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Abstract: A bubble of nothing is a spacetime instability where a compact dimension col-
lapses. After nucleation, it expands at the speed of light, leaving “nothing” behind. We ar-
gue that the topological and dynamical mechanisms which could protect a compactification
against decay to nothing seem to be absent in string compactifications once supersymme-
try is broken. The topological obstruction lies in a bordism group and, surprisingly, it can
disappear even for a SUSY-compatible spin structure. As a proof of principle, we construct
an explicit bubble of nothing for a T 3 with completely periodic (SUSY-compatible) spin
structure in an Einstein dilaton Gauss-Bonnet theory, which arises in the low-energy limit
of certain heterotic and type II flux compactifications. Without the topological protection,
supersymmetric compactifications are purely stabilized by a Coleman-deLuccia mechanism,
which relies on a certain local energy condition. This is violated in our example by the
nonsupersymmetric GB term. In the presence of fluxes this energy condition gets modified
and its violation might be related to the Weak Gravity Conjecture.

We expect that our techniques can be used to construct a plethora of new bubbles
of nothing in any setup where the low-energy bordism group vanishes, including type II
compactifications on CY3, AdS flux compactifications on 5-manifolds, and M-theory on
7-manifolds. This lends further evidence to the conjecture that any non-supersymmetric
vacuum of quantum gravity is ultimately unstable.
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1 Introduction

It is known that non-supersymmetric vacua typically exhibit instabilities, either at the per-
turbative or non-perturbative level. In fact, not a single exactly stable non-supersymmetric
string theory vacuum is known to us. But can we ensure that this is a necessary implication
of breaking supersymmetry? Is it consistent to have a non-supersymmetric stable vacuum?
In [1, 2] it was conjectured that any non-supersymmetric vacuum of a consistent theory
of quantum gravity is indeed unstable. The conjecture is motivated by the Weak Gravity
Conjecture [3] in the case in which the effective theory arises upon compactifying a higher
dimensional theory and the vacuum is supported by fluxes, i.e, non-vanishing gauge field
strengths in the compactified dimensions. But the decay mode provided by the Weak Grav-
ity Conjecture relies on the presence of these fluxes and seems insufficient to guarantee the
instability of any non-supersymmetric vacuum. The quest for some universal instability
that can be described without referring to the specific ingredients of the compactification
space is the question that drives the present work.

Perhaps the best candidate for such a universal instability whenever there are extra
dimensions is the bubble of nothing. Witten [4] showed that the Kaluza-Klein vacuum of a
circle compactification is non-perturbatively unstable to decay to nothing. In other words,
there is a perfectly well defined solution to the Einstein’s equations that has zero energy,
just like the vacuum, but which describes a hole in space that simply pops up and starts
expanding at the speed of light, eventually eating up the whole space-time. Geometrically,
the compactified circle shrinks to zero size at the wall of the bubble, but the solution is
smooth from the higher dimensional point of view. It is known, though, that this solution
is forbidden if there are fermions with supersymmetric preserving (periodic) boundary
conditions on the internal circle. Hence, even if supersymmetry is broken at some energy
scale, the vacuum will be topologically protected against this instability as long as there
are fermions with the right boundary conditions. Therefore, one might be tempted to take
the view that the bubble of nothing is just a quirk of some particular solutions that is
not really relevant or generic, since it can be dealt with via topological changes that are
invisible at low energies. However, as we will see, nothing really matters. . . .1

1Since the dawn of this project, it has been our intention to use “Nothing really matters” as the title of
the manuscript. However, we were title-scooped by the interesting paper [5], also about (a different kind
of) bubbles of nothing. The search for an alternate title was hard but we tried our best. The reader must
judge if we came close to the high bar we set. Among the second-runners we have “Nothing is real in string
theory”, “Nothing comes for free in string compactifications”, “Nothing can surprise us” or “Nothing is final
in string theory”.
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Actually, a counterexample to this idea was already presented in [6]. There it was
shown that the nonsupersymmetric Kaluza-Klein vacuum endowed with a Wilson line may
still decay to nothing even if the fermions exhibit supersymmetry-preserving boundary
conditions. In that setting the coupling between the Wilson line and the fermions renders
the decay topologically unobstructed, and the stability of supersymmetric compactifications
is instead dynamically enforced. In the spirit of finding a decay channel as generic as
possible, in this paper we will show that bubbles of nothing compatible supersymmetric
boundary conditions are far more general than the scenario discussed in [6], and do not rely
on specific ingredients such as Wilson lines or fluxes. For the first time in the literature
we will explicitly construct bubbles of nothing compatible with supersymmetric boundary
conditions, and which do not require an ad hoc gauge coupling for the fermions. This opens
up a new type of decay mode that might be universally present even if supersymmetry is
only broken at low energies.

In order to determine if there is a topological obstruction to construct a bubble of
nothing, one needs to study whether the internal compactification space can be smoothly
shrunk to zero size. In mathematical terms, this occurs whenever the compactification
space is bordant to a point, i.e. it belongs to the trivial class of the relevant bordism group.
The connection between bordism and gravitational instabilities was noticed not long after
the original paper [4], see [7, 8]. This is denoted as Ωd, where d is the dimension of the
internal manifold. Let us consider that the effective theory contains fermions such that the
manifold supports a spin structure. The relevant bordism group is called ΩSpin

d , and these
groups have already been classified in the literature for any d (see for instance [9]). For a one
dimensional manifold (the circle), one has ΩSpin

1 = Z2, implying that there are two different
classes corresponding to the two choices of boundary conditions for the fermions: periodic
or antiperiodic. Only the associated to antiperiodic boundary conditions will allow for
bubbles of nothing, as expected. The same occurs for two-dimensional manifolds. However,
the situation changes for dimension larger than three. Interestingly, ΩSpin

3 = 0, implying
that any three-dimensional manifold can be topologically shrunk to a point, including
the one consistent with periodic supersymmetry-preserving boundary conditions! In other
words, there is no topological obstruction to construct a bubble of nothing in effective
field theories with three extra dimensions. Moreover, the topological obstruction is also
absent when there are six and seven extra dimensions since ΩSpin

6 = ΩSpin
7 = 0. This can

have important implications for four dimensional effective field theories arising from string
theory compactifications of type II, heterotic or M-theory, since they always involve a six
or seven compactification manifold.

We should also remark that it has been recently conjectured [10] that a consistent
theory of quantum gravity must include sufficient ingredients to guarantee that ΩQG = 0
for any dimension bigger than two. Otherwise, one can argue that the theory will contain
some conserved global charge which would be inconsistent with the well known swampland
criteria of not having global symmetries in quantum gravity [11–19]. If this conjecture
holds, it implies that some sort of bubbles of nothing are always topologically allowed in
any compactification. However, as we will see, this is not enough to argue for a universal
vacuum instability yet, as one needs to study the dynamics of the bubble and check that
it will indeed expand eating up the whole space-time.

– 2 –
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If the topological obstruction for these bubbles of nothing is absent, what can protect
then a vacuum from decaying? The first thing that probably comes to your mind is
supersymmetry. Indeed, when considering the non-perturbative stability of false vacua [20,
21], if supersymmetry is unbroken the decay rate will be zero, as the euclidean action of
the instanton associated to the nucleation of a “true vacuum” bubble will diverge [22–24].
Similarly, in the case of the Kaluza-Klein compactification of [6], where no topological
protection is present, the Coleman-DeLuccia mechanism was also shown to prevent the
decay to nothing in the absence of supersymmetry breaking. This result motivated Blanco-
Pillado et al. to conjecture that this form of dynamical suppression is the generic mechanism
enforcing the stability of topologically unprotected supersymmetric compactifications.

However, the dynamical protection might disappear whenever supersymmetry is bro-
ken. One of the goals of this paper is to understand under what circumstances this indeed
occurs. The answer is that we need to either break explicitly supersymmetry or, if we want
to preserve some covariantly constant spinor and only break supersymmetry spontaneously
at lower energies, a certain energy condition needs to be violated. In the absence of fur-
ther ingredients that modify the spin connection, the energy condition that needs to be
violated is known as the Dominant Energy Condition, as already implied by the Positive
Energy Theorem [25, 26]. This energy condition is just true for some classical systems,
and is often violated by quantum effects, higher derivative corrections, or in the presence
of fluxes. Since there is no other principle upholding it that we are aware of, we would
expect the condition to be false in nonsupersymmetric string compactifications. We will
find this is indeed the case in examples, but we believe the story is general. Thus, the
picture one gets is that a vacuum can be in principle be insured against decay either by
topology or dynamics, but the first does not happen in quantum gravity and the second
only takes place whenever there is SUSY. Thus, in the end, every non-supersymmetric
vacuum should decay.

Before getting too deep in these ideas, and for the sake of concreteness, in this paper
we will focus on the more modest goal of understanding in detail the decay to nothing of
a vacuum MD−3 × T 3/Γ with D ≥ 6. As a proof of principle for the existence of these
new types of bubbles of nothing, we are going to explicitly construct the bubble for an
effective field theory involving only Einstein gravity with quadratic curvature terms, and
a dilaton in lower dimensions. Recall that ΩSpin

3 = 0, implying that the bubble of nothing
can be constructed completely within the framework of the (D-dimensional) low-energy
effective field theory, without the need of invoking exotic UV ingredients. This will make
easier to construct smooth solutions such that the semi-classical description of the decay is
justified. As a supersymmetry breaking source, the theory includes a Gauss-Bonnet higher
derivative term, which will indeed violate the dominant energy condition, allowing us to
construct bubble solutions with a non-vanishing vacuum decay rate.

Since we carry out our analysis in a particular effective field theory coupled to Einstein’s
gravity, we need to make sure we are not in the Swampland. Otherwise, the bubble solutions
we find might just be an artifact caused by the lack of consistent UV completion. We will
dispel doubts on this point by showing that the effective theory under consideration with
the Gauss-Bonnet term can be embedded in string theory compactifications, as well as
discuss the potential impact on string phenomenology.

– 3 –
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Our explicit construction for the bubble of nothing of T 3 allows us to resolve a puzzle
posed in [27]. In that reference, Acharya analyzed the same question we are interested in —
to what extent is it possible to have a stable, non-supersymmetric vacuum. This naturally
leads one to consider a Ricci-flat compact space (so that one can solve Einstein’s equations)
with no covariant spinors (so that there is no supersymmetry). A nice class of examples
are T 3 quotients T 3/Γ where Γ is a fixed-point free discrete isometry of T 3. As discussed
in [27, 28], there are 28 classes of quotients, including spin structures. 27 of them do not
admit any covariantly constant spinors. 26 of these 27 classes descend from a parent T 3

with antiperiodic boundary conditions along one of the cycles, and this allows for a suitable
quotient of Witten’s bubble of nothing to act as a bubble of nothing for the quotient as
well. Thus, out of the 28 classes, 1 is supersymmetric and stable, 26 have known bubbles of
nothing, but there is one left (class G3 in [27]) for which no bubble of nothing was known.
Our techniques allow us to close the gap and explicitly construct a bubble of nothing for
this last class. Topologically, it is an elliptic fibration with an E6 singularity. Thus, all
non-supersymmetric quotients of T 3 admit bubble of nothing instabilities. Regarding the
geometry of these bounce solutions, all the quotients of the Witten’s bubble presented
in [27] contained orbifold singularities. Here we will also prove that these geometries can
be regularized, and we will construct the explicit smooth instanton solutions mediating
these decays.

Finally, it is worth mentioning that the techniques employed in the present paper can
also be applied in other contexts. For instance, the family of elliptic fibrations character-
izing our solutions includes the K3 manifold, and thus our methods can be used to obtain
smooth and approximately Calabi-Yau metrics for the K3 surface, as done in [29, 30].
While our approach is similar in spirit to [29], we use a different approximation scheme
to theirs. Actually, our method (also alternative to [30]) allows to obtain systematically
higher order corrections to the metrics of [29]. Furthermore, our construction provides a
detailed characterisation of the warping induced by higher derivative terms and fluxes in
these geometries (see e.g. appendix A, where we extend our results to an AdS compactifi-
cation on T 3 with fluxes). Therefore, it is straightforward to adapt our results to obtain
an explicit geometric description of flux compactifications on a warped K3 manifold.

1.1 Reading guide

We have organized our work as follows:

• Section 2, we discuss general background on bubbles of nothing, as well as obstruc-
tions to their existence related to topology and the Positive Energy Theorem.

• Section 3 contains the core result of our paper succinctly summarized: we have
explicitly constructed a bubble of nothing for a T 3 with supersymmetry-preserving
boundary conditions in an Einstein-dilaton model with higher-derivative terms, and
given the decay rate explicitly.

• Section 4 discusses in detail how the effective action and ansatz that we use allows
us to evade the topological and dynamical constraints.

– 4 –
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• Section 5 is the core of the paper, where an explicit metric for the bubble solution
is constructed in layers where different approximations are used. In the near bubble
region (layer II) a mix of exact and perturbative solutions are used, while far from
the bubble core (layer I) Einstein’s equations are solved numerically. We discuss
appropriate matching of boundary conditions across layers and compute decay rates.

• Section 6 contains a simple stringy embedding of our bubble, as well as miscellanea
regarding generalizations of positive energy theorems, including fluxes, and a discus-
sion of the implications of our results for String Phenomenology and the relation to
Swampland constraints.

• We finish with our conclusions in section 7 as well as some technical details and
generalizations relegated to appendices.

A very minimalistic reading of our paper would contain sections 2 and 3. We have
written the paper in such a way that the reader can get a very good idea of our work
by reading only these two sections (so only 16 pages!). From them on, there are several
possibilities. Sections 4 and 5 are most important for a reader interested in the explicit
construction of our bubble of nothing and the GR/field-theory aspects of the model. By
contrast, section 6 is more on the stringy side of things, including also generalizations of
the topological and dynamical obstructions in the presence of fluxes. These can be read
separately to a large extent, though of course some interdependence is unavoidable.

2 Bubbles of nothing

We will begin with reviewing what bubbles of nothing are, and what are the necessary
conditions for these euclidean solutions to exist and yield a non-perturbatively instability
of the vacuum. We will distinguish between a topological and a dynamical obstruction,
and show how the topological obstruction is absent for some higher dimensional compact-
ification spaces.

2.1 Review: bubble of nothing

As its name suggests, a bubble of nothing represents a semiclassical non-perturbative decay
mode from the vacuum to nothing, i.e. the vacuum annihilates. The bubble yields a hole
in space-time which grows at the speed of light, and leads to the end of space-time from
the point of view of a four dimensional observer.

The first construction of a bubble of nothing (BON) was done by Witten in [4], as an
instability of the Kaluza-Klein (KK) vacuum. Let us consider a KK circle compactification
of a five dimensional theory to four dimensions, so the space-time is M4 × S1.

The instanton solution (also called bounce) can be constructed by starting from the
euclidean version of the Schwarzschild spacetime,

ds2
5 = r2dΩ2

3 + dr2

1−R2/r2 +R2
kk

(
1− R

2

r2

)
dθ2, (2.1)

– 5 –
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where θ ∈ [0, 2π) is the periodic coordinate on the circle S1 with radius Rkk, and R is the
size of the bubble at the time of nucleation. We will denote this spacetime by M5.

The bounce solution asymptotes to the euclidean KK vacuum when r →∞. In order
to get the endpoint of the vacuum decay, we need to analytically continue the euclidean
solution back to Minkowski signature along a new appropriate time variable. The false
vacuum decays then into the Lorentzian space which coincides with this bounce solution
at t = 0. In this case, if we write the line element on the three sphere as

dΩ3 = dχ2 + sin2 χdΩ2
2, with χ ∈ [0, π), (2.2)

the plane χ = π/2 can play the role of t = 0, so by replacing χ → π/2 + iψ we get the
Minkowski signature solution

ds2
5 = −r2dψ2 + dr2

1−R2/r2 + r2 cosh2 ψdΩ2
2 +R2

kk

(
1− R

2

r2

)
dθ2. (2.3)

At large r this solution approaches to the vacuum of M4×S1, as can be seen rewriting the
line element in terms of the coordinates x = r coshψ, t = r sinhψ

ds2
5 ≈r→∞ −dt

2 + dx2 + x2dΩ2
2 +R2

kkdθ
2. (2.4)

However, the coordinates r and ψ do not span all of Minkowski space. From the point of
view of a four dimensional observer, the full space corresponds to Minkowski space where
the region x2− t2 < R2 has been removed. The wall of the bubble then corresponds to the
frontier of the four-dimensional space-time, and grows with time as

xbubble(t) =
√
R2 + t2, (2.5)

In particular, we can see now that the bubble radius at t = 0 is given by the parameter
R = xbubble(0). The size of the collapsing S1, which we will denote by C(r), is given by

C(r) = Rkk

√
1−R2/r2, (2.6)

so it approaches Rkk at large r and shrinks to zero size at the bubble surface, located at
r = R. As shown in [4], the condition R = Rkk needs to be imposed2 to avoid the presence
of a conical singularity at the bubble surface, thus ensuring that the full spacetime is
non-singular and geodesically complete. Requiring that the bounce geometry is smooth
is essential for the semiclassical description of the decay to be accurate. Indeed, if the
spacetime curvature is not everywhere well below the Planck scale we would need to have
some knowledge of the UV physics to describe the decay, but nevertheless the existence of
a singular bounce solution may still indicate the presence of a non-perturbative instability.

The euclidean BON solution (2.1) can also be rewritten in a different gauge, more
convenient for the computations below, as follows

ds2
5 = R2W (ρ)2dΩ2

3 + dρ2 + C2(ρ)dθ2, (2.7)
2As shown in [6] this condition may be relaxed in more general scenarios, where additional interactions

may provide a mechanism to regularise the conical singularity. We will also encounter this situation below
when considering the resolution of the orbifold singularities in the bounce solutions of [27].

– 6 –
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where the new radial coordinate takes values in ρ ∈ [0,∞), and with the bubble located at
ρ = 0. Here the metric profile functions are defined by the equations

W ′ = R−1
√

1−W−2, C(ρ) = RkkRW ′(ρ), and W (0) = 1, (2.8)

and it is immediate to check that the line element in (2.1) can be recovered with the change
of variables r(ρ) = RW (ρ). Then, the three-sphere S3 defined by ρ = 0 represents the
bubble world-volume, which back in Minkowskian signature turns into a dS3, that is, the
expanding bubble surface.

Many works have studied different aspects of these bubble instabilities in different
setups, including the context of flux compactifications [6, 31–36], and in string theory [27,
37–41] (see also [5, 42]). However, many of these constructions are a slight generalization of
Witten’s bubble in which a circle from an extra dimension shrinks to zero size. Regarding
scenarios with a more complicated compact space, the only explicit smooth solutions which
are known describe the collapse of spherical compactifications, as in [31, 33–36], and the
more recent construction [41] where the internal manifold is a homogeneous space with
a fibered two-sphere that collapses. In this sense, other singular bounce geometries with
interesting topologies are those of [27] and [39].

A very important caveat is that the bubble of nothing (2.1) is only topologically com-
patible with antiperiodic boundary conditions of the fermions on the circle. This can be
seen as follows: since in the bubble of nothing the KK circle shrinks to a point, topologically
the spacetime is a three-sphere S3 times a disc D. The KK circle far away from the core
of the bubble can be identified with the boundary of the disc. If the theory has fermions,
then we need to define fermions on a disc. A two-dimensional disc looks like R2, so we can
define fermions in the usual way. But then, the most salient feature of fermions is that
they flip sign under a 2π rotation. This 2π rotation on the disc amounts to a translation
on the boundary S1; as a result, fermions must have antiperiodic boundary conditions in
the decaying vacuum.

Therefore either the theory is non-supersymmetric already in high dimensions, or there
is explicit supersymmetry breaking coming from Scherk-Schwarz (antiperiodic) boundary
conditions on the circle. This can lead to the misleading conclusion that vacua with spon-
taneously broken supersymmetry are topologically protected against bubbles of nothing.
One of the goals of this paper is to show that this statement is incorrect, and we can have
more general bubbles of nothing that are compatible with a supersymmetric spin struc-
ture. What will protect susy vacua from decaying will not be a topological but a dynamical
obstruction, as we will explain in the following.

2.2 Topological obstruction

In the previous subsection we saw that whether or not a bubble exists depends crucially on
the spin structure. In absence of e.g. extra U(1)’s which might provide Wilson lines along
the circle (see [6]), the spin structure cannot be deformed continuously, so it provides a
topological obstruction to the existence of the bubble.

As usual, topological obstructions are particularly interesting, since they are extremely
robust. Suppose one takes a compactification on S1 with periodic boundary conditions, so

– 7 –
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that a bubble cannot appear. Even if one deforms the effective field theory in an arbitrary
way (for instance, breaking supersymmetry either explicitly or spontaneously), the spin
structure cannot change and the bubble of nothing still does not exist. One can always
imagine there is some deep UV domain wall, out of reach of the effective field theory,
that can change the spin structure (see [10, 43], or keep on reading), but this is certainly
impossible using low-energy physics only.

We thus have two mechanisms that ensure the absence of a bubble of nothing: the topo-
logical obstruction related to spin structures, and supersymmetry, which ensures stability
of the vacuum. Although they coincide for Witten’s bubble, they are actually logically
independent, as we will see momentarily.

The topological obstruction to the existence of bubbles admits a natural mathematical
description via bordisms, generalizing the picture near the end of the last subsection. From
a topological point of view, all that one needs to construct Witten’s bubble of nothing is
to be able to “fill up” the interior of the S1; the resulting disc D “interpolates” smoothly
between the S1 and “nothing”. For instance, if we describe Witten’s bounce by the line
element (2.7), then the disc D is the manifold parametrized by ρ and θ, and the complete
instanton spacetime is the warped productM5 ∼= D ×W S3. In addition, when the theory
contains fermions, one also needs to be able to extend the spin structure on S1 to the spin
structure on the disc.

This picture can be readily generalized to the case with an arbitrary space-time di-
mension D, and where the S1 is replaced by a generic compactification manifold Cd, of any
dimension d, with a given spin structure. Then the potentially decaying vacuum will be of
the form MD−d × Cd. A bubble of nothing for this compactification requires the existence
of a d+ 1-dimensional manifold Bd+1 with Cd = ∂Bd+1, such that the spin structure on Cd
extends to Bd+1. Then, as we will describe in detail in section 4.2, the appropriate gener-
alisation of the euclidean BON spacetime is a warped product of the manifold Bd+1, and a
sphere SD−1−d associated to the bubble world-volume, so thatMBON ∼= Bd+1×W SD−1−d.

In general, such a Bd+1 may not exist. Mathematicians have given a full answer to
the question of when does and when it doesn’t, via bordism groups [9]. Bordism is an
equivalence relation between d-dimensional manifolds: CAd and CBd are equivalent if there is
a manifold Bd+1 of one dimension higher such that ∂Bd+1 = CAd ∪CBd (see figure 1). Equiv-
alence classes of manifolds defined in this way have a natural (abelian) group structure,
where the group operation is to take the equivalence class of the disjoint union of mani-
folds,3 and the trivial element is the class represented by any manifold which is a boundary.
If the manifolds CAd , CBd carry any extra structure (such as an orientation, spin structure,
or gauge bundle), we can also demand that this structure extends to Bd+1, leading to the
notion of twisted bordism groups. The one we are interested in is the d-dimensional spin
bordism group ΩSpin

d . Then, there will be no topological obstruction to a bubble of nothing
for a given compact space Cd, i.e. there is a manifold Bd+1 such that ∂Bd+1 ∼= Cd, when Cd
belongs to the trivial class in ΩSpin

d . We shall refer to the corresponding manifold Bd+1 as
a nulbordism or a bordism for Cd.

3This can be replaced by a connected sum, as the two notions are equivalent under bordism.
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<latexit sha1_base64="Gq/TLgiOSFDFNrfO/Y7L0dFrKv4=">AAACA3icbVC7TgJBFL2LL8QXamkzkZhYkV1joiVKY4mJgAlsyOxwl50w+3Bm1oRsKP0GW63tjK0fYumfOItbCHiqM/ecyT33eIngStv2l1VaWV1b3yhvVra2d3b3qvsHHRWnkmGbxSKW9x5VKHiEbc21wPtEIg09gV1v3Mz17iNKxePoTk8SdEM6irjPGdVm5PZDqgNGRdacDq4G1Zpdt2cgy8QpSA0KtAbV7/4wZmmIkWaCKtVz7ES7GZWaM4HTSj9VmFA2piPsGRrREJWbzUJPyYkfS6IDJLP3X29GQ6UmoWc8eTy1qOXD/7Reqv1LN+NRkmqMmLEYzU8F0THJbydDLpFpMTGEMslNSsICKinTpqG5LcqcE+BwWjGdOIsNLJPOWd2x687tea1xXbRThiM4hlNw4AIacAMtaAODB3iGF3i1nqw36936+LWWrOLPIczB+vwBlZGYew==</latexit><latexit sha1_base64="Gq/TLgiOSFDFNrfO/Y7L0dFrKv4=">AAACA3icbVC7TgJBFL2LL8QXamkzkZhYkV1joiVKY4mJgAlsyOxwl50w+3Bm1oRsKP0GW63tjK0fYumfOItbCHiqM/ecyT33eIngStv2l1VaWV1b3yhvVra2d3b3qvsHHRWnkmGbxSKW9x5VKHiEbc21wPtEIg09gV1v3Mz17iNKxePoTk8SdEM6irjPGdVm5PZDqgNGRdacDq4G1Zpdt2cgy8QpSA0KtAbV7/4wZmmIkWaCKtVz7ES7GZWaM4HTSj9VmFA2piPsGRrREJWbzUJPyYkfS6IDJLP3X29GQ6UmoWc8eTy1qOXD/7Reqv1LN+NRkmqMmLEYzU8F0THJbydDLpFpMTGEMslNSsICKinTpqG5LcqcE+BwWjGdOIsNLJPOWd2x687tea1xXbRThiM4hlNw4AIacAMtaAODB3iGF3i1nqw36936+LWWrOLPIczB+vwBlZGYew==</latexit><latexit sha1_base64="Gq/TLgiOSFDFNrfO/Y7L0dFrKv4=">AAACA3icbVC7TgJBFL2LL8QXamkzkZhYkV1joiVKY4mJgAlsyOxwl50w+3Bm1oRsKP0GW63tjK0fYumfOItbCHiqM/ecyT33eIngStv2l1VaWV1b3yhvVra2d3b3qvsHHRWnkmGbxSKW9x5VKHiEbc21wPtEIg09gV1v3Mz17iNKxePoTk8SdEM6irjPGdVm5PZDqgNGRdacDq4G1Zpdt2cgy8QpSA0KtAbV7/4wZmmIkWaCKtVz7ES7GZWaM4HTSj9VmFA2piPsGRrREJWbzUJPyYkfS6IDJLP3X29GQ6UmoWc8eTy1qOXD/7Reqv1LN+NRkmqMmLEYzU8F0THJbydDLpFpMTGEMslNSsICKinTpqG5LcqcE+BwWjGdOIsNLJPOWd2x687tea1xXbRThiM4hlNw4AIacAMtaAODB3iGF3i1nqw36936+LWWrOLPIczB+vwBlZGYew==</latexit><latexit sha1_base64="Gq/TLgiOSFDFNrfO/Y7L0dFrKv4=">AAACA3icbVC7TgJBFL2LL8QXamkzkZhYkV1joiVKY4mJgAlsyOxwl50w+3Bm1oRsKP0GW63tjK0fYumfOItbCHiqM/ecyT33eIngStv2l1VaWV1b3yhvVra2d3b3qvsHHRWnkmGbxSKW9x5VKHiEbc21wPtEIg09gV1v3Mz17iNKxePoTk8SdEM6irjPGdVm5PZDqgNGRdacDq4G1Zpdt2cgy8QpSA0KtAbV7/4wZmmIkWaCKtVz7ES7GZWaM4HTSj9VmFA2piPsGRrREJWbzUJPyYkfS6IDJLP3X29GQ6UmoWc8eTy1qOXD/7Reqv1LN+NRkmqMmLEYzU8F0THJbydDLpFpMTGEMslNSsICKinTpqG5LcqcE+BwWjGdOIsNLJPOWd2x687tea1xXbRThiM4hlNw4AIacAMtaAODB3iGF3i1nqw36936+LWWrOLPIczB+vwBlZGYew==</latexit>

CB
<latexit sha1_base64="6VrWaStyEESwoc99eLClAtog8jg=">AAACA3icbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjJKGsogkYeUWNH5sk5OOT+4OyNFlku+gRZqOkTLh1DyJ5yDC5Iw1dzOnHZ2vFhwpW37y1pb39jc2i7tlHf39g8OK0fHHRUlkmGbRSKSPY8qFDzEtuZaYC+WSANPYNebNnO9+4hS8Si817MY3YCOQ+5zRrUZuYOA6gmjIm1mw8awUrVr9hxklTgFqUKB1rDyPRhFLAkw1ExQpfqOHWs3pVJzJjArDxKFMWVTOsa+oSENULnpPHRGzv1IEj1BMn//9aY0UGoWeMaTx1PLWj78T+sn2r9xUx7GicaQGYvR/EQQHZH8djLiEpkWM0Mok9ykJGxCJWXaNLSwRZlzJjjKyqYTZ7mBVdK5rDl2zbm7qtYbRTslOIUzuAAHrqEOt9CCNjB4gGd4gVfryXqz3q2PX+uaVfw5gQVYnz+XJJh8</latexit><latexit sha1_base64="6VrWaStyEESwoc99eLClAtog8jg=">AAACA3icbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjJKGsogkYeUWNH5sk5OOT+4OyNFlku+gRZqOkTLh1DyJ5yDC5Iw1dzOnHZ2vFhwpW37y1pb39jc2i7tlHf39g8OK0fHHRUlkmGbRSKSPY8qFDzEtuZaYC+WSANPYNebNnO9+4hS8Si817MY3YCOQ+5zRrUZuYOA6gmjIm1mw8awUrVr9hxklTgFqUKB1rDyPRhFLAkw1ExQpfqOHWs3pVJzJjArDxKFMWVTOsa+oSENULnpPHRGzv1IEj1BMn//9aY0UGoWeMaTx1PLWj78T+sn2r9xUx7GicaQGYvR/EQQHZH8djLiEpkWM0Mok9ykJGxCJWXaNLSwRZlzJjjKyqYTZ7mBVdK5rDl2zbm7qtYbRTslOIUzuAAHrqEOt9CCNjB4gGd4gVfryXqz3q2PX+uaVfw5gQVYnz+XJJh8</latexit><latexit sha1_base64="6VrWaStyEESwoc99eLClAtog8jg=">AAACA3icbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjJKGsogkYeUWNH5sk5OOT+4OyNFlku+gRZqOkTLh1DyJ5yDC5Iw1dzOnHZ2vFhwpW37y1pb39jc2i7tlHf39g8OK0fHHRUlkmGbRSKSPY8qFDzEtuZaYC+WSANPYNebNnO9+4hS8Si817MY3YCOQ+5zRrUZuYOA6gmjIm1mw8awUrVr9hxklTgFqUKB1rDyPRhFLAkw1ExQpfqOHWs3pVJzJjArDxKFMWVTOsa+oSENULnpPHRGzv1IEj1BMn//9aY0UGoWeMaTx1PLWj78T+sn2r9xUx7GicaQGYvR/EQQHZH8djLiEpkWM0Mok9ykJGxCJWXaNLSwRZlzJjjKyqYTZ7mBVdK5rDl2zbm7qtYbRTslOIUzuAAHrqEOt9CCNjB4gGd4gVfryXqz3q2PX+uaVfw5gQVYnz+XJJh8</latexit><latexit sha1_base64="6VrWaStyEESwoc99eLClAtog8jg=">AAACA3icbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjJKGsogkYeUWNH5sk5OOT+4OyNFlku+gRZqOkTLh1DyJ5yDC5Iw1dzOnHZ2vFhwpW37y1pb39jc2i7tlHf39g8OK0fHHRUlkmGbRSKSPY8qFDzEtuZaYC+WSANPYNebNnO9+4hS8Si817MY3YCOQ+5zRrUZuYOA6gmjIm1mw8awUrVr9hxklTgFqUKB1rDyPRhFLAkw1ExQpfqOHWs3pVJzJjArDxKFMWVTOsa+oSENULnpPHRGzv1IEj1BMn//9aY0UGoWeMaTx1PLWj78T+sn2r9xUx7GicaQGYvR/EQQHZH8djLiEpkWM0Mok9ykJGxCJWXaNLSwRZlzJjjKyqYTZ7mBVdK5rDl2zbm7qtYbRTslOIUzuAAHrqEOt9CCNjB4gGd4gVfryXqz3q2PX+uaVfw5gQVYnz+XJJh8</latexit>

B
<latexit sha1_base64="GdsR42oIzb6VeVGb5B4Ie2ok3oM=">AAACAXicbVA9T8MwFHwpX6V8FRhZIiokpipBSDBWZWEsEm2R2qhy3JfGqhNHtoNURZn4DawwsyFWfgkj/wSnZKAtN53fnfXunZ9wprTjfFmVtfWNza3qdm1nd2//oH541FMilRS7VHAhH3yikLMYu5ppjg+JRBL5HPv+9KbQ+48oFRPxvZ4l6EVkErOAUaLNaDCMiA4p4Vk7H9UbTtOZw14lbkkaUKIzqn8Px4KmEcaacqLUwHUS7WVEakY55rVhqjAhdEomODA0JhEqL5tHzu2zQEhbh2jP33+9GYmUmkW+8RTh1LJWDP/TBqkOrr2MxUmqMabGYrQg5bYWdnG5PWYSqeYzQwiVzKS0aUgkodr0s7BFmXNCHOc104m73MAq6V00Xafp3l02Wu2ynSqcwCmcgwtX0IJb6EAXKAh4hhd4tZ6sN+vd+vi1VqzyzzEswPr8AUS9l8Y=</latexit><latexit sha1_base64="GdsR42oIzb6VeVGb5B4Ie2ok3oM=">AAACAXicbVA9T8MwFHwpX6V8FRhZIiokpipBSDBWZWEsEm2R2qhy3JfGqhNHtoNURZn4DawwsyFWfgkj/wSnZKAtN53fnfXunZ9wprTjfFmVtfWNza3qdm1nd2//oH541FMilRS7VHAhH3yikLMYu5ppjg+JRBL5HPv+9KbQ+48oFRPxvZ4l6EVkErOAUaLNaDCMiA4p4Vk7H9UbTtOZw14lbkkaUKIzqn8Px4KmEcaacqLUwHUS7WVEakY55rVhqjAhdEomODA0JhEqL5tHzu2zQEhbh2jP33+9GYmUmkW+8RTh1LJWDP/TBqkOrr2MxUmqMabGYrQg5bYWdnG5PWYSqeYzQwiVzKS0aUgkodr0s7BFmXNCHOc104m73MAq6V00Xafp3l02Wu2ynSqcwCmcgwtX0IJb6EAXKAh4hhd4tZ6sN+vd+vi1VqzyzzEswPr8AUS9l8Y=</latexit><latexit sha1_base64="GdsR42oIzb6VeVGb5B4Ie2ok3oM=">AAACAXicbVA9T8MwFHwpX6V8FRhZIiokpipBSDBWZWEsEm2R2qhy3JfGqhNHtoNURZn4DawwsyFWfgkj/wSnZKAtN53fnfXunZ9wprTjfFmVtfWNza3qdm1nd2//oH541FMilRS7VHAhH3yikLMYu5ppjg+JRBL5HPv+9KbQ+48oFRPxvZ4l6EVkErOAUaLNaDCMiA4p4Vk7H9UbTtOZw14lbkkaUKIzqn8Px4KmEcaacqLUwHUS7WVEakY55rVhqjAhdEomODA0JhEqL5tHzu2zQEhbh2jP33+9GYmUmkW+8RTh1LJWDP/TBqkOrr2MxUmqMabGYrQg5bYWdnG5PWYSqeYzQwiVzKS0aUgkodr0s7BFmXNCHOc104m73MAq6V00Xafp3l02Wu2ynSqcwCmcgwtX0IJb6EAXKAh4hhd4tZ6sN+vd+vi1VqzyzzEswPr8AUS9l8Y=</latexit><latexit sha1_base64="GdsR42oIzb6VeVGb5B4Ie2ok3oM=">AAACAXicbVA9T8MwFHwpX6V8FRhZIiokpipBSDBWZWEsEm2R2qhy3JfGqhNHtoNURZn4DawwsyFWfgkj/wSnZKAtN53fnfXunZ9wprTjfFmVtfWNza3qdm1nd2//oH541FMilRS7VHAhH3yikLMYu5ppjg+JRBL5HPv+9KbQ+48oFRPxvZ4l6EVkErOAUaLNaDCMiA4p4Vk7H9UbTtOZw14lbkkaUKIzqn8Px4KmEcaacqLUwHUS7WVEakY55rVhqjAhdEomODA0JhEqL5tHzu2zQEhbh2jP33+9GYmUmkW+8RTh1LJWDP/TBqkOrr2MxUmqMabGYrQg5bYWdnG5PWYSqeYzQwiVzKS0aUgkodr0s7BFmXNCHOc104m73MAq6V00Xafp3l02Wu2ynSqcwCmcgwtX0IJb6EAXKAh4hhd4tZ6sN+vd+vi1VqzyzzEswPr8AUS9l8Y=</latexit>

Figure 1. Two d-dimensional manifolds CA and CB are equivalent in bordism if together they form
the boundary of a (d+ 1)-dimensional manifold B.

Let us now revisit Witten’s bubble in this more formal language. In this case the com-
pact manifold is the circe C1 ∼= S1 supplemented with a given choice of boundary conditions
for the fermions. The mathematical fact that protects supersymmetric compactifications
on S1 from the decay to nothing is that the one-dimensional Spin bordism, ΩSpin

1 = Z2, has
a non-trivial element. The trivial class corresponds to the circle with antiperiodic (susy-
breaking) boundary conditions, and so that B2 ∼= D is topologically a disc. The nontrivial
class is generated precisely by an S1 with a periodic (i.e. susy-preserving) spin structure.
So this generator is not the boundary of any manifold, and in particular there is no spin
structure on the disc D that gives rise to the periodic spin structure on the boundary S1.

The same story persists at degree two: ΩSpin
2 = Z2, and the non-trivial generator can

be taken to be T 2 with the fully periodic Spin structure (notice that antiperiodic boundary
conditions along any one-cycle would allow us to use the one-dimensional nulbordism and
write T 2 as the boundary of D × S1). Again, T 2 compactifications seem to be topologi-
cally protected.

The situation changes drastically in three dimensions. Here we have that

ΩSpin
3 = 0 . (2.9)

This tells us that there is no obstruction to constructing the bordism to nothing of T 3, even
if we choose supersymmetry preserving boundary conditions! We emphasize that the same
is true for any T d≥3, since (topologically) we can always4 deform to the product T 3×T d−3

and construct a bordism of the first factor. We will come back to this point in section 4.1.
We cannot refrain from stressing again that (2.9) means that supersymmetry and

topological protection are two distinct mechanisms to ensure stability against bubbles of
nothing, and that it is possible to have either without the other!

What about higher dimensions? The spin bordism groups through degree 10 are5

d 0 1 2 3 4 5 6 7 8 9 10

ΩSpin
d Z Z2 Z2 0 Z 0 0 0 2Z 2Z2 3Z2

(2.10)

4We are working at the level of topology, so we can always deform the torus to the factorized case.
5See [10, 44] for an extended and more general tables of bordism groups.
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In particular we also have that ΩSpin
d = 0 if d = 6, 7. This is very interesting as they

are precisely the relevant groups for compactifications of 10 dimensional string theory and
M-theory to four dimensions. We will comment more on this in section 6.

Let us finally remark that it was recently conjectured in [10] that ΩQG
d = 0 for any

consistent theory of Quantum Gravity. The reasoning goes as follows: if this cobordism
group is not trivial, different equivalence classes can be associated to different conserved
global charges that imply the presence of an exact global (D − d − 1)-form symmetry,
where D is the space-time dimension. This would be inconsistent with the swampland
criterion requiring the absence of global symmetries6 in quantum gravity [45]. Therefore,
a consistent theory of quantum gravity must contain the necessary defects that guarantee
triviality of the cobordism classes. We have seen that for d = 3 it is enough to consider a
spin structure to get ΩSpin

d = 0 while in other cases additional structures might be needed
(see [10] for more details). We can see that an immediate consequence of this conjecture is
that there is no longer any topological obstruction to construct bubbles of nothing in any
consistent quantum theory of gravity. Notice, though, that in some cases one might need
to include UV stringy defects that prevent us from constructing smooth solutions within
the supergravity approximation. Hence, we will restrict our attention to ΩSpin

3 from now
on and construct an explicit smooth solution for this case.

2.3 Dynamical obstruction: the positive energy theorem

In spite of (2.9), we know that a pure T 3 compactification with periodic boundary con-
ditions must somehow be a stable vacuum in Einstein’s gravity, at least in less than 12
dimensions. This is because Einstein’s gravity is a consistent truncation of supergravity,
and a T 3 compactification preserves supersymmetry. A vacuum preserving any supercharge
must necessarily be stable, since the supercharge can be written as a boundary integral of
the supercurrent [26, 46].

One might think that this supersymmetric protection against decay is due to some
delicate supersymmetric cancellation that will disappear as soon as SUSY is broken, even
slightly. This would mean that on general grounds we should expect bubble of nothing
instabilities generically whenever SUSY is broken. Alas, at the classical level, this is not
the case; the dynamical protection against decay is robustly built-in in Einstein’s equations
themselves, and is a consequence of the Positive Energy Theorem [26] and its generaliza-
tion [47, 48], which covers cases including compactifications. See also [49, 50] for attempts
to construct negative energy solutions in string compactifications, which end up being
obstructed by the PET.

These theorems guarantee, under certain assumptions which we list momentarily, that
the ADM mass of any spacetime that asymptotes to MD−d×Cd, where Cd is some compact
manifold, is bounded below by zero and that the only solutions that have exactly zero mass
is MD−d × Cd itself.7

6Exact global symmetries are commonly believed to be inconsistent with quantum gravity. Strong
evidence has been given in the context of AdS/CFT [18, 19] and perturbative string theory [12].

7There are two slightly different theorems to consider. In [47], it is proven that whenever the Weak
Energy Condition holds, any valid initial condition to Einstein’s equations with vanishing time derivatives
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A bubble of nothing spacetime is an euclidean solution to the equations of motion,
and when restricted to the t = 0 slice it is an asymptotically flat solution, as explained
around (2.4) for the particular case of the KK bubble. This solution in fact has vanishing
ADMmass, as it must be the case for any vacuum decay channel due to energy conservation.
Since the Positive Energy Theorem (PET) forbids this, we conclude that the vacuum is
dynamically protected against decay via bubbles of nothing whenever the assumptions of
the PET hold.

So it all boils down to what these assumptions are and how easily can be broken.
Suppose we are interested in a particular D-dimensional manifold MD that asymptotes
to MD−d × Cd. The Positive Energy Theorem of [47] guarantees that any solution of this
kind to Einstein’s equations (with matter) onMD not identical to MD−d×Cd, will have a
positive ADM mass as long as

1. MD admits a Spin structure, with an asymptotically covariantly constant spinor.

2. The matter in the theory satisfies the Dominant Energy Condition:

− TMNkN is causal and future-pointing (2.11)

whenever the vector kN is also causal and future-pointing, M,N = {0, . . . , D − 1}.

The first condition is topological in nature, and it implies thatMD itself admits covariantly
constant spinors. This will always be the case in supersymmetric compactifications, and
indeed, Witten’s proof of the PET was inspired by these.

A compactification MD−3×T 3 with periodic boundary conditions on T 3 admits covari-
antly constant spinors; therefore, the presence of a bubble solution with vanishing ADM
mass depends on whether the second condition is violated. As long as the DEC applies,
we will not be able to construct a bubble of nothing, even if supersymmetry is explicitly
broken and regardless of the absence of a topological protection. From the point of view of
the semiclassical decay, we expect the stability to be enforced via the Coleman-DeLuccia
mechanism (dynamically), as it does to prevent the non-perturbative decay of supersym-
metric vacua [22, 24], and as it has also been observed to obstruct the decay to nothing
in [6]. That is, in the absence of DEC violating sources the critical radius of the bubble
and its euclidean action should diverge, so that the decay rate vanishes.

It is amusing that, although there is no topological obstruction for the decay to nothing
in the sense of the previous subsection, the PET can still protect the vacuum MD−3 × T 3

from decaying. This is in contrast to the S1 case with antiperiodic boundary conditions,
where there is neither topological obstruction (because we are in the trivial class in ΩSpin

1 ),

for the gravitational field must have mADM ≥ 0 with equality only for MD−d ×Cd. In [48], the assumption
on the time derivatives is dropped if one replaces the WEC by the Dominant Energy Condition, but the
proof of unicity of the mADM = 0 solution is lost unless the asymptotic manifold Cd is Riemann-flat. Since
in this paper we construct bubbles of nothing for T 3 quotients, we are in this last case, and that is why
throughout the paper we phrase the discussion in terms of the DEC. For more general compactifications, it
would be more appropriate to use the first theorem in [47], and restrict to time-symmetric initial conditions.
Most of the discussion we have in this paper regarding the DEC applies to WEC as well.
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Figure 2. Flowchart illustrating when can one get a bubble of nothing. Given a compactification
manifold C, one first checks that there is no topological obstruction (that the manifold is trivial in
bordism). Assuming this is the case, one must make sure there are either no covariantly constant
spinors in the compactification manifold, or that the relevant energy condition is violated. If either
of these happens, there can be a bubble of nothing. As we will see in the paper, our expectation is
that if it can be there, it will be.

nor the PET applies since the first condition is not satisfied (no covariantly constant spinors
at infinity), as illustrated by Witten’s bubble of nothing.

To sum up, there can only be a bubble of nothing if there is no topological obstruction
and the PET does not apply. Checking that the PET does not apply requires in turn check-
ing a local condition (the DEC) and a global one (existence of asymptotically covariantly
constant spinors). This state of affairs is illustrated schematically in figure 2.

So what about breaking the second condition? At first sight, breaking the Dominant
Energy Condition seems like a bad idea, since it can lead to traversable wormholes and time
machines (see e.g. [51, 52]). However, while these pathological objects require a violation
of the DEC, the converse is not true; the DEC is violated (although by tiny amounts)
by quantum effects such as Casimir energies [52], false vacua (in the Coleman-DeLuccia
sense [20]), and just about in any AdS vacuum. So it is probably safe to say that while
writing down a random DEC-violating theory is not allowed, some violations are.

In this paper, we will study how both assumptions in the theorem can be weakened in
a reasonable way. We will find that both can be broken naturally in string theory, and cor-
respond to different ways to break supersymmetry; breaking the first condition corresponds
to compactification on a manifold which admits no covariantly constant spinors, which will
always break supersymmetry; while the second depends on the matter content and higher
derivative corrections of the EFT. To give an example of the latter, we will write down in
the next section a concrete model that violates the DEC by including a higher derivative
correction proportional to the Gauss-Bonet term, and construct explicit bubble of nothing
solutions to it. In section 6 we will provide an string embedding of the model into heterotic
string theory on T 4 and its type IIB dual.

The assumptions in Witten’s proof of the PET are closely related to each other. As
we show in section 6, it is possible to modify the proof of the PET to work with e.g. a
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Spinc instead of a Spin structure, which then leads to a different energy condition. For
instance, the results of [6] can be understood in this way. Indeed, the fermions in the
model considered there are charged under a U(1) gauge field, and thus the relevant fermionic
structure is precisely Spinc. Since ΩSpinc

1 = 0, there is no topological obstruction whatsoever
to the existence of bubbles of nothing in a theory with charged fermions. In particular, a
S1 with periodic boundary conditions is the boundary of a disc with flux. Regarding the
dynamical obstruction, this compactification admits asymptotically covariantly constant
charged spinors.8 But the model in [6] violates the modified energy condition for the Spinc

PET (a BPS bound), except in the supersymmetric limit. This is why there is a bubble
of nothing. Note that the model in [6] always satisfies the ordinary DEC. This modified
energy theorem was also used in [53] to show that the mass of any charged black hole
solution is above extremality. The general picture is that one has several slightly different
versions of the PET, with slightly different assumptions; as long as one of these applies,
we will have no bubble of nothing. We will discuss this in more detail in section 6.

3 Our model in a nutshell

The main goal of this paper is to learn to what extent can the obstructions discussed in
section 2 be lifted in reasonable setups when supersymmetry is broken and, ultimately, to
what extent is a vacuum necessarily unstable whenever SUSY is broken.

To do this, we would need to show one has bubbles of nothing whenever the relevant
bordism group vanishes and there is no local energy condition preventing the decay. We
comment on this briefly in section 6, but we do not have a general construction. Instead,
we will focus on a concrete class of compactifications MD−3 × C3, which illustrate what
we believe are general features, where the internal manifold is a three-torus or quotients
of it by free actions C3 ∼= T 3/Γ, with arbitrary spin structure. In doing so, we provide an
example of a more convoluted bubble of nothing that is not simply described by a shrinking
circle or a sphere, while at the same time being able to do explicit calculations. We are
not aware of similar constructions in the literature. In this section we introduce our model
and briefly present our results.

3.1 Topology of the solutions

We will start discussing the compact space C3 ∼= T 3 with supersymmetry-preserving (pe-
riodic) boundary conditions. As discussed in section 2, the fact that ΩSpin

3 = 0 tells us
that there is a spin four-manifold B4 such that ∂B4 = T 3. This manifold is a candidate for
constructing a T 3 bubble of nothing, but what is it? The precise answer can be found in
pg. 524 of [54], and we discuss it in more detail later on, but we will give the idea first.
Let us regard T 3 = T 2 × S1 as a trivial fibration of a T 2 over a circle, and then introduce
a disc D such that ∂D = S1. If one could extend the T 2 fibration and its spin structure on

8Consider an S2 with flux. The index theorem says that the Dirac equation has a single zero mode,
the restriction of which to each hemisphere provides the desired asymptotically covariantly constant spinor,
after a suitable conformal transformation (which maps zero modes to zero modes since the massless Dirac
equation is conformally invariant).
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Figure 3. Schematic representation of the Weierstrass fibration over a disc (3.1): there is a T 2,
which can pinch off at a discrete set of points. The bubbles we will consider in this paper all share
this general topological structure.

the boundary over the whole disc, the total space of such fibration would give the desired
B4 ∼= D×T 2. It turns out that one can do this, with the caveat that the fiber T 2 must pinch
off in a discrete set of points inside the disc. This behavior might be familiar from elliptic
fibrations in F-theory compactifications [55, 56] and indeed, that’s what B4 is: an elliptic
fibration over C (a conformal rescaling of our disc D), described by a Weierstrass model

y2 = x3 + f(u)x+ g(u), (3.1)

parametrized by the coordinate u. All three coordinates x, y, u take values in C. This con-
figuration is illustrated in figure 3. These fibrations have been studied extensively [56], and
in complex codimension one, they are completely classified. The number of degenerations,
or pinchings of the fibration, is controlled by the zeroes of f and g, and their vanishing
degree. The total number of degenerations is the degree of the discriminant polynomial
∆ = 4f3 + 27g2. To construct a nulbordism for T 3 with periodic spin structure, we need
∆ to have degree 12.9 If the vanishing degree of f or g at a point is low enough (for
instance, if all the zeroes are isolated), the total space of the fibration is smooth, even if
the torus fiber itself becomes singular. Actually, from a geometrical point of view, iso-
lated degenerations can be described locally as Taub-NUT points, that is, Kaluza-Klein
monopoles [57, 58]. So we just need to have all 12 degenerations separate from each other
and we have a smooth B4.

There is another description of B4 that might be more familiar. The boundary of
B4 is T 3, so we can take two copies of B4, reverse orientation, and glue them along their
common T 3 boundary. The resulting compact manifold is a K3, since it has by construction
an elliptic fibration with 24 degenerations and a P1 base (the result of gluing the two D’s of
each copy of B4). Thus, B4 can be described as “half a K3”. This particular decomposition
of K3 comes up in discussions of the “stable degeneration limit” [59].

Let us now consider compactifications on the quotients of tori C3 ∼= T 3/Γ by a non-
trivial freely acting discrete symmetry Γ. In particular will focus on the set of examples
given by the six classes of compact orientable manifolds admitting a (Riemann)-flat metric;

9Proofs of all these statements can be found in section 4.1.

– 14 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
2

a discussion can be found in [27, 28]. In the above example, T 3 was written as a trivial
torus fibration over S1, but the idea works in the same way if we have a more general
(nonsingular) torus fibration over S1. All these manifolds T 3/Γ are T 2 fibrations over S1,
where the T 2 comes back to itself up to an PSL(2,Z) action. These manifolds are all spin,
and taking into account the spin structure, there are 28 different possibilities. All of them
admit nulbordisms in terms of a Weierstrass fibration (3.1), though the total degree of
∆ changes.

These 28 classes are interesting because 27 of them do not admit covariantly constant
spinors; they break necessarily all supersymmetry, and so they would be nice candidates for
Minkowski nonsusy vacua at weak coupling.10 Reference [27] was able to construct bubbles
of nothing in 26 out of 27 of these cases, showing that they are nonperturbatively unstable.
The bubbles constructed there are products D × T 2, with a trivial disc fibration.11 Our
bubbles become the orbifold bubbles of [27] in a certain limit. We have constructed nul-
bordisms using Weierstrass fibrations (3.1) for all 27 cases; below, we will discuss explicitly
the bubble for class G3, the only one left out in [27]. The only difference with the T 3 case
is that the degree of ∆ is 8 instead of 12.

3.2 The EFT model

As explained in section 2, constructing a topological manifold B4 is only half the story;
we also need to find a metric on it that asymptotes quickly enough to the flat metric on
MD−3×T 3/Γ. And here, a general obstruction is provided by the Positive Energy Theorem
(PET); as long as the solution admits covariantly constant spinors at infinity and the DEC
holds, there will be no bubble of nothing.

For the 27 quotients of T 3 without covariantly constant spinors, the PET provides no
obstruction.12 But for T 3, it shows that one will not have a bubble unless the DEC is
violated. Even in this case it is a challenge to construct an actual solution to the euclidean
equations of motion representing a bubble of nothing, and this is what we will accomplish
in this paper.

We will now write down a low-energy EFT that violates the DEC, in which we will
construct the bubbles. The model involves the spacetime metric gMN , an anti-symmetric
tensor BMN , and a dilaton field φ, with the spacetime indicesM,N running in 0, . . . , D−1.
The corresponding action (written in the string-frame13) has the form

Ss = − g2
s

16πGD

∫
MD

dDx
√
−ge−2φ

[
R+ 4(∇φ)2 − 1

12H
2 + 1

8αR
2
GB

]
, (3.2)

10One expects quantum effects to introduce a running potential, but as long as this running is towards
weak coupling, these are perfectly well-defined solutions.

11Reference [27] constructed these bubbles by taking a quotient of Witten’s bubble of nothing that has
fixed points. As a result, the bubbles in that reference actually contain orbifold singularities where the
geometry is not smooth. These are the kind of mild singularity we can often ignore in string theory, but
strictly speaking, these bubbles are not solutions to the GR equations of motion. Instead, wee can construct
smooth bubbles for all 28 classes; we do so in section 5.

12In section 6, we will discuss some variations of the Positive Energy Theorem that could apply to these
scenarios, but there is no obstruction in the end.

13The action in Einstein frame is obtained with a conformal scaling of the metric gMN = e
4

D−2 (φ−φ0)gEMN .
See eq. (15.12) in reference [60].
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where HMNP = 3∂[MBNP ] is the field strength of BMN , and GD is the D-dimensional
Newton’s constant. When the parameter α is set to zero, the model can be identified with
the NSNS sector in the low-energy description of superstring and bosonic string theories. In
that case, gs = eφ∞ represents the string coupling, which is determined by the expectation
value of the dilaton, φ∞. It can be checked explicitly that DEC is satisfied when α = 0,
what makes sense since this is a consistent truncation of a supersymmetric theory, and we
know there are no bubbles of nothing anyway. Therefore, all the fun comes when we turn
on the last term in the action (3.2), which is the dimensionally extended Gauss-Bonnet
invariant

R2
GB = R2 − 4RMNR

MN +RMNPQR
MNPQ. (3.3)

On a four-dimensional manifold M4, (3.3) is topological, and its integral gives the Euler
characteristic χ(M4) ∫

M4
R2

GB = 32π2 χ(M4). (3.4)

On higher dimensions, the term is no longer topological but it still is special in that it gives
rise to second-order equations of motion for the metric (the corresponding theories are
called Lovelock [61]), thus avoiding the ghosts associated to the Ostrogradski instability.

Turning on this deformation (and nothing else) breaks supersymmetry and the DEC.
We have included it as a means to break supersymmetry explicitly in a controlled way,
with the coupling constant α acting as a deformation parameter which controls the scale of
supersymmetry breaking. Although this supersymmetry breaking mechanism might look
contrived at first, it has a number of properties which will allow us to find explicit solutions
in this theory.

On the one hand, we are studying the decay of a toroidal compactification, which is a
flat geometry, and therefore after deforming the theory with the term R2

GB the compact-
ification will still be a solution to the Euler-Lagrange equations. That would not be the
case, for example, if we tried to the deform the theory including a cosmological constant.

On the other hand, we will consider the R2
GB term as a small (perturbative) deformation

of the theory, using a vacuum solution to the Einstein’s equations as background geometry.
In that situation, to leading order in perturbation theory, the net effect of such deformation
is a warping of the bordism geometry, what simplifies considerably the analysis of the Euler-
Lagrange equations.

Furthermore, this deformation R2
GB can also be motivated in string theory. This

quadratic higher derivative correction appears both for bosonic and heterotic strings as
leading order α′ corrections [62–64], in M-theory upon compactification14 on K3 to D =
7 [65], in type IIA compactified in K3 to15 D = 6 [72] and in orientifold compactifications
of type IIB (and their type I duals) [64]. In the particular case of superstring theories,
supersymmetry requires additional terms to be included in the action together with the
quadratic curvature terms [68, 73]. We will describe the string theory embedding of our
model in more detail in section 6 and provide an explicit embedding of the action (3.2)
with D = 6 as a toroidal compactification of heterotic string theory.

14For more discussions about these terms on M-theory see [65–69], and in flux compactifications [68, 70].
15This is expected from the heterotic/type IIA duality in D = 6 [71].
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It is also important to notice that only α > 0 is a physical deformation; the other sign
leads to trouble with unitarity along the lines of [74], and naked singularities [75]. This is
consistent with the fact that in all situations where this quadratic deformation arises in a
string theory compactification to flat space its coefficient is positive α > 0 [63]. This is also
consistent with the connection between the Weak Gravity Conjecture and higher derivative
corrections (see e.g. [76–78]), though this depends on additional higher-derivative terms.
In any case, this particular deformation should only be taken as an example that allows
us to construct an explicit solution, but there could many other supersymmetry breaking
mechanisms that yield a finite rate for the bubble. Our goal in this paper is simply to
provide an example as a proof of principle for the presence of these new types of bubbles
of nothing.

3.3 Main result: new bubbles of nothing

The main technical result of our paper is that, when the Gauss-Bonnet coupling α > 0
is turned on, there is a bubble of nothing mediating the decay of the compactification
MD−3 × T 3, which has the topology described above.

Furthermore, we will also construct smooth instantons mediating the decay to nothing
of the 27 non-supersymmetric compactifications MD−3 × T 3/Γ in [27, 28], including the
missing case where the compact space is G3 [27]. The BON instantons for this family of non-
supersymmetric compactifications exist, and have a finite decay rate, even in case α = 0.
To construct these instantons we have used a combination of perturbation theory, space-
time matching techniques and numerical methods, so the specific details of the solution
are rather involved. Here we will only summarise the general properties of these BON
solutions, and we will discuss them at length in sections 4 and 5.

The general form of the instanton solutions mediating these decays can be characterized
by the following SO(D − 4) symmetric ansatz

ds2
BON = W 2(y)R2dΩ2

D−4 + hBαβ(y)dyαdyβ , φ = φ(y), BMN = 0, (3.5)

which in particular represents a warp product euclidean spacetime of the form MD
∼=

B4 ×W SD−4. Here R is the bubble nucleation radius, and hBαβ is the metric on the
manifold B4, which is parametrized by the coordinates yα, α = 1, . . . , 4. Interestingly,
the bounce solutions of this family describe a multi-centered bubbles of nothing, with the
various bubble cores located at the N ≤ 12 points on B4 where the T 2 fibre degenerates.
As we mentioned above, each degeneration point carries a unit of Taub-NUT charge, and
thus they can be locally described as KK monopoles. These are the first bubbles of nothing
of this kind to ever appear in the literature.

Far from the KK monopoles the bordism geometry has the form B4 → R × T 3/Γ,
the total spacetime approaches the euclidean vacuum RD−4 × T 3/Γ, and the dilaton its
expectation value φ→ φ∞. More specifically, if we parametrise the R factor of B4 with the
coordinate ρ(y) ≡ RW (y) we find

ds2
BON → ρ2dΩ2

D−4 + dρ2 + hC
ᾱβ̄
dyᾱdyβ̄ , φ→ φ∞, (3.6)
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where hC
ᾱβ̄

is the flat metric on the compact space C3 ∼= T 3/Γ, with coordinates yᾱ, and
ᾱ = 1, 2, 3.

Setting aside the difference on the number of degenerations on B4, the most important
distinction between the BON decay of T 3 and the non-supersymmetric compactifications
arises when comparing their decay rates, Γdec ∼ e−SBON , where SBON is the euclidean
BON action. In the case of the T 3 compactification (N = 12 degenerations) the bubble
nucleation radius R and the euclidean action, which are computed explicitly in section 5.5,
behave as

R(α) ∝
(24π2

VT 3
α

)−1
, SBON(α) ∝

(24π2

VT 3
α

)−(D−5)
, (3.7)

where VT 3 is the asymptotic volume of the T 3 compact space. As we anticipated in sec-
tion 2.3, since the compactification has no topological protection against the decay to
nothing, and in the limit α→ 0 (where DEC holds) the decay is forbidden by the Positive
Energy Theorem, the stability of the supersymmetric compactification has to be enforced
dynamically. Indeed, as we turn off the Gauss-Bonnet term α → 0, both the bubble nu-
cleation radius and the euclidean action grow unbounded and the decay rate vanishes.
In other words, the stability of the supersymmetric compactification is protected via the
Coleman-DeLuccia mechanism. This is in agreement with the conjecture made in [6]. Con-
versely, when α 6= 0 the model violates DEC, and the Positive Energy Theorem can not
protect the stability of the compactification (the second condition of the PET does not
hold), so the bubble on nothing instability appears.

As we mentioned in the previous section, to construct the BON solution we will resort
to perturbative methods, and characterise the effect of the Gauss-Bonnet deformation
to first order in perturbation theory. Nevertheless, our perturbative framework could in
principle be used for a systematic study of higher orders in perturbation theory, what
would typically lead to small corrections to the decay rate (3.7). Regarding the embedding
of the BON solution in Heterotic string theory, which we detail in section 6.1.1, one could
similarly extend our result to any order in the parameter α, where it plays the role of the
Regge slope. In that case, one of the possible complications that would have to be treated
is the appearance of a runaway for the T 3 volume, however as we discuss below this issue
would not affect our conclusions.

Regarding the non-supersymmetric compactifications T 3/Γ, where B4 is a Weierstrass
fibration with N < 12 degenerations, we find that the bubble nucleation radius and the
instanton action remain finite even if we turn off the Gauss-Bonnet coupling. More specif-
ically, in the limit α→ 0 we find that the radius R and the euclidean action are given by

R = 6(D − 5)
(12−N)Rkk, and SBON = AD−4

8πGD−3

RD−5

2 , (3.8)

with the particular case of G3 corresponding to N = 8. Here, Rkk is the radius of the
base circle when writing the compact space as a T 2 fibration over S1. The constant
GD−3 ≡ GD/VC3 is the D − 3-dimensional Newton’s constant, and VC3 the volume of the
compact space C3 ∼= T 3/Γ. As discussed in 2.3, in the case α = 0, the DEC is not violated,
but these compactifications do not admit covariantly constant spinors and thus the Positive
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Energy Theorem provides no protection (the first condition of the PET does not hold). As
a consequence the bubble of nothing instability is present even when α = 0. As we will
show in section 5.5 in these cases the net effect of turning on the Gauss-Bonnet coupling is
to decrease the bubble nucleation radius and, in consequence, to enhance slightly the decay
rate. It is also interesting to note that setting D = 7 and N = 0 we obtain the nucleation
radius and the action of Witten’s original bubble of nothing16 [4],

R = Rkk, SBON = πR2
kk

8G4
, (3.9)

since in this case the T 2 fibration is trivial, and we could reduce to five dimensions on the
T 2 factor, thus recovering Witten’s original setup.

In field theory, to know whether a particular solution to the euclidean equations of
motion is a bounce (mediates an instability) or an instanton (a harmless nonperturbative
contribution to the vacuum energy), it is essential to compute the spectrum of fluctuations
around the solution [79]. As will become apparent in section 4, we have used linear per-
turbation theory to construct (part of) these solutions. So already at the classical level
our solutions are not exact, and we do not know what the fluctuation spectrum looks like.
Furthermore, we have not computed any quantum effects. In gravity, this is a daunting
task even for simple setups [80]; for ours it seems hopeless. So why should anyone trust
our bubbles (or any bubble of nothing solution, in fact)?

The answer is that our approximate bubble solution, when restricted to the t = 0 slice,
provides a valid initial condition (in the sense that it satisfies the Hamiltonian constraint)
for time evolution in GR, other than the vacuum, with zero ADM mass. With a small
deformation, we can actually make it negative, as discussed in appendix C, and in fact, as
negative as one wants.17 Neither quantum effects nor classical instabilities can alter this
fact, which clearly shows that the spectrum of the Hamiltonian is unbounded from below.
It is energetically favorable for the vacuum to nucleate more and more of these solutions,
so the instability is unavoidable. More concretely, in asymptotically AdS quantum gravity,
energies below that of the vacuum are incompatible with unitarity bounds in the dual
CFT [81]; with Minkowski asymptotics, there can be no unitary S-matrix with negative-
energy states if one is to avoid tachyons, because a two-particle state of a positive energy
particle and a negative energy one can have spacelike momentum and hence be tachyonic.

In other words, unless we just demand by hand that all these negative energy states
magically decouple from the spectrum, the instability seems unavoidable. The actual decay
rate might be different, but, in any case, the action of the actual bounce solution must be
equal or lower than that of the configuration we start with. This is because we know there
is an instability, so there must be one bounce solution. If our solution is not a bounce,
it must have two or more negative fluctuation modes (it has at least one, since we can
deform it to solutions with lower mass, and this mode is always present). In this case we

16The bounce action was overestimated by a factor of 2 in [4]. See e.g. appendix C in [42].
17The Hamiltonian constraint is solved only to first order in perturbation theory, although the existence

of negative mass states is robust as any further corrections can only lift the negative mass by a tiny amount.
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can just follow the gradient flow of the action in configuration space18 until there is just
one negative mode (which must be exactly true in the actual bounce solution). So in any
case, our expressions provide an upper bound on the actual decay rate of the vacuum.

4 Dynamical and topological constraints

Let us begin the explicit construction of our bubble of nothing by presenting the field
theory model and discussing in more detail the topological and dynamical obstructions
that appear in this particular case, and how to overcome them.

For convenience, we will repeat here the field theory model already outlined in sec-
tion 3.2. It describes the dynamics of the spacetime metric gMN , an anti-symmetric tensor
BMN , and a dilaton field φ, with the spacetime indices M,N running in 0, . . . , D− 1. The
corresponding action written in the string-frame has the form

Ss = − g2
s

16πGD

∫
MD

dDx
√
−ge−2φ

[
R+ 4(∇φ)2 − 1

12H
2 + 1

8αR
2
GB

]
, (4.1)

where HMNP = 3∂[MBNP ] is the field strength of BMN , and GD is the D-dimensional
Newton’s constant. Then, the Euler-Lagrange equations are given by

RMN = −2∇M∇Nφ+ 1
4H

PQ
M HNPQ

−1
4α
[
RMRSTR

RST
N − 2RMSNTR

ST − 2R S
M RNS +RRMN

]
, (4.2)

for the metric, while those of the dilaton and the two-form read

∇2
(D)φ− 2(∇φ)2 = − 1

12H
2 + α

16R
2
GB, ∂M (

√
−ge−2φHMNP ) = 0, (4.3)

where ∇2
(D) is the D-dimensional Laplace operator. Note that the model allows for the

consistent truncation of the two-form BMN , so in the following we will set BMN = 0 to
simplify the analysis.

4.1 Topology of the bubble

We now provide a few more details (well known to experts, but hopefully useful for those
not familiar with the construction) of the nulbordism B4 with boundary T 3 that we sketched
in section 3.1, as well as the generalization to flat manifolds T 3/Γ where Γ acts freely on
the torus.

The nulbordism for T 3. Consider what physicists call the dP9 surface, and mathe-
maticians more often call the rational elliptic surface. We denote it by Z. Topologically,
it can be obtained by blowing up P2 at 9 generic points. Z can be described as an elliptic
fibration over P1, in which the fiber degenerates over 12 points in the base. (So this is, in
a well defined sense [82], “half a K3”, since on a K3 we have the elliptic fiber degenerating

18This might take us out of the effective field theory and into configurations like e.g. orbifolds, but this
is not a problem since the “action” (logarithm of the path integral) should still be well-defined.
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over 24 points in the base, as mentioned in section 3.1. We can represent the space in
Weierstrass form: it is given by the locus

y2 = x3 + f(u)xz4 + g(u)z6 (4.4)

inside the toric variety
u1 u2 x y z

C∗1 1 1 2 3 0
C∗2 0 0 2 3 1

(4.5)

which is a P2,3,1 fibration over P1, where (u1, u2) parameterize the base, and (x, y, z) param-
eterize the fiber. For consistency we need to choose f and g to be homogeneous polynomials
of degree 4 and 6 in the base coordinates (u1, u2). As a small sanity check, note that the
discriminant ∆ = 4f3 + 27g2 of the elliptic fibration is indeed a degree-12 polynomial on
the ui, so we indeed have 12 degenerations of the fiber.

This space is not Calabi-Yau, since we have that

c1(TZ) = 3`−
9∑
i=1

ei (4.6)

with ` the pullback of the hyperplane on P2, and ei the exceptional divisors coming from
the blow-up. These divisors satisfy `2 = 1, ` · ei = 0 and ei · ej = −δij . It is also not Spin,
since w2(TZ) = c1(TZ) mod 2, so

〈
w2, `

〉
= 1 mod 2, for instance.

We can take care of both obstructions at once if we remove from the space a tubular
neighborhood of the Poincare dual of c1(TZ). In this particular case this is known to be
simply the homology class of the T 2 fiber [83]. So, pick any (open) disc DE on the base
which does not intersect the discriminant locus. (Any small enough disc around a generic
point in the base will do.) Denote by E the total space of the torus fibration over DE ,
with topology T 2 ×DE . We then set B4 = Z −E. This now has w1(TB4) = 0, and in fact
c1(TB4) = 0, since we have removed a Poincare dual to the characteristic class of Z.19

It remains to be shown that the boundary of B4, which has topology S1 × T 2 = T 3

(as the torus fibration around a generic point in the base is trivial), has a periodic Spin
structure. We can proceed by contradiction (see [54] for an argument that does not use
index theory). Assume that on ∂B4 we did not have a fully periodic structure. This means
that there is some one-cycle L in ∂B4 with anti-symmetric boundary conditions on the
fermions. Then we can construct another four manifold W by “filling in” L. It is clearly
the case that the Spin structure on ∂B4 extends over W , so by gluing W to B4 we end up
with a smooth Spin four-manifold K. In terms of the curvature, the signature of K can be
computed as

σ = 1
3

∫
K
p1(TK) . (4.7)

This will receive contributions only from B4, so it equals the signature of dP9, which is 8.
From here we learn that ∫

K
p1(TK) = 24 . (4.8)

19This example is an instance of the “log-CY” construction of [82], and somewhat explains why the stable
degeneration limit of K3 is built out of dP9 surfaces.

– 21 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
2

The index theorem tells us that a Dirac fermion on K would have

n+ − n− =
∫
K
Â(TK) = − 1

24

∫
K
p1(TK) = −1 (4.9)

net zero modes. But in four dimensions the eigenvalues of the Dirac operator always
appear in pairs (see for example appendix B.3 of [84]), so this is a contradiction, and K

cannot exist.20

The nulbordism for G3. Let us briefly describe the nulbordism for the G3 geometry
introduced in [27]. This geometry can be understood as a fibration of a T 2 over S1, with
monodromy of the T 2 corresponding to a rotation by 2π/3 of the T 2.

This kind of fibration arises in a familiar context in F-theory.21 Consider an elliptic
fibration over a complex plane, and assume that at a given point of the base one has a
degeneration of Kodaira type IV ∗ (also known as an E6 degeneration in physics). The
SL(2,Z) action around the singularity is of order 3, given by a 2π/3 rotation of the T 2.
So the total space of the fibration over a small circle in the base linking the point where
the singularity is located will have the same topology of G3, at least if we ignore the
spin structure. The nulbordism of interest to us can then be constructed as the total
space of the fibration over a small disc in the base centered around the IV ∗ degeneration.
This configuration can be smoothed straightforwardly, giving rise to an elliptic fibration
degenerating at 8 points in the base.

We still need to show that the spin structure on the space that we have just constructed
is the one we are after, namely the periodic one. To see this, recall from [27] that there are
two possible spin structures on the space G3: the periodic one that we want, and a second,
antiperiodic one. We can characterize which one we have by reducing on the torus fiber, and
considering the effect of circling the singularity at the origin three times (since the geometric
monodromy is of order three). For the periodic spin structure the effect of this rotation
will leave fermions invariant, while under the antiperiodic spin structure the fermions will
pick up a sign. In the Kodaira classification there are precisely two singularities that
give rise to monodromies of order three: they are the IV and IV ∗ degenerations. Their
monodromies are inverses to each other, so we can glue a IV singularity to a IV ∗ singularity
to form a closed manifold without further singularities, the result is a dP9 surface. This
surface does not admit a spin structure, so it must be the case that the spin structures on
the elliptic three-manifolds surrounding the singularities (both of which are topologically
G3, if we ignore the spin structure) are opposite, otherwise the gluing construction would
provide dP9 with a spin structure. On the other hand, we can bring two IV degenerations
together in order to construct a IV ∗ degeneration, so it must be the case that the square
of the monodromy action on the fermions around a IV gives the action on the fermions
around a IV ∗. The only solution to these constraints is that the G3 manifold linking the
IV ∗ singularity has the periodic spin structure (justifying our choice above), and the one
around a IV degeneration the antiperiodic one.

20More generally, the fact that in dimensions d = 8k + 4 the signature is a multiple of 16 is known as
Rokhlin’s theorem.

21We refer the reader unfamiliar with F-theory to the nice review [56], which contains background for all
the statements made here.
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Class # of s.s. SL(2,Z) act. Kodaira sing.

G1 8 ( 1 0
0 1 ) –

G2 8
(−1 0

0 −1
)

I∗0

G3 2
( 0 1
−1 −1

)
,
( 0 1
−1 −1

)
IV, IV ∗

G4 4
( 0 −1

1 0
)
,
( 0 1
−1 0

)
III, III∗

G5 2
( 1 −1

1 0
)
,
( 0 1
−1 1

)
II, II∗

Table 1. Table listing five of the six flat tori quotient geometries, together with their number of spin
structures, action of SL(2,Z) (which also gives the holonomy), and maximal Kodaira singularity
type of the corresponding nulbordisms. Only the first class, T 3 with a periodic spin structure, is
compatible with supersymmetry; it is the only one for which there is no nulbordism and hence no
bubble of nothing.

Nulbordisms for T 3/Γ. The techniques we described above work not only for G3, but
actually allow us to construct topological nulbordisms for any flat torus quotient T 3/Γ,
with any spin structure. These have been completely classified; see [27] and references
therein. There are six possible geometries, labeled G1, . . . G6, each of which admits a
different number of spin structures, for a total of 28 cases. All cases except for G6 can be
understood as a T 2 fibered over an S1 with a constant complex structure parameter and a
nontrivial SL(2,Z) holonomy. Because the complex structure must remain invariant under
the SL(2,Z) transformation, for cases G3, G4 and G5 the complex structure must be chosen
τ = i or τ = 3√−1, since these are the only points left invariant by a nontrivial subgroup
of PSL(2,Z); for G1, G2, any τ works, which we choose for convenience to be τ = i. All of
these admit a nulbordism in terms of a Weierstrass fibration with the type of singularity
(depending on spin structure) specified on table 1. A good reference for this is [56].

The only case left, G6, is a quotient of G2 by an additional Z2 action ω defined as
follows: if w is a complex coordinate on T 2 and θ parametrizes the S1, then

ω : (θ, w) →
(
−θ, 1 + τ

2 + w∗
)
. (4.10)

Topologically, this is not a T 2 fibration over a circle, as the other flat tori are. Rather,
this corresponds to a T 2 fibration over an interval; the torus becomes a Klein bottle at
the endpoints.

The singularity I∗0 corresponding to G2 can be deformed to four I1 singularities in a
complex-conjugation symmetric way. Then, the action (4.10) can be extended to the whole
G2 nulbordism, acting by complex conjugating the coordinate on the base and on the fiber
as illustrated in (4.10). The resulting action has no fixed points; thus, the quotient of the
Weierstrass fibration also leads to an appropriate nulbordism for G6.

4.2 Geometric ansatz for the bubble

In the present section we will describe the general features of the BON spacetime that we
construct below.
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In order to discuss the semiclassical decay of compactifications of the form MD−3 ×
T 3/Γ, first we need a characterisation of the corresponding euclidean vacuum geometry,
namely RD−3×T 3/Γ. It turns out that a useful description for this space is given in terms of
the euclidean line element (3.6), where the non-compact factor is expressed using spherical
coordinates. Back in Lorentzian signature this gauge corresponds to a de Sitter slicing
of MD−3. Note that, since the geometry is flat, it does indeed represent a solution to the
Euler-Lagrange equations (4.2)–(4.3) provided the dilaton is set to a constant value φ = φ∞.

We would like to identify the most general euclidean line element for a BON geometry
MD mediating the decay of the D−dimensional vacuum RD−3 × T 3/Γ. Since we are
interested in instanton solutions, we will require the BON ansatz to be invariant under
a SO(D − 4) symmetry acting on the non-compact factor of the background. Any line
element consistent with this symmetry can be described as a warped geometry of the form
MD = B4×W SD−4. Furthermore, the manifold B4 needs to be an appropriate nulbordism
for the compact space T 3/Γ. Then, we find

ds2 = W 2(y)R2dΩ2
D−4 + hBαβ(y)dyαdyβ , (4.11)

where the coordinates yα, with α = 1, . . . , 4, parametrise B4. For later convenience, we
have written explicitly the bubble nucleation radius R, which will have to be determined.
This is precisely ansatz anticipated in section 3.3. In addition, to be able to solve the Euler-
Lagrange equations we will need the dilaton configuration to have the dependence φ = φ(y).

With this ansatz the components of the Ricci tensor read

Rµν =
(
−W−1∇2W + (D − 5)W−2[R−2 − (∇W )2]

)
gµν

Rαβ = RBαβ − (D − 4)W−1∇α∇βW, (4.12)

where µ, ν = 0, . . . , D−3 label coordinates on the sphere SD−4. In the previous expressions
∇ is the Levi-Civita connection compatible with the metric on the bordism hBαβ , and RBαβ
the associated Ricci tensor.

In order for the geometry above to represent the decay of the vacuum RD−3×T 3/Γ we
also have to impose appropriate boundary conditions on (4.11). Note that the line element
of the euclidean vacuum (3.6) is consistent with the SO(D − 4) symmetry of (4.11), and
thus it is appropriate for matching the form of the bounce spacetime far from the bubble,
MD → RD−3 × T 3/Γ. In this asymptotic regime, where B4 → R × T 3/Γ, it is convenient
to split the local coordinate system for the bordism as yα = {ρ, yᾱ}, where ᾱ = 2, 3, 4
label coordinates on the compact space, and ρ parametrises the non-compact direction
transverse to it. Furthermore, we will impose the gauge conditions hBρρ = 1 and hBρᾱ=0.
Then, the requirement that the BON configuration approaches the vacuum (3.6) far from
the bubble can be equivalently expressed as

ρ→∞ : W (ρ, ȳ)R → ρ, hB
ᾱβ̄

(ρ, ȳ)→ hC
ᾱβ̄

(ȳ), φ→ φ∞, (4.13)

where hC
ᾱβ̄

is the flat metric on T 3/Γ.
Moreover, if this instanton is to be identified with a bubble of nothing, at the bubble

location the geometry should approach that of a (D−4)-dimensional sphere of finite radius
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R, where the bordism is smoothly seals off: MD → SD−4 × R4. In other words, near the
bubble there must exist a local coordinate system {ρ, yᾱ}, with bubble location at ρ = 0,
such that we have

ρ→ 0 : W (ρ, ȳ)→ 1, hBαβ(ρ, ȳ)→ δαβ , (4.14)

while the dilaton approaches a finite value.
The previous requirements ensure that the instanton interpolates between the com-

pactification at infinity and the bubble containing nothing. In real spacetime, (switching
back to Lorentzian signature), far from the bubble core the geometry is MD−4×T 3/Γ, and
near the bubble the spacetime is of the form dSD−4×R4. As in the original Witten’s bub-
ble, at ρ = 0 the deSitter factor dSD−4 represents the world-volume of the bubble surface,
which nucleates initially at rest with radius R, and then begins expanding exponentially
fast with expansion rate R−1.

4.3 Dynamical constraint

We have seen in section 4.1 that there is no topological obstruction to construct a bubble of
nothing in T 3 compactifications of (3.2). However, there might be a dynamical obstruction
that forbids the bubble to expand and to mediate the vacuum decay. In the present section
we will prove that the corresponding instanton has a infinite action when the vacuum is
supersymmetric, i.e. when α = 0 in (3.2), and therefore the decay rate is zero, so that the
stability of the compactification is guaranteed by a Coleman-DeLuccia type of mechanism.
We will also discuss under which conditions it would be possible to evade this dynamical
constraint, and then we will show that the quadratic deformation in the action (3.2) with
α 6= 0 has the required form necessary for the decay to occur with a finite rate.

In order to find the dynamical constraint that forbids the decay in supersymmetric
settings, we will begin rewriting the equations of motion for the specific BON ansatz given
above when α = 0. The Einstein’s equations on the SD−4 sphere reduce in the Einstein’s
frame to(

(D − 5)W−1∇2W − 1
2(D − 6)(D − 5)[R−2 − (∇W )2]W−2 − 1

2RB
)
gµν = 8πGDTµν ,

(4.15)
while the trace of the Einstein’s equations for the bordism B4 reads

3(D− 4)W−1∇2W − 2(D− 4)(D− 5)[R−2 − (∇W )2]W−2 −RB = 8πGDhαβB Tαβ . (4.16)

We can combine these equations to give

W−1∇2W = −16πGD
D − 2

(2T00
|g00|

+ (D − 6)
2(D − 4)h

αβ
B Tαβ

)
+ RB

(D − 4) . (4.17)

The previous expression can be integrated on the bordism, and after discarding a vanishing
boundary term we find

0 ≤
∫
B4

√
hB(∇ logW )2 =

∫
B4

√
hB

[
RB

(D − 4) −
16πGD
D − 2

(2T00
|g00|

+ (D − 6)
2(D − 4)h

αβ
B Tαβ

)]
.

(4.18)
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Therefore, in order to satisfy the inequality we need either an integrated positive scalar
curvature or a stress energy tensor satisfying∫

B4

√
hB
[
4(D − 4)|g00|−1T00 + (D − 6)hαβB Tαβ

]
< 0. (4.19)

In particular, the contribution of the dilaton to the stress energy momentum is given by

T φµν = − (∇φ)2

4πGD(D − 2) gµν , T φαβ = 1
2πGD(D − 2)

(
∇αφ∇βφ−

1
2h
B
αβ(∇φ)2

)
(4.20)

which implies that the specific combination appearing in (4.19) is non-negative. In partic-
ular, the condition (4.19) can be related to violating the Dominant Energy Condition as
follows. At every point in spacetime we can always find a local orthonormal frame, {eMm }
with m = 0, . . . , D − 1, which diagonalises the energy-momentum tensor (see e.g. [85]).

Using this basis we define the following future directed time-like vector

vM = 2
√
D − 2 eM0 +

√
D − 6

∑
i

eMi , (4.21)

where i = 1, . . . , 4 labels the basis elements for the tangent space of the bordism. It is now
easy to check that the inequality (4.19) can be written as follows∫

B4

√
hB TMNv

MvN ≤ 0, (4.22)

what can only be satisfied provided TMNv
MvN < 0 somewhere, violating the Dominant

Energy Condition.
From this we see that provided the DEC holds and the warp factor is non-vanishing

W > 0, then W is necessarily a constant for Ricci flat bordisms. Since the boundary
conditions (4.13) cannot be satisfied, we conclude that there are no bubble of nothing
solutions. This nicely matches with the Positive Energy Theorem explained in section 2.3.
Regarding the mechanism of dynamical supression, it can also be proven that the only
solutions to the equations of motion in this setting necessarily have a R → ∞. That is,
when α = 0 and the scalar curvature RB vanishes the line element must be of the form

ds2 = dxµdxµ + hBαβ(y)dyαdyβ , (4.23)

with the metric hBαβ being Ricci-flat. This can be seen integrating the (Einstein frame)
dilaton equation (B.3) over the bordism,22 what shows that φ also needs to be a constant to
match the boundary conditions (4.13). As this implies that the energy momentum tensor
is vanishing, it follows from equation (4.15) that R needs to be infinite when α = 0, and
from the equations on B4, that hBαβ is Ricci-flat. Then, suppose we have a BON solution
with finite nucleation radius for some α 6= 0, as we approach the limit α → 0 the bubble
nucleation radius will grow unbounded and the decay rate will vanish. In other words,
as we anticipated at the beginning of this section, the stability of the supersymmetric
compactification (α = 0) is enforced by Coleman-DeLuccia type of mechanism.

22The D-dimensional laplacian ∇2
(D) and the laplacian ∇2 on B4 coincide when W is constant, since

∇2
(D)φ = ∇2φ+ (D − 4)∇φ∇ logW .

– 26 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
2

One could hope to go around this by changing the metric on the bordism so that the
total scalar curvature is positive

∫
B RB > 0, what would allow to find nontrivial solutions

to (4.18). We will now show that this is impossible. Suppose such a metric existed. Then,
one could take two copies of the bordism B4, reverse the orientation of one of them, and
glue them back together, as illustrated in figure 4. Let us call the compact manifold
constructed in this way S ∼= BA4 ∪BB4 . The metric on B4 becomes an incomplete metric on
S, as some points of S are at infinite distance from a generic point in B4. Schematically,
we are gluing the two copies of B4 via an “infinite throat”. This can be made more explicit
as follows: near the boundary of B4, the bordism metric written in the coordinate system
of (4.13) reads

hBαβdy
αdyβ → dρ2 + hC

ᾱβ̄
dyᾱdyβ̄ , (4.24)

where ρ is the radial coordinate. Making the change of variables χ ≡ π/2− arctan(ρ), the
metric becomes

hBαβdy
αdyβ ∼ dχ2

sin4(χ)
+ hC

ᾱβ̄
dyᾱdyβ̄ . (4.25)

The second copy of B4 can be glued by allowing χ to take negative values, but the point
χ = 0 is at infinite distance from any point with χ 6= 0. This is easily remedied; deforming
the metric to

dχ2

ε(χ) + sin4(χ)
+ hC

ᾱβ̄
dyᾱdyβ̄ , (4.26)

where ε(χ) is a smooth symmetric positive function of compact support located on a small
neighbourhood of χ = 0, the point χ = 0 is now at finite distance. Since we are assuming
that

∫
B RB is convergent and positive, the asymptotic region with χ ∼ 0 must contribute a

negligible amount. By taking ε(χ) small enough, the sign of the integral
∫
B RB then cannot

change. This means we have constructed a complete metric on the compact manifold S,
with

∫
S RS > 0.

Now, on every smooth compact manifold of dimension ≥ 3, it is a fact that every
metric is conformal to a different metric of constant scalar curvature (this is known as
the solution to the “Yamabe problem” in the literature (see e.g. [86, 87] and references
therein)). In other words, the metric we have just constructed is conformal hSαβ = ω2h̃Sαβ ,
where h̃Sαβ is a metric of constant scalar curvature R0. One has

RS = ω−2R0 + 3∇2(ω−2)− 18ω2|∇ logω|2, (4.27)

so that the integrated curvature
∫
S RS can only be positive if R0 is positive. In other words,

because we constructed a metric with positive integrated curvature on S, this means that
a metric of constant positive scalar curvature on S also exists. Yet not every manifold
admits a metric of everywhere positive scalar curvature. This is a problem which has been
exhaustively studied by mathematicians, and a very clear survey of the question can be
found in [86]. In particular, any compact spin four-manifold with nonvanishing integrated
Dirac index,

∫
S Â(R), does not admit a metric of positive scalar curvature.

In the particular case for us, where B4 is dP9 with a hole, the procedure illustrated
in figure 4 produces a K3 manifold. Since the Dirac index on K3 is nonvanishing, this
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S = B [C B̄
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Figure 4. Starting with a noncompact manifold B4 with an infinite tube, one can construct an
auxiliary compact manifold S by taking two copies of B4, reversing orientation of one copy, and
gluing them along their common boundary C3. S is not a complete manifold with respect to the
induced metric, but this can be easily fixed as described in the main text.

means that it does not admit a metric of positive scalar curvature, and thus, by the above
reasoning, our T 3 nulbordism B4 does not admit a metric of integrated positive scalar
curvature with the asymptotics (4.24).

In dimension bigger than or equal to 5, a stronger statement, know as the trichotomy
theorem [86], implies that a compact manifold which admits a Ricci-flat metric will not
admit a metric of positive scalar curvature. Thus, for instance, any higher-dimensional
bubble of nothing obtained by e.g. slicing open a CY manifold will not be dynamically
allowed in the pure Einstein theory.

The previous discussion gives us a hint of how to deform the model in order to evade
this dynamical constraint. It is clear that we need to break supersymmetric in such a way
that either the bordism B4 adquires a positive scalar curvature or we violate the DEC.
We can indeed show that the deformation given by the Gauss-Bonnet term when α 6= 0
evades the dynamical constraint to leading order in perturbation theory by violating the
DEC. Let us think of α as a small perturbation parameter α � 1. To first order in
perturbation theory, and taking the geometry (4.23) as the background, the Einstein’s
equations become23

Gµν = 8πGDT φµν + 1
16αe−

4
D−2φ∞R2

GB gµν +O(α2), Gαβ = 8πGDT φαβ +O(α2), (4.28)

where the correction linear in α is evaluated on (4.23). This implies an additional contri-
bution to the right hand side of (4.18) given by

0 < α

4(D − 2)e−
4

D−2φ∞
∫
B4

√
hBR

2
GB = 96π2α

(D − 2)e−
4

D−2φ∞ +O(α2), (4.29)

23The transformation of the Gauss-Bonnet term needed to switch between the string and Einstein frames
can be found in [88]. We also used that hBαβ is Ricci-flat on the background (4.23), and that its Riemann
tensor satisfies RαγδκR γδκ

β = 1
4R

2
GBh

B
αβ , since B4 is four dimensional [89].
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which indeed satisfies (4.19), i.e. it violates the DEC. Therefore, the Gauss-Bonnet term
evades the dynamical constraint and allows in principle for finite action bubbles of nothing.
In the next section, we will explicitly construct such solutions.

The other possibility to allow the bubble solutions, without violating DEC, is that the
fermionic structure on the boundary is such that the bordism admits a metric of positive
scalar curvature RB > 0. This would be the case of the Witten BON, and all the 27 cases
compactifications on tori quotients T 3/Γ where the action Γ is non-trivial.

5 Detailed construction of the BON solution

In this section, we will describe in great detail how to explicitly construct the bubble of
nothing for compactifications on a three-dimensional manifold, either the three-torus or
quotients thereof T 3/Γ in the particular theory presented in sections 3 and 4.

5.1 The strategy

To find BON solutions representing the decay to nothing of a vacuum MD−3 × T 3/Γ we
will solve the set of equations (4.2) and (4.3) using the generic BON ansatz (4.11), while
requiring the field configurations to be subject to the boundary conditions (4.13) and (4.14).
These boundary conditions ensure that the BON spacetime interpolates between the bubble
containing “nothing” and the decaying vacuum at infinity:

bubble core geometry: SD−4 × R4 −→ euclidean vacuum: RD−3 × T 3/Γ. (5.1)

For the instanton solution to admit the interpretation of a semi-classical decay, we will
restrict ourselves to smooth solutions. More specifically, we will require the spacetime cur-
vature to be everywhere well below the Planck scale, so that the quantum-gravitational
effects are suppressed, and the semi-classical description of the decay is justified. In ad-
dition, in order to construct the solutions we will resort to a number of approximations
which, on the one hand will render the problem tractable, and on the other hand will allow
us to have a faithful characterisation of our BON solutions. A good understanding of the
BON configurations will help us to keep the approximations under control, and guarantee
the validity of the solutions that we obtain.

5.1.1 Approximation scheme

As we anticipated in the previous section, the main simplification will be to regard α as a
small parameter (in appropriate units), and the use of perturbative methods to construct
the solutions. Provided that this condition is satisfied, the spacetime geometry of the BON
solution becomes specially neat, in that the two main length-scales characterising these
solutions are nicely separated, and the equations of motion can be studied independently
on each of these scales.

The natural length-scales that appear in the BON geometry are the Kaluza-Klein scale
`kk, associated to the compact space C3 ∼= T 3/Γ, together with the scale of supersymme-
try breaking `ssb. The supersymmetry breaking effects become irrelevant at length-scales
larger than `ssb (energies smaller than `−1

ssb). Thus, in particular, in the case of the T 3
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compactification where the breaking of supersymmetry is induced by the Gauss-Bonnet
term, we have

`kk ∼ (VC)1/3, `ssb ≡ (α/VC)−1 (5.2)

with the precise definition of `kk given in (5.26), and where VC is the volume of the compact
space C3 in the vacuum.24 For the compactifications on T 3/Γ, where supersymmetry is
already broken by the boundary conditions of the fermions, the parameter `ssb will be
related instead to this supersymmetry breaking mechanism. For simplicity, in the discussion
that follows just consider the case where `ssb is controlled by the parameter α, but the
argument is identical in the other case.25

When α is small the BON spacetime has two well differentiated regimes (see figure 5):

I. the outer-bubble regime, associated to the scale `ssb � `kk, is the outermost layer of
the BON geometry which asymptotes at infinity to the vacuum RD−3 × T 3/Γ. In
this region the effect of KK modes is exponentially suppressed, and thus the induced
metric on the T 3/Γ is approximately be flat. Our approximation here consists in
assuming the metric on the compact space to be exactly flat (we neglect the KK
modes), leading to a behaviour which closely resembles the original Witten’s BON.

II. An inner-bubble regime, describing the features of the geometry on the Kaluza-Klein
scale `kk.

In the inner-bubble region is where the spacetime exhibits the topology characterized by
the Weierstrass model (3.1) (with N ≤ 12 degenerations), and thus where the “fermionic
knot” is undone. As we describe below, in this regime the bordism B4 is well described by a
non-compact conformally Calabi-Yau manifold, which becomes exactly Calabi-Yau, when
the deformation is turned off, α→ 0. Therefore, assuming α� 1, we will treat this inner
regime perturbatively, using as a background the Calabi-Yau geometries given by (3.1),
and then considering the effect of including the Gauss-Bonnet term (i.e. the warping) as a
small deformation [90].

In addition, in order to have a good control over the background geometry (α = 0),
we will consider the case where the compact space T 3/Γ is close to a degenerate limit.
Namely, regarding the compact space as T 2 fibration over S1, for simplicity we will discuss
the situation when the volume of the T 2 fibre is small, `kk � `fibre ∼ (VT 2)1/2 (see defi-
nition (5.26)). In this limit the inner-bubble region attains a particularly clear structure,
and displays three distinct regimes (see figure 5):

II.a Semi-flat regime. This is the outermost layer within the inner-bubble region, and
provides a transition to the outer-bubble regime. Almost everywhere in the inner-
bubble region the induced metric on the T 2 fibre is exponentially close to flat [29, 30].
Therefore, in this layer we will describe the BON with a semi-flat geometry [91], which
assumes the induced metric on the fibre to be to be exactly flat (neglects KK modes
from the T 2 fibre).

24Note that α has dimensions of squared length.
25For compactifications T 3/Γ the separation of scales `kk � `ssb will be achieved considering a manifold
B4 in a particular degenerate/Large Volume limit.
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Semi-flat reg. (II.a) Hyperkahler reg. (II.b) KK monopole reg. (II.c)Outer-bubble regime (I.) 

D

T2

2

T2

3

S1 KKM
Deg.

S1

Figure 5. Layered structure of the fibration B4 ∼= D × T 2 for the T 3 BON. From left to right
the diagram displays the different regimes of the manifold B4: the outer-bubble regime (I.), whose
asymptotic boundary matches the compact space T 3, and where only the T 3 volume is dynamical;
the semi-flat regime (II.a), valid away from the degeneration points (Deg.), and where the complex
structure of the T 2 fibre becomes dynamical; the hyperkähler regime (II.b) describing the neigh-
bourhood of the degenerations; and the KK monopoles (KKM ) (II.c) describing the BON cores,
where the compact space is smoothly sealed off, and the metric is locally R4.

When discussing the geometry of the semi-flat region we will encounter a second natural
length-scale, `sf defined in (5.32), controlling the distance between the N points where the
fibre pinches off. For convenience we will work in the regime defined by `fibre/`sf � 1,
where the degenerations are well separated from each other.

In a small neighbourhood of the degenerations (of size ∼ `fibre � `kk) the semi-flat
description fails [29]. There the radius `(2)

fibre of one of the cycles of the T 2 fibre becomes
large, leading to a partial decompactification, while the other one shrinks (keeping the
fibre volume constant), so that `(1)

fibre � `
(2)
fibre. In this region of the BON spacetime the

KK modes associated to the growing cycle can no longer be neglected and the semi-flat
description becomes inadequate. Here the geometry is still well characterized in terms of
a hyperkähler metric:

II.b Hyperkähler regime. This is the intermediate layer of the inner-bubble region, and de-
scribes the local spacetime around an isolated degeneration point. The metric here is
approximately that of a self-dual Taub-NUT space [57, 58, 92], a KK monopole, with
one of the directions (other than the standard KK circle) compactified on a26 S1 [94]
(see also [60]). In other words, the base manifold of the KK monopole spacetime is
S1 × R2.

Finally, near the Taub-NUT point at the core of the region where the T 2 fibre degen-
erates, the additional S1 identification of the KK monopole spacetime can be ignored. In
this limit we have the

II.c KK monopole regime, which represents the core of the BON spacetime. Here the
geometry approaches that of an isolated KK monopole with R3 base manifold.

26This geometry also appears in the literature under the name of the Ooguri-Vafa metric [93].
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Summarising, this neat layered structure of the BON spacetime will arise as long as
our approximation scheme holds:

`
(D)
Planck � `fibre � `sf ∼ `kk � `ssb (5.3)

The first inequality is required for the semiclassical treatment to be appropriate, and as
we shall see below, for consistency we will also require that the compact space T 3/Γ is
in a Large Volume (LV) regime. This approximation scheme will allow us to discuss the
geometry on each of these spacetime regions independently, and to ensure that the obtained
solution can be interpreted as an instanton mediating a semiclassical decay.

To have a clear geometric picture of the BON configuration it is useful to regard it
as a “defect” interpolating between the bubble core and vacuum geometries (5.1). In this
sense, one can think of the spacetime as undergoing a series of geometric transitions as we
“zoom out” from one of Taub-NUT points (the KK monopoles), towards the vacuum at
infinity. Then, the spacetime regions above can be associated these transitions as follows

SD−4 × R4 II.c→ II.b−−−−−−→ SD−4 × R3 × S1 II.b→ II.a−−−−−−→ SD−4 × R2 × T 2

II.a→ I−−−−−→ SD−4 × R× T 3/Γ I→C−−−→ RD−3 × T 3/Γ. (5.4)

As we said above, the Taub-NUT points in regime II.c can be seen as the core of the
BON geometry, since there the compact space pinches off, and the geometry is smoothly
sealed off. At these points the sphere SD−4 represents the world-volume of the bubble
surface. It is worth noting that, since there is a bubble core associated to each of the
various Taub-NUT points, this spacetime actually represents a multi-centered BON.

Then, as we zoom away from the bubble core towards larger length scales, `(1)
fibre →

`
(2)
fibre → `kk, the compact nature of each of the three cycles of the T 3/Γ becomes apparent
in a sequence of steps, each associated to one of the three regimes of the inner-bubble region,
respectively II.c, II.b and II.a. In the outer-bubble regime, I., the directions along the
sphere SD−4 (with radius ∼ `ssb) combine with the non-compact direction of the bordism
B4 to give the D − 3 dimensional euclidean space. Simultaneously, as we move towards
infinity in this outermost layer, the volume of the compact space VC grows, attaining an
asymptotic value which matches that of the decaying vacuum T 3/Γ. This picture of the
layered structure of the BON geometry, together with the requirement that the scales (5.3)
are well separated, are the basis for the approximations we will make in the semi-flat and
outer-bubble regions where we will neglect, respectively, the effects of the KK modes of the
T 2 fibre and on the full compact space T 3/Γ.

Finally, a delicate issue in the perturbative construction of our solutions is that of
zero-modes. The Calabi-Yau geometries that we use as background for the perturbative
expansion have large moduli spaces, with associated massless excitations (zero-modes). A
generic deformation of the theory might turn this flat directions into runaways, what would
make impossible the construction of the BON solution. However, as we will proof explicitly
in section 5.3.1, this is not the case when the theory is deformed with a Gauss-Bonnet term
(see [90]). In our model the massless excitations decouple from this deformation, and thus
remain zero-modes to first order in perturbation theory.
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5.1.2 Gluing method

The approximation scheme (5.3) will allow us to study the equations of motion separately
for different layers of the BON spacetime and, making use of the appropriate approximate
descriptions in each of them, we will be able to obtain local solutions there. Therefore, in
order to construct the global BON solution we will need to resort to spacetime matching
techniques, also known as gluing [95] (see [96] for an extensive discussion). Indeed, to
construct the full solution we will have to glue, on the one hand, the hyperkähler and semi-
flat regions (resp. II.b and II.a), and on the other hand, the semi-flat and outer-bubble
regimes, (resp. II.a and I.). To incorporate the KK monopole regime, II.c, no gluing will
be necessary, as it corresponds to the limiting behaviour of the hyperkähler geometry of
region II.b near the Taub-NUT points.

To perform the gluing of the different layers we will follow closely the method in
references [96–98], which we briefly summarise here. Given two D-dimensional spacetimes
(M+, g+

MN ) and (M−, g−MN ), we can construct a new manifold M ≡ ∂M+ ∪ M− by
performing a point-by-point identification of the boundaries, ∂M±, of the constituent
spaces. In practice, this identification is done introducing a one-to-one mapping between
the boundaries, Φ : ∂M− → M+, the so called gluing diffeomorphism, so that pairs of
points related by this map are regarded as the same point in the total manifold. For the new
manifoldM to constitute a well defined spacetime (M, gMN ) ≡ (M+, g+

MN )∪ (M−, g−MN ),
and to be able to write down the Einstein’s equations, the metric tensor gMN must be
continuous across the matching boundary. This condition is implemented imposing that
the induced metrics on ∂M± agree, i.e. the first fundamental forms s±ab, where a, b =
{1, . . . , D − 1} are indices on the tangent space to the hypersurface. Furthermore, we
will require the second fundamental forms on the boundaries K±ab = 1

2(Ln±g±)ab also to
be equal, with n± being the unit normals to ∂M±. This additional condition is imposed
to avoid the presence of a shell/brane on the matching hypersurface, i.e. a Dirac-delta
singularity of the energy-momentum tensor. These two requirements can be expressed
explicitly in terms of the pull-back map, Φ∗, as follows

Φ∗(s+)ab = s−ab, Φ∗(K+)ab = K−ab. (5.5)

It should be noted that these matching conditions are those appropriate to General Rela-
tivity, and that in general they need to be modified when considering theories of modified
gravity with quadratic curvature terms. However, the modification of GR by including a
Gauss-Bonnet term is special, in that the matching conditions remain the same as those
in GR [99].

Since the construction of our solutions requires a perturbative treatment we will also
have to consider the matching procedure in the context of perturbation theory. When the
geometry involves a deformation parameter ε� 1, the matching procedure can be adapted
to the perturbative framework by promoting all the geometric quantities, i.e. the metric
g±MN , the gluing diffeomorphism Φ and the fundamental forms s±ab and K

±
ab, to be functions

of the parameter ε, and then solving the matching conditions order by order in ε [100] (see
also [97]).
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To be more specific, when performing the gluing procedure below we will encounter
multiple perturbative expansions: one associated to the parameter α� 1, and other three
related to the various approximations made to describe the background geometry. That is,
we neglect the exponentially suppressed KK modes of the T 2 fibre in the semi-flat regime,
we ignore the KK modes of the compact space T 3/Γ in the outer-bubble region, and we
assume that the N degenerations are far from each other.

Let us discuss first the perturbative expansions associated to the approximate descrip-
tion of the background. The hyperkähler, semi-flat and outer-bubble geometries that we
will use to locally characterise the different layers of the BON become exact solutions of
the equations (4.2) and (4.3) in the limit α → 0. Yet, when combined, they only provide
an (exponentially accurate) approximation to the global BON solution, even in the limit
α → 0. This becomes evident when trying to perform the gluing procedure since, to zero
order in α, we will only be able to satisfy the matching conditions (5.5) up to small cor-
rections associated to the KK modes, and neglecting the mutual backreaction between the
degenerations.

Consider for definiteness the matching between the hyperkähler and semi-flat regimes
(II.b→II.a). On the one hand, in the semi-flat region we neglect the KK modes of the T 2

fibre, which are nevertheless important in the interior the hyperkähler region. On the other
hand, in the hyperkähler regime we ignore the presence of multiple degenerations. How-
ever, at the boundary between the two layers (i.e. the gluing hypersurface) the mismatch
is extremely small since the KK modes of the hyperkähler regime are already exponen-
tially suppressed there, and the degenerations are located very far from each other. More
explicitly, the condition (5.5) on the first fundamental form sab will have the following
schematic form27

0 = Φ∗(sIIb)− sIIa

= Φ∗0(shk|m=0)− ssf +
∑
m>0

e−m
`kk
`fibre ∆s(1)

m + `fibre
`sf

∆s(2) + `kk
`ssb

∆s(3)|m=0 + . . . .

Here Φ0 is the zero-order gluing diffeomorphism, shk and ssf are the first fundamental forms
of the matching hypersurface when embedded in the hyperkähler and semi-flat geometries,
m is an integer labelling the KK modes, and the last term represents the leading order
correction in α (recall that `−1

ssb = α/VT 3).
In this expression we can easily identify three perturbative expansions: the KK ex-

pansion with parameter ε(1) = exp(− `kk
`fibre

), the one associated to the mutual influence
of the degenerations, controlled by ε(2) = `fibre/`sf, and the α-expansion with parameter
ε(3) = `kk/`ssb ∝ α. Choosing the scales so that ε(1), ε(2) � ε(3) < 1 we can work consis-
tently to first order in ε(3) (i.e. in α), and to zero-order in the other two expansions. In
other words, the massive KK modes (m > 0) and the interaction between degenerations
can be consistently neglected in the matching procedure to first order in the α−expansion.
In particular, working order by order in this parameter, we obtain the condition

zero-order gluing condition on (II.b→II.a): Φ∗0(shk|m=0) = ssf, (5.6)
27A similar expression is found when considering the matching condition on the second fundamental form.

– 34 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
2

so that to zero order in α we only have to match the zero-mode of the hyperkähler metric
with the semi-flat metric. Then, when considering the effect of the perturbation to first
order in α, we will have to compute the coefficient ∆s(3)|m=0 of the expansion above and
require it to be vanishing. Note that this term will again only involve the zero-mode sector
of the KK expansion, since higher KK contributions are subleading.

Finally, we comment briefly on the gluing between the semi-flat and outer-bubble
regime (II.a→I.). In the outer-bubble region we neglect completely the KK modes of the
compact manifold T 3/Γ, but in the semi-flat regime some of these modes are still excited
(not those associated to the T 2 fibre, which is assumed to be flat). As in the previous case,
the KK modes of the semi-flat geometry appear suppressed at the matching boundary
between the two regions, and thus the gluing condition for the first fundamental form is
schematically

0 = Φ∗(sIIa)− sI = Φ∗0(ssf|m=0)− sout +
∑
m>0

e−m
`ssb
`kk ∆s(1)

m + `kk
`ssb

∆s(2)|m=0 + . . . .

Here ssf and sout are the first fundamental forms of the matching hypersurface when embed-
ded, respectively, in the semi-flat and in the outer-bubble geometries. Following a similar
argument as the one given above, and provided (5.3) holds, it is easy to see that we can
work consistently to first order in α neglecting the effect of the KK modes. In particular
to zero-order we obtain the condition

zero-order gluing condition on (II.a→I.): Φ∗0(ssf|m=0) = sout. (5.7)

That is, to leading order in α, we just need to require that the zero-mode KK sector of the
semi-flat geometry to match with the outer-bubble metric. Finally, to first order in α we
will have to compute the coefficient ∆s(2)|m=0 on the zero-mode sector of the KK expansion,
and impose the relevant conditions on the metric perturbation so that it vanishes.

A similar reasoning can be followed when considering the matching condition involving
the second fundamental form in (5.5).

As a final remark, note that the method used here to construct the background (α = 0)
inner-bubble spacetime is closely related to the approach in [29] to obtain approximate met-
rics on K3 surfaces. However the two works differ in the gluing methods employed. As
explained above, these space-times are to be used as the background of a perturbative
expansion, so we will need a good characterisation of the deviations between the approxi-
mate background (α = 0) metric and the exact one. The gluing methods used here [95–97],
(standard in the GR literature), can be used to obtain in a systematic way higher order
corrections to the approximate metrics of [29], and thus they also provide a quantitative
characterisation of the error made at each particular order.28

5.2 Background geometry of the inner-bubble region

In the present section we will discuss the properties of the spacetime that we will use as
background for the perturbative expansion in the inner-bubble layer. As we summarized

28See also [30] for a different method to improve systematically the approximations of [29].
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above, in the limit α → 0 we will describe the different layers of the geometry in terms
of exact solutions of the equations of motion, which nevertheless can only be glued to-
gether in an approximate way. We begin this section presenting some general features of
these geometries.

Regarding the BON mediating the decay of the compactification on T 3, from the
discussion about the dynamical constraint (section 4.3), we know that in the limit α → 0
the spacetime geometry must be of the form

ds2 = dxµdxµ + hBαβ(y)dyαdyβ , with RBαβ = 0, (5.8)

with the bordism B4 being Calabi-Yau, and the dilaton a constant φ = φ0. Thus, in
particular, the background metric for the inner-bubble region must also be necessarily
Calabi-Yau in this limit. For simplicity, in the case of the BON associated to compactifi-
cations on T 3/Γ we will also take the background geometry of the inner-bubble layer to be
Calabi-Yau, although the dynamical constraint does not force us to make this choice.

Recall, as we argued in section 4.1, that the topology of the bordism is determined by
the Weierstrass model (3.1) which can be described as a T 2 fibration over a disc D. In
order to write down a local ansatz for the metric in the inner-bubble region, we first note
that any Calabi-Yau two-fold is also hyperkähler (and self-dual) [101]. In addition, we will
assume the metric to be locally consistent with the dimensional reduction over one of the
two S1 cycles of the T 2 fibre. Without further simplifications this leads us already to the
family of metrics we will use to describe the hyperkähler regime:

Hyperkähler ansatz. If we choose a coordinate system for the bordism yα = {ψ, yi},
i = {1, 2, 3}, with ψ ∼ ψ+ 1 parametrising the S1, then the most general line element that
we can write on B4 has the form [102]

ds2
B|hk = hBαβ(y)|hk dyαdyβ = e2ϕ0

(
V h̊ijdy

idyj + V −1(dψ +Aidyi)2), (5.9)

where the function V = V (y) > 0, the one-form A = A(y) and the three-dimensional
metric h̊ij = h̊ij(y) are independent of ψ. The overall real constant e2ϕ0 is an arbitrary
parameter added for later convenience, and which regulates the volume of the bordism.
With this ansatz, the hyperkähler condition requires the metric on the base h̊ij be flat,
while the function V and the one-form Aidyi should satisfy

V −1 ∇̊2V = 0, and ∂iV = εijk∂jAk, (5.10)

where ∇̊2 is the Laplacian associated to h̊ij , εijk is the totally antisymmetric Levi-Civita
tensor. Since this geometry is Calabi-Yau and has zero Ricci curvature RBαβ = 0 [92], to-
gether with the ansatz (5.8), this geometry corresponds to a exact solution to the equations
of motion in the limit α→ 0.

The local ansatz that we will use to describe the semi-flat regime can now be easily
obtained with one further simplification: we require the previous metric to be also consis-
tent with the reduction along the second direction of the T 2. In other words, we require
the induced geometry in the T 2 fibre to be flat.
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Semi-flat ansatz. Explicitly, if we parametrize the second cycle of the T 2 by the periodic
coordinate y1 ∼ y1 + 1, the semi-flat ansatz is obtained imposing

h̊11 = 1, h̊12 = h̊13 = 0, A2 = A3 = 0, (5.11)

and requiring the non-zero metric components V , A1, h̊22, h̊23 and h̊33 to be independent
of y1. Then, defining the complex coordinate z ≡ y2− iy3 (which parametrises the disc D),
and the complex field τ(z, z̄) ≡ A1 +iV , it is straightforward to check that the hyperkähler
conditions (5.10) are simply the Cauchy-Riemann conditions for the complex field on τ

∂2V = ∂3A1, ∂3V = −∂2A1 =⇒ ∂z̄τ = 0. (5.12)

In other words the field τ = τ(z), which determines the complex structure of the T 2, should
be a holomorphic function of z. Moreover, the line element (5.9) can be written in the form

ds2
B|sf = e2ϕ0

(
Im(τ) |F (z)|2dzdz̄ + Im(τ) dy1dy1 + Im(τ)−1(dψ + Re(τ)dy1)2

)
, (5.13)

where Im τ > 0, and F = F (z) is a holomorphic function determined by the metric
components {̊h22, h̊23, h̊33}. Since this line element is a special case of (5.9) it also defines
a exact solution to the Euler-Lagrange equations of our model in the limit α → 0. Note
that with this ansatz the volume of the T 2 fibre is parametrized by ϕ0, and is constant
over the z-plane.

In the following two sections we will discuss more in detail the properties of these two
space-times, and how they can be glued together to obtain an approximate description of
the smooth Calabi-Yau associated to the Weierstrass model (3.1).

5.2.1 Layer (II.a): semi-flat regime

To begin our discussion on the detailed structure of the inner-bubble region we will consider
the semi-flat regime. As shown in [91], the semi-flat description is particularly appropriate
to construct geometries consistent with the Weierstrass model (3.1), and thus it is in this
layer of the BON geometry where the spacetime will exhibit the topology we discussed in
section 4.1.

Following [91], we first note that in (5.13) the T 2 fibre geometry is actually invariant
under the modular group PSL(2,Z), with generators

T : τ → τ + 1, S : τ → −1/τ. (5.14)

Therefore, although the complex structure field τ can take values on the full complex upper-
half plane H, the space of inequivalent toroidal geometries is only given by the fundamental
domain F = H/PSL(2,Z), which can be represented by the region where |τ | > 1 and
Re(τ) ∈ [−1/2, 1/2). With this at hand, we can construct semi-flat geometries (5.13) with
the required topology making use of the elliptic modular invariant function j(τ) : C→ F ,
which defines a holomorphic one-to-one mapping between the full complex plane and the
fundamental domain F . More specifically, the class of semi-flat geometries which are also
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solutions of the Weierstrass model (3.1) are those for which the complex structure field
τ(z) satisfies the ansatz [56]

j(τ(z)) = 123 4f3(z)
4f3(z) + 27g2(z) , N ≡ deg(4f3 + 27g2) ≥ deg(f3), (5.15)

where f = f(z) and g = g(z) are holomorphic polynomials on z. The condition on the
degree of the polynomials ensures that the complex structure, and thus the geometry of
the two-torus, attains a fixed (finite) value in the limit |z| → ∞ (the asymptotic boundary
of the bordism ∂B4) [91].

The previous ansatz represents a smooth solution to the equations of motion and
to (3.1) everywhere except at the N points za, defined by 4f3(za) + 27g2(za) = 0 with
a = 1, . . . , N . At those points the fibre degenerates and the semi-flat description ceases to
be valid. The appropriate choice for the function F (z) in (5.13) is given by [91]

F (z) = F0 η(τ(z))2
N∏
a=1

(z − za)−
1

12 , (5.16)

where η(τ) is the Dedekind function29 and F0 is an arbitrary complex number. The
Dedekind function η(τ) needs to be included to make the metric on the plane parametrized
by {z, z̄} (the first summand in (5.13)) invariant under modular transformations. As we
will explain below, the remaining factor of F (z) ensures that the metric on the z-plane
does not vanish at the degeneration points.

We will denote by Bsf = {z ∈ C \ {za}, y1 ∈ [0, 1) , ψ ∈ [0, 1)} the spacetime character-
ized by the semi-flat metric (5.13) and the ansatz (5.15) away from the degeneration points.
This spacetime is to be glued through its boundary |z| → ∞ with the outer-bubble regime,
and the hyperkähler regime be used to characterise the geometry in a neighbourhood of
za, where the semi-flat approximation breaks down.

Detailed internal structure. The ansatz (5.15) defines a multivalued mapping between
the fundamental domain and the disc, τ−1 : F → C \ {za}, with monodromy in PSL(2,Z).
Actually, the fundamental domain F is mapped N times to the z-plane [91], and the
different images of F , denoted Basf, are glued together across their boundaries in the sense
of (5.5), so that Bsf ∼= ∪Na=1Basf. The matching surfaces can be identified as the images of the
boundary of fundamental domain ∂F on C \ {za}, which are easily located using that the
elliptic modular function is real at ∂F , with j(τ) ∈ (−∞, 123]. Since the geometry of the
two-torus in adjacent regions Ma

sf are related to each other by modular transformations,
the matching of the toroidal geometries in different regions of the disc will require a non-
trivial gluing diffeomorphism. Actually, given to regions BAsf and BBsf with the T 2 geometry
related by a modular transformation S or T , the appropriate gluing diffeomorphism ΦAB :
∂BAsf → ∂BBsf at the matching surfaces is

S : τA = −1/τB, =⇒ zA = zB, ψB = yA1 and yB1 = −ψA,
T : τA = τB + 1, =⇒ zA = zB, ψB = ψA + yA1 and yB1 = yA1 .

(5.17)
29It is defined by η(τ) = eiπτ/12∏

n>1(1−e2πinτ ), and the modular group acts on it as follows: η(τ+1) =
ei π12 η(τ), and η(−1/τ) = (−iτ)1/2η(τ).
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zρ

z∞

z∞

z∞

z∞

z∞

z∞

S

T-1

(ST)6  

D

zi=∞ 
A

B

Figure 6. Representation of the semi-flat geometry j(i) (5.18) with N = 6, and the monodromy
paths. The fundamental domain is mapped six times to the disc D via (5.18), and the shaded region
represents a single image of F . The T 2 geometry on adjacent regions (e.g. A and B) is related by
a S transformation, and the gluing across the common boundary (dotted line) is done with the
diffeomorphism in (5.17). The points z∞ represent the degenerations points, and zi, zρ are the
locations where τ attains the values τ(zi) = i and τ(zρ) = ρ respectively

Note that the matching of the metric along the directions {z, z̄} is trivial. This is due to
the transformation properties of the Dedekind function under PSL(2,Z), which imply that
the first summand in (5.13) is completely invariant under the identifications (5.17).

In a generic semi-flat geometry, the non-trivial identifications in the previous gluing
procedure might lead to orbifold singularities [91]. These singularities could arise at points
{zi, zρ} of the z-plane mapped through (5.15) to the fixed points of PSL(2,Z) in the fun-
damental domain, that is, to the configurations τ(zi) = i and τ(zρ) = ρ ≡ e

2πi
3 . Indeed, the

field τ undergoes a modular transformation when encircling the points {zi, zρ} (see [60]),
however the ansatz (5.15) guarantees that this modular transformation is trivial: when
going (counterclockwise) around the point zi (resp. zρ) the monodromy is actually S2p

(resp. (T−1S)3p), with p ∈ Z, which is the identity map. Since there is no need to perform
a non-trivial identification in this case, no orbifold singularity will arise in the geometries
defined by30 (5.15).

Regarding the degeneration points za, when we encircle these points counterclockwise
the two-torus fibre also undergoes a T monodromy (a Dehn twist), however since the points
za are already excluded from Bsf due to the failure of the semi-flat description on them, we
do not have to discuss the presence of orbifolds there.

Explicit semi-flat geometries. The freedom in the choice of the holomorphic functions
f(z) and g(z), together with the arbitrary volume parameters e2ϕ0 and |F0|, allows a large
degree of control over the properties of the semi-flat metric. For clarity in the following we

30Alternatively, we could also argued the absence of these singularities using the Weierstrass model (3.1),
which defines a regular geometry provided that we stay away form the degeneration points za of the fibre.
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will work with a specific choice of the functions f(z) and g(z), although our results can be
easily generalized to other geometries.

As we discussed in section 4.1, when the compact space is a quotient T 3/Γ the three-
torus must be in one of the two symmetric configurations τ = {i, ρ}. While this is not
necessary in T 3 compactifications, for simplicity we will restrict ourselves to semi-flat
geometries which asymptote to these symmetric configurations for |z| → ∞, where the
outer-bubble regime (and the asymptotic vacuum) is located.

Moreover, we will also require the geometry to be invariant under a ZN discrete sym-
metry which rotates the position of the N degeneration points za. Using that the value of
the j-function at the symmetric points is j(i) = 123 and j(ρ) = 0, we find the following
two classes of geometries31

j(i)(τ) = 123 zN

zN − zN0
, N ∈ 3Z, and j(ρ)(τ) = 123 zN0

zN0 − zN
, N ∈ 2Z, (5.18)

with z0 ∈ C \ {0}, and where j(i) and j(ρ) correspond respectively to the cases τ∞ = i,
(zi = ∞), and τ∞ = ρ (zρ = ∞). It is also easy to check that for the geometry given by
j(i) (resp. j(ρ)) the T 2 fibre also attains a symmetric configuration at the point zρ = 0
(resp. zi = 0), and the degeneration points (which are single poles) are distributed at the
N locations

za = z0 e
i2πa
N , (5.19)

with a = {1, . . . , N}. Thus, the distance between the degenerations can be tuned changing
|z0|, and their positions rotated varying arg(z0).

It can be checked that when we encircle counterclockwise the points za and zi the
geometry undergoes respectively monodromies T and SN , and when going around zρ it
experiences the modular transformation (T−1S)N in the case of j(i), and (ST )N for the
geometry given by jρ. Finally, the matching surfaces where the T 2 fibre undergoes modular
transformations are located at

S : arg(z) = arg(z0) + (2a+ 1)π
N

T : arg(z) = arg(z0) + 2aπ
N

, |z| ≤ |z0| for j(i), or |z| ≥ |z0| for j(ρ). (5.20)

The structure of the geometry associated to the ansatz j(i) is represented in figures 6 and 7
for the case N = 6. For simplicity, in all the calculations that follow we will set arg z0 = 0.

Asymptotic form of the semi-flat metric |z| → ∞. Since the semi-flat spacetime
Bsf is to be glued through the boundary at |z| → ∞ with the outer-bubble layer, we need
to characterise the behaviour of the geometry in this limit. The asymptotic form of the
semi-flat metric (5.18) can be obtained from the following expansions32

τ(z →∞) → τ∞ + α (z0/z)N/p + . . . ,

|F (z →∞)|2 → |F0|2|η(τ∞)|4 |z|−N/6 (1 + Re(βz0/z)) + . . . , (5.21)
31The expression for j(i) is obtained from (5.15) setting f = zp/41/3 and g2 = z3p

0 /27, with N = 3p and
p ∈ Z. For the ansatz j(ρ) we have to set g = zp/

√
27 and f3 = z2p

0 /4, with N = 2p and p ∈ Z.
32Near the points zi and zρ, we have respectively τ(z) ≈ i+αi(z−zi)1/2 and τ(z) ≈ ρ+αρ(z−zρ)1/3 [60, 91]

with {αi, αρ} complex constants, while η(τ(z)) is regular at those points with non-zero first derivative.
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Figure 7. An image of the fundamental domain F and its boundary (left) on the disc D (right)
under the mapping (5.18) with arg(z0) = π/2.

where α and β are some complex constants, and p is an integer taking values 2 and 3 for
the geometries j(i) and j(ρ) respectively. Then, to leading order we find

ds2
B|sf → R2

kk|θ|z|
−N6 dzdz̄ + ds2

T 2 , with R2
kk|θ ≡ e2ϕ0 |F0|2 Im(τ∞) |η(τ∞)|4. (5.22)

Depending on the number of degenerations we should distinguish two cases, N < 12
and N = 12. For configurations with N < 12 degenerations, introducing a polar coordinate
system {u, θ} for the z-plane, we can write the asymptotic form of the line element as follows

ds2
B|sf → du2 + u2

(
1− N

12

)2
dθ2 + ds2

T 2 , with u ≡
Rkk|θ|z|1−

N
12

(1− N
12)

, θ = arg(z), (5.23)

which describes a geometry of the form R2
∆ × T 2/Γ, where R2

∆ is a conical spacetime with
deficit angle ∆ = Nπ/6.

For configurations with N = 12 degenerations, we need to make a different choice for
the radial coordinate, namely u ≡ Rkk|θ log |z|, which leads to the asymptotic form of the
line element

ds2
B|sf → du2 +R2

kk|θdθ
2 + ds2

T 2 . (5.24)

This metric represents a cylindrical geometry of the form R× T 3 (i.e. ∆ = 2π), where the
radius of the S1 parametrized by θ is given by Rkk|θ (5.22), and the circles parametrized
by ψ and y1 have respectively the following radii

R2
kk|ψ = e2ϕ0 Im(τ∞)−1, and R2

kk|y1 = e2ϕ0 Im(τ∞)−1|τ∞|2. (5.25)

Finally, noting that the T 3 and fibre volumes are proportional to VT 3 ∝ e3ϕ0 |F0| and
VT 2 ∝ e2ϕ0 , we find that the characteristic length-scales of this geometry are given by

`kk ≡ eϕ0 |F0|1/3 and `fibre ≡ eϕ0 . (5.26)
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Behaviour near the degeneration points. Although the semi-flat geometry (5.13) is
an exact solution to the equations of motion with α = 0, it is singular at the degeneration
points za, and thus we cannot use it to construct a BON instanton while working consis-
tently in the semiclassical regime of quantum gravity. Then, as we mentioned above, to
obtain a smooth solution we will excise a small neighbourhood of the degeneration points,
and glue there a hyperkähler geometry of the form (5.9). In the following paragraphs we
will review here the local geometry of the semi-flat metric close to the degeneration points.

Near a point za where the denominator of (5.15) has a zero, the behaviour of the
complex structure field in (5.18) is determined by the relation

j(τ(z)) ≈ ±123

N

za
(z − za)

+ αN +O(|z − za|/|za|), (5.27)

where the plus sign corresponds to j(i), and the minus sign to j(ρ), and αN is a com-
plex constant independent of za. Then, using the asymptotic expansion of the j-function
near33 Im τ → ∞, it is easy to check that the complex structure τ has the well known
logarithmic profile

τ(z) ≈ − i
2π log

[
± N

123
z − za
za

]
+ βN

z − za
za

+ . . . , (5.28)

with βN an N -dependent complex parameter. Equivalently, in terms of the function V (y)
and the one-form Ai which characterise the hyperkähler metric (5.9) we have the lead-
ing form

V (z) ≈ 1
2π log

[
123|za|/(N |z − za|)

]
, A1 ≈

1
2π

(
arg(z − za)−

2πa
N

+ sπ

)
, (5.29)

where the parameter s takes the values 0 and 1 for the solutions j(i) and j(ρ) respectively.
Finally, to write the line element around the points za we will also need the local form

of the function F (z). Making use of the local expansion of the Dedekind function around34

Im(τ)→∞, we find

|F (z)|2 ≈ |F0|2

2
√

3|za|N/6
(
1 + Re (δN (z − za)/za)

)
+ . . . . (5.30)

where δN is a complex constant independent on za. Collecting all of these results, we find
that near the degeneration points the semi-flat metric has the form

e−2ϕ0ds2
B|sf →

|F0|2

4π
√

3|za|N/6
log(r0/r) (dr2 + r2dθ2)

+ 1
2π log(r0/r) dy1dy1 + 2π

log(r0/r)
(
dψ + θ

2π dy
1
)2
, (5.31)

where r = |z − za|, θ = arg(z − za)− 2πa
N + sπ and r0 ≡ 123z0/N . It is straightforward to

check that these are singular points of the D-dimensional geometry, as it can be checked
33In the limit Im(τ)→∞ we have j(τ) ≈ e−i2πτ + 744 +O(e2πiτ ).
34We use η(τ) ≈ eπiτ/12 − e25πiτ/12 + . . ..
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computing the Gauss-Bonnet invariant R2
GB|sf ∼ (r log r)−4 →∞ in the limit r → 0. This

behaviour signals the failure of the semi-flat description near the degenerations.
To understand the geometrical meaning of this divergence, recall that the volume of

the T 2 fibre is constant over the z-plane. Therefore the profile (5.28) for τ implies that one
of the cycles of the fibre shrinks to zero size at za, while the other one grows unbounded,
what amounts to a partial decompactification of spacetime. In addition, in (5.28) we can
see explicitly that as we go around a degeneration point the T 2 fibre transforms under the
action of a T modular transformation, τ → τ + 1.

From the previous expressions we can also identify one further length-scale character-
ising this layer of the BON spacetime, namely

`2sf ≡
e2ϕ0 |F0|2

2
√

3 zN/60
= `6kk

2
√

3 `4fibre z
N/6
0

. (5.32)

At the beginning of section 5 we mentioned that `sf represents the distance between the
degenerations, and yet the parameter z0 controlling their relative position appears in the
denominator. This might seem counterintuitive at first sight. However, the numerator
contains the actual length-scale eϕ0 |F0| which determines proper distances measured by
the semi-flat line element (5.13). Thus, the proper distance between degenerations can be
made arbitrarily large increasing `sf, and regardless of the value of z0.

5.2.2 Layer (II.b): hyperkähler regime

As we discussed above, near the degeneration points the semi-flat spacetime (5.13) experi-
ences a partial decompactification, since the cycle of the T 2 fibre parametrized by y1 grows
unbounded.

In such a situation we know there is an infinite tower of Kaluza-Klein (KK) modes
(with dependence on y1) which become light, what suggests that they may play an im-
portant role in the resolution of the singularity. Recall that in order to find the semi-flat
metric (5.13) we started with the hyperkähler ansatz (5.9), and then imposed consistency
with the dimensional reduction along the coordinate y1. Since this condition is equivalent
to the truncation of the tower of KK modes with dependence on y1, our argument suggests
that we should lift this constraint near the degeneration points, and try instead to describe
the geometry in terms of the more general hyperkähler ansatz (5.9). A simple hyperkäh-
ler geometry consistent with the periodicity y1 ∼ y1 + 1 is characterized by the following
harmonic function written in terms of the Gibbons-Hawking ansatz [29, 92–94]

V (y1, ρ) = V0 + 1
4π
∑
k∈Z

1√
(y1 − k)2 + ρ2 −

1
2π
∑
k>0

1
k
. (5.33)

where we have introduced the coordinate35 ρ2 ≡ (y2)2+(y3)2, and taking the flat metric h̊ij
to be in the canonical form δij . The last term is added to cancel the divergent contribution
to V from the locations yi = (k, 0, 0) with k ∈ Z, and V0 is an arbitrary constant. The

35Notice this is a different radial coordinate from the ρ introduced in section 4.2, which corresponds to
the outer layer of the bubble.
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resulting metric (5.9) is smooth everywhere by construction [93, 94] and clearly has the
required discrete isometry along y1. This space, which we denote by Bhk, represents a
euclidean Taub-NUT geometry, i.e. a KK monopole, embedded in a S1 × R2 spacetime,
that is, with one dimension (other than ψ) compactified on a circle.

To clarify the connection between this geometry and the semi-flat metric (5.13), let us
consider the asymptotic ρ→∞ behaviour of the harmonic function (5.33). For this purpose
it is convenient to rewrite the previous expression using Poisson’s summation formula [93]

V (y1, ρ) = 1
2π log(ρ0/ρ) + 1

π

∑
m>0

K0(2πmρ) cos(2πmy1), (5.34)

where ρ0 = 2e2πV0−γ is determined by the arbitrary constant V0, γ is Euler’s constant,
and K0 is the modified Bessel function of the second kind. Note that the m = 0 mode in
this expansion exhibits at ρ→ 0 precisely the same logarithmic divergence as the semi-flat
metric near a degeneration point, eq. (5.29), but in this case the infinite tower of excited
KK modes exactly cancels the divergence leading to a smooth geometry.

Asymptotic limit of the hyperkähler geometry. Following [29, 93], in order to cure
the singular behaviour of the semi-flat metric (5.31), we will excise a neighbourhood of the
degeneration points of Bsf and glue there the spacetime of the dimensionally reduced KK
monopole given by (5.34). For this purpose we need a more detailed characterisation of
the hyperkähler geometry (5.34) in the limit ρ → ∞. Using the asymptotic expansion of
the modified Bessel function K0 one finds (recall m > 0)

ρ→∞ : K0(2πmρ) ≈ e−2πmρ

2√mρ + . . . , (5.35)

that is, far from the KK monopole the harmonic function approaches exponentially fast
to the limiting behaviour of the semi-flat geometry (5.29). Regarding the one-form Ai, it
is convenient to express its components in a cylindrical coordinate system {y1, ρ, θ}, with
tan θ = −y3/y2.

Then, the self-dual conditions together with (5.33), imply that ∂1Aρ − ∂ρA1 = 0. If
we choose the gauge Aρ = 0, then the configuration Ai must satisfy the equations

∂ρA1 = 0, ∂ρAθ = −ρ ∂1V, ∂1Aθ − ∂θA1 = ρ ∂ρV. (5.36)

Using the form (5.34) for the harmonic function V and (5.35), it is easy to see that away
from the KK monopoles the one-form Ai has the asymptotic behaviour

Aρ = 0, Aθ ≈ −
y1

2π −
√
ρ

2π e−2πρ sin(2πy1), A1 ≈ −
√
ρe−2πρ cos(2πy1)(θ − θ0),

(5.37)
where we have kept only the dominant terms in the KK and ρ expansions, and a specific
choice of integration constants has been made for later convenience. While the asymptotic
form of the one-form Ai does not match that of the semi-flat metric (5.29), where Aθ|sf ≈ 0,
we will see below that is still possible to perform the matching of the spacetimes Bsf and
Bhk with an appropriate gluing diffeomorphism (see also [29]).
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Gluing the hyperkähler and semi-flat spacetimes. In the previous paragraphs we
have described the independent semi-flat Bsf and hyperkäher Bhk spacetimes which are to
represent respectively the layers II.a and II.b of the inner BON geometry in the absence
of the Gauss-Bonnet term, α → 0. We will now perform the matching of these two
geometries in the sense of (5.5) in order to have a complete and well defined inner-bubble
spacetime BII|α=0.

First we define the manifold B∗sf ≡ Bsf \ {Br∗(za)} as the result of cutting out from
the semi-flat space the interior of N balls of radius r∗ centered on the degeneration
points, Br∗(za), with |z − za| ≤ r∗. On the other hand we introduce N copies Bahk|ρ∗ ≡
{(ρ, θ, y1, ψ) ∈ Bhk / ρ ≤ ρ∗} of the region of the hyperkähler spacetime (5.34) with ra-
dial coordinate bounded by ρ ≤ ρ∗. Then, with this at hand we define the inner-bubble
manifold by

BII ≡ B∗sf ∪Na=1 Bahk. (5.38)

Since these two spacetimes cannot be glued exactly we will resort to the perturbative
matching methods described in section 5.1.2. We begin defining the small parameter ε ≡
`fibre/`kk � 1, which controls the magnitude of the KK corrections in the hyperkähler
regime. Then, consistently with the approximation scheme (5.3), we consider the region
of the parameter space where the length-scales characterising the spacetime geometry, `kk,
`fibre and `sf, meet the conditions36

`sf = `kk =⇒ `fibre
`sf

= ε, =⇒ z0 = N

123 r̂0ε
−q, (5.39)

where q ≡ 24/N ≥ 2, and r̂0 = O(ε0) is a positive real parameter. To derive the scaling of
z0 with ε we have used the definitions (5.26) and (5.32).

Next, to make the space BII connected we introduce the gluing diffeomorphisms which
identify the common boundaries of the constituent spacetimes. Let us consider the surgery
around one of the degeneration points, za. The appropriate (leading order) gluing diffeo-
morphism Φ : ∂B∗sf → Bahk is given by37 (see section 5.1.2)

Φ : (r∗, θ−, y1
−, ψ−) −→

(
ρ∗ = r∗/ε, θ+ = θ−, y1

+ = y1
−, ψ+ = ψ− +

θ− y
1
−

2π

)
,

(5.40)
where the subscripts “−” and “+” refer to coordinates on the boundary hypersurfaces ∂B∗sf
and ∂Bahk respectively. In particular the coordinates on the semi-flat patch are defined as
in eq. (5.31), and we take r∗ = O(ε0). To ensure the continuity of the metric tensor across
the matching surface we need to require the induced metrics on the boundaries ∂B∗sf and
∂Bahk to agree (left eq. in (5.5)), and following the perturbative approach of [97] we solve
the resulting conditions order by order in ε.

36This particular set of relations between the length-scales has been chosen for simplicity, but more
general approximation schemes are also possible.

37Note that the identification is consistent with the periodicity of the coordinates θ ∼ θ+2πk1, y1 ∼ y1+k2

and ψ ∼ ψ + k3, with ki ∈ Z.
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To leading order, i.e. from equation eq. (5.6), we find that the parameters of the semi-
flat and hyperkähler geometries should satisfy the relation

ρ0 = r̂0ε
−(q+1) =⇒ ρ0 = 123|F0|

2
√

3N
z

(12−N)/12
0 . (5.41)

Recall that to this order we neglect completely the KK modes contribution in Bahk and
the presence of multiple degeneration points in B∗sf, and thus the identifications (5.40)
and (5.41) imply that the asymptotic forms of the semi-flat and the hyperkähler metric
tensors are identical in a neighbourhood of the matching boundary. As a consequence,
the requirement that the there is no shell present on the matching hypersurface (right eq.
in (5.5)) is trivially satisfied. Since there are no further constraints, the parameter r∗ is
left unfixed to leading order in ε.

Summarising, at this point we have already succeeded in constructing the background
spacetime BII|α=0 describing the inner-bubble region of the bordism B4 to zero-order in the
deformation, α→ 0. The corresponding manifold is defined in terms of the semi-flat B∗sf and
hyperkähler Bahk spacetimes via (5.38) together with the identifications (5.40). The metric
tensor on BII|α=0 is determined on the patch B∗sf by (5.13) and (5.18), on the patches Bahk
by the line element (5.9) given by the harmonic function (5.34) and the parameter (5.41),
and it is continuous across the matching boundaries to leading order in ε. This line element
is an exact solution of the Euler-Lagrange equations in the interior of B∗sf and Bahk, and it
also solves the equations of motion on the matching boundaries to the leading order in ε

(with no shells/branes present there).

Validity of the approximations. Since the inner-bubble spacetime BII|α=0 will be used
as the background for the perturbative expansion in α, we need to characterise the size of
the leading order corrections due to the neglected KK modes and the backreaction of the
multiple degeneration points.

As before, we consider the gluing between B∗sf and one of the N copies Bahk associated
to the degeneration at za. We find that the next-to-leading correction to the matching
conditions for the first fundamental form are:

0 = r−2
∗ e−2ϕ0(Φ∗(shk)− ssf)θθ = ε̂∆s(α)

θθ + εq log ε ∆s(deg)
θθ + e−

2πr∗
ε

√
ε

∆s(kk)
θθ + . . . ,

0 = e−2ϕ0(Φ∗(shk)− ssf)11 = ε̂ ∆s(α)
11 + εq ∆s(deg)

11 + e−
2πr∗
ε

√
ε log ε∆s(kk)

11 + . . . ,

0 = e−2ϕ0(Φ∗(shk)− ssf)1ψ = ε̂ ∆s(α)
1ψ + εq

log ε ∆s(deg)
1ψ + e−

2πr∗
ε

√
ε log ε∆s(kk)

1ψ + . . . ,

0 = e−2ϕ0(Φ∗(shk)− ssf)θψ = ε̂ ∆s(α)
θψ + e−

2πr∗
ε

√
ε log ε∆s(kk)θψ + . . . ,

0 = e−2ϕ0(Φ∗(shk)− ssf)ψψ = ε̂ ∆s(α)
ψψ + εq

(log ε)2 ∆s(deg)
ψψ +

√
ε e−

2πr∗
ε

(log ε)2 ∆s(kk)ψψ + . . . ,

(5.42)
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where we have used the behaviour of the semi-flat geometry near the degenerations,
eqs. (5.30) and (5.28), and the asymptotic form of the hyperhähler geometry, eqs. (5.35)
and (5.37). Here the tensors ∆s(deg)

ab and ∆s(kk)
ab are functions of y1 and θ, and represent

respectively the contribution from distant degeneration points (other than za) and the
massive KK modes.

For clarity, we have also included the first order correction induced by the change in
the Gauss-Bonnet coupling α, which is assumed to be small α = O(ε̂), with ε̂ � 1 being
independent from ε. The associated correction, denoted by ∆s(α)

ab , will be computed in
section 5.3. Recalling that q ≥ 2, and assuming ε ∼ ε̂, it is immediate to check that at
next-to-leading order it is consistent to take into account only the leading correction in
α, while neglecting completely the effects of the KK modes and the presence of multiple
degenerations. Although we do not show it here, it can also be checked that the matching
conditions for the second fundamental form (5.5) have a similar structure to (5.42). Thus,
to solve the next-to-leading order in perturbation theory it is also sufficient to consider
only the dominant corrections in α.

From the previous expressions we can also see that the neighbourhood where the semi-
flat approximation becomes inadequate (due to sizeable KK mode effects) has a finite size of
order r ∼ ε. On the other hand, these regions should not become too big, since in the semi-
flat geometry the T 2 fibre undergoes modular S transformations at the hypersurfaces (5.20),
where the role of the ψ and y1 cycles is exchanged. Indeed, the corresponding gluing
diffeomorphisms (5.17) are only compatible with the matching conditions (5.5) provided
all the massive KK modes of the T 2 fibre are exactly zero, so we also need the matching
boundary to satisfy r∗ . z0 ∼ ε−q. Note that these consistency requirements are met in
our construction, as we are assuming r∗ ∼ O(ε0) and ε� 1, which implies

ε� r∗ � ε−q, since q ≥ 2. (5.43)

In terms of the parameters of the compact space T 3/Γ (see (5.22) and (5.25)), the limit
ε→ 0 and the scaling (5.39) imply the relations

R2
kk|θ � Rkk|y1 ·Rkk|ψ, z0 ∼

(
Rkk|θ/

√
Rkk|y1Rkk|ψ

)q
� 1. (5.44)

That is, we are restricting ourselves to a limit of the T 3/Γ geometry in which the cycles
of the T 2 fibre are much smaller than the base S1, and for consistency we need to ensure
that in the BON instanton all the degenerations are well separated from each other. These
two conditions can always be met in the limit α→ 0, as both the radii, (5.22) and (5.25),
and the degeneration positions can be freely specified (they are moduli of the background
geometry). Below we will prove that these parameters remain free moduli when we turn
on the Gauss-Bonnet deformation and work to leading order in α.

5.2.3 Bubble core (II.c): the KK monopole regime

The relations (5.44) we just derived set bounds on the regime of parameter space where
our construction is under control, however the scaling of the overall volume of the compact
space VC is still undetermined. For this purpose we will now discuss the geometry of the
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bubble core, where the spacetime curvature, and thus the Gauss-Bonnet term is largest.
We will show that the requirement that the curvature remains everywhere below the Planck
scale for small ε determines the right volume scaling.

It is well known that the multi-centered KK monopole solution described by the har-
monic function (5.33) approaches the self-dual Taub-NUT metric near the KK monopole
locations, i.e. ρ → 0, y1 → k ∈ Z. For definiteness let us consider the k = 0 image of the
Taub-NUT point. Near this position the dominant term of the function V in (5.33) is the
one diverging at the position {ρ = 0, y1 = 0} and then,38 choosing the gauge Aρ = 0, we
find that the one-form Ai is approximately

V (ρ, y1)|core → V0 + 1
4π

1√
ρ2 + (y1)2 , Aθ|core →

−y1

4π
√
ρ2 + (y1)2 , A1|core → 0,

(5.45)
where we have used the self duality equations (5.36) to obtain the local behaviour of Ai. It
is straightforward to check that a linear superposition of these solutions located in the array
{ρ = 0, y1 = k} and k ∈ Z has the right asymptotic behaviour for the one-form (5.37), that
is, Aθ → −y1/(2π). To write the metric in the standard KK monopole form we introduce
the coordinates

R =
√
ρ2 + (y1)2, and cosχ = y1/R, (5.46)

leading to

e−2ϕ0ds2
B|core →

R+R0
4πRR0

(dR2 +R2dΩ2
(2)) + RR0

4π(R+R0)
(
4πdψ − cosχdθ

)2
, (5.47)

where dΩ2
2 is the two sphere line element. The constant R0 appearing here can be expressed

in terms of the parameters of the hyperkähler geometry as follows

R0 ≡
1

4πV0
= 1

2 log
( eγ r̂0

2εq+1

)−1
� 1. (5.48)

Provided the coordinate ψ has the periodicity ψ ∼ ψ+1, this metric is known to be regular
at the origin R→ 0 (the locus of the Taub-NUT point), where the full spacetimeMD has
the local topologyMD

∼= SD−4 ×R4. This point can be identified as one of the N bubble
cores, where the compact space is smoothly sealed off.

In this region the Gauss-Bonnet invariant can be computed analytically

R2
GB|core → 3 · 27 · π

2 e−4ϕ0R4
0

(R0 +R)6 , (5.49)

what shows that, since R0 � 1, the region of large curvature is very localized around the
KK monopole positions. Actually, in the strict limit ε→ 0 we find that the Gauss-Bonnet
term of the background becomes the (curved space) 4-dimensional Dirac-delta function
centred at the KK monopole position, i.e. R2

GB|core ≈ 32π2 δ(4)(R). However, note that as
38The remaining images of the Taub-NUT point give no contribution at {ρ = 0, y1 = 0}, as can be

checked summing the series (5.33) at ρ = 0 [29]: V |ρ=0 = V0 + 1
4π|y1| −

γ
2π −

1
4π (Ψ(y1 + 1) + Ψ(y1 − 1)),

where Ψ is the digamma function.

– 48 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
2

long as we keep the value of ε > 0 finite, the maximum value of R2
GB (achieved at R = 0)

is also finite
R2

GB|max = 3 · 29 · π2 e−4ϕ0 log
( eγ r̂0

2εq+1

)2
. (5.50)

Recall that for the semi-classical approach to remain valid the spacetime curvature should
remain everywhere well below Planck mass. Using for simplicity Planck units, we can
achieve this with the choice

e2ϕ0 & | log ε|. (5.51)

Note also that the Gauss-Bonnet contribution to the equations of motion appears always
multiplied by the parameter α = O(ε̂). Then, the previous scaling guarantees that the
Gauss-Bonnet deformation also remains small near the BON core, ε̂R2

GB|max � 1. Com-
bining this result with (5.39), and assuming ε̂ ∼ ε we find

`
(D)
Planck = O(ε0), `fibre = O(| log ε|), `kk ∼ `sf = O(ε−1), `ssb = O(ε−4), (5.52)

what proves that our construction is consistent with the approximation scheme (5.3), and
that we have parametric control over the approximations that we have made.

Summarising, our approximations require the compact space T 3/Γ to be in a degen-
erate T 3/large-volume (degenerate/LV) limit, with a relatively small T 2 fibre volume, but
still well above the Planck scale. Finally, the degenerations on the bordism B4 should also
be well separated from each other.

5.3 Effect of the non-supersymmetric deformation

In the present section we will consider the effects of turning on the non-supersymmetric
deformation, the Gauss-Bonnet contribution in (3.2), on the inner-bubble region of space-
time. We will perform a perturbative analysis regarding the Gauss-Bonnet coupling α

as a small parameter, α = ε̂α̂ with ε̂ � 1, using as background geometry the spacetime
MII|α=0 ∼= SD−4 × BII|α=0, where SD−4 is a sphere of radius R, and BII|α=0 represents
the inner-bubble region of the bordism B4 which we constructed in the previous section.

For this purpose we promote the metric tensor gMN of the BON ansatz (4.11) (including
R) and the dilaton φ to be ε̂-dependent quantities, and assume that they admit a Taylor
expansion around ε̂ = 0

gε̂MN = gMN |ε̂=0 + ε̂ ∂ε̂gMN |ε̂=0 + . . . ,

R−1
ε̂ = R−1|ε̂=0 + ε̂∂ε̂R−1|ε̂=0 + . . . ,

φε̂ = φ|ε̂=0 + ε̂ ∂ε̂φ|ε̂=0 + . . . . (5.53)

Here, the unperturbed metric gMN |ε̂=0 is that of MII (5.8), and the dilaton value on the
background φ|ε̂=0 = φ0 is an arbitrary constant. In particular the warp factor W of the
SD−4 component of the background geometry (5.8), and the corresponding SD−4 radius
R−1 are given by

W |ε̂=0 = 1, R−1|ε̂=0 = 0, (5.54)
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and hBαβ |ε̂=0 is the metric tensor on the manifold BII|α=0. In the following, to ease the
notation, we will drop the “ε̂ = 0” subscript from background quantities, e.g. hBαβ |ε̂=0 →
hBαβ , and we will indicate first order perturbations with an script “1”

W (1) ≡ ∂ε̂W |ε̂=0, φ(1) ≡ ∂ε̂φ|ε̂=0, etc . . . . (5.55)

The perturbation of the metric on BII will be denoted by γαβ ≡ ∂ε̂hBαβ |ε̂=0.
It is immediate to write down the Euler-Lagrange equations for the first order per-

turbations linearising the equations (4.2) and (4.3). After substituting the expression for
the perturbed Ricci curvature of the BON ansatz (4.11), given by eq. (4.12), the linearized
equations for the metric tensor read39

∇2W (1) = 0, R
B(1)
αβ = (D − 4)∇α∇βW (1) − 2∇α∇βφ(1) − 1

16 α̂R
2
GBh

B
αβ , (5.56)

while the one of the dilaton leads to

∇2φ(1) = α̂

16R
2
GB. (5.57)

In the previous expressions ∇ is the Levi-Civita connection compatible with the metric on
the unperturbed bordism hBαβ , and it should be understood that the Gauss-Bonnet term,
R2

GB, is evaluated on the background metric of BII|α=0.
Note that the radius R−1 of the SD−4 component of the geometry is absent from these

equations, since it appears quadratically in (4.12), and therefore it becomes relevant only
to second order in perturbation theory. To understand this point, first recall that the R
represents the bubble radius at the time of nucleation which (as we prove below) it is
controlled by the length-scale `ssb ∼ R. Since we are considering features of the inner-
bubble region of the bordism BII with natural scales `kk � `ssb, the curvature of the SD−4

is comparatively very small, R−1 � `kk, and thus it can be consistently neglected in the
perturbative analysis.40

5.3.1 Decoupling of the zero-modes

In the present section we will rewrite and simplify the previous set of linearized equations,
and we will also discuss the decoupling of the zero-modes (massless deformations of the
bordism B4) from the non-supersymmetric deformation of the action. This decoupling of
the zero-modes is essential for our construction, as it is a requirement for the existence of
solutions to the linearized equations.

To begin the analysis, let us first consider the perturbation of the warp factor W (1)

on the sphere SD−4. The perturbation W (1) obeys a Laplace equation on the manifold
BII, whose boundary at infinity is topologically a three-torus quotient, ∂BII ∼= T 3/Γ (see
section 5.2.1). As discussed in section 5.1.1, in order to be able to glue the perturbed
inner-bubble geometry to the outer-bubble region, we need the KK modes associated to

39Here we have used that in a four dimensional manifold with metric hBαβ with zero Ricci tensor, the
curvature satisfies the following relation R δγκ

α Rβδγκ = 1
4R

2
GBgαβ [89].

40The authors thank J.J. Blanco-Pillado for a discussion on this point.

– 50 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
2

the ∂BII directions to decay far from the bubble core. Since this implies that W (1) should
be a constant on ∂BII, then the only non-singular solutions that we can find to the Laplace
equation are those where W (1) is a constant on BII. Finally, this constant can always be
set to zero without loss of generality, W (1) = 0, as it can be absorbed with a redefinition
of the SD−4 radius, R.

Next, to rewrite the equations for the metric perturbations on the manifold BII, it
is convenient to decompose the perturbation γαβ into its trace, which we denote for later
convenience by 8ϕ(1), and its traceless part γ̄αβ . Furthermore, we will fix partially the
spacetime gauge imposing the traceless part to be transverse. That is,

γαβ = γ̄αβ + 2ϕ(1) hBαβ , with ∇αγ̄αβ = 0. (5.58)

Comparing this with the local metric ansatz (5.9) on the inner-bubble region, it is imme-
diate to associate ϕ(1) with he first order variation of an overall volume factor e2ϕ. Thus ϕ
can be regarded as a volume modulus with constant background value ϕ0, which becomes
spacetime dependent to first order in α. In this gauge, the equations (5.56) for the trace
and the transverse traceless components of the metric perturbation are simply

∇2
(
φ(1) − 3ϕ(1)

)
= − α̂8R

2
GB, (5.59)

and
∇2γ̄αβ − 2RBλαλ′β γ̄λλ

′ = 4
(
∇α∇β −

1
4h
B
αβ∇2

)(
φ(1) − ϕ(1)

)
, (5.60)

where we have already set W (1) = 0, and the Ricci identity has been used to rewrite the
left hand side of the last equation (see e.g. [103]).

The equation for the volume modulus (5.59), when combined with the dilaton equa-
tion (5.57), implies that the difference φ(1)−ϕ(1) satisfies the Laplace equation on BII and
thus, as in the case of the perturbation W (1), the boundary conditions on ∂BII require this
combination to be a constant. This constant can be absorbed by shifting the background
values of ϕ and φ, so we find that the first order perturbations of the dilaton and the
volume modulus satisfy the relation ϕ(1) = φ(1).

Now, if the previous relation is substituted in (5.60), it can be seen that its right hand
side vanishes. The resulting equation is the well known Lichnerowicz equation,

∇2γ̄αβ − 2RBλαλ′β γ̄λλ
′ = 0, (5.61)

whose solutions are massless deformations of the background geometry, i.e. moduli of
B4 [104]. Therefore γ̄αβ must be a zero-mode of the inner-bubble background geome-
try, which can again be absorbed with a redefinition of the background, and thus without
loss of generality we can set γ̄αβ = 0. We conclude that the first order variation of the
geometry of BII is completely specified by the trace part of the perturbation, ϕ(1)(y), which
describes a warping with dependence only on the coordinates on the bordism.

Finally, collecting all of these results we can see that the resolution of the equations for
the first order perturbations, (5.56) and (5.57), amounts to solving the following Poisson
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equation on the background geometry of BII

∇2ϕ(1) = α̂

16R
2
GB. (5.62)

By construction, the source term R2
GB is finite everywhere and is non-zero only in a com-

pact region of the manifold B4 (its integral over B4 is 32π2N). Then, since we are not
imposing any specific boundary conditions on the perturbations for now (see section 5.4
for clarification), there are no impediments to finding smooth solutions for (5.62).

As anticipated above, all zero-modes of the background geometry except the volume
modulus decouple from the non-supersymmetric deformation, and regarding ϕ(1) there is
no run-away potential which could prevent us from constructing the instanton solution.

For later reference we also write here the relation between the perturbation ϕ(1) and
the deformation of the Ricci scalar on BII

R
(1)
B = −6∇2ϕ(1). (5.63)

Thus, the Gauss-Bonnet term induces a metric deformation leading to a negative scalar
curvature on B4 (α > 0), for which there is no topological obstruction. This negative
scalar curvature localized at the degenerations of the elliptic fibration is the key physical
ingredient that allows us to evade the PET.

5.3.2 Layer (II.): warped inner-bubble region

We will now discuss the warped geometries described by the Poisson equation (5.62), when
the background is given by the Calabi-Yau geometries discussed in section 5.2. We begin
with a characterisation of the perturbation at the BON core II.c, and proceed moving
across the layers II.b and II.a towards the larger scale structure of the instanton solution.
For simplicity we will look for solutions where the warp factor has no dependence on the ψ
coordinate, i.e. we neglect the associated KK modes, so that (5.62) on BII reduces to the
standard Poisson equation in flat space

∇2
(3)ϕ

(1) = α̂

16e2ϕ0 (V R2
GB), (5.64)

where ∇2
(3) is the flat-space Laplace operator in three dimensions, and the product of V R2

GB
is evaluated on the background.

Bubble core (II.c). As we discussed in section 5.2.3, in this regime the geometry is
given by the line element (5.47) describing a single KK monopole, and the associated
Gauss-Bonnet term is (5.49). Then, the warped geometries are described by the solutions
to the equation

∇2
(3)ϕ

(1)|core = 6π e−2ϕ0R3
0

R(R0 +R)5 α̂. (5.65)

As the background spacetime of the KK monopole is spherically symmetric we can find
solutions where the warp factor depends only on the radial coordinate ϕ(1) = ϕ(1)(R) [90]

ϕ(1)|core = πe−2ϕ0

2 α̂
(R3 + 2R2R0 − 2R3

0)
(R+R0)3R0

+ 3πe−2ϕ0 α̂ log 12. (5.66)
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Here one of the integration constants has been fixed requiring regularity at the origin, and
the value of the second one has been chosen for later convenience. Recall that, as shown
in section 5.2.3, the KK monopole radius (5.48) is very small for the class of background
geometries that we consider R0 ∼ | log(`fibre/`kk)|−1 � 1, (see eq. (5.52)). Then, provided
we are interested in the behaviour of the warp factor at radii R � R0, the source term
in (5.65) can be well approximated by a Dirac delta at the origin with weight 2π2e−2ϕ0α̂,
while the volume modulus ϕ(1) takes the Newtonian form

lim
R/R0→∞

ϕ(1)|core →
π e−2ϕ0

2

(
6 log 12 + 1

R0
− 1
R

)
α̂+O(α̂| log ε|−4), (5.67)

where e2ϕ0R0 ∼ O(ε0), and ε = `fibre/`kk � 1 is the parameter characterising the degener-
ate/LV limit of the background. Note that this approximation is valid even for moderately
small values of the radius R . 1, since we have R0/R = O(| log ε|−1)� 1.

Layer (II.b): hyperkähler regime. Let now us move further way from the KK
monopole location, and consider the Poisson equation (5.64) in the whole hyperkähler
region which characterises the neighbourhood of one of the degeneration points, Bahk.

For the solutions to the equation (5.64) to be consistent with the identifications of the
background we should impose the periodic boundary conditions on the warp factor along
the direction y1, that is ϕ(1)(y1) = ϕ(1)(y1 + 1). Then, we can formally write the solution
to (5.64) using the associated Green’s function

G(w, y1, w′, y1′) = 1
2π log(|w − w′|)− 1

π

∑
m>0

cos(2πm(y1 − y1′))K0(2πm|w − w′|), (5.68)

which involves the modified Bessel function of the second kind K0. Here w represents
collectively the coordinates w = (y2, y3) on Bahk, and |w| = ρ ≤ ρ∗ is the radial coordinate
used in section 5.2.2. The formal expression for the volume modulus ϕ(1) is

ϕ(1)(w, y1)|hk = α̂

16π

∫
Bahk

d2w′
[1

2 log
(
|w − w′|

)
(V R2

GB)0(|w′|)

−
∑
m>0

cos(2πmy1)K0(2πm|w − w′|)(V R2
GB)m(|w′|)

]
+ ϕ

(1)
h , (5.69)

where we have expressed the result in terms of the Fourier coefficients of the source term
in (5.64)

(V RGB)(|w′|)m = 2e2ϕ0

∫ 1

0
dy1 cos(2πmy1)V R2

GB(|w′|, y1), (5.70)

and ϕ
(1)
h is a harmonic function to be determined. The perturbed spacetime Bahk has

to be glued with the semi-flat regime B∗sf across its boundary at |w| = ρ∗ � 1, and
then we need to characterise the asymptotic behaviour of the warp factor in the limit
|w| → ∞. As we discussed in the previous paragraph, the source term of the Poisson
equation (5.64) is very localized within a region |w| . R0 ∼ O(| log ε|−1), and it becomes a
Dirac delta function located at the KK monopole centre in the strict degenerate/LV limit of
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the background, ε→ 0. Therefore, near the boundary |w| = ρ∗ � R0 the volume modulus
is well approximated by

ϕ(1)(ρ, y1)|hk ≈ 2πα̂ e−2ϕ0

(
1
2 log(ρ)−

∑
m>0

cos(2πmy1)K0(2πmρ)
)

+ ϕ
(1)
h

≈ π e−2ϕ0 α̂ log(123ρ/ρ0)− π e−2ϕ0 α̂ cos(2πy1)e−2π ρ
√
ρ

+ . . . , (5.71)

where in the second step we have fixed an integration constant comparing the previous
expression in the limit ρ → 0 with (5.67), and using the definitions (5.48) and (5.41).
Here we can see that, similarly to the background geometry, far from the KK monopoles
the corrections to the modulus ϕ(1) from massive Kaluza-Klein modes are exponentially
suppressed, and only the zero-mode (m = 0) remains active. Notice also that we have set
to a constant the harmonic function ϕ(1)

h appearing in (5.69)

ϕ
(1)
h = −π e−2ϕ0 α̂ log(ρ0/123). (5.72)

As we will see next, this function is determined by the boundary conditions for ϕ(1) at |w| =
ρ∗, which in the present case are given by the gluing conditions between the hyperkähler
and the semi-flat regimes.

Layer (II.a): semi-flat regime. We will now leave the neighbourhood of the degener-
ation points and discuss the behaviour of ϕ(1) in the semi-flat region of the inner-bubble
geometry, B∗sf. Using the metric given by (5.13) and (5.18) as a background, we look for so-
lutions to the Poisson equation (5.62) requiring that ϕ(1) has no dependence on y1, that is,
we neglect entirely the KK modes associated to the T 2 fibre. Note that this ansatz avoids
a possible conflict with the identifications (5.17) on the gluing hypersurfaces (5.20) within
B∗sf. Actually, those diffeomorphisms leave invariant the function ϕ(1) = ϕ(1)(z), what en-
sures that the warp factor is globally defined over the whole semi-flat region. Substituting
this ansatz into the equation (5.62) we find

∇2
(2)ϕ

(1)|sf = α̂

16e2ϕ0 |F |2 Im(τ)R2
GB|sf, (5.73)

where the operator ∇2
(2) is the two-dimensional Laplacian in flat space, and RGB|sf is the

Gauss-Bonnet invariant of the metric (5.13).
Let us now estimate the scaling of the source term with the degenerate/LV parameter

of the background, ε. The maximum value for the right hand side of (5.73) is attained near
the degeneration points, i.e. at the boundaries |z − za| = r∗, where spacetime curvature
on B∗sf is largest. Using the local form of the semi-flat geometry (5.31), (5.30) and (5.29),
together with the ε scaling relations (5.39) and (5.52), we obtain

0 ≤
[
α̂

16e2ϕ0 |F |2 Im(τ)R2
GB

]
max

= 24πα̂
`2sfr

4
∗ log(r0/r∗)3 = O(ε2), (5.74)

where `sf was defined in (5.32). Since we are assuming ε̂ ∼ ε, we see that the source term
of (5.73) has to be neglected everywhere when we work to first order ε̂, and therefore ϕ(1)|sf
needs to be a harmonic function on the semi-flat layer.

– 54 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
2

To determine the function ϕ(1)|sf we have to provide appropriate boundary conditions.
The semi-flat region B∗sf has N internal boundaries around the degeneration points za,
defined by |z − za| = r∗, and an external boundary at |z| = rmax � 1 where the semi-
flat region connects with the outer-bubble regime. The boundary conditions that we are
seeking will be provided by the gluing conditions (5.5) between the semi-flat (II.a) and
hyperkähler (II.b) spacetimes at the N internal boundaries, and by the matching of the
semi-flat and the outer-bubble region (I.) at the external one. Let consider now the gluing
between the layers (II.b) and (II.a) of the inner-bubble regime, and leave the matching
with the outer region for section 5.4. According to the discussion in section 5.2.2, the
gluing conditions (5.42) require that the first order variations (with respect to ε̂) of the
first, s(1)

ab , and second fundamental forms, K(1)
ab , of the matching boundary ∂Bahk should

agree with those of ∂B∗sf. Leaving the gluing diffeomorphism (5.40) unperturbed we find
the conditions

0 = ∆s(α)

= Φ∗(s(1)
hk )− s(1)

sf = 2
(
Φ∗(ϕ(1)

hk )− ϕ(1)
sf

)
s

(0)
m=0

0 = ∆K(α)

= Φ∗(K(1)
hk )−K(1)

sf =
(
Φ∗(ϕ(1)

hk )− ϕ(1)
sf

)
K

(0)
m=0 +

(
Φ∗(∇nϕ(1)

hk )−∇nϕ(1)
sf

)
s

(0)
m=0.

Here the variations s(1) and K(1) have been computed using the results in [97] together
with the form of the first order metric perturbation (5.58). The quantities s(0)

m=0 and K(0)
m=0

are the KK zero-modes of the leading order fundamental forms, which we already proved
to satisfy the matching conditions in section 5.2.2. The previous equations are equivalent
to imposing the continuity of the volume modulus ϕ(1) and its derivative ∇nϕ(1) across the
matching hypersurface, where n is the associated unit normal vector.41 Let us consider the
following tentative solution which is harmonic in ∂B∗sf

ϕ(1)|sf(z) = πe−2ϕ0α̂
∑
a

log(|z − za|/z0), (5.75)

and satisfies ϕ(1)|sf(0) = 0. At the boundary |z − za| = r∗ near the degeneration point za
this function takes the approximate form

|z − za| = r∗ : ϕ(1)|sf ≈ πe−2ϕ0α̂ log(Nr∗/z0) +O(εq), (5.76)

what can be compared with (5.71) using the gluing diffeomorphism (5.40). We find that
the zero-mode KK components of ϕ(1)|hk and ∇nϕ(1)|hk match properly with the function
ϕ(1)|sf and its derivative to leading order in ε (recall that q ≥ 2). Regarding the massive KK
modes in (5.71), their contributions are exponentially suppressed by O(e2πmr∗/ε) factors,
and thus they can be consistently neglected. Therefore, we conclude that the function (5.75)
is an appropriate extension of the volume modulus ϕ(1) in the semi-flat layer.42

41The unit normal hyperkähler boundary is given by nρ|hk =
√

2π/ log(ρ0/ρ∗) e−ϕ0 , and the one corre-
sponding to the semi-flat boundary is nr|sf = (`fibre/`sf)

√
2π/ log(r0/r∗) e−ϕ0 .

42This also proves the consistency of setting the undetermined harmonic function ϕ
(1)
h of (5.69) to a

constant in (5.71).
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Summarising, at this point we have successfully constructed the first order deformation
in α of the inner-bubble spacetime, that is the layer BII. The perturbation corresponds to a
warping of the background Calabi-Yau geometry on BII, with the warp factor exp(2ε̂ ϕ(1))
given by the expressions (5.69) and (5.75) on the hyperkähler (II.b) and semi-flat layers
(II.a) respectively. Finally, the perturbed spacetime BII that we just obtained needs to
be glued with the outer-bubble regime across its boundary at |z| = rmax � 1, and thus to
finish this section we will analyse the behaviour of the warp factor in the limit |z| → ∞.
From (5.75) it is straightforward to obtain the asymptotic form of ϕ(1)

lim
|z|→∞

ϕ(1)|II → πe−2ϕ0N α̂ log(r/z0)− πe−2ϕ0 α̂ cos(Nθ)z
N
0
rN

+ . . . , (5.77)

while the derivative along the normal direction to the boundary ∂BII reads

∇nϕ(1)|∂BII = 2π2N

VT 3 |∂BII

α̂, with VT 3 |∂BII = 2πRkk|θ e2ϕ0 r
(1−N12 )
max , (5.78)

where n = R−1
kk|θ ∂r is the normalized normal vector to the boundary ∂BII, with Rkk|θ

defined in (5.22), and z = reiθ. As a consistency check, note that this last expression
is consistent with the result of applying Gauss’s theorem to the Poisson equation (5.62).
This follows from the fact that the source term in (5.62) is proportional the Gauss-Bonnet
invariant, and then its integral over BII gives 2π2 χ(BII), where Euler characteristic of BII
is precisely the number of degenerations of the fibre, χ(BII) = N .

5.4 Layer (I.): the outer-bubble regime

In the previous section we have constructed the inner region of the BON instanton, that
is, a spacetimeMII ∼= SD−4 ×BII which solves to the equations of motion (4.2) and (4.3)
for small values of perturbation parameter α, and where BII has the topology described in
section 4.1. To make this analysis tractable we have assumed the compact space C ∼= T 3/Γ
to be in a degenerate/LV limit. We will now discuss the outermost layer of the bubble
geometry, with spacetime denoted by MI, which interpolates between the inner-bubble
region and the asymptotic (euclidean) vacuum RD−3 × T 3/Γ, (3.6).

As we argued in section 5.1.1, the massive KK modes of the compact space are expected
to be suppressed in this regime, and thus we will describe this spacetime region with
a solution to the Euler-Lagrange equations where the KK modes are neglected entirely.
We will prove the consistency of this approach showing that the gluing conditions (5.5)
between inner-bubble and outer-bubble regions can still be satisfied consistently with our
approximation scheme. Below we shall see that the behaviour the spacetime geometry in the
outer layer is inherently non-linear due to the boundary conditions (4.13) of the metric BON
ansatz (4.11), and therefore we will have to solve a non-linear set of equations of motion in
this layer. Still, as a result of the SO(D − 4) symmetry of the BON ansatz, and provided
we neglect the KK modes on the compact space, the Euler-Lagrange equations reduce to
a coupled system ODE’s that can be easily solved using a combination of analytical and
numerical methods.
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Metric ansatz and Euler-Lagrange equations. In order to solve the equations of
motion we will use the following ansatz consistent with neglecting the KK modes on the
compact space T 3/Γ

ds2|MI = W 2(ρ)R2 dΩ2
D−4 + dρ2 + C2(ρ) dθ2 + e2(ϕ−ϕ∞)ds2

T 2 , (5.79)

where ϕ|I = ϕ|I(ρ), and we also take the dilaton to be a function of ρ only, φ|I = φ|I(ρ).
In the previous expression dΩ2

D−4 is the line element on the unit SD−4 sphere, ds2
T 2 rep-

resents the metric on the T 2 fibre of the compact space T 3/Γ at the vacuum (3.6), and
θ parametrises the remaining cycle of the three-torus whose asymptotic radius we denote
by Rkk. Therefore, the metric and dilaton fields should approach the following asymptotic
configuration for the BON to meet the boundary conditions (4.13)

ρ→∞ : W (ρ)→ ρ/R, C(ρ)→ Rkk, ϕ(ρ)→ ϕ∞, and φ(ρ)→ φ∞, (5.80)

In section 5.3.2 we showed that when working in the degenerate/LV limit of the compact
space T 3/Γ, the contribution of the Gauss-Bonnet term from the curvature on B4 can be
neglected almost everywhere except on the bubble’s multiple cores. Similarly it is easy to
check that the contribution to R2

GB from the curvature on the SD−4 sphere scales as R−4 ∼
(`kk/`ssb)4 � 1, and thus it can also be neglected in the equations of motion describing
the outer-bubble regime. We will see below that this is a very good approximation for the
solutions that we find.

With the ansatz (5.79), and discarding the contribution form the Gauss-Bonnet term,
the Euler-Lagrange equation for the dilaton reduces to

φ′′ +
(

(D − 4)W
′

W
+ C ′

C
+ 2ϕ′

)
φ′ − 2φ′2 = 0, (5.81)

while the equations for the metric profile functions W , C and ϕ are43

W ′′ +W ′
(
C ′

C
+ 2ϕ′ − 2φ′

)
− (D − 5)W−1(R−2 −W ′2) = 0,

C ′′ + (D − 4)W
′

W
C ′ + 2C ′ϕ′ − 2C ′φ′ = 0,

ϕ′′ + (D − 4)W
′

W
ϕ′ + C ′

C
ϕ′ + 2ϕ′2 − 2φ′ϕ′ = 0. (5.82)

To solve this system of coupled ODE’s we need to specify the boundary conditions for
the profile functions W (ρ), C(ρ), ϕ(ρ) and the dilaton φ(ρ) both at infinity ρ → ∞,
where they are given by (5.80), and at the matching surface with the inner-bubble regime,
i.e. ∂MI ∼= ∂MII.

Gluing with the inner-bubble region. From the analysis in the previous section we
know that far from the degenerations the inner-bubble regime MII can be described to
first order in α by a field configuration of the following form

ds2|II → R2dΩ2
D−4 + e2(ϕ−ϕ0) (du2 + Ĉ2(u)dθ2) + e2(ϕ−ϕ∞)ds2

T 2 . . . , (5.83)
43The ρ−ρ component of Einsteins equations also leads to a constraint on the initial conditions at ρ = ρ∗

which can be seen to be satisfied up to O(α2) corrections, in consistency with the analysis in section 5.3.
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with both the volume modulus ϕ|II → ϕ|II(u) and the dilaton φ|II → φ|II(u) approaching
functions of u only, and where Ĉ(u) can be read from equations (5.23) and (5.24). The
dots denote higher order corrections in α and 1/u, which include massive KK modes of the
compact manifold. The modulus ϕ and the dilaton φ, are determined by their perturbative
description, with their background values given respectively by ϕ0 and φ0, and their first
order perturbations in terms of the function ϕ(1) in (5.77) by ∂ε̂φ|ε̂=0 = ∂ε̂ϕ|ε̂=0 = ϕ(1).

With this parametrisation ofMII at hand we can define the complete BON spacetime
manifoldM as follows

M∼=M∗I ∪M∗II, M∗II
∼=MII \Bu∗(0), M∗I ∼=MI \Bρ∗(0), (5.84)

where the component spacetimesM∗II andM∗I are obtained fromMII andMI cutting out
respectively the regions with u > u∗ and ρ < ρ∗. To make this manifold connected we need
to introduce the gluing diffeomorphism Φ : ∂M∗I → ∂M∗II which identifies the boundaries
of the component spacetimes ∂MII (u = u∗) and ∂MI (ρ = ρ∗). Due to the convenient
coordinate choices used in (5.79) and (5.83), to first order in ε̂ the diffeomorphism Φ can
be taken to be the trivial map given by xµ|II = xµ|I and yᾱ|II = yᾱ|I, where xµ and
yᾱ parametrise respectively the SD−4 and T 3/Γ components of the boundaries ∂MII ∼=
∂MI ∼= SD−4 × T 3/Γ. In the next paragraphs we discuss the gluing conditions (5.5)
that guarantee the metric tensor to be continuous, and the absence of shells/branes on
the matching hypersurface. As we shall see, those equations together with (5.80) provide
the necessary conditions to solve the boundary value problem associated to the system of
equations (5.81) and (5.82). .

5.4.1 Bubble decay of the T 3 compactification

We will now focus on the bubble of nothing solution for the vacuum with compact space
T 3. In this case we have to set the number of degenerations on the inner-bubble geometry
to N = 12, so that the bordism BI corresponds to a warped “half-K3 space”, and we
can obtain an appropriate ansatz for the outer-bubble regime setting C(ρ) = eϕ−ϕ∞Rkk
in (5.79). As the inner bubble region has been constructed using perturbation theory, we
will also have to resort to perturbative matching techniques to glue the inner and outer
regimes. It is important to stress that, while the boundary conditions at the hypersurface
separating the two layers are obtained with perturbative methods, the evolution in the
interior of MI described by (5.81) and (5.82) is fully non-linear. More specifically, due
to the asymptotic behaviour ρ → ∞ of the function W (ρ) → ρ/R on (5.79), the outer-
bubble geometry cannot be regarded as a small perturbation of the background Calabi-Yau
geometry used to construct of the inner-bubble layer.

If we neglect the subleading terms in (5.83), we find that imposing the metric tensor to
be continuous across the matching surface to first order in α = ε̂α̂ (left equation in (5.5))
is equivalent to the conditions (see eqs. (5.53) and (5.54))

W |I(ρ∗) = 1 +O(α2), ϕ|I(ρ∗) = ϕ|II(u∗) +O(α2), (5.85)

Furthermore, after identifying the unit normals n|II = e−ϕ(u∗)∂u and n|I = ∂ρ to the
respective boundaries ∂MII and ∂MI, and using (5.78) we find that the requirement of
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Figure 8. Outer-bubble regime of the T 3 BON with deformation parameter 24π2

VT3
α = 0.005. The

solid line is related to the warp factor on the sphere, RW ′(ρ), and the dashed line represents the
volume of the T 3 compact space, VT 3(ρ)/V∞T 3 , with the radial coordinate ρ displayed in logarithmic
scale. The bubble nucleation radius is R = 32.2, and the three-torus volume at the boundary of the
inner-bubble regime is given by V∗T 3 = 0.5×V∞T 3 , where V∞T 3 is the asymptotic T 3 volume, denoted
simply by VT 3 in the text.

having no shell on the matching boundary is equivalent to

W ′|I(ρ∗) = O(α2), ϕ′|I(ρ∗) = ∇nϕ|II(u∗) = 24π2

V∗T 3
α+O(α2), (5.86)

to first order in α, where V∗T 3 = VT 3 e3(ϕ(u∗)−ϕ∞) is the three-torus volume at the matching
point u = u∗. These conditions have to be supplemented with the requirement that the
dilaton is smooth, which implies

φ|I(ρ∗) = φ|II(u∗), φ′(ρ∗)|I = ∇nφ|II(u∗) = 24π2

V∗T 3
α+O(α2). (5.87)

To derive the second equation we used that the first perturbation of the dilaton and that
of ϕ are equal, together with (5.78). These initial conditions are consistent with the ansatz
φ = ϕ − ϕ∞ + φ∞, which reduces the set of equations (5.81) and (5.82) to the equivalent
system

ϕ′′ + (D − 4)W
′

W
ϕ′ + ϕ′2 = 0, W ′′

W
− (D − 5)(R−2 −W ′2)

W 2 + W ′

W
ϕ′ = 0. (5.88)

Note that the initial value ϕ(u∗) = ϕ0 + O(α) and the BON radius R are a priori free
parameters, which can be varied arbitrarily by changing the background inner-bubble geom-
etry. However, as we shall see, the Euler-Lagrange equations and the boundary conditions
determine the relation between these two quantities.

To solve the resulting boundary value problem it is convenient to use the following
scaling symmetry satisfied by the equations of motion

R → λ−1R, W (ρ)→W (λρ), ϕ(ρ)→ ϕ(λρ), with λ ∈ R+, (5.89)

which also acts on the fields derivatives as follows

W ′(ρ)→ λW ′(λρ), ϕ′(ρ)→ λϕ′(λρ). (5.90)
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Figure 9. Dependence of the outer-bubble geometry on the value of the T 3 volume at the matching
point, V∗T 3 = V∞T 3 e−∆ϕ. The plot displays the T 3 volume VT 3/V∞T 3 as a function of the radial coor-
dinate ρ for a fixed parameter 24π2

VT3
α = 0.005, and varying values of V∗T 3/V∞T 3 = {0.7, 0.8, 0.9, 0.99}

(from bottom to top). The corresponding radii are respectively R = {455.4, 231.5, 95.1, 8.1}.

Therefore, given a solution to the boundary value problem with a specific value for α, for
example α = α̊ ≡ V∗T 3/(24π2), it is possible to construct solutions for arbitrary (but small)
values of α using that

R|α(ρ) = (α̊/α)R|α̊ W |α(ρ) = W |α̊(αρ/α̊), ϕ|α(ρ) = ϕ|α̊(αρ/α̊), (5.91)

and with ρ∗(α) = (α̊/α)ρ∗(α̊), as can be checked comparing (5.90) with (5.86) and (5.87).
Without further computations we can already see from (5.85) that the bubble radius be-
haves as

R = R̊ e−3∆ϕ
(

24π2

VT 3
α

)−1

, (5.92)

where R̊, which is independent of α, is a function of ∆ϕ that needs to be determined.
Then, as ∆ϕ is unaffected by the scaling relation (5.89), we find that the nucleation radius
diverges as we turn off the Gauss-Bonnet coupling, α → 0. This precisely the behaviour
anticipated in section 4.3, when we discussed the dynamical constraint.

To find the unknown coefficient in the previous expression we solve numerically the
system of equations (5.88) subject to the boundary conditions (5.85) and (5.86) at ρ = ρ∗
(which we set at ρ∗ = 0), together with (5.80) at ρ → ∞. The result of this numerical
computation for D = 7 is shown in figure 8 for the case 24π2

VT3
α = 0.02 and V∗T 3/VT 3 = 0.5,

where we find a BON nucleation radius R = 32.2. In this solution we have estimated the
magnitude of the Gauss-Bonnet term, and it is everywhere smaller than 6π2

VT3
αR2

GB . 10−14,
what justifies neglecting it in the equations of motion. Qualitatively similar solutions can
also be found for other dimensions D = 6, . . . , 10. We have also found that the total
growth of the volume modulus ∆ϕ, remains a free parameter of the BON spacetime. This
quantity characterises the ratio between the asymptotic T 3 volume VT 3 and its value at
the boundary between the inner and outer regimes V∗T 3 , and our numerical solutions show
a one to one correspondence with the BON nucleation radius (see figure 9).
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To understand better the dependence of the nucleation radius on the quantity ∆ϕ let
us consider the regime ∆ϕ→∞. For this purpose, it is convenient to note that the reduced
system of equations (5.88) admits the following first integral

W ′(ρ) = R−1
(
1−W−(D−5)

)1/2
, ϕ(ρ) = ϕ∞ + log(RW ′(ρ)). (5.93)

Imposing the boundary conditionW (0) = 1, we find that in the limit ρ/R → 0 the solution
of these equations has the expansion

W |I(ρ) = 1 + (D − 5)ρ2

4R2 + . . . , ϕ|I(ρ) = ϕ∞ + log
((D − 5)ρ

2R

)
+ . . . . (5.94)

Then, in order to meet the matching conditions for the volume modulus in (5.85) and (5.86),
it is straightforward to see that we need so set the matching boundary at a point ρ = ρ∗ �
R, given by

ρ−1
∗ = 24π2α

VT 3
e3∆ϕ � 1, and ∆ϕ = − log

((D − 5)ρ∗
2R

)
� 1. (5.95)

This in turn implies that the nucleation radius (in string frame) is

lim
∆ϕ→∞

R = (D − 5)e−2∆ϕ

2

(
24π2α

VT 3

)−1

, (5.96)

which satisfies R � ρ∗ � 1, justifying the use of the expansion (5.94). In addition we can
now also check that the gluing condition in (5.85) and (5.86) for the warp factor W (ρ) are
also satisfied, and particular we have W ′(ρ∗) = O(R−1e−∆ϕ)� O(R−1).

Although in the present analysis ∆ϕ (i.e. the ratio V∗T 3/VT 3) remains a free parameter
of the BON geometry, higher order O(α2) corrections will fix this value in general, and
possibly also other moduli such as the locations of the degenerations. To illustrate this point
in appendix A we consider a slightly more complicated model than (3.2) with additional
ingredients which fix the T 3 volume at the vacuum. In that scenario we show that both
∆ϕ and the BON radius R must also attain a specific value on the BON configuration
which is determined by the higher order corrections.

To finish this discussion, it only remains to justify that the active KK modes of the
semi-flat layer are consistently neglected in (5.83). In order to find the magnitude of the
leading corrections we need an estimate the position u = u∗ of the boundary of the inner-
bubble layer (5.83). Comparing the line elements (5.83) and (5.79) we find that, up to
subleading α corrections, the radial coordinates u and ρ can be identified consistently with
the gluing conditions. Therefore, from here and (5.91) we can see that the value of u at
the matching hypersurface scales as u∗ ∼ α−1 ∼ ε−1 = `kk/`ssb. Then, expressing the
leading KK corrections of the semi-flat regime, (5.21) and (5.77), in terms of the variable
u (defined in (5.24)), we find that the error made in the gluing as a result of neglecting the
massive KK modes scales as44

(Φ∗(sII)− sI) = O(e−p `ssb/`kk) ∼ e−p/ε � ε, (5.97)
44A similar expression can be found for the second fundamental forms K|I and K|II.
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where p is a positive real number. With this at hand, we conclude that the contributions
from massive KK modes are indeed subleading, and that it was justified ignoring them
in (5.83). This completes our construction of the BON instanton mediating the decay of
the compactification on T 3.

5.4.2 Bubble decay for the G3 compactification

We will now discuss the bubble of nothing decay of the vacuum where the compact space is
a torus quotient C3 ∼= T 3/Γ. For definiteness concentrate in the vacuum with T 3/Γ ∼= G3,
but the results are also applicable to a generic choice of Γ.

In the case of the G3 compactification, the appropriate manifold to describe the inner-
bubble region is a warped non-compact Calabi-Yau manifold of the class discussed in
section 5 with N = 8 degenerations. The matching conditions between the inner and
outer bubble regimes are identical to the T 3 case for the metric function W (ρ), the volume
modulus ϕ(ρ) and the dilaton, that is, the equations (5.85), (5.86) and (5.87). These
conditions should be supplemented with the gluing constraints for the metric function
C(ρ) appearing in (5.79), which we find to be

C|I(ρ∗) = u∗

(
1− ∆

2π

)(
1 + ϕ(1)|II(u∗)

)
+O(α2),

C ′|I(ρ∗) =
(

1− ∆
2π

)
+ u∗

(
1− ∆

2π

)
∇nϕ|II(u∗) +O(α2), (5.98)

where ∆ = Nπ/6 is the deficit angle in the geometry (5.23). Then, as for the T 3 compact-
ification, in the G3 case it is also consistent to use the ansatz φ = ϕ − ϕ∞ + φ∞ in the
equations (5.82), which now reduce to

W ′′ +W ′
C ′

C
− (D − 5)W−1(R−2 −W ′2) = 0, (5.99)

C ′′ + (D − 4)W
′

W
C ′ = 0, (5.100)

ϕ′′ + (D − 4)W
′

W
ϕ′ + C ′

C
ϕ′ = 0. (5.101)

Let us first consider the limit α→ 0, where the volume modulus can be set to its asymptotic
value ϕ = ϕ∞. The equations for W (ρ) and C(ρ) admit the following first integral

W ′(ρ) = R−1
(
1−W−(D−5)

)1/2
, C(ρ) = RkkRW ′(ρ) (5.102)

where we will impose the boundary condition W (0) = 1. Actually, as we saw in section 2.1,
this is just the standard Witten’s BON instanton in disguise. In this case the Witten’s
solution is embedded in an asymptotically flat spacetime with D−3 non-compact directions,
where θ parametrises the collapsing S1 in (5.79), and with two inert extra dimensions
compactified in a two-torus. In the limit ρ/R → 0 the solution to (5.102) admits the
expansion

W (ρ) = 1 + (D − 5)ρ2

2R2 + . . . , C(ρ) = Rkk
(D − 5)

2R ρ+ . . . . (5.103)
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Assuming for now that the nucleation radius scales as R = O(ε−q) with q ∈ R+, we can
satisfy all the matching conditions for W (ρ) in (5.85) and (5.86) to order O(ε2q) setting
the matching boundary at a point ρ∗ = O(1)� R. Furthermore, the conditions (5.98) for
the metric function C(ρ) can also be solved setting u∗ = ρ∗, and imposing the relation

R = Rkk
(D − 5)

2(1− ∆
2π )

, with ∆
2π = 2

3 . (5.104)

The consistency of this construction requires that the asymptotic radius of the collapsing
cycle also scales as Rkk = O(ε−q). Therefore, as we anticipated in section 4.3, the bubble
nucleation radius is finite even though we have turned off the Gauss-Bonnet coupling.

For small non-zero values of α we obtain a deformation of the Witten’s BON space-
time (5.102). In particular the matching constraints for the metric functions W (ρ) and
C(ρ) can be satisfied to order O(α) setting the positions of the gluing boundaries as
ρ∗ = u∗(1 + ϕ|II(u∗)), and with an appropriate modification of the deficit angle ∆ in
the formula for R (5.104)

∆
2π = N

12 −
24π2α

VG3
e2∆ϕRkk +O(α2), (5.105)

where VG3 is the volume of the G3 compact space at the vacuum, and ∆ϕ determines the
volume growth of the T 2 fibre in the outer bubble region, VT 2(ρ∗)/VT 2 = e−2∆ϕ. This
implies that the effect of the Gauss-Bonnet term is to reduce the BON radius and, as we
shall see below, to increase nucleation rate of these bubbles. Interestingly, as opposed to
our discussion on the T 3 compactification, in this case we have been able to fully determine
the bubble radius even when the Gauss-Bonnet coupling is turned on. The reason for this is
that the bubble we just constructed is a deformation of the standard Witten’s BON, which
is an exact solution to Einstein’s equations in the outer bubble layer. Thus the nucleation
radius was already determined to zero order in α.

Regarding the volume modulus ϕ, we can determine its behaviour integrating the third
equation in (5.101), with W and C given by Witten’s solution (5.102). In particular, we
find that the volume growth of the T 2 fibre in the outer bubble region can be obtained
using that

ϕ′(ρ) = ϕ′(ρ∗)C(ρ∗)
C(ρ)W (ρ)D−4 =⇒ ∆ϕ = ϕ′(ρ∗)C(ρ∗)

∫ ∞
ρ∗

dρ

C(ρ)W (ρ)D−4 . (5.106)

Then, it is immediate to find an expression for ∆ϕ valid in the limit of small α. Assuming
|∆ϕ| � 1 we obtain

∆ϕ = log
(
Rkk/C(ρ∗)

) Rkk

(1− ∆
2π )

24π2α

VG3
+O(α2), (5.107)

where we have used the equations (5.102) and (5.104). Note that |∆ϕ| can always be made
small tuning conveniently the parameter α, or making the G3 volume large.

Before we conclude, to ensure the validity of the construction, we need to estimate the
size of the KK corrections neglected in (5.83). For simplicity we will just consider the G3
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case (N = 8) in the model without the Gauss-Bonnet term, α = 0, but a similar analysis
can be done in a generic situation where the compact space is given by any torus quotient
T 3/Γ. From (5.23) and (5.21), we find that the leading KK corrections to the gluing
constraints (5.5) at the boundary between the inner and outer-bubble regions scale as

(Φ∗(sII)− sI) ∼ (z0/|z|)p ∼
(
R∗kk`

2
fibre

`3kk

)−3p( `6kk
`4fibre`

2
sf

) 3p
4

, p ∈ R+ (5.108)

and with a similar expression for the second fundamental forms. This estimate is writ-
ten in terms of the length scales defined in (5.26) and (5.32), and using the size of the
collapsing cycle at the matching point R∗kk = u∗(1 − ∆

12). Assuming the approximation
scheme summarized by (5.52), we find that the error associated to neglecting the massive
KK modes can be made arbitrarily small if the size the collapsing cycle at u = u∗ scales as
R∗kk & O(ε−5). As the position of the gluing surface is arbitrary, this scaling can always be
achieved setting the matching hypersurface sufficiently far from the degeneration points,
e.g. with u∗ = O(ε−5). Finally, radius of the collapsing cycle at the vacuum and the bubble
nucleation size should scale as Rkk ∼ R ∼ O(ε−6) � R∗kk, what guarantees that we have
parametric control over all the approximations that we have made.

For completeness, to end this section, we will write down the outer-bubble line element
in the case α = 0, for a generic spacetime dimension, and an arbitrary compact space
T 3/Γ. To write the metric given by (5.102) in a more familiar gauge, we use a new radial
coordinate defined by r(ρ) ≡ RW (ρ), which leads us to

ds2|I = r2dΩ2
D−4 +

(
1− R

D−5

rD−5

)−1
dr2 +R2

kk

(
1− R

D−5

rD−5

)
dθ2 + ds2

T 2 , (5.109)

with the bubble nucleation radius given by

R = Rkk
6(D − 5)
(12−N) . (5.110)

The line element above can be easily recognized as the euclidean version of a (D − 2)-
dimensional Schwarzschild black hole, with two extra dimensions compactified on a two-
torus. It is important to emphasize that this metric is only appropriate for describing the
outer-bubble regime of the BON spacetime. That is, for values of the radial coordinate

r ≥ R+ (D − 5)ρ2
∗

2R > R. (5.111)

Actually, even if the T 2 fibration on the KK circle was trivial, the metric (5.109) would still
have a conical singularity at r = R, which would disappear only with the specific choice
of parameters R = (D − 5)Rkk/2 (as in the original Witten’s bubble). In the present
construction, we have instead cut out a small neighbourhood of r = R, and replaced it
with the smooth inner-bubble region described in the previous sections.

5.5 Decay rates

In this section we will compute the bubble nucleation rate per unit world-volume in the
(D − 3) dimensional non-compact space, Γdec/VD−3 = Ae−SBON , which is given in terms
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of the euclidean BON action SBON [20]. For the variational problem to be well defined we
need to supplement the action (3.2) with the Gibbons-Hawking boundary term45 [107, 108]

S = Ss −
σ

8πGD

∫
∂M

dζ(D−1)√s[K −K0], (5.112)

where sab is the induced metric on the spacetime boundary ∂MD, s = det(sab) and ζa are
coordinates parametrising ∂MD, with a = {1, . . . , D− 1}. The constant σ = nMn

M is the
norm of the outwards pointing normal vector nM to the boundary, and K = sab∇anb is the
trace of the second fundamental form of ∂MD. For convenience we have also subtracted
the value of the boundary term computed reference spacetime, with K0 representing the
trace of the corresponding second fundamental form. Actually the bulk contribution to
the instanton action is zero, and thus SBON is completely determined by a boundary term.
This is a direct consequence of the dilaton equation of motion (4.3), which allows to write
the on-shell string frame action (3.2) in the form

Ss|BON = − g2
s

8πGD

∫
M
dDx
√
−g ∇2

(D)(e
−2φ), (5.113)

which is also a boundary term. Then we have the following expression for the full action

SBON = − 1
8πGD−3VC

∫
∂M

dζ(D−1)√s[K −K0 − 2∇nφ], (5.114)

which is expressed in terms of (D − 3)-dimensional Newton’s constant GD−3 ≡ GD/VC ,
where VC is the volume of the compact space at the vacuum.

To compute the elements appearing in the instanton action, first we need to write the
metric of the outer-bubble region (5.79) in the same gauge as the vacuum (3.6)

ds2 = r2dΩ2
D−4 +H(r)2dr2 + C(r)2dθ2 + e2(ϕ(r)−ϕ∞)ds2

T 2 , (5.115)

where the new radial coordinate is defined by r(ρ) = RW (ρ), and H(r) = 1/RW ′|ρ(r). In
this gauge the spacetime boundary is defined as the hypersurface at r = r∞, after taking the
limit r∞ →∞. Then, the trace of the second fundamental form on this hypersurface reads

K =
[
(D − 4)∂ρW

W
+ ∂ρC

C
+ 2∂ρϕ

]
ρ(r∞)

, (5.116)

and the determinant of the first fundamental form in (5.114) is
√
s = r(D−4)ωD−4

√
hT 2 Ce2(ϕ−ϕ∞)|ρ(r∞), (5.117)

where ωD−4 is the area element of the D−4 unit sphere. Next we will study the asymptotic
behaviour of the BON instantons presented above in the limit ρ → ∞ to find an explicit
expression for the two quantities K and

√
s.

As we have seen above, the BON instantons mediating the decay of compactifications
on a three-torus or its quotients T 3/Γ are all consistent with the ansatz φ = ϕ−ϕ∞+φ∞, so

45For the sign conventions see [85]. The boundary term in string frame is the same as in Einstein frame
(see [105, 106]).
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we just need to consider system of equations (5.101) for the outer bubble region. Integrating
the second and third equations of (5.101), we find that the functions C(ρ) and ϕ(ρ) have
the following asymptotic form in the limit ρ→∞

C ′(ρ) = C ′(ρ∗)
WD−4 =⇒ C(ρ) = Rkk −

C ′(ρ∗)RD−4

(D − 5) ρD−5 + . . .

ϕ′(ρ)eϕ(ρ) = ϕ′(ρ∗)eϕ(ρ∗)

WD−4 =⇒ ϕ′(ρ) = ϕ∞ −
ϕ′(ρ∗)e−∆ϕRD−4

(D − 5) ρD−5 + . . . ,(5.118)

where we used the boundary conditions (5.80) at infinity, and ρ∗ is the position of the
boundary between the inner and outer bubble regions. As for the metric function W (ρ),
from the first equation in (5.101) we obtain

D = 6 : RW (ρ) = ρ− ρ0 −
C ′(ρ∗)RD−4

(D − 5)Rkk
log ρ+ . . . ,

D > 6 : RW (ρ) = ρ− ρ0 + C ′(ρ∗)RD−4

(D − 6)(D − 5)Rkk ρ(D−6) + . . . . (5.119)

Here the parameter ρ0 is an integration constant which can be eliminated with the redef-
inition ρ → ρ + ρ0, and discarding subleading terms of the expansion. Substituting the
previous results into the expression for the second fundamental form K (5.116) we arrive at

K = (D − 4)
r

− C ′(ρ∗)RD−4

(D − 5)Rkk rD−4 + 2ϕ′(ρ∗)e−∆ϕ

rD−4 , (5.120)

where the (divergent) vacuum contribution, which we need to subtract, is K0 = (D−4)
r .

Finally the instanton action, is given by the following formula

SBON = AD−4
8πGD−3

C ′(ρ∗)RD−4

Rkk(D − 5) . (5.121)

where we have also taken into account the contribution from the dilaton in (5.114).

BON action for the compactification on T 3. In this case we have C(ρ) =
Rkkeϕ(ρ)−ϕ∞ , which combined with the gluing conditions (5.86) and the relation (5.92)
allows to find C ′(ρ∗), and in turn the euclidean BON action

SBON = AD−4
8πGD−3

R̊D−4

(D − 5)e−(3D−14)∆ϕ
(

24π2α

VT 3

)−(D−5)

. (5.122)

Therefore, regardless of the value of ∆ϕ, when we turn off the Gauss-Bonnet coupling α→ 0
the action grows unbounded, and then the decay rate becomes exponentially suppressed
as a result of a Coleman-deLuccia mechanism.

In particular, in the regime ∆ϕ→∞ discussed above we find

∆ϕ→∞ : SBON = AD−4
16πGD−3

RD−5, (5.123)

where the radius R is given by the formula (5.96). Here again we can see that the bubble
nucleation rate will be exponentially suppressed when we set to zero the parameter α, since
the BON radius diverges in this limit.
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BON action for the compactification on T 3/Γ. In this case expression for C ′(ρ∗)
can be found from the gluing conditions (5.86) and (5.98), leading to

SBON = AD−4
16πGD−3

RD−5 with R = (D − 5)
2(1− ∆

2π )
Rkk, (5.124)

and ∆ given by (5.105). As anticipated above, in this case the BON action remains finite
when we set to zero the Gauss-Bonnet coupling. This is consistent with the fact that, unlike
in the case of T 3, here we do not need the GB term to violate the dominant energy condition,
as the PET is already violated since the manifold does not admit a covariantly constant
spinor. It can also be seen that when α 6= 0 the deficit angle ∆ decreases slightly, so the
net effect of the Gauss-Bonnet term is a small enhancement of the bubble nucleation rate.

The action and radius of Witten’s original bubble of nothing can be recovered substi-
tuting D = 7, N = 0 and α = 0 in the previous formula

Sw
BON = πR2

kk
8G4

, Rw = Rkk. (5.125)

As an interesting coincidence, we also note that if we set N = 12 in the formula for
the deficit angle (5.105) and then plug it into (5.124) we recover (5.123) (with R given
by (5.96)), the euclidean action of the bubble mediating decay of the T 3 compactification
in the limit VT 3/VT 3(ρ∗)→∞.

6 Physical implications and string theory embedding

The explicit construction of the BON solution for a T 3 compactification of the previous
sections is only the beginning towards many more new types of bubbles of nothing that
can be present in non-supersymmetric vacua. In this section, we will provide an string
embedding of our field theory model to show that it is a sensitive solution in a consistent
theory of quantum gravity as well as discuss generalizations of these bubbles including fluxes
or charged fermions. We will also discuss implications for String Phenomenology and the
possibility for these bubbles to be a universal decay mode for any string compactification
breaking supersymmetry.

6.1 String theory embedding

In the previous sections, we have explicitly constructed a (self-consistent, approximate
in a derivative expansion) bubble of nothing solution for T 3 with the fully periodic spin
structure, in the Einstein Gauss-Bonnet dilaton theory (3.2). The construction avoids
Witten’s positive energy theorem because the relevant energy condition is not satisfied, see
subsection 2.3.

One might worry that the low-energy solution we constructed only exists because
somehow we did something pathological: perhaps the action (3.2) is secretly ill because
e.g. it does not satisfy the dominant energy condition classically. We comment on energy
conditions in gravity in subsection 6.1.3, but first, here we (hope to) dispel any doubts
about the validity of the Einstein Gauss-Bonnet dilaton theory (3.2) by showing that it is
(almost) a consistent truncation of a valid string compactification to six dimensions. We
do this in several different ways.

– 67 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
2

6.1.1 Heterotic embedding

As starters, consider compactification of heterotic string theory on T 4. The tree-level
bosonic effective lagrangian of the NS sector of heterotic up to four derivatives in the
metric is [62, 109]

L = e−2φ
[
R+ 4(∇φ)2 − 1

12H
2 − α′

4 tr(F ∧ ∗F ) + α′

8 RMNRS(Ω+)RMNRS(Ω+)
]
, (6.1)

where Ω+ is the connection with torsion

R(Ω+) = R + 1
2dH+H ∧H, Hab ≡ Hab

Mdx
M . (6.2)

The equations of motion corresponding to (6.1) are

R− 4(∇φ)2 + 4�φ− 1
12H

2 − α′

4 tr(F ∧ ∗F ) + α′

8 RMNRS(Ω+)RMNRS(Ω+) = 0,

RMN + 2∇M∇Nφ−
1
4H

2
MN −

α′

4 tr(F 2
MN ) + α′

4 RMPRS(Ω+)RNPRS(Ω+) = 0,

d(e−2φ ∗H) = 0,

e2φd(e−2φ ∗ F ) +A ∧ ∗F − ∗F ∧A+ F ∧ ∗H = 0. (6.3)

On top of this, there is the usual heterotic Bianchi identity,

dH = α′

4
[
tr(R(Ω+)2)− tr(F 2)

]
. (6.4)

We will now show how to embed the solution to the Einstein-dilaton-Gauss-Bonnet theory
that we constructed in previous sections in this theory. First, the heterotic action (6.1)
contains only a Riemann squared term, instead of the full Gauss-Bonnet. However, this
will not matter in the following, since the bubble solution we have is constructed by per-
turbing a Ricci-flat background metric (and in the asymptotic region, where we do not use
perturbation theory anymore, the effect of the Gauss-Bonnet term is small). So we may
pretend (6.1) contains a full Gauss-Bonnet term.

The solution we constructed is a bubble of nothing for a toroidal compactification to
three dimensions, T 3 × R3. We will embed it into the equations of motion (6.3) by taking
the gauge fields to vanish identically, and taking H to be the solution to the equations

dH = α′

4 tr(R2), d(e−2φ ∗H) = 0. (6.5)

These equations always have a solution for any φ, but notice that since tr(R2) 6= 0 in our
solution, we are forced to take H 6= 0. This is unavoidable, caused by the topology of the
bordism, and as we will see, intimately related to supersymmetry.

The H field obtained in this way is linear in α′, so when plugged back into the first two
equations in (6.3) it only gives a O(α′2) contribution. The additional terms in (6.2) are
also higher order in α′. To first order in α′, we get the same equations of motion we have
discussed in the previous sections, so the bubble solution seems to have been successfully
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embedded. However, this result is too good! In particular, we seem to have embedded the
bubble of nothing into a genuinely supersymmetric compactification. This is impossible,
since in a supersymmetric theory there are no negative ADM mass solutions and the only
zero solution is the vacuum; this is due to the fact that the energy operator is the square
of the supercharge, which is itself a boundary integral of the supercurrents [26].

The resolution is that in fact we do not recover asymptotically the T 3 ×R3 compacti-
fication; due to the Bianchi identity, we end up with a flux compactification instead, since∫

T 3,r→∞
H =

∫
B4
dH = 4π2α′χ(B4). (6.6)

Thus, the embedding works, but it automatically turns on a flux at infinity that breaks
supersymmetry. In other words, the bubble we constructed embeds in string theory, but it
is an instability of a nonsupersymmetric flux compactification to three dimensions.

Due to the flux we have turned on, the asymptotic compactification is not stable. There
will be runaway potentials for the moduli, and also a nonzero vacuum energy (proportional
to (α′2)). However, these instabilities will only appear at higher orders in the α′ expansion;
by adiabaticity, we expect the bubble of nothing instability should still be present, and
at the very least the t = 0 section of our euclidean solution embeds as a honest zero
mass configuration (i.e. that satisfies the Hamiltonian constraint) of the full theory. Once
this initial condition nucleates somehow, we expect it to expand with uniform acceleration
as usual.

One might try to construct a bubble of nothing for the supersymmetric solution by
setting H = 0 and turning on gauge fields to compensate for tr(R2), as usual in standard
embedding heterotic compactifications. Although this is doomed to fail, it is interesting to
see how exactly it does. We may now take H = 0 exactly, and the gauge field equations of
motion will be solved if we take the connection to be self-dual, which we can do at least in
the inner layer of our model. The Yang-Mills term evaluated on the Levi-Civita connection
is proportional to the Riemman tensor squared,

tr(F ∧ ∗F ) = 1
2dV RMNRSR

MNRS , (6.7)

and as a result the first two equations in (6.3) still have the same form as in the Einstein-
dilaton model, with the Gauss-Bonnet term set to zero. This is a consistent truncation of
the supersymmetric lagrangian, so we cannot construct our bubble solutions in this case;
the effective stress-energy tensor satisfies the dominant energy condition.

One could also ask if Witten’s bubble could somehow be embedded in our model. The
naive answer is no, because we chose periodic boundary conditions along the three cycles
of T 3. But due to the presence of torsion in the gravitino connection as in (6.2), parallel
transport along one of the cycles of T 3 rotates the gravitino,

ψM (yᾱ) = exp
( i

2y
ᾱHᾱβ̄δ̄γ

ᾱγ δ̄
)
ψM (0), (6.8)

where yᾱ are coordinates on the T 3. It is not clear to us whether by “playing around” with
gauge instantons (which generate H flux) one could embed Witten’s bubble by having a
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gauge bundle over the disc D such that the boundary conditions for the fermions become
antiperiodic at the core. A situation like this one was explored in [6], where it was found
that such a thing is sometimes possible with a background gauge connection. It is certainly
possible for the H field to behave as a Spinc connection after dimensional reduction, as
exemplified by the T -dual of IIB on AdS5 × S5, which contains fermions on a fluxed CP2.
In any case, these issues are absent in the dual type I model, which we present below.

Interestingly, we can get new bubbles from the one we constructed by string dualities;
for instance, by T -dualizing along one of the T 3 three-cycles, the H flux becomes geomet-
ric flux (a twisted torus compactification [110]), and we have just constructed a bubble
of nothing for this geometry involving winding modes (but perturbative in gs), even for
completely periodic boundary conditions. We will discuss another example in a different
dual frame below.

6.1.2 Type I/IIB and bosonic duals

We have successfully embedded our bubble of nothing into the equations of motion of
perturbative heterotic string theory on T 4. This theory has a large moduli space, and
it is interesting to look for embeddings at other weakly coupled points. Here, we will
focus on the “S-dual” limit obtained by compactifying perturbative type I strings on a
torus. By T-duality, this is straightforwardly related (and still at weak coupling) to type
II configurations with orientifolds and D-branes.

We need to check that our main ingredient, the Gauss-Bonnet term, is still available.
Although it vanishes in type II in 10 dimensions [111], it is present in type I [64] strings.
The dilaton dependence is however different, being e−φ rather than e−2φ as in the heterotic
case. This signals it is an open string effect. The effective Lagrangian in 10 dimensions
looks like

L = e−2φ
[
R+ 4(∇φ)2

]
− 1

12H
2 − e−φ

[
α′

4 tr(F ∧ ∗F ) + α′

8 RMNRSR
MNRS

]
. (6.9)

The differences to the heterotic case are the aforementioned different dilaton powers for the
gauge field and Gauss-Bonnet terms, and also for the 2-form kinetic term, which reflects
the fact that in type I it is a RR field. However, one still has a Bianchi identity, just
like (6.5). It is also important that the type I fermions only couple to the geometric spin
connection, and do not receive extra contributions as in (6.2). In type I language, this is
clear to begin with since the orientifold projects out the B-field (type I strings can break).
This then carries over to compactifications; in the T-dual type II language we will use later
on, the zero mode of the B-field in the internal space is projected out by the orientifold.

In D = 10, the heterotic model is related to ours via S-duality: after putting our
solutions in Einstein frame, we can recycle the solution from the previous situation simply
by flipping the sign of the dilaton. However, this no longer works after compactification,
because the effective lower-dimensional dilaton in the heterotic frame is no longer related
in a simple manner to the type I dilaton. However, since the models are so similar, we
expect that a close relative of our bubble can be embedded in type I as well. We see no
obstruction to solving the equations of motion just as we did in section 5 in the same way,
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but we have just not done this explicitly. Let us, though, proceed as if we had constructed
the bubble solution and discuss some interesting implications for low energy EFT’s of type
IIB orientifold flux compactifications, as it might bring some surprises.

For concreteness, let’s say we embed our bubble on a compactification of type I string
theory on T 3

A × T 3
B. That means that we first reduce on the first T 3

A factor, to get the
action of type I in seven dimensions, and then we consider a compactification of this seven-
dimensional theory on a second T 3 pierced by RR three-form flux. A modified version of
our bubble embeds on this model and describes the decay of the T 3

B factor.
One can use this model to connect to the more standard type IIB orientifold literature.

By T-dualizing along two of the cycles in T3, we end up on a toroidal orientifold, (T 2/Z2)×
T 2 × T 2)/Ω, with supersymmetry breaking fluxes. The 3-form flux along46 T 3

B,

H3 = ndx2 ∧ dy2 ∧ dx3 = n

4 dz2 ∧ dz̄2 ∧ (dz3 + dz̄3) (6.10)

contains imaginary self-dual (2, 1) and an imaginary anti-self dual (1, 2) pieces. The latter
flux is known to break supersymmetry by inducing a non-vanishing F-term for the complex
structure moduli [112]. This is consistent with the fact that we can only have a bubble
for a non-supersymmetric compactification, since our bubble wouldn’t be able to eat up
supersymmetry preserving pure (2, 1) flux.

From this point of view however it seems one should be able to embed our bubble
whenever there is identical imaginary self dual and anti self dual pieces. One is left to
wonder if, for instance, our bubbles exist in the KKLT scenario where, in addition to
the ISD fluxes on the Calabi-Yau, the gaugino condensate sources an IASD (1, 2)- flux
component [113]. However, the KKLT AdS vacuum (before the uplift to de Sitter) is
supersymmetric and, as we have emphasized, it is not possible to have a bubble of nothing
in a unitary supersymmetric compactification. So, if our bubble indeed embeds in KKLT,
it could be a signal of some hidden inconsistency in the procedure. To put it another
way, bubbles of nothing must be absent in unitary supersymmetric compactifications, but
might be present in non-unitary ones, since the proof of positive mass in terms of the
supercharges crucially uses that one has a positive-definite inner product. So if our bubble
can embed in any putative supersymmetric compactification, it would mean that the theory
is non-unitary. But because generally it is not expected one can get non-unitary theories
from usual string compactifications,47 one would have to conclude something went wrong
in whatever construction is being considered. At the moment, we are far from concluding
that the bubble can embed in KKLT, but it is surely something interesting to explore in
the future.

We could also straightforwardly embed our bubble solution in the bosonic string, since
it has a Gauss-Bonnet term [115] and the Bianchi identity receives no corrections in this
case. Thus, it is completely consistent to set H = 0. In this case, the runaway potentials
would arise at one-loop in the closed string coupling, and hence they would be suppressed

46We introduce coordinates z1, z2, z3 on the three T 2 factors, and zi = xi + iyi. The orientifold action
reflects z2 and z3.

47See however, [114], which uses T-duality in timelike directions. They precisely produce supersymmetric,
non-unitary theories of the kind we are discussing here.
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by powers of e−2φ. This is better behaviour than what we have in the heterotic embedding,
where the runaways are controlled by fluxes and appear already at tree level. But in this
second case we would also have the usual closed-string tachyon, which brings back a O(α′)
instability. On top of this, the bosonic string does not contain fermionic states in its
perturbative spectrum (it may contain them at the nonperturbative level, if the duality
proposed in [116] is correct, since the putative 0B dual contains massive worldsheet spinors),
so the relevant bordism groups might just be oriented instead of spin. In this case, one
can always use Witten’s original bubble. By contrast, in the heterotic embedding, we for
sure have (massive) spinors, and the distinction that the spin structure is periodic becomes
meaningful.

6.1.3 Violation of the dominant energy condition

The main theme of this paper is that the usual lore that a compactification is protected
against bubbles of nothing due to a topological obstruction related to the spin structure is
not true in general, and in particular is clearly false whenever the relevant bordism group
vanishes. However, in precisely this case, one typically admits covariantly constant spinors,
and therefore the compactification is still bubble-proof as long as the local energy condition
in some version of the Positive Energy Theorem holds. In the vanilla case, this is just the
Dominant Energy Condition, (2.11). So the topological protection has been traded by a
local inequality that matter must satisfy.

It is well-known, though, that the DEC does not hold in general, although it is typi-
cally satisfied in supersymmetric models. It was first proposed because it is a reasonable
property of ordinary matter [52] and facilitates the proof of interesting results, such as
the singularity theorems or the positive energy theorem itself. But it is also intimately
related to superluminality: reference [117] proved that a generic violation of the DEC (or
more precisely, the Null Energy Condition, which the DEC implies) leads to traversable
wormholes with faraway wormhole mouths and so to causality violation.48 So the question
is what is the strongest, general statement on the low-energy EFT one can make. Clearly,
there has to be some statement to prevent causality violation, but the DEC is too strong.
We take the point of view that perhaps a reasonable thing to do is not to impose some-
how arbitrary energy conditions, but just enforce the absence of causality-violating effects
such as traversable wormholes. Reference [118] claims that traversable wormholes can be
constructed in the Einstein-Gauss Bonnet theory with ordinary matter, but does not take
into account the effect of the dilaton, which can cause solutions that at first sight seem to
be wormholes to instead “close up”. The prototypical example is the supergravity solution
of the D(−1)-brane, which seems to be a wormhole in the string frame, but not on the
Einstein frame [119, 120]. Figuring out rigorously whether traversable wormholes exist in
the Einstein-Dilaton-Gauss Bonnet model [118] is an interesting question which lies outside
of the scope of this work; if they do, the wormhole throat probably has a stringy size and
are not to be trusted anyway.

48Interestingly, the wormhole construction uses a scalar field with a transplanckian field excursion. So
perhaps these wormholes are in the Swampland after all!
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Clearly, as our string theory embedding shows, one should not expect the DEC to be
satisfied in a general, nonsupersymmetric, string compactification. In our case, the DEC is
explicitly violated by the higher derivative terms, but there are plenty of other situations
where the DEC does not hold, Casimir energies and AdS space being the most prominent
ones [52]. It would be interesting to understand, though, if non-supersymmetric vacua
arising from string theory always violate the DEC or the corresponding energy condition
at play, allowing the vacuum to decay. Notice that, depending on the spin connection of
the different fermions in the compactification, the local energy condition that needs to get
violated to allow for the existence of bubbles of nothing will be different, as we discuss in
the next section.

6.2 Generalisations of positive energy theorems

In section 2.3, we explained how the positive energy theorem can provide a dynamical
obstruction to the existence of bubbles of nothing in cases where there is no topological
protection. The proof of the theorem relies on the existence of covariantly constant spinors
in the manifold whose decay we are studying. Interestingly, these spinors can be charged
under additional gauge fields, and the proof of the positive energy theorem still holds, but
with a modified energy connection. This can occur, for example, when having Wilson lines
or fluxes in the compactified internal dimensions. In this subsection we briefly review some
of these modifications. These lead to additional obstructions to the existence of bubbles of
nothing even in cases which do not admit covariantly constant “ordinary” spinors (spinors
which are sections of the double cover of the tangent bundle).

Usual spinors on a manifold M are defined by a choice of spin structure on TM . If
instead we have a spin structure on TM ⊕ χ, where χ, is an additional bundle, we obtain
twisted spin structures [121] (see [122] for a general discussion). Particular examples are
Spinc when χ is a line bundle, or SpinZ2n when χ is a Z2n bundle. In other words, given a
group G whose center contains a Z2 factor, one can define spinors as sections of a bundle
whose transition functions live in

Spin×G
Z2

, (6.11)

where the Z2 identifies the center of Spin with the generator of the chosen Z2 subgroup of
G. We will refer to this as SpinG fermions. Similarly, a manifold with a SpinG structure
will define a class of modified bordism groups ΩSpinG

d .
In a theory with SpinG spinors, the topological obstruction to the existence of bubbles

of nothing takes values in ΩSpinG
d . But even if ΩSpinG

d = 0 so that this topological obstruction
is absent, there will be a dynamical obstruction as long as asymptotically covariantly
constant SpinG spinors exist and a local energy condition holds. We have explained this
in the form of a flowchart in figure 10.

We will now do this in detail for the case of Spinc structure. This was already worked
out implicitly in [53], which used fermions coupled to a modified background connection
to obtain a positive mass theorem for black holes with charge. We believe the spinors used
there are related to ours via a nonlocal field redefinition.
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Manifold M with
SpinG structure Trivial in ΩSpinG

d ?
Does M admit cov.
constant spinors?

Does the theory satisfy
energy condition?No Bubble of Nothing

Bubble of NothingYes

No

No

Yes

Yes No

Figure 10. Flowchart illustrating when one can get a bubble of nothing; a more detailed version of
figure 2. Given a manifold with bundles M , one first checks that there is no topological obstruction
in ΩSpinG

d . Assuming this is the case, one must make sure there are either no covariantly constant
spinors in the compactification manifold, or that the relevant energy condition is violated.

The argument in [26] is based on proving that there is no solution to the Dirac equation

i /Dε = 0 (6.12)

in which the spinor ε vanishes fast enough at large distances. This implies that any non-
trivial configuration has non-vanishing positive ADM mass.

The proof relies on the fact that (eq. (25) of [26])

[Di, Dj ]ε =
(

1
8
∑
α,β

Rijαβ

)
[γα, γβ ]ε (6.13)

which can be related to terms involving the stress-energy tensor by using Einstein’s equa-
tions. In [26], this then leads to a positive energy theorem provided that the matrix

T00I + T0jγ
0γj (6.14)

is positive definite, which is guaranteed by the dominant energy condition, (2.11).
In the case of a Spinc structure, (6.14) receives additional contributions from the elec-

tromagnetic field when using Einstein’s equations, becoming

T00I + T0jγ
0γj − iq Fij8πGγ

iγj . (6.15)

Here, q is an integer-valued parameter, the charge of the virtual fermion we are using in the
proof of the theorem. We need to demand positivity of (6.15) to obtain the Spinc version
of the positive energy theorem.49 We can simplify (6.15) using

[γi, γj ] = iεijk γ5γ
0γk (6.16)

49We are using an electrically charged spinor coupled canonically to the gauge field. Other choices of
connection are possible. For instance, in [53], a fermion coupled to a composite connection built out of the
fieldstrength of the gauge field was used to prove a lower bound on the mass of charged black hole solutions.
This leads to the same local energy condition that we have, but different global conditions. It seems that
(locally), the spinor used in that reference and ours are related by a field redefinition. That means that the
local energy conditions we are going to get are the same, while globally the properties might differ.
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to obtain T00I +A, where

A ≡
(
T0k −

iq

8πGFijε
ij
k γ5

)
γ0γk. (6.17)

Now, the matrix A is hermitian, and the absolute values of the eigenvalues of A are just
the square root of the eigenvalues of

A†A = I
(∑

k

T0kT
0k +

∑
i,j

q2

(8πG)2FijF
ij

)
. (6.18)

Thus, we will have a version of the positive energy theorem as long as

T 2
00 ≥

∑
k

T0kT
0k +

∑
i,j

q2

(8πG)2FijF
ij , (6.19)

which is the same local condition as in [26]. Hence, this is the energy condition that needs
to be violated, instead of the DEC, when the manifold has a Spinc structure. The above
argument works for any value of q; we see now that the weakest condition is achieved for
q = 1, so this value (6.19) corresponds to the weakest energy condition one needs to impose
so that the positive energy theorem holds.

The energy condition (6.19) is stronger than the DEC, and it involves the gauge fields
in a nontrivial way. In the model presented in [6], it is the local energy condition that
guarantees that the vacuum is stable. As illustrated there, it is possible to violate (6.19)
even with classical interactions, allowing for the existence of bubbles of nothing. This
shows again that there is generically nothing obviously wrong with violating the various
energy conditions related to positive energy theorems. Actually, the situation is completely
analogous to the familiar case of false vacuum decay in supergravity theories [23, 24], where
supersymmetric vacua are protected dynamically by a BPS bound, rather than the milder
DEC condition.

Another example of a modified positive energy theorem takes place when we consider
manifolds which do not admit covariantly constant spinors with respect to the Levi-Civita
connection, but which do when the spinors are charged under an additional Zn bundle.
Since all connections associated to a discrete gauge group are flat, there is no field strength
term analogous to the second term in (6.19), and so one gets the same local energy condition
as in the usual positive energy theorem, i.e. the dominant energy condition.

We could try to apply this modified version of the positive energy theorem to the
G3 quotient of T 3 discussed in section 4.1.50 This manifold does not admit covariantly
constant spinors with respect to the metric connection, but because the parent T 3 does,
the quotient admits covariantly constant Z3-charged spinors. However, there is an obstacle:
G3 is in a nontrivial class in ΩSpin

3 (BZ3) = Z3 since it has a nontrivial η invariant [123]. As
a result, this prevents us from applying the Z3 version of the positive energy theorem, even
if there are no physical Z3-charged spinors in the theory. Thus, there is no energy theorem

50If the theory includes a gauge field, we could also apply the Spinc version of the positive energy theorem,
using the local energy condition (6.19).
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that could guarantee the absence of a bubble of nothing for G3 in the pure Einstein theory,
which is consistent with the fact that the bubble solutions constructed in section 5.4.2 are
smooth even when turning off the higher derivative terms that violated the DEC.

6.3 Including fluxes

In the previous subsection we have studied how the dynamical obstruction coming from the
positive energy theorem gets modified when spinors are charged under gauge fields in the
extra dimensions. Here, we will discuss how the topological obstruction is modified in the
presence of gauge fluxes, i.e. how to properly define the bordism group which is relevant
for the topological construction of a bubble of nothing in compactifications with fluxes.

So far, in sections 3–5, we have only considered bubbles of nothing involving geometry.
This means that the bordism groups that appear naturally are the spin bordism ΩSpin(pt.).
The extension to situations with gauge bundles or abelian p-form fluxes is straightforward:
to construct a bubble, one must have a nulbordism in which the p-form fluxes also extend
in a smooth way in the bubble. That is, whichever nonabelian bundles or fluxes are turned
on must also extend to the bordism; the corresponding bordism groups are generically
denoted ΩSpin(BkG), where G denotes the relevant gauge group and k is the rank of the
generalized gauge symmetry under consideration; we only consider G abelian for k ≥ 1.

All that matters for the physics is that it is possible to compute these groups, and that
they provide the topological obstruction to the existence of bubbles of nothing for com-
pactifications with fluxes. These very same bordism groups arise in the study of anomalies
of non-abelian gauge theories; see [44, 124, 125] for some computations and techniques. We
will briefly explain the notation for the benefit of the curious reader. In general, ΩSpin

d (M)
refers to equivalence classes of d-dimensional manifolds equipped with a map to M , under
bordisms where we also demand that the maps to M extend to the bordism. On very gen-
eral grounds, a principal G-bundle on a manifold X is equivalent to a map from X to the
classifying space of the group BG. This is an infinite-dimensional space equipped with a
G-bundle χBG, such that any principal G-bundle over a manifold X is the pullback f∗χBG
under the map f : X →M . The picture also generalizes to higher generalized symmetries,
and this is the logic behind the notation ΩSpin(BkG).

As a simple example, consider compactification of M theory to AdS7×S4. Since S4 is
trivial in ΩSpin

4 = Z, it would seem there is no topological obstruction to the construction
of a bubble of nothing which eats up the S4 factor. However, the solution is supported by
G4-flux. The corresponding bordism group, ΩSpin

4 (B3U(1)) = Z2 has two generators, and
one of them is precisely a sphere with one unit of G4 flux. So the solution is nontrivial in
bordism and there is a topological obstruction.

We must remark again that the topological obstructions we consider in this paper are
low-energy considerations. It is often the case (and in fact, [10] conjectures that it is always
the case) that one can evade the topological obstruction by including some UV objects.
For instance, we could have a nulbordism for AdS7 × S4 if we take a five-dimensional ball
whose boundary is S4 and put an appropriate number of M5 branes to absorb the flux.
Then the topological obstruction is absent and whether a bubble of nothing exists or not
becomes again a question of dynamics. We won’t have a bubble in this particular case due
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to supersymmetry, but all bets are off in more general scenarios. Still, the bordism groups
we consider provide an obstruction to constructing a bubble without involving branes or
other deep UV physics.

A sufficient way to ensure that some manifold with flux is nontrivial in bordism is
to exhibit a nonvanishing bordism invariant. This is some hopefully easily computable
quantity that is invariant under bordisms and that vanishes on the trivial class. An easy
way to obtain bordism classes is via integrals of top forms that can be constructed out of
the various fieldstrengths in the theory. So for instance,∫

p1 (6.20)

is a bordism invariant of ΩSpin
4 , and in ΩSpin

6 (BU(1)) we have bordism invariants∫
p1c1,

∫
c3

1 (6.21)

where c1 is the Chern class of the U(1) bundle. In the M theory example above,∫
G4 (6.22)

is a bordism invariant. A similar example with no bordism invariant is the IIA compact-
ification to AdS4 × CP3 discussed in [41]. There is no 6-dimensional bordism invariant
one can construct involving the G4−flux or the metric, and so there would seem to be
no topological obstruction. Indeed, a bubble of nothing which “unwinds” the flux was
constructed in [41].

This construction presents us with a puzzle in the stringy embedding of our T 3 bubble
constructed in section 6.1. There we argued that the bubble is a nulbordism of a T 3

threaded by 12 units of H-flux. Yet ∫
H3 (6.23)

is certainly a bordism invariant in ΩSpin
3 (B2U(1)). But then, it shouldn’t be possible to

find a bubble of nothing for a fluxed T 3! The answer is that due to the heterotic Bianchi
identity [109], the H-flux and the geometry mix in a nontrivial way called a “String”
structure (see section 4.5 of [10]). The relevant bordism group is then ΩString

3 = Z24,
generated by S3 with one unit of H-flux on top of it. We will now argue that T 3 with 12
units of H-flux is actually bordant to S3 with 24 units of H-flux, which is in the trivial
class in ΩString

3 . As a result, it is perfectly consistent to have a bubble of nothing for it in
our string theory embedding (there is no topological obstruction, just as for ΩSpin

3 = 0).
To construct this bordism, consider K3 with 24 NS5 branes on a point to cancel the

tadpole, and deform to the stable degeneration limit where K3 grows an infinite tube with
a T 3 cross section, as in figure 11. While doing so, move all 24 NS5-branes to one side of
the tube. Then cut the geometry at the tube, and a small ball around the 24 NS5-branes.
The resulting manifold is depicted in figure 11, and it has two boundaries. One is the
near-horizon region of the NS5-branes, which is an S3 threaded by 24 units of H-flux. The
other is a T 3 threaded by 12 units of H-flux, since the part of the geometry we cut out on
that side is precisely our T 3 nulbordism, which has

∫
p1/2 = 12. The resulting manifold

with H-flux is the bordism we wanted to construct.
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Figure 11. Construction of a bordism between a S3 with 24 units of H-flux and a T 3 with 12
units of H flux. One starts with K3 in the stable degeneration limit plus 24 NS5 branes, and then
removes the part of the geometry encircled by dashed lines.

6.4 Impact on string phenomenology and swampland

Up to now, bubbles of nothing seemed to be a rare decay mode absent in typical string the-
ory compactifications, since the original Witten’s bubble is topologically forbidden unless
we pick antiperiodic boundary conditions for the fermions on the shrinking circle. However,
in this paper we have shown that this topological obstruction is absent for generalizations
of Witten’s bubble to d-dimensional shrinking manifolds as long as ΩSpin

d = 0, i.e. the
shrinking manifold belongs to the trivial class in the bordism group. As an example, we
have explicitly constructed a new bubble of nothing for T 3 which is consistent even with
periodic boundary conditions for the fermions, since ΩSpin

3 = 0. Hence, there may be many
more bubbles of nothing in the low energy effective theories arising from string theory
that one would have originally suspected. Since the topological obstruction is absent, the
bubble of nothing might acquire a non-vanishing decay rate as soon as supersymmetry is
broken, even if the breaking of supersymmetry occurs only at low energies and the internal
space preserves some covariantly constant spinor.

Our results have clearly implications for toroidal T d≥3 compactifications since topolog-
ically we can always deform it to the product T 3×T d−3 and construct the bubble of nothing
for T 3. Hence, there is no topological obstruction to construct a bubble of nothing for any
toroidal compactification of three or more internal dimensions. Even more interestingly, it
is known that

ΩSpin
6 = 0. (6.24)

This means that the topological obstruction is also absent for any compactification on
a six dimensional internal manifold preserving a spin structure. These are precisely the
bordism groups which are relevant for type II and heterotic string compactifications to four
dimensions. It should then be possible to topologically construct a bubble of nothing for any
compactification of type II on a Calabi-Yau threefold for instance. Analogously, ΩSpin

7 = 0
implying that 11-dimensional M-theory compactifications to four dimensions are also not
topologically protected to vacuum decay via bubbles of nothing, which includes the case
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of G2 compactifications.51 We leave the topological construction of these very interesting
bubbles for future work, but cannot refrain from pointing out that CY3’s are conjectured
to always admit a T 3 fibration [126, 127], so our T 3 bubble might be embeddable via some
sort of adiabatic argument at least in parts of the moduli space.

One way to think about the supersymmetric obstruction to the T 3 nulbordism is that
T 3 admits covariantly constant spinors with an asymptotically cylindrical metric, and these
can be extended to the nulbordism. By gluing two copies of the nulbordism back to back,
we recover a 4-manifold with a covariantly constant spinor, i.e. K3. Following the same
logic, it is tempting to conjecture that for any CY3, there is a nulbordism which admits a
metric of G2 holonomy (“half” a G2 manifold), and similarly, that any G2 manifold admits
a nulbordism of Spin(7) holonomy (“half” a Spin(7) manifold).52

As explained in section 6.3, the formalism we have introduced can be extended in a
natural way to incorporate p-form fluxes. One only needs to consider the bordism groups
of the corresponding classifying space. This means that our formalism also extends to flux
compactifications: whenever the fluxed manifold is in the trivial bordism class, there will
be no topological obstruction to the existence of the bubble of nothing, as in the string
theory embedding of section 6.1.1 with H-flux.

We should remark that, in this paper, we are only constructing bubbles of nothing for
compactification manifolds trivial in the relevant bordism group. But what about nontrivial
ones? Consider e.g. the circle with periodic spin structure, which generates ΩSpin

2 = Z2.
If we try to “embed” Witten’s bubble in this case, the boundary conditions force us to
introduce a “spin defect” — a point-like defect at the origin which allows the fermions to
have periodic boundary conditions around it (see e.g. [128]). This spin defect is clearly UV
sensitive, and so, a candidate bubble can only exist in UV completions of the low-energy
EFT that include such a defect as a dynamical object.53 One can incorporate the existence
of these additional objects as a refinement of the bordism group which sees the UV , so
that ΩUV

1 = 0 even if at low energies ΩSpin
2 6= 0: going to the UV has lifted the topological

obstruction. Another example including fluxes might be S3 with a nontrivial U(1) 3-form
flux on top of it, which corresponds to the generator in ΩSpin

3 (B2U(1)) described above. In
this case, the flux can be “eaten up” by a brane that sources it, for instance, an NS5-brane
in the case where the 3-form flux is NSNS. Again, ΩUV = 0 while the group is non-trivial at
low energies. One could expect that in string theory there always exists the adequate UV
brane that can absorb the flux to guarantee triviality of the corresponding bordism group.

In fact, while completing this work, a new very interesting swampland conjecture
appeared [10] claiming that ΩQG

d = 0 for any d. This has to be understood as the claim
that the structure required for a consistent theory of quantum gravity must imply that

51Interestingly, ΩSpin
4 = Z, and ΩSpin

8 = Z⊕ Z, so compactifications of string theory on K3 and F theory
compactifications to four dimensions still have a geometric obstruction. Notice, though, that in [93] it has
been conjectured the existence of new non-supersymmetric UV defects in these cases in order to guarantee
triviality of the bordism group and the absence of global symmetries.

52We are grateful to Daniel Kläwer for pointing this to us.
53We are only discussing topology; the spin defect might have a huge tension, making the bubble dynam-

ically forbidden.
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the bordism group vanishes. In other words, cases in which Ω#
d 6= 0 are not consistent

compactifications in the sense that they need of additional defects to allow the bordism
group to actually vanish. The reasoning underlying the conjecture is that ΩQG

d = 0 in
order to avoid the presence of global symmetries, since we can think of the different non-
trivial classes of the bordism group as labelling different conserved charges and implying a
global symmetry, as explained in section 2.2. If this swampland conjecture holds, it implies
that the topological obstruction to the existence of bubbles of nothing is never really there
in the UV.

Of course, even if the topological obstruction is absent, there could still be some dynam-
ical obstruction forcing the decay rate to be zero. This is what occurs in supersymmetric
configurations for instance. However, once supersymmetry is broken (even at low energies)
the dynamical obstruction might disappear allowing the vacuum to decay. As we have
strongly remarked throughout the paper, not any breaking of supersymmetry will a priori
allow for vacuum decay. If the manifold preserves an asymptotically covariantly constant
spinor, then the decay rate will be non-vanishing only if the matter sector violates a cer-
tain energy condition which depends on the spin connection (e.g. the DEC (2.11) for a spin
structure and the modified condition (6.19) for Spinc). In this paper, we have provided
an example of an effective theory violating the DEC by introducing a higher derivative
correction corresponding to a Gauss-Bonnet term, but depending on the context, other
energy conditions involving gauge fields become relevant, as discussed in section 6.1.3. A
violation of the DEC seems to be quite generic in QFT once quantum effects are taken
into account [52, 129],54 but this is not necessarily the case for the modified energy con-
dition (6.19). Now that the topological obstruction might always be absent in quantum
gravity [10], the relevant question left for the future is whether the matter sector in a
consistent, weakly coupled theory of quantum gravity necessarily violates all the relevant
energy conditions when breaking supersymmetry. If this occurred, bubbles of nothing
would constitute a universal decay mode for any non-supersymmetric compactifications of
string theory. This would also prove the swampland conjecture in [1, 2], for which non-
supersymmetric vacua must always be metastable at best. Although one might need to
consider α′ or gs corrections to explicitly see the violation of the energy condition and the
consequent presence of the bubble of nothing.

The difference between a topological and a dynamical obstruction resembles the dif-
ference between the swampland statement of not having global symmetries and the Weak
Gravity Conjecture (WGC) [3]. The WGC is a refinement of the former that quantifies
how close we can get to a configuration restoring a global symmetry, and therefore, nec-
essarily constraints the dynamics of the theory. Hence, in the same way that the absence

54It would be interesting to see to what extent can positive energy theorems in gravity be reformulated
using quantum versions of energy conditions such as the ANEC [130]. See [131] for a proposal of such an
energy condition in the gravitational context (although we do not know if this is strong enough to prove a
positive energy theorem). If one finds a quantum energy condition leading to a PET, then we would demand
that the corresponding quantum inequality is violated in a non-supersymmetric setup, which would be a
restriction on the set of QFT’s that can arise as low energy limits of quantum gravity (a Swampland
constraint).
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of global symmetries is intimately related to the absence of a topological obstruction for
bubbles of nothing, the WGC (and similar conjectures) could then be related to the vio-
lation of the corresponding energy condition underlying the dynamical obstruction. This
indeed seems to be the case for the modified energy condition (6.19) in the presence of
gauge fields, which can be understood as a BPS bound as explained in [6]. Thus, when
breaking supersymmetry, a configuration violating this condition is precisely a configura-
tion satisfying the WGC, as the latter has the rough interpretation of an anti-BPS bound
at weak coupling [1, 132–134]. Similarly, in [53], (6.19) was used to prove that in general
relativity any spacetime with mass M and electric charge Q has a mass M ≥ |Q|. The
condition (6.19) is likely violated by Schwinger pair production of WGC particles in the
near-horizon geometry. We will study these connections more deeply in future work.

Let us finally recall that this is a non-perturbative instability, so the vacuum can be
very long lived. However, it can have dramatic consequences for AdS/CFT as the instability
occurs instantaneously for an observer in the boundary, so the CFT is ill-defined. It could
also provide a new argument to require supersymmetry preserved at some high energy scale
in our universe, since otherwise it might not be sufficiently long-lived. We will explore these
arguments in the future.

7 Conclusions

There is (to our knowledge) no single controlled example of an exactly stable nonsupersym-
metric vacuum in string theory. And if indeed all nonsupersymetric vacua must decay [1, 2],
the natural question is what is the reason for this. The simple answer we have advocated
in this paper is that a vacuum which carries no conserved charges should be able to pop
in and out of existence, just like elementary particles are able do. The process by which a
vacuum pops out of existence is a bubble of nothing.55 Since the only charge that a vacuum
can carry compatible with Poincaré or AdS invariance is a supercharge, it would follow that
any non-supersymmetric vacuum should admit a bubble of nothing. This is in line with
the cobordism conjecture recently put forth in [10], but it is actually a stronger statement;
while [10] demands only that any vacuum can be continuously deformed to nothing, we
would actually require that there is a physical process with a nonzero amplitude that allows
the vacuum to decay.

In this paper we have tested this idea by trying to falsify it. A natural strategy to try
and construct stable vacua is to construct vacua which have properties of supersymmetric
vacua, but that aren’t actually supersymmetric.

In the context of bubbles of nothing, an old example comes from a circle compactifica-
tion with the periodic spin structure for fermions [4]. This is the spin structure that would
be required by supersymmetry, but we can have it in a nonsupersymmetric theory as well.
As argued in [4], the bubble of nothing that exists for the bounding spin structure is not
present with periodic fermions; there is a topological obstruction to the existence of the
bubble of nothing.

55The reverse process is called a bubble from nothing [34].
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This seems like a robust way to engineer vacua which are at least safe from bubbles
of nothing, but as we have shown, this is not really the case. All one needs to do is
to add two extra compact dimensions — their shape does not really matter –, and this
topological protection is gone. Hence, once supersymmetry is broken, there might be
again a bubble of nothing, this time involving the three compact extra dimensions. As
a proof of concept, we have focused in a concrete example, that of compactification on
T 3 with periodic (supersymmetry-compatible) boundary conditions along each of its one-
cycles. There is a four-dimensional space with boundary (half a K3), which has T 3 with
the right spin structure on its boundary, so unlike in the circle case, there is no topological
obstruction to the existence of the bubble. Purely gravitational bubbles are classified by
spin cobordism; the reason for the difference is that ΩSpin

1 = Z2 while ΩSpin
3 = 0.

By turning on appropriate higher derivative terms (concretely, a supersymmetry-
violating Gauss-Bonnet term), as well as nontrivial profiles for a dilaton in higher di-
mensions, we have been able to construct a metric on this half K3 with the appropriate
boundary conditions as to serve as a true bubble of nothing for RD−3 × T 3 with finite
action, given by

SBON(α) ∝ 1
8πGD−3

(24π2

VT 3
α

)−(D−5)
. (7.1)

where GD−3 is the lower-dimensional Newton’s constant, α is the coefficient in front of the
Gauss-Bonnet term, and we have omitted some numerical factors that can be found in the
main text. The solution has been constructed via a layered analysis involving a perturbative
treatment of the Gauss-Bonent deformation near the core of the bubble, coupled with
numerical integration of Einstein’s equations in the far away region, and a suitable gluing.
We were able to exhibit our bubble as the zero mass solution of a one-parameter family
of valid initial conditions to Einstein’s equations which have arbitrarily negative mass.
This also guarantees that the instability we found is genuine, and cannot be removed by
any small corrections to our approximate solution to Einstein’s equations, including those
arising from higher orders in the perturbative analysis. This is, to our knowledge, the first
example of a bubble of nothing with supersymmetry-preserving boundary conditions, and
where fermions are not charged under any gauge interaction.

Notice that the action of the bubble goes to infinity as the supersymmetry-breaking
Gauss-Bonnet term is switched off, and thus the decay rate vanishes. This is what must
happen, because when the GB term is switched off, the classical gravitational Lagrangian
we are using has no way of knowing if it is actually a bosonic truncation of an underlying
supersymmetric theory, and in this case, the decay would be impossible! From a purely
gravitational point of view, what happens is that when the GB is switched off, the remaining
matter obeys the Dominant Energy Condition. In this case, there is a Positive Energy
Theorem that guarantees that decay of the vacuum is impossible. In this limit, therefore,
there is a dynamical obstruction to the existence of the bubble.

The bubbles constructed here represent the minimal scenario where the topological
obstruction is characterized by the spin bordism ΩSpin

d . However, in the presence of fluxes,
or when the fermions are charged the spin bordism group must be generalized accordingly,
which in some cases can lead to further possibilities to evade the topological constraint.
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The bubble of nothing constructed in [6] is an example of this, where fermions are coupled
to a U(1) gauge field and the appropriate bordism is ΩSpinc . As a consequence, while
the model is compatible with supersymmetric fermions, there is no topological protection
because ΩSpinc

1 = 0 is trivial. Interestingly, the bubbles constructed there exhibit the same
behaviour as those presented here: the compactification is unstable to decay to nothing if
SUSY is broken, but in the supersymmetric limit the stability of the compactification is
enforced dynamically, via a Coleman-DeLuccia type of mechanism.

In our model we get a decay of a T 3 with supersymmetric boundary conditions because
we violate the DEC. The point is that a violation of the DEC can be quite generic whenever
there is no supersymmetry: quantum corrections, higher derivative terms, and even a
negative vacuum energy can all violate the DEC. So also in this example we find that the
only thing that seems to guarantee vacuum stability in a robust way is supersymmetry.
Incidentally, the DEC is not the only energy condition that can lead to a Positive Energy
Theorem; in theories with a Spinc structure, there is a modified energy condition, involving
the U(1) gauge field, which takes the form of a BPS bound in the case of [6]. The Positive
Energy Theorem associated to the Spinc structure also guarantees stability of charge black
hole solutions in the classical gravity theory [53], and hence it has a natural relation to the
Weak Gravity Conjecture; it is possible that theories with WGC states are precisely those
that violate this modified energy condition. This opens a new avenue to explore in the
future, namely whether the WGC and similar swampland constraints precisely imply that
the relevant energy conditions underlying the dynamical obstruction to the construction of
the bubble are violated in quantum gravity, allowing non-supersymmetry vacua to always
decay to nothing.

Incidentally, with a slight modification of our bubble we have been able to provide
the missing bubble of nothing for the last class in the classification of [27]. This reference
classified all nonsupersymmetric Ricci-flat quotients of T 3, being able to find a bubble of
nothing for each of them except for one. Our results fill in this gap, and are again aligned
with the idea that nonsupersymmetric vacua always admit dynamical (i.e. they are actual
solutions to the equations of motion) bubbles of nothing.

In order to make sure that the effects we are observing are not some artifact of the
particular EFT we chose, we have embedded our solution into heterotic/type I string
theory.56 The supersymmetry breaking effects are related in this case to the turning on of
NS-NS flux on T 3. From the dual type II Calabi-Yau perspective, these correspond to both
IASD and ISD fluxes, so that supersymmetry is broken. A natural question is then to what
extent can one generalize the results of our toy model to more interesting and complicated
flux compactifications. Since the bordism groups ΩSpin

6,7 = 0, one should worry about
this phenomenon in any nonsupersymmetric string or M theory compactification to four
dimensions. For instance, whatever internal manifold one uses in the KKLT construction,
there will be (topologically) a bubble of nothing. The IASD fluxes sourced by the gaugino

56The string theory embedding of the BON solution was considered in detail to first order in α′, but
our perturbative framework could also allow a systematic treatment of higher order corrections. Provided
the EFT of Heterotic string theory is under control, such corrections will lead to small variations of the
instanton geometry and the associated decay rate, and thus our conclusions will remain the same.
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condensate are of the same kind that lead to a bubble in our toy model. Of course, this
would just be a non-perturbative instability, leading to a very long lifetime (see also [38, 40]
for related discussions).

Our results can lead to more dramatic implications in the realm of holography. A non-
perturbative instability is a killer in AdS/CFT, since it will be triggered near the boundary
and then reach the center of AdS in a finite amount of time [1, 135]. Our results suggest a
very specific strategy to construct bubble instabilities in nonsupersymmetric AdS solutions.
Now, the fact that ΩSpin

5,6,7 = 0 suggests that any nonsupersymmetric AdS4,5 solution in string
theory might admit a bubble of nothing. The construction in [41] is an example of this.
In some of these cases, to construct a bubble of nothing, one must also kill a flux, which
forces the introduction of additional branes; this is controlled by the existence of bordism
invariants in the supergravity theory.

Bubbles of nothing are a universal instability, but usually not the leading one (although
they can be [41]). When present, perturbative and nonperturbative brane instabilities are
usually less suppressed. If there is a bubble of nothing in the real world, it might be highly
suppressed, as it seems reasonable that its action will be at least as large as the size of the
internal manifold in Planck units. But all these other instabilities are very model dependent
and sometimes can be hard to detect from a low energy EFT perspective, while bubbles
of nothing are, at the moment, the best candidates to constitute a universal instability
of any non-supersymmetric vacua coming from a higher dimensional compactification of
quantum gravity.

In this work we have argued that, due to the general connection between bordisms,
positive energy theorems and instabilities in quantum gravity, bubbles of nothing are far
more common than what was previously thought and are in fact “lurking around the
corner”, ready to hit us as soon as supersymmetry is broken in the slightest. Hence, we
advise the reader to enjoy life as if there was no tomorrow, because nothing is certain in
string compactifications.
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A BON decay of a non-supersymmetric flux compactification

In this appendix we consider a generalisation of the model presented in section 3 which
incorporates a scalar potential to fix the three torus volume T 3 of the vacuum (3.6). We
will show that our bubble is compatible with this deformation, and also that in this set-
ting the BON nucleation radius is fixed as a consequence of the ingredients inducing the
moduli potential (H−flux on T 3 and a cosmological constant). The model we consider is
characterized by the following action in the string frame

S = − g2
s

16πGD

∫ √
ge−2φ

[
R+ 4(∇φ)2 − 1

12H
2 + α′β

8 R2
GB − 2e−

4
D−4φΛ

]
(A.1)

with the Bianchi identitiy for HMNP given by

dH = α′

4 trR ∧R. (A.2)

Note that the action reduces to a consistent truncation of heterotic string theory with first
order α′ corrections with the choice β = 1, and setting the cosmological constant to zero
Λ = 0. The equations of motion read

RMN = −2∇M∇Nφ+ 1
4H

2
MN + 2

D − 4Λe−
4

D−4φgMN

−α
′β

4
[
RMRSTR

RST
N − 2RMSNTR

ST − 2RMSR
S

N +RRMN

]
, (A.3)

∇2
(D)φ = 2(∂φ)2 − 1

12H
2 + α′β

16 R
2
GB −

2
D − 4Λe−

4
D−4φ (A.4)

and
∂M (e−2φ√gHMRS) = 0. (A.5)

Flux vacuum. Setting α′ = 0, the previous model admits a vacuum solution of the form
AdSD−3 × T 3

ds2 = ds2
AdSD−3 + hT

3

ᾱβ̄
dyᾱdyβ̄ , (A.6)

with constant dilaton φ = φ∞, and hT
3

ᾱβ̄
the metric on T 3. To obtain this vacuum we

turn on a flux m =
∫
T 3 H on the three torus Hᾱβ̄γ̄ = m

VT3
εᾱβ̄γ̄ where εᾱβ̄γ̄ is the totally

antisymmetric tensor on T 3, and VT 3 is the three torus volume on the vacuum.
From the Einstein equation on T 3 it can be seen that the combined effect of the

cosmological constant and the flux induces an effective potential for the dilaton and the
T 3 volume modulus, which imposes the relation

V−2
T 3 = − 4

(D − 4)
Λ
m2 e−

4
D−4φ∞ > 0. (A.7)

Regarding the AdSD−3 components the corresponding line element can be expressed as
follows using a deSitter slicing parametrisation

ds2
AdS = L2 sinh2(ρ/L)(−dt2 + cosh2(ρ)dΩ2

D−4) + dρ2. (A.8)
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The scalar curvature of AdSD−3 is then given by R(D−3) = −(D − 3)(D − 4)/L2, where
L is the AdS scale. The scale L can be determined from the Einstein equation on the
non-compact directions, which implies

L−2 = − 2
(D − 4)2 Λ e−

4
D−4φ∞ > 0. (A.9)

Then, the expectation value of the dilaton controls both AdS scale and the volume of the
T 3 compact space. Since the non-compact directions of the decaying vacuum (A.6) are now
AdS instead of Minkowski, the BON solutions we will now construct should have different
asymptotic behaviour. In particular, using the BON ansatz (4.11) we will need to impose

lim
ρ→∞

L∂ρW/W = 1 (A.10)

instead of (4.13). Nevertheless, as we shall see below, when the AdS radius greatly exceeds
that of the bubble L� R, the BON solution presented of the main text represents a good
characterisation of the instanton mediating the decay of (A.6) in the region ρ� L.

Construction of the BON solution. The construction of the BON solution proceeds
in complete analogy to our discussion in section 5, and therefore here we will only outline
the main differences with that analysis. First, the presence of an H−flux in the T 3 and
the Bianchi identity (A.2) imply that the presence of a non-zero three form on the BON
solution. However, its energy momentum tensor scales as O(α′2) (see section 6.1), and
therefore its back reaction on the geometry can be safely neglected in the construction of
the inner-bubble geometry (region II.), where we consider only O(α′) terms. Similarly, we
can also tune the expectation value of the dilaton φ∞ � 1 so that the cosmological constant
produces small Λe−

4
D−4φ∞ = O(α′2) effects in the inner-bubble region (or alternatively

tune Λ � 1). Therefore, in the region II. we find that the warp factor of the sphere
is unperturbed to first order W (1) = 0, the perturbation of the volume modulus ϕ(1)

determined by an equation analogous to (5.62)

∇2ϕ(1) = β
α′

16R
2
GB, (A.11)

with the variation of the dilaton also given by φ(1) = ϕ(1). Regarding the three form flux
the appropriate ansatz is

Region II. : Hαβγ = −2β−1ε δ
αβγ ∂δϕ

(1), Hµνρ = Hµαβ = Hµνα = 0, (A.12)

where εαβγδ is the totally antisymmetric tensor associated to the background Calabi-Yau
geometry on the bordism B. It is easy to check that this ansatz satisfies both the Euler-
Lagrange equation and the Bianchi identity H to order O(α′).

In the outer-bubble regime (region I.), we can also proceed similarly to our con-
struction in the main text. We use line element (5.79) for the bubble geometry, with
C(ρ) = Rkkeϕ−ϕ∞ , and we impose the ansatz ϕ(ρ) = φ(ρ) − φ∞ + ϕ∞. In this region the
appropriate ansatz for the three-form is

Region I. : Hᾱβ̄γ̄ = 2β−1 εᾱβ̄γ̄ ϕ
′(0) eϕ(ρ)−ϕ(0) (A.13)
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Figure 12. Outer-bubble geometry for the model (A.1) with D = 7, ∆β = 8.61 · 10−5, AdS scale
L = 6.78 · 103, and the scale of α′ corrections given by 24π2α′

VT3
= 1.8 · 10−4. The solid line represents

the warp factor on the sphere LW ′/W , and the dashed line the three torus volume VT 3(ρ)/V∞T 3 .
The BON radius is R = 5.46 · 103, just slightly smaller that the AdS radius L. The plot displays
how the non-compact space approaches to the AdS4 for large ρ→∞, i.e. LW ′/W → 1.

and all other components vanishing. . . It can be checked easily that the form H is continuous
across common boundary of the regions II. and I. (which we have set at ρ∗ = 0), and that
it satisfies the equations of motion and the Bianchi identity (A.2) regardless of the form of
ϕ(ρ). The value of ϕ′(0) can be obtained from the matching conditions between the inner
and outer bubble regimes similar to (5.86), which in the present model give

ϕ′(0) = β
24π2α′

VT 3
e3∆ϕ, with ∆ϕ = ϕ∞ − ϕ(0). (A.14)

Requiring the three form to match the asymptotic configuration of the vacuum we find the
relations

m

V∗T 3
= 2β−1ϕ′(0) =⇒ m = 48π2α′. (A.15)

The remaining fields ϕ(ρ) and W (ρ) should satisfy the system of equations

ϕ̂′′(ρ) + (D − 4)W
′

W
ϕ̂′ + ϕ̂′2 + 2β−2ϕ̂′(0)2

(
e−6ϕ̂ − λe−

4
D−4 ϕ̂

)
= 0,

W ′′

W
− (D − 5)(R−2 −W ′2)

W 2 + W ′

W
ϕ̂′ − 2β−2ϕ′(0)2λe−

4
D−4 ϕ̂ = 0, (A.16)

where we have defined ϕ̂ ≡ ϕ − ϕ(0) and the parameter λ ≡ β2 |Λ|
φ′(0)2(D−4)e−

4
D−4 (φ∞−∆ϕ).

Using the relations (A.7) and (A.14) it follows that the parameter λ can be rewritten as

λ = e−
2(3D−14)
D−4 ∆ϕ. (A.17)

The previous equations should be solved subject to the boundary conditions

ϕ̂(0) = 0, ϕ̂′(0) = ϕ′(0) = β
24π2α′

VT 3
e3∆ϕ,

W (0) = 1, W ′(0) = 0, (A.18)
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at ρ = 0, and requiring that for ρ → ∞ we have ϕ̂ → ϕ∞ − ϕ(0) = ∆ϕ, which in turn
automatically guarantees (A.10), as this implies that the T 3 volume and the dilaton satisfy
the in the vacuum relation (A.7). To meet these conditions we have at our disposal the
parameters ∆ϕ and the BON radius R, which we can freely vary a priori. Therefore the
conditions presented above are no sufficient to fix completely the boundary value problem
what would lead, without further input, to families of BON solutions parametrized by the
nucleation radius R, similar to those discussed in the main text. To see how the presence
of fluxes and a cosmological constant determine the BON radius we need to consider the
ρ− ρ component of the Einstein’s equations. While this equation is trivially it is satisfied
by construction to order57 O(α′), when considered to order O(α′2) it leads to an additional
constraint on the outer-bubble configuration. The resulting equation is

(D − 4)(D − 5)
R2W 2 = (D − 4)(D − 5)W

′2

W 2 + 2(D − 4)W
′

W
ϕ′ − 2ϕ̂′2

+2β−2ϕ̂′(0)2
(
e−6ϕ̂ − (D − 4)λe−

4
D−4 ϕ̂

)
, (A.19)

which evaluated on ρ = 0 gives an expression analogous to (5.92) after using (A.14)

R = e−3∆ϕ
√

(D − 4)(D − 5)
2(1− β2 − (D − 4)λ)

(
24π2α′

VT 3

)−1

, (A.20)

with λ given by (A.17). With this additional constraint the boundary value problem
becomes completely determined, and thus it only remains to find the value of ∆ϕ (or
equivalently R), what we can do solving the equations with numerical methods. The result
of such computation is displayed in figure 12, where we show a BON with nucleation radius
just smaller than the AdS scale R . L. This solution illustrates how the higher order α′

effects (not considered in the main text) might fix the nucleation radius of the bubble in
terms of the parameters of the compactification.

Combining the previous equation with (A.15), (A.7) and (A.9) we obtain an alternative
expression for the nucleation radius in terms of the AdS scale

R =
√

(D − 5)
(1− β2 − (D − 4)λ) e−3∆ϕ L. (A.21)

In particular we can see that the embedding of the solution presented in the main text,
which asymptotes to Minkowski spacetime instead of AdS, can be achieved in the limit
R � L, that is, when the AdS scale is far larger than the BON radius. In this limit
the curvature of the AdS space is negligible near the bubble core, and then the BON
spacetime in this region is expected to be similar to a bubble of nothing for a vacuum
where the non-compact space is Minkowski. To find such solution we note that the limit
R � L can be achieved provided we tune the parameter β → 1−, and simultaneously

57The boundary conditions at ρ = 0 are obtained via the matching procedure from a solution to the
complete set of Einstein’s equations to order O(α′) in the inner bubble region. In particular the matching
guarantees that the ρ− ρ Einstein’s equation is satisfied at ρ = 0 to order O(α′).
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Figure 13. Outer-bubble geometry for the model (A.1) with D = 7 in the limit β → 1 with
R/L = 8.05 · 10−5. The AdS scale is L = 4.57 · 107, and the scale of α′ corrections is given by
24π2α′

VT3
= 2.68 · 10−8. The solid line represents the warp factor on the sphere, expressed in terms of

RW ′(ρ), and the dashed line is the three torus volume VT 3(ρ)/V∞T 3 . The BON nucleation radius
R = 3.68 · 103 � L is much smaller that the AdS scale. In the regime R � ρ � L the bubble
spacetime approaches a configuration M4×T 3, i.e.W ′(ρ)→ R−1, mimicking the Minkowski bubbles
we discussed in the main text.

e−6∆ϕ/(1 − β) → 0+, so that the expression for the bubble radius (written in the form
of (5.92) and (5.96)) reduces to

lim
β→1
R/L =

√
(D − 5)

2∆β e−3∆ϕ � 1 =⇒ R→ e−3∆ϕ

2

√
(D − 4)(D − 5)

∆β

(
24π2α′

VT 3

)−1

.

(A.22)
where ∆β ≡ 1− β. Moreover, comparing this result with the expression for the radius for
the asymptotically flat bubble in limit ∆ϕ→∞ (5.96), we find the relations

lim
∆ϕ→∞

∆ϕ = −1
2 log

(∆β(D − 5)
D − 4

)
� 1, lim

β→1
R/L = (D − 5)2

√
2(D − 4)3/2 ∆β. (A.23)

As we anticipated in the main text, in this case the bubble radius is fixed by the higher α′

corrections. To confirm the existence of this branch of solutions we resort again to numer-
ical methods to solve (A.16), and we find the BON configuration presented in figure 13,
which has R/L = 8.05 · 10−5. This plot shows the bubble configuration well inside the
AdS radius ρ � L. It can be observed that the non-compact component of spacetime
is indistinguishable from flat space outside the bubble core R � ρ. Actually the profile
functions plotted in figure 13 match perfectly well the BON solution (5.93) discussed in
the main text, which describes the decay of the MD−3 × T 3 vacuum.

For completeness in figure 14 we have also displayed an intermediate regime with
smaller ratio R/L = 1.13 · 10−2. In the plots we can see two regimes of the bubble
geometry: in the left plot of figure 14 we see that just outside the bubble core R . ρ� L

the spacetime is approximately flat, and the configuration is similar to the bubbles discussed
in the main text; in the right plot we can see that far from the bubble core R � ρ the
non-compact component becomes AdSD−3.
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Figure 14. Outer-bubble geometry for the model (A.1) with D = 7 in the intermediate regime
R/L = 1.13 · 10−2. The AdS scale is L = 6.34 · 108, and the scale of α′ corrections is given by
24π2α′

VT3
= 1.93 ·10−9. LEFT: the solid line represents the warp factor on the sphere RW ′(ρ), and the

dashed line the three-torus volume VT 3(ρ)/V∞T 3 . Just outside the bubble core, R . ρ� L the non-
compact space is almost M4 (W ′ ≈ R−1), and approaches an AdS4 in the limit ρ → ∞. RIGHT:
warp factor on the S3 sphere expressed in terms of LW ′/W far from the bubble R � ρ ∼ L. The
plot shows the onset of the AdS geometry far form the bubble, i.e. LW ′/W → 1.

Step-by-step decay to nothing. Above and in the main text, we have described a decay
process where a single instanton destroys all the flux, and the asymptotic T 3 geometry in
a single step.

As shown in (A.7), the volume of the internal T 3 is controlled by the H flux, and
vanishes as m→ 0. Since a T 3 of zero size is morally “nothing”, this suggests the existence
of Euclidean solutions that would allow one to discharge one unit of H flux at a time,
arriving to the picture in [36], where the bubble of nothing is described precisely as the
limiting transition where all the flux disappears in one go.

A simple way to realize this picture is to modify (A.15) to consider a T 3 with a flux
m = 48π2α′k, for k an arbitrary integer. This construction allows the flux to become
arbitrarily large, and thus to have an internal T 3 volume which is also arbitrarily large. At
least topologically, it is possible to obtain a bordism B(k)

4 describing the decay to nothing
of this compactification as follows. First consider k copies of the nulbordism for T 3, the
half K3 B(1)

4 , and remove a small region T 2 × D in the neighbourhood of the origin from
k−1 of the copies. Each of these modified k−1 copies have now two boundaries, and both
of them are topologically a trivial T 2 × S1 fibration. Thus, the nulbordism B(k)

4 can be
obtained gluing in sequence these k−1 copies by identifying their T 2×S1 boundaries, and
finally attaching the unmodified half K3 to one of the two ends. The resulting (topological)
bubble would mediate the direct decay to nothing; while the modified bordism B(1), with
the region T 2 × D removed, describes the topology of an instanton mediating the decay
from a configuration with m = 48π2α′k to m = 48π2α′(k−1). Hence, in a very literal way,
the bubble of nothing is the limit of the small bubbles when the flux changes by k units.

In the above, the flux jumps are always a multiple of 48π2α′. This is twelve times the
fundamental flux quantum. We can make a similar construction where the flux changes
by a quantity which is not a multiple of 12, if we allow topology change in the process.
The idea is to split the N = 12 degenerations in our bordism between a set of N ′ < N
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and N −N ′ degenerations, and “hide” N −N ′ of them inside the disc D on the base that
we subsequently remove. The resulting manifold will be a nontrivial torus fibration over
S1 (for instance, for N ′ = 8 it can be the G3 manifold as discussed in subsection 4.1),
and it will have 4π2α′N ′ units of flux threading it. We can now lower N ′ one step at a
time, to arrive at a similar picture as above. Other options include using NS5 branes or
nontrivial gauge bundles to change the asymptotic flux using the Bianchi identity without
changing the topology of the bordism, but these do not relate to the bubble of nothing as
straightforwardly as the configurations we described.

B Einstein frame action and equations of motion

In this appendix we discuss how to write down our results in Einstein frame. The action
of our model in the Einstein frame has the form

SE = − 1
16πGD−3VC3

∫
MD

dDx
√
−g
[
R− 4

D − 2(∇φ)2 + α

8 e−
4φ
D−2R2

GB

]
. (B.1)

When changing the conformal frame we have assumed that the background is Ricci-flat
and with a constant dilaton φ = φ0, what simplifies greatly the transformation of the
Gauss-Bonnet term (see e.g. [88]). The Einstein’s equations in this frame read

GMN = 4
D − 2

(
∇Mφ∇Nφ−

1
2(∇φ)2gMN

)
+ α̃

16gMNR
2
GB

− α̃4

[
RMRSTR

RST
N − 2RMSNTR

ST − 2RMSR
S

N +RRMN

]
, (B.2)

and the dilaton equation is
∇2

(D)φ = α̃

16R
2
GB. (B.3)

where we defined α̃ ≡ αe−
4φ
D−2 . The ansatz (with Minkowski signature) for the bubble is

the same as before

ds2 = W 2(y)R2g̊µνdx
µdxν + hBαβ(y)dyαdyβ , φ = φ(y), (B.4)

where g̊µν is the unit metric on dSD−4. Asymptotically ρ → ∞ the line element should
behave as

ds2 →W 2(ρ)R2g̊µνdx
µdxν + dρ2 + hCαβ(ȳ)dyᾱdyβ̄ , φ→ φ(ρ). (B.5)

with W (ρ)→ ρ/R. The Ricci tensor reads

Rµν =
[
−W−1∇2W +W−2(D − 5)

[
R−2 − (∇W )2

] ]
gµν

Rαβ = RBαβ − (D − 4)W−1∇α∇βW (B.6)

where ∇ is the Levi-Civita connection on the bordism, and the curvature scalar

R = −2(D − 4)W−1∇2W + (D − 5)(D − 4)
[
R−2 − (∇W )2

]
W−2 +RB. (B.7)
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The Hamiltonian constraint. With this at hand we can already write down the dy-
namical constraint, i.e. the t− t component of Einstein’s equations

(D − 5)W−1∇2W − 1
2(D − 5)(D − 6)

[
R−2 − (∇W )2

]
W−2 (B.8)

= 1
2RB −

2
D − 2(∇φ)2 + α̃

16R
2
GB,

where the Gauss-Bonnet term is evaluated on the Ricci flat background MD−4 × B4, and
R is the bubble radius in Einstein frame.

C Negative mass states and bubbles of nothing

In this appendix we show how one can construct a family of solutions of the model (3.2)
with the same topology as the bubbles of nothing constructed in the main text, but with
arbitrarily large negative masses — the Hamiltonian of the theory is unbounded from below
—. An example of such a family for Witten’s bubble of nothing can be found in [136], which
employs special features of that solution and the four-dimensional Einstein-Maxwell theory.
Here, we want to argue that such a family always exists, and is independent of the details
of the bubble solution constructed in the main text. The analysis in this appendix is for
spacetime dimension ≥ 4 and Minkowski asymptotics; in three dimensions, the fact that
the mass corresponds to a deficit angle at infinity formally requires a different treatment.

We will show the existence of these negative mass states in two ways: first, as a
consequence of the Hamiltonian constraint equation (B.8). And secondly, we will outline a
proof that these negative mass states are always present in a wide class of models whenever
one can construct a bubble of nothing solution self-consistently in perturbation theory,
irrespectively of the details of the construction. Thus, once one establishes the existence
of a bubble of nothing in a truncation of the theory, negative mass states are unavoidable.

A family of states with negative ADM energy. To solve the Hamiltonian con-
straint (B.8) we will assume that the manifold B4 (with N = 12 degenerations) and the
dilaton are in their background configurations RB = ∇φ = 0, what leads to

(D − 5)W−1∇2W − 1
2(D − 5)(D − 6)

[
R−2 − (∇W )2

]
W−2 = α̃

16R
2
GB, (C.1)

Next, proceeding as in the main text, we consider the regime α̃→ 0 (R →∞) so that there
is a well defined inner-bubble region (II.) where the Gauss-Bonnet is dominant. In this layer
of the BON spacetime we solve the linearized Hamiltonian constraint for W = 1 + α̃W (1)

Inner-bubble region, BII: ∇2W = α̃

16(D − 5)R
2
GB +O(α̃2). (C.2)

Then, we consider the outer-bubble region (I.), where the Gauss-Bonnet term is approxi-
mately zero, the subdominant O(R−1) terms become important (i.e. the SD−4 curvature),
and the T 3 KK modes have decayed, so thatW = W (ρ). In this layer, with the ansatz (B.5)
and considering the case with N = 12 degenerations, the Hamiltonian constraint reduces to

Outer-bubble region, BI: W ′′ − 1
2(D − 6)

[
R−2 −W ′2

]
W−1 = 0, (C.3)
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There are no obstructions for solving the equation for the inner bubble region58 (C.2),
as it is just a Poisson equation on B4. We find that at the boundary between the two
regions we must have

W |BI = 1 + α̃W (1)|∂BII +O(α̃2), ∇nW |∂BII = 24π2α̃

(D − 5)VT 3
+O(α̃2), (C.4)

where VT 3 the T 3 volume is measured in the Einstein frame, and n is the unit normal
vector to the hypersurface ∂BII. At the outer-bubble region, we note that the equation
admits the first integral

W ′ = R−1(1 + λW−(D−6))1/2, (C.5)

where λ is an integration constant. Then, imposing the matching conditions for the metric,
(continuity of W and ∇nW ) we find that the Einstein-frame bubble radius is

R−1 = 24π2α̃

(D − 5)VT 3
√

1 + λ
+O(α̃2). (C.6)

Let us now discuss what the outer bubble geometry (B.5) represents in this case. If we
make the change of variables r = W (ρ)R, the line element restricted to the Cauchy surface
Σ at t = 0 reads

ds2
Σ|BI = r2dΩ2

D−5 +
(

1 + λRD−6

rD−6

)−1
dr2 + ds2

T 3 . (C.7)

This looks exactly as a spatial slice of a Schwarzschild blackhole in D− 3 dimensions with
mass parameter −λRD−6. Since the extra dimensions in this geometry are inert, the ADM
energy is just proportional to the mass parameter

EADM ∝ −λRD−6 = −λ(1 + λ)
D−6

2

( 24π2α̃

(D − 5)VT 3

)−(D−6)
, (C.8)

which is negative provided λ > 0, and arbitrarily large in absolute value (even with fixed
α̃). Actually, the energy decreases for large values of the radius R.

Note that the bubble radius R > Rmin, has a minimum value within this family of
negative mass states. Since λ > 0 we have

Rmin = (D − 5)
(24π2α̃

VT 3

)−1
, (C.9)

where Rmin corresponds to λ = 0, and thus a state with zero ADM energy. When we take
the limit α̃→ 0, the radius of the bubble in these negative mass states diverges, regardless
of how close to zero is their energy. So in this limit we expect the rate of decay to these
states to be suppressed by the Coleman-DeLuccia mechanism.

58Actually, the solution is given by W = 1 + ε̂ϕ(1)/(D − 5), (with the substitution α→ α̃) where ϕ(1) is
the first order variation of the volume modulus in the solution constructed in the main text, i.e. the solution
to (5.62).
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Negative mass states for a generic bubble. We will now outline how to construct
negative mass states more generally. Before getting into the details of the construction,
let us discuss the main idea in a simpler model. Consider a field theory (no gravity) in
which there is a false vacuum parametrized by a scalar field that can decay via bubble
nucleation, a la Coleman-DeLuccia [20]. These bubbles nucleate, and then expand. The
mass of the bubble must always be equal to zero, due to conservation of energy, but how
does the energy balance work? In the thin-wall approximation, one has

0 = M = Mkinetic + Sd−1TR
d−1 − Vd(∆V )d. (C.10)

Here, T is the tension of the domain wall bounding the bubble, which has radius R,
and ∆V < 0 is the difference in energies between false and true vacua. d is the spatial
dimension and Sd−1, Vd are the area and volume of a unit radius sphere in Rd, respectively.
Mkinetic is the kinetic energy of the scalar field, which exactly balances out the potential
and tension contribution.

In this setup, it is clear what to do to produce negative-mass solutions; just take
a bubble with a supercritical radius, such that the sum of the second and third terms
in (C.10) is negative, and switch off the time derivatives of the fields, so that Mkinetic = 0.
The difference in vacuum energies then overcomes the tension and produces a negative
mass solution. By taking R arbitrarily large, this can be made as negative as one desires.

We will do the same thing for a bubble of nothing. We will keep the discussion as
general as possible, and only later particularize to the bubbles discussed in the main text.
We begin with the generic euclidean metric for a bubble of nothing far away from the core
of the bubble, in d+ 1 dimensions. This can always be put in the form

ds2 = e2ϕ(r)
[
(dr2 + r2dΩd−1) + e2φ(r)ds2

B

]
= e2ϕ[g0 + e2φgB], (C.11)

where the functions eϕ, e2φ asymptote to a constant at infinity as a power law, as dis-
cussed elsewhere in the paper. Upon continuation to Lorentzian signature of the azimuthal
coordinate of the sphere θ (see section 2.1), and the change of variables

x = r cosh θ, τ = r sinh θ, (C.12)

one ends up with the time-dependent Lorentzian metric

ds2 = e2ϕ(
√
x2−τ2)

[
−dτ2 + dx2 + x2dΩd−1 + e2φ(

√
x2−τ2)ds2

B

]
. (C.13)

This describes propagation of a bubble with uniform acceleration. The metric can also be
described in ADM formalism [103] in a simple way,

ds2 = −α2dτ2 + γijdx
idxj , (C.14)

where α is the lapse function, and γijdx
idxj is the spatial part of the metric (projection

onto constant time hypersurfaces).
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Einstein’s equations are evolution equations for the pair59 α, γij . However, we cannot
pick just any functions (α, γij); consistent set of initial data must satisfy the Hamilto-
nian constraint,

H = − 1
2e2ϕ [KijK

ij −K2 −Rγ ] = T 00

2 , (C.15)

as well as the momentum constraint,

∇j(Kij −Kγij) = 8πGγijT0j . (C.16)

Here, Kij is the extrinsic curvature tensor, and K ≡ Kijγ
ij its trace. In our setup, the

expression for Kij is very simple,

Kij = ∂τγij
2eϕ . (C.17)

Therefore, using (C.13),

Kijdx
idxj = τ√

x2 − τ2

[
eϕϕ′gs + e2φ+ϕ(ϕ′ + φ′)gB

]
, (C.18)

and we have
KijK

ij = τ2

x2 − τ2 e
−2ϕ

[
d(ϕ′)2 + (ϕ′ + φ′)2k

]
, (C.19)

as well as
K = τ√

x2 − τ2
e−ϕ

[
d(ϕ′) + k(ϕ′ + φ′)

]
, (C.20)

which means

K2 −KijK
ij = τ2e−2ϕ

x2 − τ2 e
−2ϕ

[(
(d+ k)ϕ′ + kφ′

)2 − d(ϕ′)2 − k
(
ϕ′ + φ′

)2]
. (C.21)

As discussed, the bubble has zero mass, and due to energy conservation, this is true
for any τ ; however, the balance between “kinetic” and “potential energy” changes. For
τ = 0, the time of nucleation of the bubble, the configuration is momentarily static (the
time derivatives of γij vanish), but for any τ > 0, kinetic energy (measured by the extrinsic
curvature terms in (C.15)) exactly balances out a negative contribution coming from the
spatial curvature of the metric, just as in the field theory example. We will construct
negative mass solutions by switching off the kinetic energy from our bubble solution. More
specifically, we will consider a modified initial condition where the spatial part of the
metric is (a small modification of) (C.13) evaluated at a generic τ , but the time derivative
is switched off far away from the core of the bubble (see figure 15):

∂τγij |initial time slice,x≥
√
r2

0+τ2 = 0. (C.22)

Due to (C.17), this means that the extrinsic curvature terms in the Hamiltonian con-
straint vanishes, and the momentum constraint is automatically satisfied. However, now
that the extrinsic curvature is no longer present, we need to do something else in order to

59More generally, we would also have a lapse vector βi, but in our setup it can be consistently truncated
to zero.
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x = x0
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Figure 15. Schematic construction of our bubble solutions with negative mass. The innermost
circle, in the core, with radius x ∼ xc, corresponds to the radius of the critical bubble — the radius
of the bubble of nothing in the instant it nucleates. The circle at the solid line corresponds to the
physical radius of the bubble at some time τ > 0, when it has been expanding for a while. The
starting point of our construction is to take this τ > 0 “snapshot” of the bubble and use it as
an initial condition for GR evolution, while modifying the time derivative of the metric according
to (C.22) outside of the dashed circle at x = x0, far away from the core of the bubble. This asymp-
totic modification is designed to take away some positive energy from the bubble, and therefore
the resulting object has negative mass. As proven in the main text, this can be made arbitrarily
negative, thereby establishing the instability of the vacuum even if the original bubble was not an
exact (only approximate) solution to Einstein’s equations.

solve Hamiltonian constraint. Inspired by the fact that we somehow want to fix this by
having a massive solution, we will consider the family of spatial metrics

γ̃τ = e2ϕ(
√
x2−τ2)

 dx2

1− 2M(x)
xd−2

+ x2dΩd−1 + e2φ(
√
x2−τ2)ds2

B

 . (C.23)

ForM(x) = 0 and τ = 0, this is just the initial condition at of our bubble. Equation (C.23)
is just a minor modification of our bubble solution including a Schwarzschild-like mass term,
similar to what is done to describe stelar interiors [103]. This term is x-dependent, and
M(x) is morally the contribution to the ADM mass of the shell at radius x. Taking (C.23)
for arbitrary τ as the initial condition for a metric with vanishing KijK

ij−K2, the Hamil-
tonian constraint will give a differential equation for M(x).

For this, we just need to compute the Ricci scalar of (C.23). It turns out that60

Rγτ = aṀ(x) + bM(x) + c, (C.24)
60One can compute the Ricci scalar by repeatedly using the formula for the Ricci scalar of a fibration

found in [137], together with the change of the Ricci scalar under a conformal change of coordinates.
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where a, b, c are functions of x as well as ϕ, φ and their derivatives up to second order, and
the dot denotes a derivative with respect to x. The coefficients are given explicitly as

a ≡
2e−2ψ (r2 + τ2) 1

2−
d
2
((
r2 + τ2) ((d+ k)eψψ′ + kφ′

)
+ (d− 1)r

)
r

,

r3b ≡ 2e−2ψ
(
r2 + τ2

)1− d2
(
r(d+ k)

(
r2 + τ2

)
eψψ′2

(
(d+ k − 1)eψ + 2

)
+(d+ k)eψ

(
dr2 − 2τ2

)
ψ′ + 2r

(
r2 + τ2

) (
(d+ k)eψψ′′ + kφ′′

)
+k

(
dr2 − 2τ2

)
φ′ + k(k + 1)r

(
r2 + τ2

)
φ′2
)
,

r3c ≡ e−2ψ
(
−r(d+ k)

(
r2 + τ2

)
eψψ′2

(
(d+ k − 1)eψ + 2

)
−2(d+ k)eψ

(
(d− 1)r2 − τ2

)
ψ′ − 2r

(
r2 + τ2

) (
(d+ k)eψψ′′ + kφ′′

)
+2k

(
τ2 − (d− 1)r2

)
φ′ − k(k + 1)r

(
r2 + τ2

)
φ′2
)
. (C.25)

Here, r2 = x2 − τ2, the natural euclidean variable, and primes denote derivatives with
respect to r. The Hamiltonian constraint Rγτ = 0 then becomes a first-order linear ODE
for M(x),

Ṁ(x) = fM(x) + g, (C.26)

where the dot denotes a derivative with respect to x and

f ≡ − b
a
, g ≡ − c

a
. (C.27)

with boundary condition M(x0) = 0, where

x0 =
√
r2

0 + τ2. (C.28)

This corresponds to having the extrinsic curvature and stress-energy tensor terms in (C.15)
switched on until a radius x0 (so that until that radius the solution is identical to the bubble
of nothing, thus havingM = 0) and then switching them off from x0 onwards (see figure 15).
The general solution to this equation is then

M(x) =
∫ x

x0
g(x′) exp

(
−
∫ x

x′
f(x′′) dx′′

)
dx′ (C.29)

from which we get an expression for the ADM mass of the family of metrics

M =
∫ ∞
x0

g(x′) exp
(
−
∫ ∞
x′

f(x′′) dx′′
)
dx′. (C.30)

This is a function of the time τ chosen in (C.23); the larger τ , the bigger the bubble, since
the minimum value of the x coordinate is x0 =

√
τ2 + r2

0.
It is clear from (C.30) that we want g < 0 at least somewhere to get negative mass.

The Hamiltonian constraint for the original bubble (C.13) involves (C.24) at M =0, thus
becoming

e2ϕT 00 − c+KijK
ij −K2 = 0. (C.31)
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This means that at least one of e2ϕT 00, −c or KijK
ij −K2 must be negative. The general

idea is to use whichever is negative as the source for g, and switch off the other two
terms.61 In the present case, c > 0 as we will see, so we switch off T 00 and the extrinsic
curvature terms.

Since we will take r0 in (C.22) large compared to other scales of the problem except
for τ , we just need the asymptotic behaviour of the coefficients f, g. This can be obtained
from (C.25) provided that we know the asymptotic behaviour of the functions ϕ, φ in our
particular bubble. As discussed elsewhere in the text, for the particular case of the T 3

bubble we get
ϕ(r)→ −2f1

D − 2r
D−5, eφ(r) → 1 + f1

rD−5 . (C.32)

Here, D = d+ k + 1 is the total dimension of spacetime, and the constant f1 is

f1 = − e2∆ϕ

(D − 5)
24π2α

VT 3
RD−4 (C.33)

One can then obtain explicit (if cumbersome) expressions for f and g, and compute the
mass explicitly according to (C.30). The integral decomposes in two regions, according to
whether r . τ or r & τ . For r � τ but large enough so as to trust (C.32), one has (for
k = 3, the case of interest)

f ∼ 2(d+ 1)
r2 , g ∼ −(d+ 1)τd−1

r2 , (C.34)

while for r � τ , one has
f ∼ αdf1

rd
, g ∼ βdf1

r2 . (C.35)

The αd, βd are dimension-dependent coefficients that can be computed explicitly on a case-
by-case basis — for instance, for d = 3, α3 = −9/5, β3 = 3/5, —. One can check that with
the numerical coefficients f1, g1 we used to compute the euclidean action of the bubble, g
is indeed negative, as advertized.

In any case, since f is always smaller than 1/r2
0, for r0 large enough we are entitled to

drop the exponential term in (C.30) and the result is a simple integral over g. For large
τ , this integral is furthermore dominated by the r ≤ τ region, with asymptotics (C.34).
One gets

M ∼ −(d+ 1)τd−1
∫ τ

r0

dr

r2
r√

r2 + τ2
∝ −τd−2 log

(
τ

r0

)
, (C.36)

so we indeed get a family of bubbles whose mass is as negative as one wants.
In this construction we have contented ourselves with stripping away the kinetic energy

of the gravitational field far away from the bubble. It would be interesting to figure out
what is the largest scaling one can get with τ , and whether it is area (τd−1) or volume
(τd) scaling. In the latter case, the coefficient in front of the τd term would constitute the
energy density of the bubbles. Perhaps it would make sense to identify it with some sort

61In cases where KijK
ij −K2 is the negative term, one will need additional modifications to satisfy the

momentum constraint (C.16). This is not the case for our bubbles.
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of “zero-point” energy of the KK vacuum, which can then be removed by the bubble. If
so, “nothing” seems to be the less energetic state in this case. It would be interesting to
extend and apply the formalism in this appendix to other bubbles and see if the above
ideas can be made more precise. At present, we only know that we know nothing.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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