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Assumptions about fence
permeability influence density
estimates for brown hyaenas
across South Africa
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Courtney J. Marneweck®, Gareth K. H. Mann’-8, Ross T. Pitman’%, Gareth Whittington-Jones’,
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Wildlife population density estimates provide information on the number of individuals in an area
and influence conservation management decisions. Thus, accuracy is vital. A dominant feature in
many landscapes globally is fencing, yet the implications of fence permeability on density estimation
using spatial capture-recapture modelling are seldom considered. We used camera trap data from

15 fenced reserves across South Africa to examine the density of brown hyaenas (Parahyaena
brunnea). We estimated density and modelled its relationship with a suite of covariates when fenced
reserve boundaries were assumed to be permeable or impermeable to hyaena movements. The

best performing models were those that included only the influence of study site on both hyaena
density and detection probability, regardless of assumptions of fence permeability. When fences
were considered impermeable, densities ranged from 2.55 to 15.06 animals per 100 km?, but when
fences were considered permeable, density estimates were on average 9.52 times lower (from 0.17 to
1.59 animals per 100 km?). Fence permeability should therefore be an essential consideration when
estimating density, especially since density results can considerably influence wildlife management
decisions. In the absence of strong evidence to the contrary, future studies in fenced areas should
assume some degree of permeability in order to avoid overestimating population density.

Natural barriers such as bodies of water and mountain ranges influence movement patterns and gene flow in
wildlife populations!~3. Man-made physical barriers such as roads and fences similarly impact wildlife*”. With
the human population undergoing exponential growth and a continuing demand for ecotourism, enclosing
wildlife in fenced areas is widespread in southern Africa®’. Fences demarcate boundaries, reduce human-wildlife
conflict, protect resources, and prevent disease transmission; yet they also disrupt the natural movement patterns
of animals, which can cause ecosystem imbalances such as reducing genetic influx and causing over-exploitation
of resources®!?. As a result, fencing for conservation is highly controversial®!!.

In many parts of the world, wildlife is confined to fenced areas, and this is especially true in South Africa
where it is a legal requirement to fence an area containing dangerous game species®!%. Although fences are often
successful at confining cattle and large herbivores, fences are semi-permeable for many mammals including some
large predators'*~*°. Holes under fences are created by erosion and by digging species'®, and when a fence line is
breached, species detect and exploit holes quickly!”. To maintain the integrity of a fence, continuous upkeep is
required which is costly (approximately US $32,000 per annum to maintain 100 km of fencing in South Africa)'s.
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Maintenance of the majority of fences is underfunded in Africa, leading to a high occurrence of boundaries that
are semi-permeable for species such as mammalian carnivores'.

In reserves where fences, including predator proof fences, are not maintained to the highest standard, brown
hyaenas (Parahyaena brunnea) transverse boundaries by digging new holes and opportunistically expanding
pre-existing holes'®. Although brown hyaenas can survive, and often succeed, outside of protected areas, the
highest population densities of brown hyaenas have been reported in small fenced reserves that are thought to be
impermeable to the movement of brown hyaenas'®-?!. It is speculated that these brown hyaena population densi-
ties resulted from a lack of emigration, small reserve size, an abundance of large sympatric predators (carrion
providers), and high levels of prey availability!*?!. The influence of these factors on hyaena population density
(the number of individuals per unit area), however, has not been tested.

Spatial capture-recapture (SCR) is a common method utilised to estimate densities from camera trap images®.
The state variable in SCR is a spatial point process where each point represents an individual’s activity centre,
and the state-space incorporates these regions of activity centres”. The hypothesis being that animals with
activity centres outside of this state-space region have little chance of being captured®. One is free to specify
the state-space and therefore estimates will be biased if this area is so small that some captured animals have
activity centres outside of this region. In enclosed areas, some researchers restrict the state-space to fence lines
when estimating population densities of large carnivores using SCR modelling'*?"**?>, In open areas or fenced
areas where cross-boundary movement is probable, a larger state-space buffer is employed in SCR modelling to
encompass home ranges and activity centres that span beyond the study area’®?”. How one deals with individuals
that do not necessarily reside within a reserve but do traverse, and are detected, within it (i.e. the definition of
the state-space), therefore has strong implications for the density estimates produced. The accuracy of density
estimates is paramount as they are often central to conservation management decisions, yet there is a paucity
of research on how assumptions regarding the permeability of fenced reserve boundaries (i.e. the defined state-
space) affects density estimates, especially for large carnivores.

Due to their small population size and high levels of intentional and accidental persecution, brown hyaenas
are listed as Near Threatened both globally*® and regionally in South Africa®. Their current resident range
is restricted to six countries including South Africa, which is thought to support approximately 20% of the
total remaining population®. Furthermore, research into the distribution, population size, and trends of brown
hyaenas at a national scale has been identified as a top priority for brown hyaena conservation**, requiring
reliable density estimates over a large area. In this study, we estimate the population density of brown hyaenas in
15 fenced reserves in South Africa, making two contrasting assumptions about the permeability of the reserve
boundary fences to the movement of brown hyaenas at each site: 1) reserve boundaries are impermeable (with
the state-space clipped to the reserve boundary fence line), and 2) reserve boundaries are permeable (with a
larger, unclipped state-space). We consider the repercussions of varying state-space in SCR modelling and the
implications for conservation management when assessing fenced areas. In addition, we investigate which factors
drive brown hyaena density at fenced sites and compare the results when fences are considered impermeable
and permeable.

Results

At 15 survey sites across South Africa (Fig. 1, Table 1) we collected 2690 camera trapping capture events of brown
hyaenas (Table S1). We discarded 298 (11.08%) brown hyaena captures because image quality was insufficient
to allow identification of individuals (Table S1). The majority of discarded captures had only one photograph
(n=289); therefore, the hyaena was only visible from one side, making identification more difficult. A total of
362 identifiable brown hyaenas were captured on 2392 occasions (Table S1).

The top population density models relating to both assumptions of fence permeability included only the site
covariate on both g0 (detection probability when the distance between the activity centre of an animal and the
camera trap is zero) and on density (Table 2, Table S2). Density estimates derived from the top model ranged from
2.55 to 15.06 animals per 100 km? at each site when fences were considered to be impermeable, and from 0.17 to
1.59 animals per 100 km? when fences were considered to be permeable to hyaena movement (Fig. 2, Table S3).

When fences were assumed to be permeable, hyaena density estimates were on average 9.5 times lower than
when fences were assumed to be impermeable to hyaena movement. Furthermore, we found an inverse relation-
ship between reserve size and the ratio of brown hyaena density estimates modelled using different assumptions
about fence permeability (Fig. 3, Table 3). In contrast, population size estimates were 1.6 times greater for models
that assumed fence permeability (see Table S4). The general patterns of activity centre location were relatively
similar for both model permeable and impermeable formulations at most study sites (Fig. S1). Estimates in
smaller reserves were more sensitive to assumptions regarding the permeability of reserve boundaries to brown
hyaena movement.

Discussion

Our study represents the largest and widest-ranging collection of density estimates to date for brown hyaenas.
Our density estimates for each site varied substantially depending on whether fences were considered to be per-
meable or impermeable to the movement of brown hyaenas. Hyaena population densities were approximately
ten times greater among impermeable estimates than permeable estimates due to the state-space difference
associated with this assumption.

The population density of brown hyaenas has been estimated at only a handful of sites that are fully enclosed
by fencing!®?1*>%, despite fences encompassing a large proportion of protected and non-protected land through-
out the species range®®3*. Overall, our estimates fit within the ranges of most previous studies?**"*>*. Qur
estimates for permeable fenced areas (0.17-1.59 animals per 100 km?) were slightly lower than, but comparable
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Legend

© Camera trap locations
[ Study sites
[ Brown hyaena range

1 Atherstone NR
2 Dinokeng GR
3 lthala GR
4 Khamab Kalahari Reserve
5 Kwandwe Private GR
6 KwaZulu Private GR
7 Lapalala Wilderness
8 Loskop Dam NR
Madikwe GR
10 Pilanesberg National Park
11 Songimvelo GR
12 Venetia Limpopo NR
13 Welgevonden Private GR
14 Wonderkop NR

15 Zingela NR

Figure 1. Map showing the locations of the survey sites where brown hyaena population densities were
estimated. Inset map shows an example layout of a camera trap array at Khamab Kalahari Reserve. In the legend
NR refers to Nature Reserve, and GR refers to Game Reserve. Created using QGIS 3.10.10%, using hyaena range
data from?® and base map data from?!.

Atherstone Nature Reserve 240 180 Oct 2016-Dec 2016 | 36 1797
Dinokeng Game Reserve 185 173 Jul 2016-Aug 2016 | 36 1586
Ithala Game Reserve 296 236 July 2016-Sep 2016 | 30 1315
Khamab Kalahari Reserve 955 570 Aug 2016-Oct 2016 | 37 1744
Kwandwe Private Game Reserve 183 135 Mar 2017-Apr 2017 | 40 1860
KwaZulu Private Game Reserve 185 135 Nov 2015-Dec 2015 | 34 2645
Lapalala Wilderness 360 331 Oct 2016-Dec 2016 | 39 1932
Loskop Dam Nature Reserve 232 170 Oct 2016-Dec 2016 | 34 1774
Madikwe Game Reserve 600 306 Nov 2016-Dec 2016 | 36 1472
Pilanesberg National Park 550 247 Mar 2016-Apr 2016 | 40 1785
Songimvelo Game Reserve 490 112 Mar 2016-Apr 2016 | 27 1127
Venetia Limpopo Nature Reserve 316 237 Jul 2016-Aug 2016 | 39 1934
Welgevonden Private Game Reserve | 375 203 Apr 2016-May 2016 | 40 1292
Wonderkop Nature Reserve 160 150 Jan 2015-Mar 2015 | 37 1579
Zingela Nature Reserve 219 177 May 2016-Jun 2016 | 39 1690

Table 1. Camera trap surveys in South Africa. Camera area is the minimum convex polygon area covered by
camera trap stations. Survey effort is the total number of trap nights each camera survey was active. Camera
area is the minimum convex polygon of the camera trap array.

Scientific Reports | (2021) 11:620 |

https://doi.org/10.1038/s41598-020-77188-7 natureresearch



www.nature.com/scientificreports/

Number of

Fence permeability Model parameters logLik AlCc AAICc AlICcwt

Impermeable g0 ~ session 17 —-13,583.25258 27,202.264 0 1
D~1g0~ReserveSize |5 - 13,726.6259 27,463.418 261.154 0
g0 ~ PreyRAI 4 —13,728.84766 | 27,465.806 263.542 0
g0 ~ HumanRAT 4 - 13,731.93908 27,471.989 269.725 0
D~1 g0 ~SpHyRAI 5 - 13,780.73571 27,571.638 369.374 0
D~1g0~LeopardRAI |5 ~13,789.21782 | 27,588.602 386.338 0
D~1 g0~Human- 5 - 13,790.37303 27,590.913 388.649 0
Density
D~1g0~1 4 ~13,811.65901 27,631.429 429.165 0
D~1g0~b 5 -13,810.74387 | 27,631.654 429.39 0
D ~session g0 ~session | 32 -13,619.62238 27,309.587 0 1
gOLH“ma“RAI 80~ses-| g - 13,656.18928 27,352,575 42.988 0
D~1 g0 ~session 18 — 13,662.96435 27,363.9 54.313 0
D~ SpHyRATg0=ses | 19 ~ 13,662.189 27364575 | 54.988 0
]S:i)O;P‘eYRAI g0~ses- | g — 13,662.4187 27,365.034 55.447 0
D~LeopardRAI 19 — 13,662.96355 27,366.124 56.537 0
g0~ session
D~ HumanDensity 19 — 13,663.26425 27,366.725 57.138 0
g0~ session
D ~ReserveSize 19 — 13,667.47856 27,375.154 65.567 0
g0~ session

Permeable D ~1 g0~session 18 —13,758.6739 27,555.319 0 0.9571
D~1 g0 ~ SpHyRAT 5 —13,775.68221 27,561.531 6212 0.0429
D~1g0~HumanRAI |5 —13,784.58262 | 27,579.332 24.013 0
D~1g0~LeopardRAI |5 ~13,786.04496 | 27,582.257 26.938 0
D~1g0~ReserveSize |5 — 13,788.84003 27,588.547 33.228 0
D~1g0~Human- 5 ~13,799.30979 | 27,608.786 53.467 0
Density
D~1g0~b 5 — 13,803.15885 27,616.484 61.165 0
D~1g0~1 4 -13,807.76959 | 27,623.65 68.331 0
D~1 g0 ~ PreyRAI 5 —13,807.89884 | 27,625.964 70.645 0
D ~session g0 ~session | 32 -13,700.353 27,471.049 0.00 1
D~ PreyRALg0~ses- | g ~13,755.963 27552123 | 81.07 0
sion
D~ SpHyRAIg0~ses- | 1o ~13,756.577 27,553.35 82.30 0
sion
D~HumanRAIg0~ses-| g - 13,756.795 27,553.786 82.74 0
sion
D ~1 g0 ~session 20 - 13,758.674 27,555.319 84.27 0
D~LeopardRAI 19 - 13,758.376 27,556.948 85.90 0
g0~ session
D ~HumanDensity 19 ~13,759.67107 | 27,559.539 88.49 0
g0~ session
D ~ReserveSize 19 - 13,763.359 27,566.915 | 95.87 0
g0~ session

Table 2. Comparison of models of g0 and density fitted to camera trap data of brown hyaena captures across
South Africa. Parameters include: D (density estimate) and g0 (baseline detection). Covariates include: b
(learned response; g0 only); session (site), LeopardRAI (relative abundance index (RAI) of leopards), SpHyRAI
(RAI of spotted hyaenas), HumanRAI (RAI of humans), HumanDensity (population density of humans)
PreyRAI (RAI of prey species), ReserveSize (size of reserve). All models utilised the hazard rate detection
function. Models shown in bold are the top models within each subset.

with, the few available previous brown hyaena density estimates in permeable fenced reserves (approximately 3
animals per 100 km****?). When fences were assumed to be impermeable, our brown hyaena density estimates
(2.55-15.06 animals per 100 km?) were also comparable to the high density estimates calculated using SCR in
fenced areas assumed to be impermeable to hyaena movements (15*' to 24.01'° brown hyaenas per 100 km?).
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Figure 2. Population density estimates for brown hyaenas as each site assuming that fences were either
permeable or impermeable to hyaena movement. Error bars show 95% confidence intervals.
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Figure 3. Relationship between reserve size and the ratio of brown hyaena population density estimates when
using differing assumptions of fence permeability.

Distribution AIC dAIC Degrees of freedom
Inverse Gaussian 87.0 0.0 3
Gamma 89.6 2.6 3
Null model 91.9 4.9 2
Gaussian 100.0 13.0 3

Table 3. Comparison of fit between models of the relationship between reserve size and the ratio of brown
hyaena density estimated using differing assumptions of fence permeability.
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Many studies do not restrict the state-space to fence lines and reserve boundaries, resulting in relatively low
density estimates**’~*. Less commonly the state-space is restricted to fences, often resulting in record high
densities'**"?!. Our results show that the corresponding change in the state-space buffer used in SCR analysis
when fences are assumed to be permeable or impermeable to animal movements results in substantially different
densities, even when using the same capture histories, which may have important repercussions with regard to
carnivore management objectives.

We found that the implications of truncating the state-space to the fence line are area dependant, where
smaller reserves are more sensitive to assumptions regarding fence permeability than larger reserves. In larger
areas, the trapping grid is likely located further away from the fence line, and thus density estimates are less
sensitive to the state-space defined because the individuals exposed to sampling in these areas should be mostly
those that have their activity centres within the reserve. In contrast, in smaller areas the trapping grid is likely
located closer to the fence line and thus the individuals exposed to sampling in these areas are more likely to
hold activity centres outside of the reserve. Consequently, assuming fences are impermeable (i.e. truncating
the state-space) in a small, enclosed reserve would likely yield highly over-estimated densities. This indicates
that decisions regarding fence permeability should not be taken lightly when studying less extensive reserves or
more fragmented habitats, which are relatively common in countries such as South Africa that make up a large
proportion of the range of brown hyaenas***!.

In addition, we suggest a more nuanced approach to defining habitat. Brown hyaenas are likely to be able
to survive outside of protected areas across much of rural southern Africa. However, large carnivore densities
are likely to be higher within protected areas*’. This is not reflected in the estimates of population size, which
assume equal habitat quality both within and outside of protected areas, and are thus likely to produce inflated
population estimates when fences are assumed to be permeable. We suggest that future studies acknowledge this
reality by including a measure of habitat quality into the state space mask used in SCR analyses*>*%. This will allow
researchers to account for the likely permeability of reserve fences, while simultaneously modelling the probable
costs to individuals ranging outside of the reserve (lower habitat suitability, greater risk of persecution, etc.).

One of the main challenges of this study was the lack of reliable data on fence permeability and the extent of
movement by brown hyaenas at each survey site. Due to the size of the reserves, the number of survey sites, and
financial and temporal constraints, we were unable to accurately quantify the potential for brown hyaena move-
ment through fences, thus leading us to examine two extremes of fence permeability. The assumption of complete
permeability or impermeability is unlikely to be entirely accurate in the way predators use landscapes, and in
reality, the permeability of many fences will likely lie somewhere between these extremes. For example African
wild dogs (Lycaon pictus) can cross the “predator-proof” fence surrounding our Pilanesberg National Park study
site®, so even predator-proof fencing often has some degree of permeability. Movement will be concentrated
around holes in the fence line, thus creating spatial heterogeneity in fence permeability. Furthermore, as animals
dig holes, fences are damaged or fall into disrepair, or fences are maintained, the degree of permeability will
change dynamically over time, compounding the challenge of making objective and meaningful assessments of
fence permeability. At present there is also no way of incorporating these data directly into available SCR models,
but the development of such models would be one way to help calculate more accurate density estimates in these
systems, should collection of fence quality data be possible. If fence holes are documented and remain persistent,
they could be modelled using non-euclidean distance methods and integrated into SCR models (M. Efford, pers.
comm.). The successful incorporation of permanent holes in density modelling will likely encourage methods
to be devised that consider movement through ephemeral holes.

For both scenarios of fence permeability, the models with the most support included only the site covariate
in models of both g0 and hyaena population density. This suggests that site-specific factors were stronger deter-
minants of brown hyaena abundance and detection probability than the other covariates included in the models.
It was interesting that no support was found for an association between the relative abundance index (RAI) of
competitor species and brown hyaena density, as variables were predictors of brown hyaena occupancy*. It is also
possible that RAI lacks the precision to tease out these effects, and covariates such as absolute leopard (Panthera
pardus) density may perform differently to leopard RAI, although these data are not yet available. Although RAI
can be biased by ecological factors and sampling design*’, numerous camera trapping studies use RAI as a proxy
for covariates, especially when density estimates are unavailable®4%:4,

One potential caveat of the study is that camera trap spacing is a key element of SCR study design, so care
should be taken to ensure that bycatch data are used appropriately. Our results could therefore be biased by
estimating brown hyaena density using data that were collected using a design optimised for the estimation
of leopard density, if leopards had much larger home ranges than brown hyaenas. But since brown hyaenas
tend to have similar or larger home ranges than leopards*->!, we would expect the results to be comparable to
a survey dedicated to brown hyaenas, and we would design the camera trap arrays in a very similar pattern for
both species. Such a wide-ranging study using such a large dataset would not have been possible without using
bycatch data.

Conclusion

Assumptions regarding the permeability of fencing to the movement of brown hyaenas had a great influence on
population density estimates in SCR models, with density estimates being approximately ten times greater in
models assuming impermeable fences than in models assuming permeable fences. We recommend that research-
ers consider if the density estimates are appropriate to the definition of the state-space used and fence perme-
ability assumptions. We also suggest that further exploration of the distribution of estimated activity centres
within and outside reserves could help in providing recommendations for defining the state-space because our
results show that density estimates are heavily influenced by these assumptions. How these density estimates
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are influenced by sampling a continuum across both sides of the fence is an important future avenue of research
to properly evaluate permeability assumptions. Of the covariates we included in the models, the site was the
only one that was associated with brown hyaena density. This assessment, the first on such a broad scale, will
provide useful baseline information for brown hyaena population monitoring and conservation programmes.
Our results show that large carnivore population density estimates are vastly inflated when fences are assumed
to be impermeable. These data may be misleading, resulting in poor management decisions. Consequently, we
strongly recommend that future studies assume a degree of fence permeability unless there is compelling evidence
to the contrary, ideally supported by additional sampling outside of the fenced area.

Methods

Study area. The study was conducted in 15 fenced reserves located in South Africa’s Eastern Cape, Gauteng,
KwaZulu-Natal, Limpopo, North West, and Mpumalanga provinces (Fig. 1). The reserves were (in alphabetical
order) Atherstone Nature Reserve, Dinokeng Game Reserve, Ithala Game Reserve, Khamab Kalahari Reserve,
Kwandwe Private Game Reserve, KwaZulu Private Game Reserve, Lapalala Wilderness, Loskop Dam Nature
Reserve, Madikwe Game Reserve, Pilanesberg National Park, Songimvelo Game Reserve, Venetia Limpopo
Nature Reserve, Welgevonden Private Game Reserve, Wonderkop Nature Reserve, and Zingela Nature Reserve.
The reserves ranged from 160 to 955 km? in size (Table 1), and ecotourism is the main land use for all sites.
Kwandwe Private Game Reserve was the only site where brown hyaenas were reintroduced in the past 20 years?'.
Human population density within 10 km of each reserve varied between provinces, ranging from a mean of 8
people per km? in Limpopo to 214 people per km? in Gauteng (data from®?).

All camera trap surveys were enclosed within the fences of the reserve boundaries. Fence quality and the
level of maintenance varied between sites. Despite most reserve fences being electrified (n=11), communica-
tion with landowners and managers, personal observations of fence line quality, and previous research indicate
brown hyaena movement through fences was thought to be theoretically possible at all sites with the exception
of Kwandwe Private Game Reserve. Kwandwe’s perimeter fence was checked for holes and maintained daily,
and a camera trap survey on adjacent properties did not record brown hyaenas, while they are abundant within
the reserve®.

Camera trap surveys. Camera trap surveys were established in each reserve to estimate the population
density of leopards using SCR modelling. Camera trap stations were separated by a mean of 2.05 (SD 0.48) km.
This spacing, based on the average home range size of female leopards, ensures that all leopards in the study area
have the opportunity to be photographed*!. We utilised camera trap images of brown hyaenas collected by these
camera traps (bycatch data) to model the population density of brown hyaenas. Analysing bycatch data is an
efficient use of resources in conservation, provided species-specific methodological discrepancies are considered
and accounted for*®*>*. Bycatch data on brown hyaenas from camera traps initially set up to survey leopards
were used to successfully conduct occupancy analysis*®. Similarities between leopards and brown hyaenas in
detectability on camera traps, height, use of roads and trails, home range size, and geographical overlap make
them an ideal pairing for data sharing opportunities®. This is the first study to estimate brown hyaena density
using bycatch data.

Brown hyaena home range size varies between habitats®*>*. Home range estimates collected at our survey
sites were only available for Kwandwe Private Game Reserve, Madikwe Game Reserve, and Pilanesberg National
Park®"’!. The smallest recorded brown hyaena home range is at Kwandwe (26.32 km?), which relates to a maxi-
mum suggested camera spacing of 2.89 km?'. Since Kwandwe is the second smallest reserve sampled and the
only reserve likely to be impermeable, it is probable that brown hyaenas in Kwandwe have one of the smallest
home range sizes of all survey sites. Since the spacing used in this study was smaller than the maximum sug-
gested spacing, all brown hyaenas with home ranges overlapping camera trapping survey areas had the chance
to be photographed, thus fulfilling key requirements of SCR modelling™.

Camera trap data were used to estimate brown hyaena density once at each reserve. Data collection for
this analysis was completed between January 2015 and April 2017, with the majority of data collected in 2016
(Table 1). The mean size of the reserves was 356 km?, which were surveyed using an average of 36 paired camera
trap stations (72 camera traps), covering a minimum convex polygon of 224 km? for an average of 1702 trap
nights. Sampling periods were between 37 and 56 days, which was sufficiently brief to avoid violating the assump-
tion of a closed population®-$, yet long enough for individuals to be photographed on multiple occasions™.

We placed Panthera V-series digital camera traps (camera models V4, V5, and V6) in locations large carni-
vores were likely to frequent such as on roads or game trails. Cameras were mounted on trees or poles in oppos-
ing but slightly staggered pairs to avoid the camera flash negatively affecting the images recorded by the paired
cameras. The paired setup ensured that both flanks of passing animals were photographed to aid identification.
We downloaded images and maintained the cameras on a weekly or fortnightly basis.

Data analysis. Citizen scientists identified species photographed in camera trap images to a species level
using the Zooniverse platform (www.zooniverse.org). To ensure confidence in identification, five independent
classifications were averaged per image. Brown hyaenas were then individually identified by two experienced
assessors using unique features such as leg stripes, snare wounds, and ear notches. Both assessors verified each
image at least three times to ensure accurate identification. Any images that could not be accurately identified
were excluded from the analysis®. Brown hyaenas do not exhibit significant sexual dimorphism® and it was not
possible to distinguish between males and females. In situations where photographs only captured one side of
the animal, we included the most commonly photographed set of singular flanks (left or right) at each survey site
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to avoid artificially inflating population estimates by counting an individual’s left and right flanks as two separate
individuals®>®*. No images of immature individuals were collected, so this study relates to adults only.

Sampling occasions for brown hyaenas were defined as a 24-h period from 12:00 pm to 11:59 am. By incor-
porating the full duration of the night, we avoided the ‘midnight problem’ whereby an animal photographed on
both sides of midnight is recorded as separate captures®. This approach is recommended for species such as the
brown hyaena that is almost exclusively nocturnal®’.

To estimate hyaena population density we fitted SCR models to the data within a maximum likelihood
framework using the package secr v. 3.2.1% in R 3.6.0%. We fitted a multi-session model to our data, in which
each reserve was treated as a single session®”. We fitted half-normal, hazard rate, and negative exponential detec-
tion functions to the data, and retained the function with the lowest Akaike information criterion corrected for
small sample sizes (AICc)®. The best supported spatial detection function was hazard rate, and this was used
in subsequent models (Table S5). The models of g0 with the AICc for both impermeable and permeable fences
included only the site covariate (Table 2). We therefore included site as a covariate on g0 in all models of popu-
lation density. We used the derived function in secr to compute estimates of g0 and density for each site within
each model. We modelled three parameters — population density, g0, and o (the spatial scale parameter). We
also estimated population size using the region.N function in secr, and plotted activity centres from the fitted
model objects using the fx.total function in secr, which produces a map showing the probability of each pixel
in the habitat mask being the activity centre of both observed and unobserved individuals. This allowed us to
visually compare the spatial distribution of activity centres between fence-permeable and impermeable models
for each study site.

To investigate the relationship between brown hyaena density and a range of potential explanatory vari-
ables, we modelled the relationship between reserve size, and the RAI of prey, leopard, spotted hyaena (Crocuta
crocuta), and humans (on foot) on brown hyaena population density and g0. We also modelled the relationship
between site and g0, and we fitted a learned response model, in which the probability of detection at the home
range centre was affected by previous captures. Covariates were selected based on brown hyaena occupancy*,
and speculated, but previously untested, drivers of brown hyaena density'*?'. We estimated human population
density in the area surrounding each reserve by calculating the mean density (humans per km?) within a 10 km
radius of the reserve boundaries (data from®?). We calculated RAI as the number of captures per 100 camera-trap
days®7°. Captures excluded consecutive photographs of the same species at the same location more than once in
a 30 min interval”'. Prey RAI included species with an average female weight of 15 kg or more, based on brown
hyaena dietary studies showing a preference for medium and large sized prey’>7*. RAI values were standardised
as z-scores””. Covariates were included separately in each model, and models were compared using AIC .
We retained all models with AAIC <275, The final model used to estimate brown hyaena population densities
included the best models on g0 and density.

State space buffers were used to estimate home range centres that extend beyond the camera trapping area”.
To examine the role of the permeability of fences on reserve boundaries to the movement of study animals and
the resulting population density we fitted two sets of SCR models; one set in which the state space was restricted
to the fence line (impermeable), and one with the state space buffer extending beyond the fence line (perme-
able). We used the suggest.buffer function in secr and applied the largest buffer suggested (31 km) to all sites
in order to be conservative’®. A home range centre spacing of 500 m was used in both sets of models. Areas
of human infrastructure uninhabitable to brown hyaenas were excluded from the habitat masks. Model fitting
was conducted using the Durham University High Performance Computing service. We tested the relationship
between reserve size and the ratio of hyaena population densities estimated using the two assumptions of fence
permeability (impermeable:permeable to hyaena movement) using a generalised linear model with an inverse
gaussian distribution. This approach was the best fit to our data, which did not have a normal distribution. Data
and code to reproduce the analyses are publicly available”.
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