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ABSTRACT
We present a pipeline based on a random forest classifier for the identification of high column density clouds of neutral hydrogen
(i.e. the Lyman limit systems, LLSs) in absorption within large spectroscopic surveys of z � 3 quasars. We test the performance
of this method on mock quasar spectra that reproduce the expected data quality of the Dark Energy Spectroscopic Instrument
and the WHT (William Herschel Telescope) Enhanced Area Velocity Explorer surveys, finding �90 per cent completeness and
purity for NH I � 1017.2 cm−2 LLSs against quasars of g < 23 mag at z ≈ 3.5–3.7. After training and applying our method
on 10 000 quasar spectra at z ≈ 3.5–4.0 from the Sloan Digital Sky Survey (Data Release 16), we identify ≈6600 LLSs with
NH I � 1017.5 cm−2 between z ≈ 3.1 and 4.0 with a completeness and purity of �90 per cent for the classification of LLSs. Using
this sample, we measure a number of LLSs per unit redshift of �(z) = 2.32 ± 0.08 at z = [3.3, 3.6]. We also present results on
the performance of random forest for the measurement of the LLS redshifts and H I column densities, and for the identification
of broad absorption line quasars.
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1 IN T RO D U C T I O N

Gas around and between galaxies, within the circumgalactic medium
(CGM) and intergalactic medium (IGM), plays a relevant role in
regulating the activity of galaxies (e.g. Tumlinson, Peeples & Werk
2017), is a substantial reservoir of baryons at all redshifts (e.g.
Fukugita & Peebles 2004), and retains memory of the thermal
and chemical evolution of the Universe (e.g. Schaye et al. 2000;
Simcoe 2011).In the past decades, dedicated studies started at 3-m
telescopes and continued after the deployment of high-resolution
spectrographs at 8-m class telescopes have exploited the analysis
of absorption lines imprinted in quasar spectra to map the physical
properties (temperature, density, metallicity) of the IGM and CGM
(e.g. Steidel & Sargent 1992; Prochaska & Wolfe 2002; Rafelski
et al. 2014; Neeleman, Prochaska & Wolfe 2015; D’Odorico et al.
2016; Fumagalli, O’Meara & Prochaska 2016a). Multiple efforts
have also been dedicated to understanding the connection between
the gas detected in absorption and the galaxies seen in emission (e.g.
Steidel et al. 2010; Bielby et al. 2011; Turner et al. 2014), a field that
is rapidly growing thanks to the deployment of wide integral field
spectrographs at 8-m telescopes (e.g. Péroux et al. 2011; Schroetter
et al. 2016; Fossati et al. 2019; Lofthouse et al. 2020).

Large spectroscopic surveys of quasars and in particular the Sloan
Digital Sky Survey (SDSS; York et al. 2000) have played a critical
role for the advancement of this field. With hundreds of thousands
of spectroscopically confirmed quasars, it has been possible to
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compile large catalogues of intervening absorption line systems (e.g.
Noterdaeme et al. 2009; Prochaska, O’Meara & Worseck 2010; Zhu
& Ménard 2013; Garnett et al. 2017), an effort that has spurred a
plethora of follow-up studies at 8-m telescopes. Furthermore, despite
the limited quality of the individual spectra, it has been possible to
leverage the statistical power of SDSS to advance our appreciation of
how gas and dust are distributed around galaxies (e.g. Ménard et al.
2010; Lan, Ménard & Zhu 2014), to map the distribution and physical
properties of the IGM with redshift (e.g. Becker et al. 2013), and also
to use the IGM as a tool for cosmology (e.g. Slosar et al. 2013).

The efforts of compiling catalogues in ever-growing spectroscopic
samples have led to an increase in sophistication of the algorithms
used to identify features that are characteristic of a particular family
of astrophysical objects, such as Mg II, C IV, and Si II absorbers,
damped Ly α absorbers (DLAs), or broad absorption line (BAL)
quasars. With quasar samples surpassing the 100 000 mark, artifi-
cial intelligence and in particular machine learning techniques are
becoming an increasingly popular way to classify spectra (Garnett
et al. 2017; Parks et al. 2018; Guo & Martini 2019; Ho, Bird
& Garnett 2020). The need for reliable and fast classification is
also becoming a requirement and a necessity as surveys using the
Dark Energy Spectroscopic Instrument (DESI; DESI Collaboration
2016) and the WHT (William Herschel Telescope) Enhanced Area
Velocity Explorer (WEAVE; Dalton et al. 2012) will grow the size
of spectroscopic samples of quasars just under 1 million.

An underrepresented class of absorption line systems in recent
searches is the one of Lyman limit systems (LLSs), which are pockets
of gas that are optically thick to ionizing radiation. Astrophysically,
LLSs are thought to trace the denser and partially ionized regions
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Figure 1. Left: Median signal-to-noise ratio (S/N) of mock spectra as a function of rest-frame wavelength computed for different magnitudes (as colour coded
in the legend, in a 0.1-mag interval) and assuming an exposure time of texp = 4000 s. Right: Example of mock spectra (in blue the flux and in orange the
associated error) for quasars without (top panel) and with LLSs at different S/N (middle and bottom panels). When LLSs are present, we annotate next to the
spectrum the value of the H I column density and the redshift of the absorber. The location of the Lyman limit is marked by a black vertical dotted line.

of the IGM and the CGM (e.g. Faucher-Giguère & Kereš 2011;
Fumagalli et al. 2011; van de Voort et al. 2012). For this reason, they
are believed to be excellent sign posts of gas flows near galaxies, and
in particular of the cold accretion of gas on to high-redshift galaxies
(e.g. Fumagalli et al. 2013, 2016b).

LLSs with hydrogen column density NH I � 1017 cm−2 exhibit
saturated Ly α and Ly β lines but lack the characteristic wings of a
damped profile when NH I � 1019 cm−2. Therefore, in this column
density interval, they are not readily distinguishable from the lower
column density Ly α forest lines based purely on the first few lines
of the Lyman series. Due to this reason, algorithms developed for
the identification of DLAs are not immediately applicable to the
search of LLSs. However, at sufficiently high redshift (z � 3), the
characteristic flux discontinuity at the Lyman limit (912 Å in the
system’s rest frame) enters the optical wavelength range. This feature
can therefore be targeted by machine learning algorithms with the
goal of recognizing and classifying this class of absorbers (see Fig. 1).

In this paper, we therefore investigate the possibility of identifying
LLSs in large spectroscopic surveys using machine learning. First, we
develop a pipeline using mock spectra that are representative of the
data quality of DESI and WEAVE (Sections 2 and 3). Next, we apply
machine learning to identify and compile a catalogue of LLSs using
SDSS spectra (Section 4) and we study the number per unit redshift
of z ≈ 3.5 LLSs (Section 5). Finally, we test the performance of
random forest in the classification of BALs (Section 6). A summary
and conclusions follow in Section 7.

2 PR E PA R AT I O N O F MO C K DATA

In our analysis, we employ two types of data sets: observations of
quasar spectra from SDSS Data Release 16 (DR16; Section 4) and
mock libraries of high-redshift quasars (Section 3), assembled in
the following way. We generate two sets of mock observations of
≈180 000 high-redshift quasars using the DESI survey as reference,
including a ‘BAL set’ that contains BAL quasars and an ‘LLS set’
containing absorption line systems with NH I � 1017 cm−2. Mocks
are constructed with a two-step process.

In the first step, we generate sets of idealized noise-free spectra
using the quasar template generator DESISIM.TEMPLATES.QSO

in the DESISIM package.1Given an interval of redshifts and mag-
nitudes, which for the purpose of our analysis we assume to be
flat in the interval m = (17.0, 22.7) and z = (3.5, 3.7),2 the code
generates quasar spectra from a principal component analysis, with
coefficients derived from real SDSS observations. These spectra are
then populated with a realization of the Ly α forest using the 1D
power-spectrum method described in McDonald et al. (2006), which
reproduces a realistic-looking transmitted flux.

The flux bluewards of 912 Å in the quasar rest frame is further
attenuated by an exponential function that mimics the absorption of
an unresolved population of strong absorbers, with column densities
�1015 cm−2 (e.g. Prochaska, Worseck & O’Meara 2009; Prochaska
et al. 2010; Fumagalli et al. 2013). The scale length of the exponential
attenuation is modulated by the mean free path of ionizing photons,
λmfp, described by a distribution with mean

λmfp = 37

(
1 + z

5

)−5.4

Mpc (1)

and a 15 per cent dispersion (see Prochaska et al. 2009; Fumagalli
et al. 2013).

Starting with this set, spectra in the BAL set are then populated
with BALs, including H I and C IV features, using a set of precom-
puted templates (see Guo & Martini 2019). The probability to host a
BAL is set to Pbal = 0.5, much above the canonical value for a mock
sample that is representative of the real Universe. For the purpose of
our pipeline development, however, this choice ensures that a good
number of BAL sightlines are available for training and testing of
the identification procedure.

For the LLS set, we include instead a population of LLSs with
NH I ≥ 1017.2 cm−2, modelling the full Lyman series and the Lyman
limit. LLSs, which in our working definition also include DLAs, are
injected at random, with a probability defined by Plls = plls�(z)�z,
where �(z) is the integral of the column density distribution function
from Prochaska et al. (2014) and �z is the path-length defined by the
quasar redshift and the redshift for which a Lyman limit would fall

1https://github.com/desihub
2The choice of redshift interval is dictated by the need to cover the Lyman
limit of intervening systems at z � 3.
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at the bluest observable wavelength in a spectrum. Here, plls = 0.3
to ensure that a significant number of spectra do not contain LLSs.
Again, while not strictly representative of the real number per unit
redshift of LLSs, this choice produces a balanced mix of sightlines
with and without LLSs for training and for testing the classification.
Column densities are drawn at random from the column density
distribution function. As our primary goal is not to reproduce a mock
set representative of the real Universe but simply to develop the
formalism necessary for the recovery of LLSs in individual spectra,
we do not account for a correlation between LLSs and the Ly α

forest, and do not include metal lines.
If a sightline contains an LLS with optical depth τ < 2 at the Lyman

limit, we further allow for the presence of a second LLS, by repeating
the procedure above and setting the path-length to the range defined
by the first LLS and the blue edge of the spectrum. Similarly, we
allow for additional lower redshift DLAs, again using the procedure
above for the relevant column density range (NH I ≥ 1020.3 cm−2) and
by setting the path-length to the redshift range of the last LLS and
the redshift where Ly α falls at the bluest end of the spectrum. The
injection of these additional LLSs and DLAs allows us to capture
the additional sources of large-scale absorption that alter the shape
of the quasar continuum.

During the second step of the mock preparation, these noise-
free spectra are fed into the DESI QUICKSPECTRA tool3 that, albeit
working only in 1D, generates realistic mock observations account-
ing for the relevant instrument features and mimicking the typical
observing conditions of the DESI survey (Kirkby et al. 2016). The
final product is a set of spectra with resolution and noise properties
that are characteristic for DESI data, although we expect that these
mock data reflect more generally the quality of observations at 4-m
telescopes, e.g. from the WEAVE survey.

For both the LLS and BAL sets, we generate three ‘surveys’
starting from the same input mock spectra: a shallow, a medium,
and a deep survey simulated, respectively, with an exposure time of
1000, 4000, and 16 000 s (i.e. in increments of S/N = 2). Median
S/N ratios as a function of rest-frame wavelength in bins of quasar
magnitudes are shown in the left-hand panel of Fig. 1 for the case
of texp = 4000 s in the BAL set. The right-hand panel shows instead
examples of mock spectra with and without LLSs at different S/N.

3 A NA LY SIS O F MOCK SPECTRA

3.1 Classification of LLSs

For the classification of LLSs, we rely on their most distinctive
feature, which is the flux break arising from the hydrogen bound-
free transition at 912 Å in the rest frame of the system (Fig. 1):
f (λ) = f̄ (λ) exp[−τ (λ)], where τ (λ) ≈ N̂H Iλ̂

3 for λ < 912 Å, with
N̂H I = NH I/1017.2 cm−2 and λ̂ = λ/912 Å. Here, f̄ (λ) is the intrinsic
spectrum, i.e. the spectrum impingent on the intervening LLSs. While
for DLAs or high column density LLSs with NH I � 1019 cm−2 the
shape of the first Lyman series lines adds key information on the
column density, the Ly α and Ly β lines in lower column density
LLSs with NH I � 1019 cm−2 are fully saturated and without damping
profiles, making them indistinguishable from the rest of the lower
column density Ly α forest. The depth of the 912 Å break is instead
sensitive to the column density, or to its lower limit for τ � 2 LLSs.
This is the feature we target for our classification.

3https://github.com/desihub/desisim

Requiring the presence of the redshifted Lyman limit within
the spectral range, however, introduces a stringent lower limit on
the redshift of absorption systems, and hence of useful quasars,
that can be analysed with this technique. Indeed, to ensure that
the Lyman limit appears above 3700 Å where the end-to-end
throughput of common spectrographs is still sufficiently high, LLSs
have to be above z ≈ 3.05, making z � 3.5 the ideal sightlines
for this search. As the majority of the spectra in large surveys
are targeted to optimally cover the Ly α forest at z � 3, this
redshift requirement results in a non-negligible reduction in sample
size.

For our classification, we use the random forest classifier (Breiman
2001) as implemented in the RANDOMFORESTCLASSIFIER method
within SCIKIT-LEARN (Pedregosa et al. 2011). We first homogenize
the spectra by normalizing the quasar continuum to remove the
intrinsic flux differences among quasars. In principle, this could be
accomplished by fully modelling the underlying quasar continuum
(see e.g. Section 6). It is, however, notoriously difficult to reproduce
the shape of the quasar spectrum at �912 Å in the quasar rest
frame, given not only the presence of individual LLSs, but also the
variation from one sightline to another in the mean IGM attenuation.
Nevertheless, over a narrow range of wavelength (≈800–900 Å in
the quasar rest frame) the continuum is generally characterized by a
power law combined with an exponential profile, the scale length of
which is defined by the mean free path (Prochaska et al. 2009).
Thanks to the intrinsic homogeneity of both the quasar spectral
energy distribution and the mean free path in a given redshift bin, we
can afford to omit a full continuum normalization of the spectrum.
Instead, we simply apply a constant normalization factor computed
between 915 and 940 Å. During the training of the random forest
classifier, residual variation in the shape of the spectrum will be
learned as an irrelevant feature, while significant departures due to
intervening LLSs will be used as the main feature to classify.

Following the continuum normalization, we arrange the spectra
in an nqso × npix matrix in the observed frame, as shown in Fig. 2.
Ideally, we would align spectra in the quasar rest frame, but given
that the features of interest lie in the bluest portion of the spectrum,
differences in redshifts would imply that we would lose part of
the pixels of interest for quasars at the lower end of the redshift
distribution. However, the fact that we are working in a narrow
redshift window, z = (3.5, 3.7), means that the spectra are already
‘quasi-aligned’ in the rest frame. Furthermore, there are no prominent
emission lines in the region of interest (<1100 Å in the rest frame
at the median redshift of the quasar sample, which encompasses the
Lyman limit of all quasars), so moderate shifts in wavelengths will
not significantly affect our classification.

After this preparatory step, we proceed to train the
RANDOMFORESTCLASSIFIER method starting with the optimization
of the parameters that control the algorithm. For this, we use
65 per cent of the mock sample simulated with an exposure time of
4000 s, after applying a magnitude cut at mg < 21.5 mag to exclude
the lowest S/N data. Quasars with at least one LLS are tagged as con-
taining absorbers, and no distinction is made for the case of one versus
multiple LLSs. Using a five-fold cross-validation with F1 score as
a metric of performance, we find an optimal classification (F1 ≈
0.90) for n estimators=500, criterion=‘entropy’,
min samples split=2, and max features=400. As we are
classifying a flux drop over several tens of angstroms, it is not
surprising that the best performances are found for a large number
of maximum features. We also find that the classification is not very
sensitive to the exact choice of parameters, with F1 ≈ 0.88–0.90 for
reasonable variations.
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Figure 2. Vertical stack of 100 mock quasar spectra from the LLS set with
texp = 4000 s. Spectra of individual quasars are stacked along the vertical
direction, with the wavelength (in units of pixels) increasing along the x-axis
from left to right. The colour map encodes the normalized flux in the range
(0, 1), where 0 is dark blue and 1 is white. The dark stripes visible leftwards
of index ≈30 correspond to the flux decrement of τ � 2 LLSs at their Lyman
limit. The colour bar to the right indicates which sightlines contain LLSs
(blue) and which do not (white).

Following this tuning operation, we apply the classifier to mock
samples with different exposure times and with different magnitude
cuts. For every combination, we first train the algorithm on 65 per cent
of the data set, and then apply the classification to the remaining
portion that has never been seen by the classifier. Results are
summarized in the left-hand panel of Fig. 3. The performance of the
random forest classifier is generally good, with typical completeness
(recall) and purity (precision) in the range of ≈80−95 per cent. It is
also evident that the algorithm is particularly sensitive to the spectrum
S/N, with a clear dependence on the magnitude limit and on the
simulated integration time.

Due to the strong sensitivity of the S/N, and given that the feature
we aim to classify is not too sharp in wavelength, we explore the

Figure 4. Confusion matrix for the classification of quasars with texp =
4000 s and mg ≤ 21.5 mag.

performance of the search following rebinning of the data. The right-
hand panel of Fig. 3 shows the result of the classification for spectra
that have been rebinned by a factor of 20 (corresponding to ≈4 Å).
The maximum number of features used for the classification is scaled
accordingly. Once the data have been rebinned, we see a marked
improvement in the recovery of LLSs, with precision and recall
consistently above 90 per cent for texp ≥ 4000 s. The confusion matrix
for quasars with mg < 21.5 mag is shown in Fig. 4. Doubling the
size of the bins leads to further but rather marginal improvement in
the classification performance.

Examining the mocks that are misclassified, we find that the main
reason for incompleteness is the redshift of the LLSs. Indeed, we find
that >50 per cent of the missed LLSs lie at z < 3, and ≈80 per cent of
them lie at z < 3.1. This is not surprising, as the lowest redshift LLSs
will present a Lyman limit at the edge of the spectral range, where
the S/N is intrinsically low (see Fig. 1) and where only a handful of
pixels are covered bluewards of the system’s Lyman limit. Regarding
the sightlines that are incorrectly classified as hosting LLSs, we do

Figure 3. Summary of the statistics associated with the classification of LLSs in mock data. The top panels show the precision (stars and dash–dotted lines),
recall (squares and dashed lines), and F1 score (circles and dotted lines) as a function of limiting magnitude (g band). Values for three exposure times are
shown, as colour coded in the legend. The bottom panels show the number of quasars included in the training set (blue) and test set (orange). The left-hand and
right-hand panels are for the native and 20× binned spectra, respectively. The completeness and purity of the LLS sample depend on the spectral S/N, making
binned data preferred for this analysis.
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Figure 5. Comparison between input and recovered redshift (left) and H I column density (right) for LLSs in mock spectra of mg < 21.5 quasars with smoothing
factor 20× and texp = 4000 s. Kernel density estimates are shown on the top of the scatter plots. While redshifts are accurately recovered for most of the sample,
the H I column density for systems with τ � 2 is difficult to constrain based on the flux decrement at the Lyman limit alone, especially in noisy data.

not identify a clear property to which we can attribute the incorrect
classification, although we note that spectra appear to consistently lie
below the mean spectrum of the entire sample in the region <912 Å
in the quasar rest frame. These sightlines, with intrinsically redder
quasar spectra or lower mean free path, may indeed more easily be
mistaken at modest S/N as containing LLSs.

3.2 Measuring redshift and column density

Having searched for LLSs in the mock sample, we next examine
the possibility of recovering physical parameters such as redshift
and column density from the spectra. To this end, we employ the
RANDOMFORESTREGRESSOR in SCIKIT-LEARN, which we use to fit
for a value of redshift and column density following a procedure
similar to the one for the identification of LLSs.

At first, we prepare the data as in Section 3.1, restricting only
to mock sightlines that host LLSs (a property that becomes known
once the random forest classification has been applied). Following
the preprocessing of the data as in the previous section, we define a
training set for the regressor using two-thirds of the data, and test the
code performance on the remaining one-third of the sample. In the
presence of multiple LLSs, we focus on the strongest absorber in the
line of sight, similarly to the procedure that human classifiers would
follow (see the next section).

An example of the recovery of both the H I column densities and
the redshifts using n estimators=500, criterion=‘mse’,
min samples split=2, and max features=‘auto’ is
shown in Fig. 5, for the test set of mg < 21.5 mag mock spectra
that are simulated with texp = 4000 s and are rebinned by 20× the
native pixel size. As evident from this figure, redshifts (right-hand
panel) are correctly recovered across the entire range with only a mild
bias towards lower values for z � 3.2. Also evident is a population of
outliers close to z≈ 3, for which the random forest regression predicts
less accurate values that are overestimated. We attribute this effect to
the same difficulty of correctly identifying LLSs close to the edge of
the spectral range, as noted in the previous section. Specifically, we
hypothesize that the lower S/N of these spectra makes them appear
more absorbed than they really are, causing an overestimation in the
random forest redshifts. There are also some outliers around z ≈ 3.4–
3.6, where the random forest redshift is underestimated compared to

Figure 6. R2 coefficients for the recovery of LLS redshifts using the random
forest regressor as a function of limiting magnitude (g band) for different
choices of binning (stars and squares for 10× and 20× binning, respectively)
and exposure times (colour coded as in the legend). Redshifts are generally
recovered successfully, particularly at higher S/N.

the true value. Possible explanations for this discrepancy are features
in the high-order Lyman series and/or in the quasar continuum that
skew the redshift determination.

Overall, however, the performance of the random forest regression
is good, as quantified by a coefficient of determination R2 ≈ 0.85.
As in the case of the classification, we note that the performance
of the regression method is a function of the spectral S/N, with the
best results obtained for binned data of brighter quasars or quasars
observed for longer time (see Fig. 6).

Regarding the determination of the column density (left-hand
panel of Fig. 5), we see instead a reasonable recovery only up
to NH I ≈ 1017.5 cm−2, at which point the recovered values start
deviating from the true value. This is not surprising, as for NH I �
1017.5 cm−2 (i.e. τ � 2) the flux decrements at the Lyman limit reach
approximately its saturated value, making difficult to distinguish
subtle differences in the flux decrements for higher column densities
in the absence of other information (e.g. the shape of the Lyman
series). The outcome of this analysis is therefore in line with the
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expected performance given the information content of the spectra. A
more accurate determination of column densities requires a detailed
model of the entire spectrum, as Lyman series lines are expected to
carry additional information to pin down the value of NH I. While
the recovery of the column density will be successful for NH I �
1019 cm−2, it may still be difficult to achieve a reliable determination
for most LLSs between 1017.5 cm−2 � NH I � 1019 cm−2, where
Lyman series lines are in the saturated portion of the curve of growth
(e.g. Prochaska et al. 2015).

4 SE ARCHING LLSS IN SDSS DR16

4.1 Preparation of the training set

We apply the pipeline developed above to ≈10 000 SDSS DR16
spectra observed with the BOSS spectrograph (Dawson et al. 2013)
and classified as quasars by the automatic pipeline (Bolton et al.
2012). In the full sample, we allow for duplication of spectra for
quasars that have been observed more than once. For this proof-of-
concept analysis, we elect the redshift range 3.5 ≤ z ≤ 4.0, which
offers optimal coverage of the Lyman limit down to z≈ 3 and includes
a sufficiently large number of quasars. Due to expected differences
between the mock data set used above and the BOSS data, we retrain
the random forest classifier using a training set extracted from the
observed spectra, using, however, the same methodology that we
have validated in the previous section with mocks.

To compile this training set, we visually inspect 2010 spectra using
a custom-made graphical user interface that allows the classification
of quasars in three classes: (i) clear sightlines, in which we do not
detect an LLS; (ii) sightlines with at least one LLS, for which we
record the redshift based on the location of the Lyman limit and
a crude estimate of the column density based on the depth of flux
decrement at the Lyman limit; and (iii) ambiguous sightlines for
which the noise prevents a clear classification in the former two
classes. To avoid the ambiguity arising from the presence of partial
LLSs in moderate S/N data, we limit our classification only to τ �
2 LLSs, which are strong enough to produce a clear and (nearly)
saturated absorption at the Lyman limit. Furthermore, as the data
quality is significantly degraded for λ ≈ 3750 Å, we classify only
systems with LLSs at z � 3.11, marking as ‘clear’ the (very few)
sightlines for which LLSs are recognizable at lower redshift. Thus, in
our analysis we truncate the data, including only wavelengths above
3750 Å.

During the preparation of the training set, we also encountered
a small number (65/2010) of spectra that have been incorrectly
classified by the SDSS pipeline as quasars (mostly blue stars, quasars
at lower redshift, or artefacts with bumps mimicking emission
lines). We add these spectra to a further ‘non-quasar’ class. Before
proceeding to the classification of LLSs, we clean the remaining
portion of the catalogue by applying the random forest classifier to
spectra that are binned by a factor of 40 of the original resolution,
aligned in the quasar rest frame, and normalized at 1450 Å. Using a
five-fold cross-validation on the training set, we tune the classifier to
yield a maximal recall of objects that are not quasars, with the goal
of rejecting as many spurious sources as possible (at the expense of
sample size).

Due to the very limited size of the class we aim to identify, it is not
surprising that the algorithm achieves a recall of only 70 per cent for
the true class (i.e. non-quasars) albeit with a precision of 95 per cent.
Indeed, in the remaining portion of the catalogue, the classifier
identifies ≈1.6 per cent of spurious sources that we subsequently
confirm as non-quasars through visual inspection. Due to the lower

fraction of non-quasar automatically identified compared to that of
the training set (1.6 per cent versus 3.2 per cent), it is likely that a
small number (≈1 per cent) of sources included in the final catalogue
are in fact not quasars. Such a small fraction will not affect the
usefulness of the catalogue as a whole.

4.2 Classification and redshift measurement

With the training set prepared above, we train the random forest
classifier on the 2010 BOSS spectra we visually classified, and
proceed to apply the classification on the remaining ≈7900 quasar
sightlines.4 Throughout this analysis, we interpolate all spectra on
a common wavelength grid in the interval 3750–5200 Å, with the
wavelength range chosen to encompass all LLSs at z � 3.1 (as
described above) up to the quasar Ly β emission line. The spectra
are then continuum normalized below the Lyman limit in the quasar
rest frame using a constant factor computed as the 90th percentile
between 915 and 940 Å in the quasar rest frame. We further bin
the spectra at 20 times the original resolution, based on the results
discussed in the previous section.

Using a five-fold cross-validation, we tune the classifier parame-
ters to yield a maximal F1 score, finding that the best classification
is achieved for n estimators=1000, criterion=‘gini’,
min samples split=4, and max features=40. As noted
above, the final classification is only weakly sensitive to variations
of these parameters. For our choice, we find an F1 score of ≈0.88,
and a recall and precision for the classification of LLSs of 0.92 and
0.94, respectively. This is broadly in line with the performance of the
classification on mock data, given both the smaller size of the training
set and the different data quality of DESI and BOSS spectra. Applied
to the remaining sample, the classifier identifies 5580 LLSs, for a
total of 6621 LLSs including those identified in the training set. Over
the entire sample of LLSs, the fraction recovered (≈68 per cent) is
well matched to the fraction of LLSs present within the training set
(≈64 per cent).

Excluding repeated observations (i.e. considering only the ‘Sci-
ence Primary’ quasars in SDSS), we identify 4801 unique LLSs. The
presence of repeated observations further allows for testing the re-
peatability of the classification. Among all the repeated observations,
the classifier achieves consistent classification in ≈70 per cent of
unique quasars. This fraction rises above 80 per cent when restricting
to high-quality observations, i.e. those with S/N > 5.5 at 1150 Å
as described below. We note that this test is rather stringent, as in
the case of more than two observations for the same quasars, it is
sufficient to have a single discordant classification to fail the test. In
fact, we find that in most of these cases the classifier yields consistent
classification for the majority of the repeated observations.

Having identified a sample of τ � 2 LLSs, we proceed by fitting
their redshift using a random forest regression with the same choice
of parameters used for the mock data (see the previous section).
After training the regression on the sample of 1041 LLSs that we
visually identified in the training set, we fit for the redshift of the
5580 new LLSs. Fig. 7 shows that the distribution of redshifts for
both the training and the remaining set is consistent with each other,
as expected given that the training set is a random subset of the full
sample. We do not attempt, however, to fit for the column density,
as our selection of τ � 2 LLSs puts us in the column density range
where there is little to no sensitivity on the column density (see

4For simplicity, we exclude a very small number of sightlines with wave-
lengths starting at λ > 3750 Å.
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Detecting neutral hydrogen at z � 3 1957

Figure 7. Redshift distribution of LLSs identified in the training set (blue)
and remaining set (orange) of SDSS DR16 data. A comparable fraction of
LLSs is found in both sets, with a similar redshift distribution.

Fig. 5). The final classification for the full sample is presented in
Table 1.

As a last step, we vet the classification of the machine learning to
verify that the above procedures yield a classification consistent with
the expectation of a human classifier. We find that the training has
been successful and LLSs are identified and redshifts are measured
consistently to the expectation of a human classifier. As is the case for
the human classification, spectra at low S/N are naturally subject to a
more ambiguous classification. In principle, we could add a new class
in the classifier, or even train the classifier to separate both ambiguous
LLSs and ambiguous clear sightlines from confident classifications.
However, due to the quite limited sample size of our training set, we
defer this refined classification to future work based on larger samples
of spectra, for example from WEAVE and DESI. For the time being,
readers interested in a higher purity sample should remove sightlines
with S/N < 5.5 per pixel between 1120 and 1180 Å in the quasar rest
frame, which we find to be a good discriminant between confident
and ambiguous classifications in our training set.

More quantitatively, in Fig. 8 we show three median stacks of
quasar spectra normalized at 950 Å in either the quasar (blue and
orange) or LLS (green) rest frame. The stack of sightlines with LLSs
in the absorber’s rest frame clearly shows a marked flux decrement
at ≈912 Å, with a transmitted flux bluewards of the Lyman limit of
≈0, as expected for τ � 2 LLSs. This confirms the general purity
of the catalogue, in line with the scores obtained from the classifier.

Figure 8. Median stack of quasar spectra, normalized at 950 Å: (i) containing
LLSs in the absorber rest frame (green), (ii) containing LLSs in the quasar
rest frame (blue), and (iii) without LLSs in the quasar rest frame (orange).
The random forest classifier produces samples of quasars with and without
LLSs with statistical properties that match expectations.

Also visible are the flux decrements associated with the IGM Lyman
series, although no sharp absorption lines are visible. This effect is
due to the smoothing introduced by the imprecise redshifts derived
from the location of the Lyman limit (see e.g. Figs 5 and 9). A better
redshift determination, e.g. based on the Lyman series lines in the
training set, will improve the overall redshift accuracy.

Examining instead the two stacks in the quasar rest frame (blue and
orange lines in Fig. 8), we note a substantial transmission below the
quasar Lyman limit. A flux decrement is to be expected also when
no LLSs are present, as systems with H I column density below
1017.5 cm−2 account for ≈50 per cent of the opacity of the Universe
at these wavelengths (e.g. Prochaska et al. 2010; Fumagalli et al.
2013). Indeed, when restricting to sightlines with identified LLSs,
a more marked flux drop is visible, although not as sharp as in the
stack in the LLS rest frame, because of the smoothing introduced by
the different LLS redshifts.

As a final validation of the catalogue, we compare our ma-
chine learning (ML) classification with the visual classification by
Prochaska et al. (2010). By matching their ‘statistical sample’ (i.e. the
optimal set of sightlines useful for the determination of the incidence
of LLSs) with the ‘Science Primary’ sightlines in our catalogue,
we identify 344 quasars in common. Among those, there are 273
LLSs in common at z > 3.3, the redshift lower limit considered in

Table 1. Summary of the properties of the first five SDSS DR16 quasars included in the classification. We list the quasar
name in the SDSS convention, the right ascension (RA), the declination (Dec.), the quasar redshift from the SDSS pipeline,
the S/N measured at 1150 Å in the quasar rest frame, a flag indicating whether the quasar is a ‘Science Primary’ observation
(Y or N), a flag indicating whether the quasar is included in the training set (Y or N), a flag describing the outcome of the
classification (1: quasar with LLS; 2: quasar without LLS; 4: non-quasar), and the measured redshift of the LLS. The full table
is available online.

Name RA Dec. zqso S/N1150 Primary Train Class zlls

(deg) (deg)

spec-10227-58224-0053 143.83343 32.3545430 3.527 9.6 Y Y 1 3.518
spec-10228-58223-0374 145.21736 32.1541970 3.757 4.1 Y Y 2 0.000
spec-10228-58223-0474 144.60158 33.1317990 3.724 2.1 Y Y 1 3.550
spec-10228-58223-0625 144.98375 34.2290730 3.598 8.6 Y Y 1 3.356
spec-10229-58441-0026 146.63169 34.8369130 3.595 5.8 Y Y 1 3.398
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1958 M. Fumagalli, S. Fotopoulou and L. Thomson

Figure 9. Left: Comparison of the redshift determination for 273 LLSs at z > 3.3 in common between our machine learning (ML) catalogue and the statistical
sample by Prochaska et al. (2010). Right: Histogram of the discrepancy between the redshift determination of LLSs identified in 344 quasars in common between
our ML catalogue and the statistical sample by Prochaska et al. (2010). By plotting the difference in redshift and assigning z = 0 in case of no LLSs, sightlines
for which agreement is found (both with and without LLSs) appear at zRF − zP2010 ≈ 0 (273/344 cases). Sightlines for which Prochaska et al. (2010) identify
an LLS that is not present in the ML catalogue appear at zRF − zP2010 ≈ −3 (1/344 cases). Conversely, LLSs in the ML catalogue that are not in the Prochaska
et al. (2010) statistical sample appear at zRF − zP2010 ≈ −3 (70/344 cases).

Prochaska et al. (2010). Fig. 9 (left) shows a direct comparison of
the redshift determination of these LLSs. A clear tight correlation is
visible, possibly with a small bias towards higher redshift for the ML
measurement with respect to the Prochaska et al. (2010) one. Such
a (small) discrepancy arises from the fact that the redshifts of the
training sample have been obtained based purely on the position of
the Lyman limit, which is intrinsically more imprecise than a redshift
determination based on the Lyman series. Indeed, the scatter of this
relation confirms a typical error of �z ≈ 0.03 for the ML redshift,
assuming the Prochaska et al. (2010) values as reference. The very
few outliers arise from the ambiguity on the classification of partial
LLSs in sightlines with multiple strong absorbers, especially at low
S/N.

In the right-hand panel of Fig. 9, we assess more generally the
consistency in the classification of the ML procedure and the visual
classification by Prochaska et al. (2010). To this end, we measure the
difference in redshift of LLSs in each sightline, assigning z = 0 to
sightlines with no LLSs. Sightlines for which there is agreement be-
tween the two classifications appear at zRF − zP2010 ≈ 0. Conversely,
at zRF − zP2010 ≈ −3 and zRF − zP2010 ≈ 3 appear sightlines for
which only one of the two methods identifies an LLS, with the sign
differentiating the method that yields a positive identification. From
this comparison, we find that for 273/344 cases (≈80 per cent) the
two methods agree on the classification. Only in 1/344 instances,
Prochaska et al. (2010) identifies an LLS that is not included
in the ML catalogue. Finally, in 70/344 cases (≈20 per cent), we
identify an LLS that is not included in the ‘statistical’ sample by
Prochaska et al. (2010). To better understand the nature of this
discrepancy, we study in more detail the sightlines in this last
class.

Fig. 10 shows the median stack of these 70 quasars, in the rest
frame of the LLSs identified with the ML procedure. Spectra are
normalized redwards of the Lyman limit, in the interval of 913–
918 Å. The subset of sightlines with discrepant classification appears
in fact to host LLSs, although with residual transmission at the Lyman
limit. While a precise measure of the optical depth of the stack
spectrum is sensitive to the exact normalization, from Fig. 10 we
establish that the stack is more absorbed than those hosting τ ≈ 1

Figure 10. Median stack of 70 quasars in the LLS rest frame for which we
identify an LLS that is not present in the catalogue by Prochaska et al. (2010).
Spectra are normalized in the range of 913–918 Å. Dotted lines show, from
top to bottom, the expected transmission for optical depths of 1, 1.5, and 2.
Sightlines with a discrepant classification appear to host LLSs close to the
τ ≈ 2 limit, and hence are more ambiguous to classify especially at low S/N.

LLSs, and is in fact similar to the ones with τ ≈ 2 LLSs. Thus,
we conclude that the majority of the discrepant sightlines arise from
LLSs that are close to the boundary of the classification at τ =
2. These sightlines are more easily missed especially at the lower
data quality of the original SDSS DR7 data used by Prochaska et al.
(2010), so we argue that their catalogue may be somewhat incomplete
close to τ = 2. Similarly, an imprecise determination of the column
density in our training set may include some τ � 2 LLSs, resulting
in the inclusion of partial LLSs below τ = 2 in the ML catalogue.
Establishing which of the two effects dominate (and hence which
catalogue is more complete/pure) is non-trivial, although it is likely
that both effects are present at the same time, and the true answer is
bracketed by the two catalogues.
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Detecting neutral hydrogen at z � 3 1959

Figure 11. Left: Histogram of the LLS redshifts for the ‘Science Primary’ quasars at z ≥ 3.6 (orange). Also plotted, with values on the right-hand side, is the
surveyed path-length, g(z). Right: The redshift evolution of the number of τ ≥ 2 LLSs from literature data (see text for references) and our ML-based sample
(purple diamond). Our classification yields an LLS sample characterized by a number per unit redshift that is in line with literature determinations.

5 THE PHYSICAL PROPERTIES OF LLSS

With a sample of new LLSs from SDSS DR16, we revise the
determination of the number of LLSs per unit redshift, �(z) ≡ dN/dz.
This metric, conceptually similar to the luminosity function for
galaxies but specialized for measurements along the line of sight
(e.g. Bahcall & Peebles 1969), offers a useful view of the redshift
evolution of the population of LLSs, which can be linked to galaxy
evolution models (e.g. Fumagalli et al. 2013).

For this calculation, we follow literature work (e.g. Prochaska et al.
2010; Fumagalli et al. 2013). First, we restrict to the high-quality
sample of ‘Science Primary’ sightlines with S/N > 5.5 at 1150 Å.
To avoid the colour bias identified in SDSS (e.g. Prochaska et al.
2010; Worseck & Prochaska 2011), we further restrict to quasars
with redshift z > 3.6. We indeed verify that, without the inclusion of
this redshift cut, �(z) increases by ≈10 per cent at z ≈ 3.4, and by
�20 per cent at z ≈ 3.3. We finally exclude sightlines with proximate
LLSs, defined as those with redshift within 10 000 km s−1 of the
quasar redshift (e.g. Perrotta et al. 2016).

With this selection, we consider 2439 sightlines, containing 1259
LLSs. Next, we compute the useful path-length searched in all the
sightlines, g(z), defined as the sum of the redshift probed starting
from 10 000 km s−1 of the quasar redshift, up to the lowest
redshift probed along each quasar. This lower bound is defined
either by the bluest wavelength searched in our analysis (3750 Å)
or by the redshift of the first τ ≥ 2 LLSs identified. Formally,
this redshift is defined by max(3750/912 − 1, zLLS). Fig. 11 (left)
shows the probed path-length, the shape of which is modulated by
the quasar redshift distribution on the right-hand side of the z ≈
3.4 peak, and the redshift distribution of LLSs and the left of the
peak.

As evident from Fig. 11, most of the statistical power of our
search is between z = [3.3, 3.6]. Above z > 3.6, the limited number
of quasars result in a rapidly decreasing g(z) that makes the final
determination of �(z) prone to very large completeness corrections.
Below z < 3.3, instead, the recovery of LLSs is more affected by
the lower S/N at the bluest wavelengths (for a discussion on this
effect, see also Prochaska et al. 2010). Once restricted to the selected
redshift interval, we compute �(z) as the ratio of the number of
LLSs in the range z = [3.3, 3.6] and the total redshift path �z =∫ 3.6

3.3 g(z)dz, finding �(z) = 2.32 ± 0.08. The error bar is based on
Poisson statistics.

In Fig. 11 (right), we compare our new measurement with the
results from the literature. Here, we show the low-redshift measure-
ments based on Hubble Space Telescope data (red square; Ribaudo,
Lehner & Howk 2011; O’Meara et al. 2013), the z ≈ 3 measurement
from the MagE survey by Fumagalli et al. (2013) (orange circle),
the z > 3.3 SDSS DR7 data from Prochaska et al. (2010) (blue
downward triangle), and the high-redshift measurement from the
Giant Gemini GMOS (GGG) survey by Crighton et al. (2019) (green
triangle).

Our determination agrees well with literature values, and it is
curiously overlapping with the data point at comparable redshift by
Prochaska et al. (2010). Given the small error bar due to the much
larger sample size of our catalogue, however, our BOSS measurement
is perhaps somewhat discrepant (≈30 per cent higher) compared to
the trend outlined by all the literature values as a function of redshift.
As discussed in the previous section, this difference may be the
result of two competing effects: first, the inclusion of LLSs just
below the τ = 2 boundary in our catalogue; and second, the potential
incompleteness at τ ≈ 2 LLSs in the catalogue by Prochaska et al.
(2010). Modulo a better classification at the boundary of τ ≈ 2,
future determinations in larger surveys like DESI and WEAVE have
the potential to pin down reliably the redshift evolution of LLSs
above z > 3.

6 C LASSI FI CATI ON O F BAL QUASARS

Studies of intervening absorption line systems often rely on the
exclusion of BAL quasars from the sample, as the BAL features
affect a substantial part of the path-length and could confound some
of the signatures (e.g. damped profile) of intervening absorbers.
While dedicated efforts to identify BAL quasars with machine
learning can be found in the literature (e.g. Busca & Balland 2018;
Guo & Martini 2019), we conclude this work by exploring the
performance of the off-the-shelf implementation of random forest
in the identification of BALs.

For this task, we rely again on the implementation of the random
forest classifier in SCIKIT-LEARN, and test the effectiveness of the
classification using mocks that include BALs. The procedure we
follow is similar in spirit to the one developed for the search of LLSs.
First, quasar spectra are aligned in the rest frame through a linear
interpolation. To reduce the complexity of the problem (i.e. we wish
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1960 M. Fumagalli, S. Fotopoulou and L. Thomson

Figure 12. Examples of continuum modelling for three random mock spectra
including BAL features (texp = 4000 s). The flux is shown in blue, the flux
error is shown in green, and the model continuum is shown in orange. Our
procedure (see text for details) performs well in the region of interest (1300–
1600 Å) even in the presence of deep BAL features.

to classify the presence of BAL feature without the need to learn the
intrinsic shape of the quasar spectrum), we continuum normalize the
spectra using a non-negative matrix factorization (NMF) as in Zhu
& Ménard (2013). We note that, for mocks, this procedure is to some
extent redundant, as the quasars themselves have been constructed
from a set of eigenvectors derived via principal component analysis
that are then combined in a linear combination (e.g. Pâris et al. 2012).
However, by recomputing the continuum on the mock spectra we
approximate more closely the actual analysis that can be performed
on real data.

To continuum normalize the quasars, we first decompose a set
of 25 000 mock quasars with mg < 21 mag without BALs into 12
positive components, where the number of components is chosen
in line with previous work (Pâris et al. 2012; Zhu & Ménard 2013;
Guo & Martini 2019). We then fit a positive linear combination of
these components to the entire sample of 180 000 mock quasars, also
including objects with BALs. To avoid the need for masking BAL
features, which can affect the quality of the resulting continuum,
we only fit each spectrum redwards of the C IV line (λ > 1550 Å)
and extrapolate the best-fitting model in the region bluewards to
C IV. As shown in Fig. 12, we are able to accurately predict the
continuum level of quasars with BALs down to faint magnitude
limits.

Once spectra are continuum normalized, we construct an nqso ×
npix flux image, where the number of pixels is chosen to cover the
wavelength range of ≈1396–1600 Å. This window brackets the C IV

region of the spectrum that contains the C IV BALs at λ = 1548 and
1550 Å, which are the features we aim to classify. We prefer to
focus on the C IV region, as this is a cleaner region of the spectrum
compared to hydrogen lines embedded in the Ly α forest. As fluxes
are already in the range (0, 1), we do not apply further regularization
of the data.

We note that quasars may contain additional features in this
region of the spectrum, most notably metal lines associated with
strong absorption line systems such as DLAs. As our mocks are
approximated and do not contain detailed modelling of the metal lines
arising from associated and intervening absorbers, the precision of
our classification is expected to be optimistic, as for instance strong

Figure 13. Same as Fig. 3, but for the classification of BALs in mock data.
At sufficiently high S/N (achieved for texp ≥ 4000 s), the recovery of BALs
has high completeness and purity independently of the quasar magnitude.

C IV lines from proximate DLAs may be confused for BAL features.
We foresee, however, that the majority of spectra will be still correctly
classified, as DLAs only rarely exhibit very complex kinematics in
excess of ≈500 km s−1 as is typical instead of many BALs (Trump
et al. 2006; Fox et al. 2007)

Following the preparation of the data, we move to the clas-
sification problem using the RANDOMFORESTCLASSIFIER method
in SCIKIT-LEARN. First, we perform a grid search to tune the
parameter of the classifier using a five-fold cross-validation with
F1 as the score method on a training set containing 65 per cent of
quasars with mg < 21.5 mag. We find that the best performance
is obtained for n estimators=500, criterion=‘gini’,
min samples split=2, and max features=50. However,
as for the case of LLSs, we find that the classifier is only weakly
sensitive to the exact choice of parameters.

Next, we apply the classifier to all mocks. To study the performance
as a function of magnitude, we iterate the procedure for g-band
magnitude limits of 20, 21, 22, and 23 mag. At each iteration, we
train the classifier on a set containing 65 per cent of the total sample
size, and test the performance on the remaining objects. A summary
of the sample size, precision, recall, and F1 score for each case
is presented in Fig. 13. As seen from Fig. 13, the classification
is very precise in recognizing BALs, with little to no confusion
with other features. This is insensitive with respect to limiting
magnitude and, largely, S/N of the data that in this region of the
spectrum is generally high (S/N � 3 also for the fainter quasars).
As described above, the actual precision is expected to be lower in
real data that contain additional absorption lines in this region of the
spectrum.

The recall of true BALs, while not as high as the precision, is
consistently around ≈97 per cent, with a more marked dependence
on S/N. This is particularly noticeable for the case of texp = 1000 s,
where the fraction of true BALs identified quickly decreases with
magnitude. Looking at the false negative, the classifier tends to miss
primarily BALs that are associated with the weakest C IV features
with rest-frame equivalent widths <5 Å, implying high completeness
with respect to typical BALs with equivalent widths �10 Å. We
therefore conclude that the random forest classifier can provide a
valid alternative to the convolution neural network classifiers that
have been developed in the literature.
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7 SU M M A RY A N D C O N C L U S I O N S

We present the development of a pipeline designed to identify and
measure the physical properties of τ ≥ 2 LLSs in large surveys.
Differently from previous searches for strong absorption line systems
like DLAs that target the characteristic shape of the Ly α absorption
line, we rely on the distinctive flux drop at the Lyman limit around
912 Å in the system’s rest frame (see Fig. 2). Algorithmically, we
choose the random forest implementation in SCIKIT-LEARN using the
classifier for the identification of LLSs and the regressor for the
measurements of physical properties (redshift and column density).
To test the reliability of the results and to develop the pipeline, we
build a library of 180 000 mock quasar spectra including DLAs and
LLSs, with data quality comparable to that achievable in upcoming
surveys such as DESI and WEAVE.

After aligning quasar spectra and performing continuum normal-
ization in the region bluewards of the quasars’ Lyman limit, we
optimize the parameters that control the random forest classifier
using a five-fold cross-validation with F1 score as a metric of
performance, finding that the method is rather insensitive to the
choice of parameters with F1 ≈ 0.9 for all reasonable variations. After
training the classifier on 65 per cent of the mock data set, we apply
the classification on the remaining mock data. The classification is
sensitive to the spectral S/N, with precision and recall increasing as
a function of decreasing quasar magnitude and increasing exposure
time (Fig. 3). Once binned to 20 times the original sampling, we find
recall and precision above 90 per cent for typical DESI- or WEAVE-
like spectra with g � 23 mag.

We then proceed to test the ability of the random forest regressor in
measuring the redshift and H I column density of the identified LLSs.
For this step, we follow a data preprocessing that is similar to the one
of the previous step. We find that the regression is able to recover
accurately the LLS redshift, with discrepancies from the true value
generally within �z � 0.025. The recovery is again sensitive to the
spectral S/N, with an R2 coefficient that depends on quasar magnitude
and exposure time and that is above 0.8 for DESI- and WEAVE-like
spectra (Fig. 7). Conversely, we find that the random forest regression
performs poorly for the recovery of column density. This is not
unexpected, as the information of the column density is encoded in
the depth of the flux decrement at the Lyman limit, a quantity that
quickly saturates for τ > 2 systems. Thus, simply by examining the
flux at the Lyman limit, there is insufficient information to reliably
pin down the column densities.

We next proceed to apply this pipeline on 10 000 real quasar spectra
between z ≈ 3.5 and 4.0 from SDSS DR16. After preprocessing the
data as done for the mocks and cleaning the catalogue for a small
fraction of spurious (non-quasar) sources, we train the random forest
classifier on a sample of ≈2000 spectra that we visually inspect and
classify to identify the presence of LLSs at z > 3.11. In line with
the performance obtained with the mock observations, we find an
F1 ≈ 0.88 and a recall and precision of 0.92 and 0.94 for LLSs,
respectively, on real data. Applied to the entire sample, we identify
≈6600 LLSs, a number that reduces to ≈4800 once we remove
duplicate observations. Using a random forest regression, we further
measure the redshift of the LLSs.

With this catalogue in hand, we perform several tests to validate the
pipeline, including the analysis of stacks of sightlines hosting LLSs
or not (Fig. 8) and a detailed comparison with previous catalogues
based on visual classification (Fig. 9). The method we have developed
appears to perform well, yielding a catalogue that is consistent with
previous classification and that has statistical properties in line with
known properties of LLSs. With this new catalogue, we finally
assess the number of LLSs per unit redshift in the interval z =

[3.3, 3.6], finding �(z) = 2.32 ± 0.08 in line with previous literature
determinations (Fig. 11).

As a final exercise, we study the efficiency of the random forest
classifier in the identification of BAL quasars. For this, we rely on
a mock catalogue of quasars in which we inject BAL absorption
lines following a set of precompiled templates. After removing the
quasar continuum with an NMF decomposition (Fig. 12), we tune the
classifier with a five-fold cross-validation, finding again a very weak
dependence of the performance on the parameter choice. Following
the training on a training set, we study the performance of the
classifier on a new set of mocks, finding very high precision and
recall (�97 per cent, except for the lowest S/N quasars).

In conclusion, building on an off-the-shelf implementation of a
random forest classifier and regressor in SCIKIT-LEARN, we have
developed an efficient pipeline for the recovery of LLSs and the
measurement of their redshifts, purely based on the characteristic flux
decrement at the Lyman limit. Following the successful validation
of this technique using both mock and real data in comparison with
previous work, we have obtained a framework that can now be applied
to upcoming large surveys like DESI and WEAVE. We are therefore
well positioned to produce catalogues of tens of thousands of LLSs,
with which we can study in detail the redshift evolution and other
properties such as the metallicity of strong absorption line systems,
which are the ideal systems to study the galaxy CGM and the denser
IGM in the high-redshift Universe.
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