.291

min 0.160 0.155 0.008 0.161 0.105

mv-c 0.110 0.201 0.004 0.067 0.086

min-c 0.172 0.381 0.015 0.148 0.044

dp-c 0.113 0.189 0.005 0.067 0.087

bs-c 0.146 0.172 0.133 0.366 0.163

ew NA NA NA NA NA

mv NA NA NA NA NA

kz3 0.145 0.056 0.367 0.499 0.353

ew-min 0.176 0.193 0.001 0.035 0.015

ew-mv 0.124 0.027 0.049 0.008 0.224

ew-kz3 0.028 0.040 0.175 0.014 0.049

dp 0.077 0.014 0.464 0.468 0.403

bs 0.150 0.029 0.443 0.447 0.384

min 0.173 0.085 0.001 0.009 0.011

mv-c 0.102 0.161 0.005 0.080 0.103

min-c 0.164 0.328 0.011 0.147 0.045

dp-c 0.108 0.176 0.003 0.078 0.102

bs-c 0.109 0.001 0.001 0.001 0.001

Panel B: With transaction costs

Mean-variance models and optimal combinations of portfolios

Bayesian approach to estimation error

Moment restrictions

Short-sale constrained models

Panel A: Without transaction costs

Mean-variance models and optimal combinations of portfolios

Bayesian approach to estimation error

Moment restrictions

Short-sale constrained models

Industry N=15 P20 N=20 FF-1 factor N=21 P25 N=25Model\Dataset MKT/SMB/HML N=3

http://www.iew.uzh.ch/chairs/wolf.html

