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Abstract. This is the third in a series of papers in which we consider one-dimensional Random Walk in Cooling Random Environment
(RWCRE). The latter is obtained by starting from one-dimensional Random Walk in Random Environment (RWRE) and resampling
the environment along a sequence of deterministic times, called refreshing times. In the present paper we explore two questions for
general refreshing times. First, we investigate how the recurrence versus transience criterion known for RWRE changes for RWCRE.
Second, we explore the fluctuations for RWCRE when RWRE is either recurrent or satisfies a classical central limit theorem. We show
that the answer depends in a delicate way on the choice of the refreshing times. An overarching goal of our paper is to investigate how
the behaviour of a random process with a rich correlation structure can be affected by resettings.

Résumé. Ceci est le troisième d’une série d’articles dans lesquels nous considérons une marche aléatoire unidimensionnelle dans un
environnement aléatoire refroidissant (RWCRE). Ce processus est obtenu en partant d’une marche aléatoire unidimensionnelle dans un
environnement aléatoire (RWRE) et en rafraîchissant l’environnement le long d’une séquence de temps déterministes, appelée temps
de rafraîchissement. Dans le présent article, nous explorons deux questions pour des moments de rafraîchissement généraux. Tout
d’abord, nous examinons comment le critère de récurrence connu pour RWRE change pour RWCRE. Deuxièmement, nous explorons
les fluctuations de RWCRE lorsque RWRE est récurrent ou satisfait un théorème central limite classique. Nous montrons que la réponse
dépend de manière subtile du choix des moments de rafraîchissement. Un objectif primordial de notre article est d’étudier comment le
comportement d’un processus aléatoire avec une riche structure de corrélation peut être affecté par des rafraîchissements.
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1. Introduction, main results and discussion

1.1. Background and outline

Random Walk in Random Environment (RWRE) is a classical model for a particle moving in a non-homogeneous
medium, consisting of a random walk with random transition probabilities, sampled at time zero from a given law.
Random Walk in Cooling Random Environment (RWCRE) is a dynamic version of RWRE in which the environment is
fully resampled along a sequence of deterministic times, called refreshing times.

RWRE exhibits anomalous behaviour due to the occurrence of trapping (i.e., the random walk spends a long time in
local niches of the environment). One-dimensional RWRE is well understood (see [19]). Much less is known in higher
dimensions, because the geometry of random walk paths is more complicated. Random walks in dynamic random envi-
ronments (RWDRE) can be even more challenging. Over the last few decades, there has been significant progress in this
area (see [1] for a survey). Often work concentrates on specific types of dynamics with good mixing properties that allow
for the identification of scaling limits.

RWCRE is a version of RWDRE that aims to capture the crossover between homogeneous RW and static RWRE. If
the increments between consecutive refreshing times remain bounded, then correlations decay rapidly over time and we
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expect to see a behaviour close to that of a homogeneous RW. Conversely, if these increments diverge, then we expect
to see a behaviour close to that of RWRE. In particular, the faster the divergence, the more RWCRE resembles RWRE.
Importantly, RWCRE allows for different resampling regimes, which are determined by the incremental structure of the
refreshing times. We will see that different regimes give rise to interesting new phenomena.

In order to understand RWCRE, we need certain concentration properties of RWRE. Some of these are available
from the literature, but others are not. A few preliminary results were obtained in Avena and den Hollander [3] under
the annealed measure and subject to certain regularity conditions on the refreshing times. In the present paper we find
conditions for recurrence versus transience and we identify fluctuations for general cooling schemes with non-standard
limit laws. In Section 1.2 we define one-dimensional RWRE and recall some basic facts that are needed throughout
the paper. In Section 1.3 we define RWCRE. Both these sections are largely copied from [2], but are needed to set the
stage and fix the notation. In Section 1.4 we state our main theorems. In Section 1.6 we place these theorems in their
proper context and state a number of open problems. Proofs are provided in Sections 2–4. Along the way we need a few
refined properties of RWRE that are of independent interest. These properties are stated in Section 1.5 and are proved in
Appendices A–C.

1.2. RWRE: Basic facts

Throughout the paper we use the notation N0 = N∪{0} with N = {1,2, . . .}. The classical one-dimensional static model
is defined as follows. Let ω = {ω(x) : x ∈ Z} be an i.i.d. sequence with probability distribution

µ := αZ (1.1)

for some probability distribution α on (0,1). We assume that α is non-degenerate and write 〈·〉 the corresponding expec-
tation. We also assume that α is uniformly elliptic, i.e.,

∃ c> 0: α(c≤ ω(0)≤ 1− c) = 1. (1.2)

Definition 1 (RWRE). Let ω be an environment sampled from µ. We call Random Walk in Random Environment the
Markov chain Z = (Zn)n∈N0

with state space Z and transition probabilities

Pω(Zn+1 = x+ e | Zn = x) =

{
ω(x), if e= 1,
1− ω(x), if e=−1,

(1.3)

for x ∈ Z, n ∈ N0. We denote by Pωx (·) the quenched measure of Z starting from Z0 = x ∈ Z, and by Pµx (·) :=∫
(0,1)Z

Pωx (·)µ(dω), the annealed measure. The corresponding expectations are denoted by Eωx and Eµx .

The understanding of one-dimensional RWRE is well developed, both under the quenched and the annealed measure.
For a general overview, we refer the reader to the lecture notes by Zeitouni [19]. Below we collect some basic facts and
definitions.

The average displacement is Eµ0 [Z1] = 〈 1−ρ1+ρ 〉, where ρ := 1−ω(0)
ω(0) . The following proposition due to Solomon [16]

characterises recurrence versus transience and limiting speed. Without loss of generality we may assume that

〈logρ〉 ≤ 0, (1.4)

because the reverse can be included via a reflection argument. Indeed, if ω̃ is defined by ω̃(x) = 1− ω(−x), for x ∈ Z,
then Pω0 (−Z ∈ · ) = P ω̃0 (Z ∈ · ).

Proposition 1 (Recurrence, transience, speed of RWRE [16]).
Suppose that (1.4) holds. Then:

• Z is recurrent when 〈logρ〉= 0.
• Z is transient to the right when 〈logρ〉< 0, and for µ-a.e.ω,

lim
n→∞

Zn
n

=: vµ =

{
0, if 〈ρ〉 ≥ 1,
1−〈ρ〉
1+〈ρ〉 > 0, if 〈ρ〉< 1.

(1.5)

The above proposition shows that the speed of RWRE is a deterministic function of µ (or α; recall (1.1)).
In the recurrent case the scaling was identified by Sinai [15] and the limit law by Kesten [9]. The next proposition

summarises their results. We write
(d)−→ to denote convergence in distribution and Lp−→ to denote convergence in Lp. We

say that a sequence of random variables (Xn)n∈N converges in Lp to a random variable X∗ if there is a coupling under
which difference converges to 0 in Lp.
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Proposition 2 (Scaling limit: recurrent RWRE [15], [9]).
Let α be such that 〈logρ〉= 0 and σ2

0 :=〈log2 ρ〉 ∈ (0,∞). Then, under the annealed measure Pµ0 ,

Zn

σ2
0 log2 n

(d)−→ V (1.6)

where the Sinai-Kesten random variable V is defined by P (V ∈A) :=
∫
A
v(x)dx with

v(x) :=
2

π

∑
k∈N0

(−1)k

2k+ 1
exp

[
− (2k+ 1)2π2

8
|x|
]
, x ∈R. (1.7)

Note that the law of V is symmetric with finite variance σ2
V ∈ (0,∞). It was shown in [3] that for α satisfying (1.2),

under the annealed measure Pµ0 ,

Zn

σ2
0 log2 n

Lp−→ V ∀p > 0, (1.8)

In the transient case the scaling and the limit law were identified by Kesten, Kozlov and Spitzer [10]. The next proposition
recalls their result only for the case where the scaling and the limit law are classical. We say that α is s-transient when
〈logρ〉< 0, 〈ρs〉= 1 and 〈ρ(logρ)+〉<∞.

Proposition 3 (Scaling limit: transient RWRE [10]).
Let α be s-transient with s ∈ (2,∞). Then there exists a σs ∈ (0,∞) such that, under the annealed measure Pµ0 ,

Zn − vµn
σs
√
n

(d)−→Φ, (1.9)

where Φ stands for a standard normal random variable.

1.3. RWCRE: Cooling

The cooling random environment is the space-time random environment built by partitioning N0, and assigning inde-
pendently to each piece an environment sampled from µ in (1.1) (see Fig. 1). Formally, let τ : N0 → N0 be a strictly
increasing function with τ(0) = 0, referred to as the cooling map. The cooling map determines a sequence of refreshing
times (τ(k))k∈N0

.
Definition 2 (Cooling Random Environment).
Given a cooling map τ and an i.i.d. sequence of random environments ω = (ωk)k∈N with law µN, the cooling random
environment is built from the pair (ω, τ) by assigning, for each k ∈N, the environment ωk to the k-th interval Ik defined
by Ik := [τ(k− 1), τ(k)), which has size Tk := τ(k)− τ(k− 1) for k ∈N.
Definition 3 (RWCRE). Let τ be a cooling map and ω an environment sequence sampled from µN. We call Random
Walk in Cooling Random Environment (RWCRE) the Markov chain X = (Xn)n∈N0 with state space Z and transition
probabilities

Pω,τ (Xn+1 = x+ e |Xn = x) =

{
ω`(n)(x), e= 1,
1− ω`(n)(x), e=−1,

(1.10)

for x ∈ Z, n ∈ N0, where `(n) := inf{k ∈ N : τ(k) > n}, is the index of the interval that n belongs to. Similarly to
Definition 1, we denote by

Pω,τx (·), Pµ,τx (·) :=

∫
[(0,1)Z]N

Pω,τx (·)µN(dω), (1.11)

the corresponding quenched and annealed measures, respectively.
The position Xn admits a decomposition into independent pieces. For k ∈ N and n ∈ N0, define the refreshed incre-

ments and boundary increment as

Yk :=Xτ(k) −Xτ(k−1), Ȳ n :=Xn −Xτ(`(n)−1) (1.12)
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FIG 1. Structure of the cooling random environment (ω, τ).

and the running time at the boundary as T̄n := n− τ(`(n)− 1). Note that

`(n)−1∑
k=1

Tk + T̄n = n. (1.13)

By construction, we can write Xn as the sum

Xn =

`(n)−1∑
k=1

Yk + Ȳ n, n ∈N0. (1.14)

This decomposition shows that, in order to analyse Xn, we need to analyse the vector (Y1, . . . , Y`(n)−1, Ȳ
n), which

consists of independent components, each distributed as an increment of Z (defined in Section 1.2) in a given environment
over a given length of time determined by ω, τ and n. Fig. 2 illustrates the decomposition of Xn.
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FIG 2. The decomposition of RWCRE into pieces of RWRE as in (1.14). The random variables (Yk)1≤k<`(n) (Y`(n)) defined in (1.12) measure the
spatial displacement (vertical axis) on each time interval [τ(k)∧ n, τ(k+ 1)∧ n] (horizontal axis).

To ease the notation, when n is explicit we will sometimes write

T0 := T̄n, and Y0 := Ȳ n. (1.15)

1.4. Main results for RWCRE

In what follows, we write P for the annealed measure in (1.11) when the random walk starts at the origin, suppressing
µ, τ,0 from the notation. We will denote by E and Var the corresponding expectation and variance. We will further denote
by Xn the variance-scaled displacement at time n ∈N0,

X0 := 0, Xn :=
Xn√

Var(Xn)
, n ∈N. (1.16)
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1.4.1. Recurrence versus transience
We start by exploring how the cooling map affects the recurrence versus transience criterion for RWRE (see Proposi-
tion 1). A few remarks are in place. Since for any event A,

P(A) = 1 ⇐⇒ Pω,τ0 (A) = 1 µN-a.s., (1.17)

we do not distinguish between quenched and annealed statements when it comes to zero-one laws. Moreover, due to
the resampling, RWCRE is tail-trivial, i.e., all events in the tail sigma-algebra have probability zero or one. We know
from Proposition 1 that RWRE is recurrent if and only if 〈logρ〉= 0. We say that α is recurrent or right-transient when
〈logρ〉 = 0, respectively, 〈logρ〉 < 0. For RWCRE the classification of recurrence versus transience is more delicate,
because it also depends on the cooling map τ . In what follows we say that (α, τ) is recurrent or transient when

P(Xn = 0 i.o.) = 1 or P(Xn = 0 i.o.) = 0. (1.18)

We say that (α, τ) is right transient or left transient when

P
(

lim
n→∞

Xn =∞
)

= 1 or P
(

lim
n→∞

Xn =−∞
)

= 1. (1.19)

By tail triviality, {0,1} are the only possible values for the above events.
Our first theorem gives two conditions on the cooling map under which recurrence and transience are not affected by

the resampling.

Theorem 1 (Stability of recurrence versus transience).
(a) If α is right-transient, then (α, τ) is right-transient for all τ such that

lim
k→∞

Tk =∞. (1.20)

(b) If α is recurrent, then (α, τ) is recurrent when

lim inf
n→∞

|E [Xn]|= 0. (1.21)

The latter holds for all symmetric α and all τ , and also for all non-symmetric α when τ is such that

lim inf
k→∞

1

kγ
logTk > 0 for some γ >

3

4
. (1.22)

Non-symmetric α means that the laws of ω and ω̃ are different (see below (1.4)). Note that (1.22) is much more stringent
than (1.20).

Remark: If the refreshing increments stay bounded (a regime that in [3] was referred to as ‘no cooling’), then RWCRE
has little relation to RWRE and no resemblance is to expected.

A recurrence criterion for general cooling maps is lacking and is presumably delicate, as shown by the following ex-
amples for which a weaker form of divergence of the increments is still in force. To weaken (1.20) we consider refreshing
time increments that Cesaro diverge, i.e., increments satisfying

lim
`→∞

1

`

∑̀
k=1

Tk =∞. (1.23)

Counterexamples to stability

(Ex.1) Right-transient can turn into left-transient or recurrent: There exist a right-transient α and two cooling maps τ ′ =
τ ′(α) and τ ′′ = τ ′′(α) satisfying (1.23) such that (α, τ ′) and (α, τ ′′) are left-transient and recurrent, respectively.

(Ex.2) Recurrent can turn into transient: There exist a recurrent α and a cooling map τ = τ(α) satisfying (1.20) such that
(α, τ) is transient.

In Section 2 we prove Theorem 1 and show (Ex.1) and (Ex.2).
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1.4.2. Fluctuations in the Sinai regime
The following statements identify the scaling limits of RWCRE for recurrent α. They show that the scaling depends in
a delicate way on the cooling map. In particular, Theorem 2 below gives a characterisation of the possible limit points
as mixtures of Sinai-Kesten and Gaussian random variables, while Corollary 1 and (Ex.3)–(Ex.6) below give a further
characterisation of the various possible regimes.

To state our results we need the following definitions. Set

λτ,n(k) :=

√
Var(Yk)√
Var(Xn)

1{0≤k<`(n)}, n ∈N, k ∈N0, (1.24)

and λτ,0(k) := δk0, k ∈N0. Note that, by (1.14), λτ,n is a vector of real numbers with unit `2(N0)-norm, i.e., ‖λτ,n‖22 :=∑
k∈N0

λτ,n(k)2 = 1, and recall that Y0, the boundary value defined in (1.15), is determined by τ and n, the indices in
λτ,n. With this notation, we can write

Xn −E[Xn] =

`(n)−1∑
k=0

λτ,n(k)
Yk −E [Yk]√

Var(Yk)
. (1.25)

Let (Vj)j∈N0
be a family of i.i.d. Sinai-Kesten random variables (see (1.7)). Define for λ = (λ(j))j∈N0

∈ `2(N0), the
λ-mixture of normalised Sinai-Kesten random variables by

V ⊗λ :=
∑
j∈N0

λ(j)(σ−1
V Vj)= lim

n→∞

n∑
j=0

λ(j)(σ−1
V Vj), (1.26)

where the above limit is well defined from the convergence in L2 of the series.
For λ ∈ `2(N0), let λ↓ be the vector obtained from λ by reordering the entries of λ in decreasing order. Consider the

equivalence relation λ∼ λ′ when λ↓ = λ′↓ and put [λ] := {λ′ ∈ `2(N0) : λ′ ∼ λ}. The following lemma, which is proven
in Section 3.2, guarantees that up to reordering V ⊗λ corresponds to a unique vector λ.

Lemma 1 (Characterisation of Sinai-Kesten mixtures).
V ⊗λ and V ⊗λ

′
have different distributions if and only if [λ] 6= [λ′].

Define by λ0↓ the vector obtained from λ by putting λ(0) as the first entry and reordering the other entries in decreasing
order. This notation is needed in order to isolate the boundary increment. In what follows, (ni)i∈N0

denotes a strictly
increasing sequence of integers with n0 = 0.

Theorem 2 (Limit distributions in the Sinai regime).
Let α be recurrent with σ0 ∈ (0,∞) and let τ be a cooling map. Under the annealed measure P, the sequence of centred
random variables (Xn −E[Xn])n∈N0

is tight in the weak topology and its limit points are characterised as follows. If
(ni)i∈N0 is such that

lim
i→∞

λ0↓
τ,ni(k) =: λ∗(k) ∀k ∈N0, (1.27)

then λ∗ = (λ∗(k))k∈N0
∈ `2(N0) and

Xni −E[Xni ]
Lp−→ V ⊗λ∗ + a(λ∗) Φ ∀p > 0, (1.28)

where a(λ∗) := (1− ‖λ∗‖22)
1
2 , Φ is a standard normal random variable, and V ⊗λ∗ is as in (1.26).

Remark 1. We note that if one is allowed to take subsequences, then condition (1.27) is not restrictive. Indeed, since for
any k ∈N0 and n ∈N0 the value λ0↓

τ,n(k) belongs to [0,1], if we take a (diagonal) subsequence (ni)i∈N0
, then condition

(1.27) will be satisfied for some vector λ∗. By Fatou’s lemma we get∑
k∈N0

λ2
∗(k) =

∑
k∈N0

lim inf
i∈N0

(
λ0↓
τ,ni(k)

)2 ≤ lim inf
i∈N0

∑
k∈N0

(
λ0↓
τ,ni(k)

)2
= 1, (1.29)

which guarantees that λ∗ ∈ `2(N0) and so V ⊗λ∗ in (1.28) is well defined. With this it follows that Theorem 2 characterizes
all limit points of (Xn −E[Xn])n∈N0

.



RWCRE: recurrence vs transience and mixed fluctuations 7

It is possible to distinguish between the different scaling limits by looking at the asymptotic behavior of (λτ,τ(k)(k))k∈N0
,

the sequence of relative weights of the refreshed increments.

Corollary 1 (Limit distributions for regular cooling maps).
For any p > 0, under the annealed measure P

(a) Xn −E [Xn] converges in Lp if and only if λτ,τ(k)(k)→ 0, in which case

Xn −E [Xn]
Lp−→Φ. (1.30)

(b) If λτ,τ(k)(k)→ q ∈ (0,1], then

Xτ(k)
Lp−→ V ⊗λq , (1.31)

where λq(0) := 0, and for j ∈ N, λ2
q(j) := q2(1− q2)j−1. Moreover, if for a subsequence (ni)i∈N0

the limit w :=
limi→∞ λτ,ni(0) exists, then

Xni
Lp−→wσ−1

V V0 + (1−w2)
1
2V ⊗λq . (1.32)

The proofs of Theorem 2 and Corollary 1 are given in Section 3.

Examples of subsequential limits We illustrate Corollary 1 by considering examples of cooling maps that diverge at
different rates. In examples (Ex.3)– (Ex.6) below all convergence statements are under the annealed measure P.

(Ex.3) Polynomial cooling : If k−βTk→B for some B,β ∈ (0,∞), then

Xn −E[Xn]

σ2
0n

1
2(β+1) log2 n

Lp−→ σV

(
β

β + 1

)2(
β + 1

B

) 1
2(β+1)

Φ. (1.33)

(Ex.4) Exponential cooling: If k−1 logTk→ c ∈ (0,∞), then

Xn

σ2
0 log

5
2 n

Lp−→ 1√
5c5

σV Φ. (1.34)

(Ex.5) Double exponential cooling: If k−1 log logTk→ c ∈ (0,∞), then

Xτ(`)

σ2
0 log2 τ(`)

Lp−→ q−1
c σV V

⊗λqc with q2
c =

e4c − 1

e4c
∈ (0,1). (1.35)

(Ex.6) Faster than double exponential cooling: If k−1 log logTk→∞, then

Xτ(`)

σ2
0 log2 τ(`)

Lp−→ V. (1.36)

In (Ex.5) and (Ex.6) we can even characterise all the limit points. Indeed, if a subsequence (ni)i∈N0
is such that

lim
i→∞

log T̄ni

log τ(`(ni)− 1)
=: b ∈ [0,∞], (1.37)

then

Xni

σ2
0 log2 ni

Lp−→
{
q−1
c σV V

⊗λqc + b2V0, if b≤ 1,

b−2q−1
c σV V

⊗λqc + V0, if b > 1,
(1.38)

with b−1 = 0 when b=∞.
The claims in (Ex.3)–(Ex.6) are proven in Section 3.4.



8

1.4.3. Fluctuations in the Gaussian regime
We next examine the scaling limit when α is s-transient with s ∈ (2,∞), i.e., when RWRE satisfies a classical CLT (recall
Proposition 3).

Theorem 3 (Scaling limit in the Gaussian regime).
Let α be s-transient with s ∈ (2,∞) and let τ be any cooling map. Then, under the annealed measure P,

Xn −E [Xn]
L2

−→Φ. (1.39)

Theorem 3 says that in the Gaussian regime also RWCRE converges to a Gaussian. However, the scaling of the variance
as a function of the cooling map is subtle, as we show next.

Corollary 2 (Gaussian limits and stability of the variance).
Fix s ∈ (2,∞). The sequence ((Xn −E[Xn])/

√
n )n∈N0

is tight in the weak topology and its limit points correspond
to the limit points of σ2

s,τ (n) := Var (Xn)/n. Namely, given a subsequence (ni)i∈N0
, if σs,τ (ni)→ σ, then, under the

annealed measure P,

Xni −E[Xni ]

σ
√
ni

L2

−→Φ. (1.40)

Moreover, if Tk→∞, then

σs,τ (n)→ σs, (1.41)

with σs the standard deviation from Proposition 3.

We conclude our analysis of the Gaussian regime by looking into the centering term in (1.39).

Centering and correction in the law of large numbers In general the centering term E [Xn] in Theorem 3 (recall (1.16))
cannot be replaced by the limiting speed of X . In (Ex.7) below we provide a class of rapidly diverging cooling maps for
which such a replacement causes no harm. In (Ex.8) below we indicate that there exist slowly diverging cooling maps for
which it does.

(Ex.7) Stable centering for rapidly diverging cooling maps: For s ∈ (2,∞), if Tk→∞ and

sup
n∈N0

`(n)−1∑
k=0

λτ,n(k)<∞, (1.42)

then

E [Xn]− vµ n√
n

→ 0, (1.43)

with vµ the RWRE speed in (1.5), from which it follows via (1.39) and (1.41) that

Xn − vµn
σs
√
n

L2

−→Φ. (1.44)

Moreover, (1.42) holds when lim infk→∞ k
−1 logTk > 0.

(Ex.8) Counterexample with slowly diverging cooling maps: For any s ∈ (2,∞) there exist an s-transient α and a cooling
map τ with Tk→∞, such that (1.44) fails. In particular, there exist “extreme” examples for which

lim sup
n→∞

E [Xn]− vµ n√
n

=∞. (1.45)

In such cases, the sequence ((Xn − vµn)/
√
n )n∈N0

is not even tight (compare with Corollary 2).

Condition (1.42) in (Ex.7) imposes a growth condition on Tk . (Ex.8) shows that the convergence in (1.44) may fail even
when Tk→∞.

The proofs of Theorem 3 and Corollary 2 are given in Section 4.
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1.5. Auxiliary properties of RWRE

In our analysis of RWCRE we need a few results about RWRE. The first states that in Proposition 3 the convergence can
be extended to Lp for p < s.

Theorem 4 (Lp-convergence in the Gaussian regime).
Suppose that the assumptions in Proposition 3 are in force. Then

Zn − vµn
σs
√
n

Lp−→Φ ∀p < s. (1.46)

The second result concerns various forms of oscillation of the mean of RWRE.

Theorem 5 (Oscillations of the mean).

(I) There is a recurrent α such that Eµ0 [Zn] 6= 0 for infinitely many n ∈N.
(II) For every s ∈ (2,∞), there is an s-transient α such that Eµ0 [Zn] 6= vµn for infinitely many n ∈N.

(III) If α is recurrent with σ0 ∈ (0,∞), then for every 0< γ < 2
3 there is a C =C(α,γ) ∈ (0,∞) such that∣∣∣∣Eµ0 [ Zn

σ2
0 log2 n

]∣∣∣∣≤ C

logγ n
, n ∈N. (1.47)

The proofs of Theorems 4–5 are given in Appendices A–C. The line of proof of Theorem 5(III) was suggested by Zhan
Shi.

1.6. Discussion and open problems

Ellipticity. The uniform ellipticity assumption in (1.2) is needed in the proof of Theorem 5(III) only. Once this would be
extended, all our results would carry over. In the proof of Theorem 1(a) we need a concentration property for which it
suffices to have a very mild form of ellipticity. In the proof of Theorem 2 and Corollary 1 we use (1.8), which was proved
in [3] under (1.2) only, but should be true more generally.

Stability of recurrence and transience. While RWRE asymptotics are non-local due to space-time correlations, for
RWCRE, resampling adds extra noise and weakens space-time dependencies. From this perspective, we can view
RWCRE as a perturbation of RWRE. Theorem 1 describes how this perturbation affects the recurrence versus transience
criterion known for RWRE. Theorem 1(a) shows that transience is preserved as soon as the increments of the refreshing
times diverge, while Theorem 1(b) says that the situation is more delicate for recurrence, unless α is symmetric. In fact, as
shown in (Ex.2), for non-symmetric α, resampling is capable of destroying recurrence. We will see in Section 2 that this
happens because there are increments of the refreshing times during which the average displacement of RWRE is strictly
positive. By repeating such increments often enough, we are able to pull the random walk away from the origin. The
increments of the refreshing times in such cooling maps are diverging, but slowly enough so that RWCRE is qualitatively
different from RWRE. As shown in (Ex.1), cooling can even turn right-transience into left-transience.

Mixed fluctuations in Sinai regime. It is well-known that trapping phenomena are predominant when RWRE is recurrent
(see Proposition 2). The underlying correlation structure gives rise to subdiffusive scaling with a non-Gaussian limit law.
Theorem 2 and Corollary 1 show that this scenario is affected by the extra noise introduced by the cooling. Indeed RWCRE
is less localised, although convergence in distribution of the full sequence is not guaranteed in general. Theorem 2 shows
that regular subsequential limits are characterised by mixtures of Gaussian laws and properly weighted Sinai-Kesten laws.
Corollary 1(a) is stated in terms of the last increment in the sum (1.14) and is equivalent to the statement that the boundary
increment is negligible. It provides a necessary and sufficient condition under which all subsequential limits coincide,
in which case a standard Gaussian law emerges after a scaling that is gauged by the divergence in the cooling map.
Corollary 1(b), instead, says that if the boundary increment is not negligible, then the full sequence does not converge.
Indeed, as illustrated by (Ex.3)–(Ex.6), we see that properly chosen subsequences lead to different mixed limit laws.
These subsequences can be further characterised depending on whether the boundary term dominates or competes with
the other terms, as illustrated in (1.38). Such results yield the answer to a conjecture put forward in [3], where the analysis
of the fluctuations in the Sinai regime was carried out for cooling maps for which Lindeberg-Feller type conditions are
satisfied, essentially corresponding to the condition in Corollary 1(a).
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CLT in the Gaussian regime and centering issues. RWCRE can be seen as an interpolation between RWRE and a
homogeneous random walk. Thus, not surprisingly, Theorem 3 shows that if RWRE satisfies a CLT (i.e., when s ∈
(2,∞)), then the same is true for RWCRE. Yet, as is clear from Corollary 2, the cooling can make the variance oscillate
on scale n, but not under (1.20). (Ex.7) and (Ex.8) shown that, if the cooling map is “sufficiently concentrated" as captured
in condition (1.42), it must be centered with the average displacement.

Refined properties of RWRE. Section 1.5 collects a few refined properties of RWRE that are not available in the
literature but are needed in our proofs. In particular, Theorem 4 extends the mode of convergence in Proposition 3 to Lp,
and we use the latter in the proof of Theorem 3. Concerning Theorem 5, items (I) and (II) are similar in spirit, and say that
in the recurrent and transient regime, respectively, the limiting speeds are not achieved after a finite time. These statements
may sound plausible, but the disorder does not allow for a simple proof, as can be appreciated from Appendix B. We use
items (I) and (II) to construct (Ex.2) and (Ex.8), respectively. Item (III) gives some control (possibly not optimal) on the
rate of convergence in Proposition 2, which we use in the proof of (1.21).

Extensions and open problems:

• (Regime with limiting stable laws). The only regime for which we have not analysed RWCRE fluctuations is
when α is s-transient with s ∈ (0,2]. In this regime, the RWRE fluctuations are more intricate. Under the annealed
measure it is known that, after an appropriate scaling, RWRE converges to certain stable laws or inverse-stable
laws. Under the quenched measure fluctuations are drastically different and actually have only been partially char-
acterised. In particular, different subsequential limits are possible under the quenched measure. For precise state-
ments we refer the reader to [19] and references therein. The analysis of RWCRE with s ∈ (0,2] should lead to
interesting cooling-dependent crossover phenomena.

• (Higher dimensions). The focus in the present paper and in [3], [2] is on one-dimensional RWCRE. It is natural
to consider RWCRE also in higher dimensions. However, much less is known for RWRE in higher dimensions,
and most of the relevant results require additional and often technical assumptions (see [19]). Nonetheless, some
of our arguments and results may be adapted to higher dimensions, in particular, those concerning the stability of
directional transience and directional speed.

• (Recurrence criterion for arbitrary cooling). We partially solved the problem of recurrence versus transience in
Theorem 1. The following problem is left open: If α is recurrent and non-symmetric, then what is a necessary and
sufficient condition on τ such that RWCRE is recurrent?

• (RWRE oscillations). Some of the statements in Theorem 5 are non-optimal. For example, in part (2) we should
be able to show that Eµ0 [Zn] 6= vµn for infinitely many n ∈ N for every s-transient α with s ∈ (2,∞). Such an
improvement would allow us to strengthen the statement in (Ex.8) by saying that for every s-transient α with
s ∈ (2,∞) there exists a τ such that (1.45) is satisfied.

2. Proofs: Recurrence versus transience

2.1. Transience is preserved for any cooling with diverging increments

PROOF OF THEOREM 1(a) We assume that 〈logρ〉< 0.

Basic coupling Let us consider a probability space (S,S,P) on which random variables (Xn)n∈N0
and (Z

(k)
n )k∈N,n∈N0

are defined such that

Yk = Z
(k)
Tk
, k ∈N, Ȳ n = Z

(`(n))

T̄n
, n ∈N0,

P
(
(Xn)n∈N0

∈ ·
)

= P
(
(Xn)n∈N0

∈ ·
)
,

(Z(k)
n )k∈N,n∈N0

are independent in k ∈N,

P
(

(Z(k)
n )n∈N0 ∈ ·

)
= Pµ0

(
(Zn)n∈N0

∈ ·
)
, k ∈N.

(2.1)

This constitutes a coupling of RWRE and RWCRE. We write E to denote expectation with respect to P .
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Leftmost record Set W := inf{Zn : n ∈ N0} and W (k) := inf{Z(k)
n : n ∈ N0}, k ∈ N. By (1.14), for any a > 0 and

` ∈N,

Xτ(`) =
∑̀
k=1

Yk =
∑̀
k=1

Z
(k)
Tk
1{Z(k)

Tk
>a} +

∑̀
k=1

Z
(k)
Tk
1{Z(k)

Tk
≤a}

≥
∑̀
k=1

Z
(k)
Tk
1{Z(k)

Tk
>a} +

∑̀
k=1

W (k).

(2.2)

The following lemma tells us that the expectation of −W is finite.

Lemma 2. Suppose that 〈logρ〉< 0. Then Eµ0 [−W ]<∞.

Proof. Write

Eω0 [−W ] =
∑
m∈N

Pω0 (W ≤−m). (2.3)

For j ∈ Z, let ρj := 1−ω(j)
ω(j) and for m ∈N, ε > 0, define

Ω(m,ε) :=

{
ω : sup

i∈N

∣∣∣∣∣
∑i−1
j=−m+1 logρj

m+ i− 1
− 〈logρ〉

∣∣∣∣∣< ε

}
. (2.4)

For 0< ε<− 1
2 〈logρ〉 and ω ∈Ω(m,ε),

i−1∏
j=−m+1

ρj ≤ e
1
2 〈log ρ〉(m+i−1). (2.5)

Therefore there is a c > 0 such that, for all m ∈N and ω ∈Ω(m,ε),

Pω0 (W ≤−m)≤
∞∑
i=1

i−1∏
j=−m+1

ρj ≤ e−cm, (2.6)

where the first inequality follows from a standard computation for RWRE (see [19, p.196 (2.1.4)]), and the inequality
uses (2.5).

Next we note that there is a c′ > 0 such that, for all m ∈N, using

µ

(
ω : sup

i∈N

∣∣∣∣∣
∑i−1
j=−m+1 logρj

m+ i− 1
− 〈logρ〉

∣∣∣∣∣≥ ε
)
≤ e−c′m, (2.7)

where the inequality follows from the union bound in combination with the large deviation principle for the i.i.d. random
variables (logρj)j∈Z. (For the latter the uniform ellipticity assumption in (1.2) amply suffices, but can be substantially
weakened.). Combining (2.6) and (2.7) we see that, for all m ∈N,

Pµ0 (W ≤−m)≤ 2e−(c∧c′)m. (2.8)

The result follows from (2.3) and (2.8).

Transience along subsequences via the leftmost record We continue the proof of Theorem 1(a). Pick a := 4Eµ0 [−W ]<
∞. Since α is right-transient and Tk→∞, we have P(Yk > a) = Pµ0 (ZTk > a)→ 1. From stochastic domination together
with the independence of Z(k)

Tk
, k ∈N, we get that

lim inf
`→∞

1

`

∑̀
k=1

Z
(k)
Tk
1{Z(k)

Tk
>a} ≥ a lim inf

`→∞

1

`

∑̀
k=1

1{Z(k)
Tk
>a} ≥ a P-a.s. (2.9)
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Now, applying the law of large numbers and (2.9) into (2.2) we get

lim inf
`→∞

Xτ(`)

`
≥ 3

4
a P-a.s. (2.10)

which settles right-transience along the sequences of refreshing times.

Transience of the full sequence Let Ω(k) := {ω :
Xτ(k)
k ≥ 3

4a}. On Ω(k), for ` > k and n ∈ [τ(`), τ(`+ 1)) we have
Xn ≥ 1

2a`+W (`). Let Pk be P conditioned on Ω(k). It follows that for ` > k,

Pk
(

inf
n∈[τ(`),τ(`+1))

Xn ≤ 0

)
≤P

(
W (`) ≤−1

2
a`

)
. (2.11)

By (2.8),
∑
`∈NP

(
W (`) ≤− 1

2a`
)
<∞ and hence, by the first Borel-Cantelli lemma,

Pk
(

inf
n∈[τ(`),τ(`+1))

Xn ≤ 0 i.o.
)

= 0. (2.12)

This implies that {n ∈ N0 : Xn ≤ 0} is Pk-a.s. finite. Since P(Ω(k))→ 1 as k→∞ it follows that {n ∈ N0 : Xn ≤ 0}
is P-a.s. finite, which by the irreducibility of RWCRE implies the right-transience of the sequence. �

2.2. Recurrence is preserved for fast enough cooling

PROOF OF THEOREM 1(b) The sequence (λτ,n)n∈N0
of `2(N0)-unit vectors in (1.24) admits an increasing subsequence

(ni)i∈N0
∈ {τ(k) : k ∈N}N for which there is a vector λ∗ with ‖λ∗‖2 ≤ 1 such that, for every k ∈N0, λ↓τ,ni(k)→ λ∗(k).

By Theorem 2 (to be proved in Section 3.1), and condition (1.21)

Xni√
Var(Xni)

(d)−→ V ⊗λ∗ + aΦ. (2.13)

Since Var(Xn)→∞, (ni)i∈N0 can be chosen such that

ni−1√
Var(Xni)

<
1

2
, i ∈N. (2.14)

Now, because V ⊗λ∗ + aΦ has full support on R, there is an ε > 0 for which

P

(
Xni −Xni−1√

Var(Xni)
>

1

2

)
≥ P

(
Xni√

Var(Xni)
> 1

)
> ε,

P

(
Xni −Xni−1√

Var(Xni)
<−1

2

)
≥ P

(
Xni√

Var(Xni)
<−1

)
> ε.

(2.15)

Note that because ni ∈ {τ(k) : k ∈N} for every i ∈N, the increments (Xni −Xni−1
)i∈N are independent and therefore,

by the Borel-Cantelli lemma, we have that

P

(
Xni −Xni−1√

Var(Xni)
>

1

2
i.o.

)
= 1, P

(
Xni −Xni−1√

Var(Xni)
<−1

2
i.o.

)
= 1. (2.16)

Since X makes steps of size 1 only, we get from (2.14) that P (Xni > 0 i.o.) = 1 and P (Xni < 0 i.o.) = 1, which proves
the first claim in Theorem 1(b).

It remains to show that (1.22) implies (1.21). In the remainder of the proof, c,C denote constants that may change
from line to line, but do not depend on n. First note that (1.8) and (1.14) imply

c log4 Tk ≤Var (Yk)≤C log4 Tk, Var(Xτ(`))≥ c
∑̀
k=1

log4 Tk. (2.17)
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For any fixed ε > 0, Theorem 5(III), (2.17) yield

∣∣E[Xτ(`)]
∣∣≤∑̀

k=1

√
Var(Yk)√

Var(Xτ(`))

∣∣∣∣∣E
[

Yk√
Var(Yk)

]∣∣∣∣∣≤C
∑`
k=1 log( 4

3 +ε) Tk√∑`
k=1 log4 Tk

. (2.18)

By Hölder’s inequality it follows that

∑̀
k=1

log( 4
3 +ε) Tk ≤

(∑̀
k=1

log4 Tk

) 4/3+ε
4

`
8/3−ε

4 , (2.19)

which leads to

∣∣E[Xτ(`)]
∣∣≤C

(∑`
k=1 log4 Tk

) 4/3+ε
4

`
8/3−ε

4√∑`
k=1 log4 Tk

≤C `
8/3−ε

4(∑`
k=1 log4 Tk

) 2/3−ε
4

. (2.20)

By (1.22) it follows that
∑`
k=1 log4 Tk ≥ c`4γ+1, and so

∣∣E[Xτ(`)]
∣∣≤C `

8/3−ε
4

(`4γ+1)
2/3−ε

4

=C`
1
2−γ(

2
3−ε). (2.21)

when γ > 3
4−6ε ,

∣∣E[Xτ(`)]
∣∣→ 0.

To conclude the proof we take arbitrary n ∈N. We have

|E[Xn]| ≤ Var(Xτ(`(n)−1))

Var(Xn)

∣∣E[Xτ(`(n)−1)]
∣∣+ Var(Ȳ n)

Var(Xn)

∣∣E[Ȳ n]
∣∣

Var(Ȳ n)
. (2.22)

By (2.21), the first term in the right-hand side of (2.22) vanishes as n→∞. As for second term, it is bounded by ε+
(K/Var(Xn)). Indeed, by (1.8) and (2.1), for any ε > 0 there is a K > 0 such that T̄n >K implies

∣∣E[Ȳ n]
∣∣/Var(Ȳ n)<

ε. As Var(Xn)→∞ and ε > 0 is arbitrary, |E[Xn]| → 0. �

2.3. Breaking of transience

PROOF OF (Ex.1) We construct the two maps τ ′ and τ ′′ in (Ex.1)

The cooling map τ ′ There is a measure α on (0,1) such that (1.2) holds, 〈ρ〉 > 1 and 〈logρ〉 < 0. Since ω 7→ ω−1 is
convex in R+, by Jensen’s inequality we have

〈1 + ρ〉= 〈ω−1〉> 1

〈ω〉 , (2.23)

so 〈ρ〉 − 1> 0 implies that 1− 2〈ω〉> 0 and therefore v :=Eµ0 [−Z1]> 0. By Proposition 1, Pµ0
(
limn→∞

Zn
n = 0

)
= 1.

In this case we can build a cooling map satisfying (1.23) for which P(limn→∞Xn =−∞) = 1. The construction goes as
follows. Using the notation introduced in (2.1), we set N0 = 0 and for each i ∈ N we choose Ni such that Ni ≥ 2Ni−1

and

Eµ0 [ZiNi ]< vNi. (2.24)

We take the i-th environment piece to be composed of one increment of size iNi followed by Ni increments of size 1
(see Fig. 3). By (2.24), the increments over the i-th piece have negative expectation.
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1 1 1 1iNi

Ni intervals

FIG 3. The i-th environment

The idea to build the cooling map is, for each i ∈ N, to repeat Ii times the i-th environment piece in order to induce
left-transience of the random walk. More precisely, for i ∈ N, j ∈ N0, define s(0) := 0, s(i, j) := s(i− 1) + j(Ni + 1),
s(i) := s(i, Ii), let Ai := {s(i, j) : j ≤ Ii }, and define the increments of the map τ ′, {T ′k = τ ′(k)− τ ′(k− 1)}k∈N, by

T ′k :=

{
iNi, if k− 1 ∈Ai for some i ∈N,
1, else.

(2.25)

We note that, irrespective of the choice of (Ii)i∈N, this construction ensures the Cesaro divergence of the increments.

Left transience Before choosing Ii, we note that the displacement over different i-th environment pieces are i.i.d random
variables. For i ∈N and j ∈N0, denote such displacements by

D
(j)
i := Z

(s(i,j)+1)
iNi

+

s(i,j)+Ni+1∑
k=s(i,j)+2

Z
(k)
1 . (2.26)

By the strong law of large numbers, there is a sequence of positive integers (Mi)i∈N satisfying

Mi+1 ≥Mi, P

 sup
m≥Mi

m∑
j=1

D
(j)
i ≥ 0

< 2−i. (2.27)

The sequence (Ii)i∈N is chosen to satisfy the following condition:

P

 Ii∑
j=1

D
(j)
i ≥−(Mi+1 + 1)(i+ 2)Ni+1

< 2−i, (2.28)

By the Borel-Cantelli Lemma, due to (2.1) (2.27) and (2.28), we have that eventually

Xτ ′(s(i)) −Xτ ′(s(i−1)) <−(Mi+1 + 1)(i+ 2)Ni+1,

sup
n∈[τ ′(s(i)),τ ′(s(i+1))]

Xn −Xτ ′(s(i)) < (Mi+1 + 1)(i+ 2)Ni+1,
(2.29)

where the second line follows from the fact that RWCRE is a nearest-neighbour random walk, so that to go beyond
(Mi+1 + 1)(i+ 2)Ni+1 we need at least Mi+1 increments, in which case a positive displacement is bounded by (2.27).
The conditions in (2.29) imply left-transience (see Fig. 4).

The map τ ′′ In the same setting as (Ex.1), we construct a recurrent RWCRE by modifying the cooling map τ ′, inserting
large intervals. First note that, since 〈logρ〉< 0, we can define, for any N ∈N and ε > 0,

H(N,ε) := inf

{
m ∈N : P

(
inf
n>m

Z(1)
n ≤N

)
< ε

}
. (2.30)

Let T ′k := τ ′(k)− τ ′(k− 1). Inductively, define the increment sequence {T ′′k }k∈N by setting{
T ′′k = T ′k, k ∈N \ {s(i) : i ∈N},
T ′′s(i) = T ′s(i) +H

(∑s(i−1)
i=1 T ′′i ,2

−i
)
, i ∈N,

(2.31)
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i-th piece i-th piece (i+ 1)-th piece

−(Mi+1 + 1)(i+ 2)Ni+1

(i+ 1)-th piece

−(Mi+2 + 1)(i+ 3)Ni+2

Ii+1 piecesIi pieces

FIG 4. Picture of the bound encoded in (2.29). The downarrows represent the decrease at the end of the last i-th environment piece in comparison with
the value at the beginning of the first i-th environment piece. The dashed line represents the upper bound on the supremum of the random walk.

where s(0) := 0 and

s(i) :=

 inf
k>s(i−1)

: P

 k∑
i=s(i−1)+1

Z
(i)
T ′i
≥−

s(i−1)∑
i=1

T ′′i

< 2−i

 . (2.32)

With these definitions, set τ ′′(k) :=
∑k
i=1 T

′′
i and note that, since T ′′k ≥ T ′k , the increments are Cesaro diverging. We

conclude the proof, by noting that (2.1), (2.30), (2.32) and the Borel-Cantelli lemma imply

P
(
Xτ ′′(s(i)−1) −Xτ ′′(s(i−1)) >−τ ′′(s(i− 1)) i.o.

)
= 0,

P
(
Xτ ′′(s(i)) −Xτ ′′(s(i)−1) < τ ′′(s(i)− 1) i.o.

)
= 0.

(2.33)

�

2.4. Breaking of recurrence

PROOF OF (Ex.2) We show that there exists a recurrent non-symmetric α and a cooling map τ for which (α, τ) is
transient. The construction that follows is possible because, by Theorem 5(1), there is a recurrent non-symmetric α for
which at least one of the sets

N+ := {n ∈N : Eµ0 [Zn]> 0}, N− := {n ∈N : Eµ0 [Zn]< 0}, (2.34)

is infinite. Assume without loss that N+ = {n1 < n2 < . . .} is infinite.
Successively choose Nj consecutive increments of size nj for every j ∈ N, where the sequence (Nj)j∈N will be

chosen below. More precisely, define s(0) := 0, s(j) := s(j − 1) +Nj , j ∈N, and let

Tk :=
∑
j

nj1(
s(j−1),s(j)

](k), (2.35)

where Nj is defined in (2.38), as we explain next. By the strong law of large numbers, for all j ∈N,

lim
m→∞

1

m

m∑
k=1

Z(k)
nj =Eµ0 [Znj ]> 0 P-a.s., (2.36)

from which it follows that there are (Mj)j∈N satisfying

P
(

inf
m≥Mj

m∑
k=1

Z(k)
nj ≤ 0

)
≤ 1

j2
. (2.37)
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Next, pick Nj such that

P

 1

Nj

Nj∑
k=1

Z(k)
nj ≤

1

2
Eµ0 [Znj ]

≤ 1

j2
, (2.38)

and

1

2
Nj E

µ
0 [Znj ]≥ (Mj+1 + 1)nj+1. (2.39)

Define s(0) := 0, s(j) := s(j − 1) +Nj , for j ∈N. By (2.1), it follows that

P
(
Xτ(s(j)) −Xτ(s(j−1)) ≤

1

2
Nj E

µ
0 [Znj ]

)
≤ 1

j2
. (2.40)

Consequently, by the first Borel-Cantelli lemma, it follows that P-a.s. for j sufficiently large,

Xτ(s(j)) >Xτ(s(j−1)) +
1

2
Nj E

µ
0 [Znj ]. (2.41)

Now let Aj = {infm≥Mj

∑m
k=1Z

(k)
nj ≤ 0}, and note that (2.41), (2.39) and (2.1) imply

P (Xn = 0 i.o.)≤P (Aj i.o.) = 0, (2.42)

where the equality follows from (2.37). �

3. Proofs: Mixed fluctuations

3.1. Mixed fluctuations in the Sinai-regime

PROOF OF THEOREM 2 The proof is organised into several steps.

Tightness Tightness follows from the constant variance scaling in (1.16), because for any K > 0, by Chebyshev’s
inequality,

P(|Xn −E[Xn]|>K)≤ 1

K2
. (3.1)

We identify the limit points. As noted in Remark 1, the sequence (λτ,n)n∈N0
of `2(N0)-unit vectors in (1.24) admits a

subsequence (ni)i∈N0 for which there is a vector λ∗ ∈ `2(N0) with ‖λ∗‖2 ≤ 1 such that,

lim
i→∞

λτ,ni(k) = λ∗(k) ∀k ∈N0. (3.2)

We proceed by comparing Xn −E[Xn] with V ⊗λτ,n . By (1.8) with p= 2,

σ2
0(n) := Var

[
Zn

σ2
0 log2 n

]
−→ σ2

V . (3.3)

Coupling with error term Consider a probability space (S,S,P) that is rich enough to include the sequence of random
variables (Vk)k∈N0

defined in Section 1.4.2 and an array of random variables (R
(k)
n )k,n∈N0

satisfying:

(H1) For any k,n ∈N0 and x ∈R,

Pµ0

(
Zn −Eµ0 [Zn]

σ0(n)
≤ x
)

=P
(
σ−1
V Vk +R(k)

n ≤ x
)
. (3.4)

(H2) For all k,n ∈N0, E [R
(k)
n ] = 0, where E stands for expectation w.r.t. P .

(H3) (Vk,R
(k)
n )n,k∈N0 are independent in k under P .
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(H4) R(k)
n vanishes in L2, i.e.,

lim
n→∞

sup
k∈N0

E
[(
R(k)
n

)2
]

= 0. (3.5)

The construction of the above random variables can be implemented via the Skorohod representation. More concretely, it
is based on a family (U (k))k∈N of independent uniform random variables on (0,1), which we may assume to be defined
in (S,S,P). For each k, let

Vk := σV F
−1
V
σV

(U (k)), R(k) := F−1
Zn−E

µ
0 [Zn]

σ0(n)

(U (k))− σ−1
V Vk, (3.6)

where, for a random variable X , F−1
X is the generalized inverse function of the distribution of X (see [13, p.6, Skorohod

Theorem]). Properties (H1)–(H3) follow from the construction, while (H4) is a consequence of (1.8). By (1.25) and (3.4),
for any bounded continuous function f ,

E [f (Xn −E [Xn])] = E

f
V ⊗λτ,n +

`(n)−1∑
k=0

λτ,n(k)R
(k)
Tk

 , (3.7)

i.e., Xn−E[Xn] has the same distribution under P as the λτ,n-mixture of Sinai-Kesten random variables defined in (1.26),
up to an error term that is negligible because of (3.5).

The proof proceeds in two parts. First, we remove the error term. Second, we examine the convergence of the main
term.

• Asymptotics of the error terms As a consequence of (H2)–(H3),

lim
J→∞

lim sup
n→∞

E


`(n)−1∑

k=0

λτ,n(k)R
(k)
Tk
1{Tk>J }

2


= lim
J→∞

lim sup
n→∞

`(n)−1∑
k=0

λ2
τ,n(k)E

[(
R

(k)
Tk
1{Tk>J }

)2
]

= 0,

(3.8)

where the last equality follows from (3.5). For any fixed J > 0, under P, (Yk1{Tk≤J })k∈N0
is a collection of bounded

independent random variables. Thus, by the CLT for i.i.d. random variables, for any bounded continuous function f : R→
R we have

lim
n→∞

∣∣∣∣∣E
[
f

(
`(n)−1∑
k=0

λτ,n(k)
Yk −E [Yk]

σ0(Tk)
1{Tk≤J }

)]

−E
[
f

((
`(n)−1∑
k=0

λ2
τ,n(k)1{Tk≤J }

) 1
2

Φ

)]∣∣∣∣∣= 0

(3.9)

with Φ a standard normal random variable. In view of (3.7)–(3.9), to prove Theorem 2, it suffices to show that

V ⊗λτ,n
(d)
= V ⊗λ

↓
n

(d)−→ V ⊗λ∗ + a(λ∗)Φ, (3.10)

where the equality is due to Lemma 1, whose proof is given in the sequel. We note that tightness in combination with
(3.10) characterizes all limit points in the weak topology of the sequence (Xn − E[Xn])n∈N0 as mixtures of weighted
independent Sinai-Kesten and Gaussian random variables.
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Convergence of mixtures and removal of the error term We explain why (3.10) suffices. Let f : R→ R be such that
‖f‖∞ <∞ and ‖f ′‖∞ <∞. Abbreviate

X̃n := Xn −E[Xn], Ỹk := Yk−E[Yk]√
Var(Yk)

,

λn
0,J

(k) := λτ,n(k)1{Tk<J }, λn
J,∞

(k) := λτ,n(k)− λn
0,J

(k),

X̃
0,J

n :=
∑`(n)−1
k=0 λn

0,J
(k)Ỹk, X̃

J,∞
n := X̃n − X̃

0,J

n ,

Rn
0,J

:=
∑`(n)−1
k=0 λn

J,∞
(k)R

(k)
Tk
, Rn

J,∞
:=Rn −Rn

0,J
,

(3.11)

and note that from (H1) and (H3) we have

E
[
f
(
X̃n

)]
= E

[
f
(
X̃

0,J

n + X̃
J,∞
n

)]
= E

[
f
(
V ⊗λn

0,J

+Rn
0,J

+ V ⊗λn
J,∞

+Rn
J,∞)]

.

(3.12)

For fixed J > 0, supk∈N0
λn

0,J
(k)→ 0, because if Tk < J , then the numerator in λτ,n(k) remains bounded while the

denominator diverges (recall (1.24)). Hence, by the Lindeberg-Feller theorem for triangular arrays [5, Theorem 2.4.5],

lim
n→∞

∣∣∣E [f (V ⊗λn 0,J
)]
−E

[
f
(∥∥∥λn 0,J

∥∥∥
2

Φ
)]∣∣∣= 0. (3.13)

Via (H1) and (H3), (3.9) translates into

lim
n→∞

∣∣∣E [f (V ⊗λn 0,J

+Rn
0,J
)]
−E

[
f
(∥∥∥λn 0,J

∥∥∥
2

Φ
)]∣∣∣= 0. (3.14)

Combining (3.13) and (3.14), we get

lim
n→∞

∣∣∣∣E [f (V ⊗λn 0,J

+Rn
0,J

+ V ⊗λn
J,∞

+Rn
J,∞)]

−E
[
f
(
V ⊗λn

0,J

+ V ⊗λn
J,∞

+Rn
J,∞)] ∣∣∣∣= 0.

(3.15)

Hence we can estimate

lim sup
n→∞

∣∣∣E[f(X̃n)]−E
[
f
(
V ⊗λ∗ + a(λ∗)Φ

)]∣∣∣
= lim sup

n→∞

∣∣∣∣E[f (X̃0,J

n + X̃
J,∞
n

)]
−E [f(V ⊗λn)]

∣∣∣∣
= lim sup

n→∞

∣∣∣∣∣E [f (V ⊗λn 0,J

+ V ⊗λn
J,∞

+Rn
J,∞)]

−E
[
f
(
V ⊗λn

0,J

+ V ⊗λn
J,∞)] ∣∣∣∣∣

≤ inf
δ,J>0

lim sup
n→∞

Cf

(
δ + δ−2E

[(
Rn

J,∞)2
])

,

(3.16)

where Cf is a constant that depends on ‖f‖∞,‖f ′‖∞. The first equality follows from (3.10), the second from (3.12)–
(3.15), and the inequality from the following standard bound, which we state for generic random variables X and H :
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|E [f(X +H)− f(X)] |
≤ |E

[
(f(X +H)− f(X))1{ |H|≤δ }

]
|

+ |E
[
(f(X +H)− f(X))1{ |H|>δ }

]
|

≤Cfδ +CfP (|H|> δ)≤Cfδ +Cfδ
−2E [|H|2].

(3.17)

From (3.8),

lim
J→∞

sup
n∈N
E [(Rn

J,∞
)2] = 0, (3.18)

and hence (3.16) yields

X̃n = Xn −E[Xn]
(d)−→ V ⊗λ∗ + a(λ∗)Φ, (3.19)

which is the claim in (1.28) with convergence in distribution. We note that the role of the truncation by J in (3.11) is to
capture the contribution of the small increments to the Gaussian random variable that appears in the limit.

Lp convergence We recall that convergence in Lp is understood as the existence of a coupling (Ω̃, F̃ , P̃) of the random
variables and the limit point such that their difference converges to 0 in Lp. Given the convergence in distribution Xn→
X∗, via the Skorohod representation theorem we may consider a coupling for which X̃n

d
= Xn, X̃∗

d
= X∗, and X̃n−X̃∗→ 0

almost surely. Therefore, to prove the convergence in Lp it suffices to note that for any r ∈N,

E
[
X̃2r
n

]
= E


`(n)∑
k=0

λτ,n(k)Ỹk

2r
 ≤C2r <∞, (3.20)

where we use that ‖λτ,n‖22 = 1, E [Ỹk] = 0 for all k ∈ N0, and supk E [(Ỹk)2r]< C by (1.8). The convergence in distri-
bution in (3.19), combined with the uniform bound in (3.20), implies that (1.28) holds. Indeed, let Ẽ denote expectation
with respect to P̃. Since 2r > p, by Hölder’s inequality we have for any ε > 0,

lim sup
n→∞

Ẽ[|Xn −X∗|p]≤ lim sup
n

Ẽ[|Xn −X∗|p 1|Xn−X∗|>ε] + εp

≤ lim sup
n

Ẽ[|Xn −X∗|2r]
p
2r P̃ (|Xn −X∗|> ε)

1− p
2r + εp = εp.

(3.21)

Limit of Sinai-Kesten mixtures In order to prove Theorem 2, it remains to show (3.10). We divide this part of the proof
into steps.

A triangle inequality To simplify notation, let us drop the index i from the subsequence (ni)i∈N satisfying (3.2). Also,
let λn := λ↓τ,n. Because (3.2) holds, it follows that∑

j∈N0

λ2
∗(j) = 1− a2 for some a≥ 0, (3.22)

lim
K→∞

∑
j>K

λ2
∗(j) = 0, (3.23)

lim
n→∞

K∑
j=1

|λn(j)− λ∗(j)|= 0, K ∈N, (3.24)

j ≥K =⇒ λn(j)≤ 1√
K
, K ∈N, (3.25)
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where (3.25) follows from 1 ≥∑K−1
j=0 λ2

n(j) ≥ Kλ2
n(K). Let (Φj)j∈N0

be a family of i.i.d. standard normal random
variables defined on the same probability space (S,S,P). Set Φ⊗λ :=

∑
j∈N0

λ(j)Φj for a given vector λ ∈ `2(N0), and
note that the following isometry is in force (recall (1.26)):

E
[∣∣V ⊗λn ∣∣2]= E

[∣∣Φ⊗λn ∣∣2]= ‖λn‖`2 . (3.26)

To prove (3.10), we will show via a truncation that, for any f : R→ R with bounded derivatives up to order three,
max{‖f‖∞ ,‖f ′‖∞ ,‖f ′′‖∞ ,‖f ′′′‖∞ }<∞,

E
[
f(V ⊗λn)− f(V ⊗λ∗ + aΦ0)

]
→ 0. (3.27)

Indeed, for λ ∈ `2(N0) and k,K ∈N0 with k <K , set

λk,K(j) :=


0, if 0≤ j < k,

λ(j), if k ≤ j <K,

0, if j ≥K,
(3.28)

and λK,∞(j) := λ(j)− λ0,K(j). By the triangle inequality, for all K ∈N,∣∣E [f(V ⊗λn)− f(V ⊗λ∗ + aΦ0)
]∣∣

≤
∣∣∣E [f(V ⊗λn)− f

(
V ⊗λ

0,K
n + Φ⊗λ

K,∞
n

)]∣∣∣
+
∣∣∣E [f (V ⊗λ0,K

n + Φ⊗λ
K,∞
n

)
− f

(
V ⊗λ

0,K
∗ + aΦ0

)]∣∣∣
+
∣∣∣E [f (V ⊗λ0,K

∗ + aΦ0

)
− f

(
V ⊗λ∗ + aΦ0

)]∣∣∣ .
(3.29)

To conclude the proof, we will argue that the three terms in the right-hand side of (3.29) can be made arbitrarily small.

Asymptotic negligibility of the last terms in the triangle inequality The last two terms in (3.29) can be treated via (3.17),
by using (3.22)–(3.26). Indeed, the third term in the right-hand side of (3.29) tends to zero as K→∞ due to (3.23). For
the second term, note that, by (3.22), (3.24) and

∑
i∈N0

λ2
n(i) = 1,

lim
K→∞

lim
n→∞

∥∥λK,∞n

∥∥
2

= lim
K→∞

lim
n→∞

∑
i>K

λ2
n(i) = a2. (3.30)

By (3.17), we get for any δ > 0,∣∣∣∣E [f (V ⊗λ0,K
n + Φ⊗λ

K,∞
n

)]
−E

[
f
(
V ⊗λ

0,K
∗ + aΦ0

)] ∣∣∣∣
=

∣∣∣∣E [f (V ⊗λ0,K
n +

∥∥λK,∞n

∥∥ 1
2

2
Φ0

)]
−E

[
f
(
V ⊗λ

0,K
∗ + aΦ0

)] ∣∣∣∣
≤Cfδ +Cfδ

−2 E
[ ∣∣∣(a− ∥∥λK,∞n

∥∥2

2

)
Φ + V λ

0,K
n − V λ0,K

∗

∣∣∣ ]
(3.31)

and therefore, by (3.24) and (3.30), the second term vanishes as one takes K →∞ and then n→∞. To show that the
first term in the right-hand side of (3.29) vanishes as well, we prove a bound that is independent of n by using a classical
argument in the spirit of the Lindeberg-Feller theorem (see [5, Theorem 2.4.5]).

Interpolation of random variables We consider

WK,n(M) := V ⊗λ
0,K∧M
n + Φ⊗λ

K,M
n + V ⊗λ

M,∞
n (3.32)

obtained from V ⊗λn after replacing σ−1
V Vj by Φj for K < j ≤M in (1.26). Note that, by (3.28), WK,n(M) = V ⊗λn

for M ≤K , and also that, for fixed K,n ∈ N0, WK,n(M)
L2

−→WK,n(∞) := V ⊗λ
0,K
n + Φ⊗λ

K,∞
n . With these auxiliary
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random variables, we see that in order to show that the first term in the right-hand side of (3.29) vanishes, we must prove
that

lim sup
K→∞

lim sup
n→∞

∣∣∣E[f(WK,n(K)
)
− f
(
WK,n(∞)

)]∣∣∣= 0. (3.33)

We will show that

lim sup
K→∞

lim sup
n→∞

∑
M>K

∣∣∣E[f(WK,n(M)
)
− f
(
WK,n(M + 1)

)∣∣∣= 0, (3.34)

which in particular implies (3.33).

Bound by Taylor expansion For the proof of (3.34) define, for M ≥K ,

W ∗K,n(M) :=WK,n(M)− σ−1
V λn(M)VM . (3.35)

Note that W ∗K,n(M) is independent of ΦM and VM , and that

WK,n(M + 1) =W ∗K,n(M) + λn(M)ΦM (3.36)

Consider the Taylor expansion of f up to second order,

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +Cf (|h|2 ∧ |h|3). (3.37)

Note that, for any ε > 0, |h|2 ∧ |h|3 ≤ |h|2 1{|h|>ε} + |h|3, and that for j ∈N0,

E [Φj ] = 0, E [Vj ] = 0, E
[
Φ2
j

]
= E

[(
σ−1
V Vj

)2]
= 1. (3.38)

Use (3.35) and (3.36), respectively, to expand f(WK,n(M))− f(WK,n(M + 1)) with the help of (3.37), which together
with the triangle inequality yield

|E [f (WK,n(M))− f (WK,n(M + 1))]|

≤Cf
(
E
[
|λn(M)VM |3 + |λn(M)ΦM |3

]
+ E

[∣∣λn(M)σ−1
V VM

∣∣2 1{
|λn(M)σ−1

V VM |2>ε
}

+ |λn(M)ΦM |2 1{|λn(M)ΦM |2>ε}
])
.

(3.39)

Next, note that Hölder’s inequality and Markov’s inequality imply that

E
[∣∣λn(M)σ−1

V VM
∣∣2 1{

|λn(M)σ−1
V VM |2>ε

}]
≤ λn(M)2 E

[∣∣σ−1
V VM

∣∣4] 1
2 P
(∣∣λ(M)σ−1

V VM
∣∣2 > ε

) 1
2

≤ λn(M)2E
[∣∣σ−1

V V1

∣∣4] 1
2
λ(M)E

[∣∣σ−1
V V1

∣∣2] 1
2

√
ε

≤ λn(M)3
E
[∣∣σ−1

V V1

∣∣4] 3
4

√
ε

.

(3.40)
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Since E [|V1|4] <∞, (3.34) follows from (3.39) and (3.40) via an analogous argument as for the terms involving ΦM ,
because, for some C > 0 independent of K and n,

∑
M>K

(
E
[∣∣λn(M)σ−1

V VM
∣∣2 1{|λn(M)VM |2>ε}

]

+ E
[∣∣λn(M)σ−1

V VM
∣∣3])

≤C
∑
M>K

λ3
n(M)≤C sup

M>K
λn(M)

∑
M>K

λ2
n(M)≤C 1√

K
,

(3.41)

where the last inequality follows from (3.25) and
∑
M>K λ

2
n(M)≤ 1.

�

3.2. Characterisation of Sinai-Kesten mixtures

PROOF OF LEMMA 1 To prove Lemma 1, it is equivalent to prove

λ∼ λ′ =⇒ V ⊗λ
(d)
= V ⊗λ

′
, (3.42)

[λ] 6= [λ′] =⇒ V ⊗λ
(d)

6= V ⊗λ
′
. (3.43)

Proof of (3.42) Let λ be a vector with finitely many non-zero entries. In view of the i.i.d. property of the random
variables (Vj)j∈N0

, we have that

λ∼ λ′ =⇒ V ⊗λ
(d)
= V ⊗λ

′
. (3.44)

For general λ ∈ `2(N0), let σ,σ′ : N0→N0 be such that λσ(i) = λ↓(i), and λ′σ′(i) = λ↓(i). Define

λσ,0,k(j) =

{
λ(j), if j ∈ {σ(i) : i < k },
0, else.

(3.45)

As in (3.44), V ⊗λ
σ,0,k (d)

= V ⊗λ
′σ′,0,k

. By (3.17), for any δ > 0,∣∣∣E [f(V λ
σ,0,k

)
]
−E

[
f(V λ)

]∣∣∣≤Cfδ +Cfδ
−2
∥∥λ− λσ,0,k∥∥2

2
. (3.46)

Since
∥∥λσ,0,k∥∥

2
→‖λ‖2, the claim follows.

Proof of (3.43) We may assume without loss of generality that λ= λ↓, λ′ = λ′↓ and that there is a j0 ∈N0 for which

λ(j) = λ′(j) ∀0≤ j < j0, λ(j0)> λ′(j0). (3.47)

Let t 7→ LX(t) := E [etX ] be the moment generating function of a random variable X . To show that the distributions of
V ⊗λ and V ⊗λ

′
are different, by [4, Theorem 30.1] we must show that the moment generating function of V ⊗λ is finite

in a neighbourhood of the origin and

∃ t ∈R : LV ⊗λ(t) 6= LV ⊗λ′ (t). (3.48)

The proof proceeds in three steps. First, we analyse the Laplace transform of V ⊗λ for general λ ∈ `2(N0). Second, we
prove (3.48) when j0 = 0 in (3.47). Third, we show (3.48) when j0 > 0 by reducing it to the case j0 = 0.
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Laplace transform of V ⊗λ Abbreviate f(t) := Lσ−1
V V1

(t) and note that

LV ⊗λ(t) := E
[
etV

⊗λ
]

=
∏
j∈N0

E
[
etλ(j)σ−1

V Vj
]

=
∏
j∈N0

f(λ(j)t). (3.49)

By (1.7),

|t|< 1
8π

2σV =⇒ |f(t)|<∞,
t→ 1

8π
2σV =⇒ f(t)→∞.

(3.50)

Furthermore, by Morera’s theorem [17, Theorem 5.1], t 7→ f(t) is holomorphic on the open disk

B :=
{
t ∈C : |t|< 1

8π
2σV

}
. (3.51)

Therefore Taylor expansion of f on B around 0 gives that

f(t) = 1 + 1
2 t

2 + t4g(t), (3.52)

with g a holomorphic function on B. From [17, Proposition 3.2], the finiteness of the `2-norm of λ, and (3.52), we deduce
that t 7→ LV ⊗λ(t) is holomorphic on the open disk

B(λ) :=
{
t ∈C : |t|< π2σV

8λ(0)

}
. (3.53)

Case j0 = 0 From (3.49) and (3.50), LV ⊗λ(t)→∞ as t→ π2σV
8λ(0) , while, λ(0)> λ′(0) implies B(λ) (B(λ′),

sup
t∈B(λ)

|LV ⊗λ′ (t)|<∞. (3.54)

from which (3.48) follows.

Case j0 ∈N Recall the notation in (3.28). By (3.47), we have λ0,j0 = λ′0,j0 . Suppose that

V ⊗λ
(d)
= V ⊗λ

′
. (3.55)

Since V ⊗λ = V ⊗λ
0,j0

+ V ⊗λ
j0,∞ and V ⊗λ

′
= V ⊗λ

0,j0
+ V ⊗λ

′j0,∞ , taking the Laplace transform of both random vari-
ables and using the independence, we get that

V ⊗λ
j0,∞ (d)

= V ⊗λ
′j0,∞

, (3.56)

which is a contradiction.
�

3.3. Identification of the limit points

PROOF OF COROLLARY 1(a)–(b) (a): To prove necessity of the condition on λτ,τ(k)(k), suppose that lim supk→∞ λτ,τ(k)(k) =

c > 0, and take a subsequence (ki)i∈N such that λτ,τ(ki)(ki)→ c and λ0↓
τ,τ(ki)

(j)→ λ∗(j) for any j ∈ N0 and for some
λ∗ ∈ `2(N0). Next, since lim supn→∞ λτ,n(0) = lim supk→∞ λτ,τ(k)(k) = c, we may take a subsequence (ni)i∈N for
which

lim
i→∞

λτ,ni(0)∈
( c

2
,
2c

3

)
and lim

i→∞
λ0↓
τ,ni(j) = λ′∗(j) ∀ j ∈N0 (3.57)

for some λ′∗ ∈ `2(N0). By Theorem 2, Xτ(ki)−E[Xτ(ki)]
(d)−→ V ⊗λ∗ , and Xni−E[Xni ]

(d)−→ V ⊗λ
′
∗ . To conclude the proof

it suffices to show that V ⊗λ
′
∗ and V ⊗λ∗ have different distributions. But this follows from Lemma 1, for which we argue

next that [λ′∗] 6= [λ∗].
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Since lim supn→∞ supj∈N λτ,n(j)≤ lim supk→∞ λτ,τ(k)(k) = c > 0, it follows that for any ε > 0 there is an nε > 0
such that, for ni > nε,

sup
j∈N

λ2
τ,ni(j)< c2 + ε. (3.58)

Furthermore, by (3.57), for ni large enough,

Var(Xτ(`(ni)−1))

Var(Xni)
≤ 1− c2

4
. (3.59)

Therefore, for ε < c4

4−c2 ,

sup
j∈N

λ′2τ,ni(j) = sup
j∈N

Var(Xτ(`(ni)−1))

Var(Xni)
λ2
τ,τ(`(ni)−1)(j)

≤
(

1− c2

4

)
(c2 + ε)< c2,

(3.60)

and therefore supi∈N0
λ′∗(i) < c≤ supi∈N0

λ∗(i). For the reverse implication, by Theorem 2, it suffices to show that
λτ,τ(k)(k)→ 0 implies that for all i ∈N0, limn→∞ λ

0↓
n (i) = 0. To prove this, we will show that

lim
n→∞

sup
i∈N0

λτ,n(i) = 0. (3.61)

Note that for i > 0,

lim
n→∞

λτ,n(i) = 0, sup
n∈N

λτ,n(i)≤ λτ,τ(i)(i). (3.62)

By (3.62), it follows that

lim
n→∞

sup
i∈N

λτ,n(i)≤ lim
J→∞

lim
n→∞

sup
i>J

λτ,n(i)

≤ lim
J→∞

sup
k>J

λτ,τ(k)(k) = limsup
k→∞

λτ,τ(k)(k) = 0.
(3.63)

As to i = 0, define sn = σ2
0(T̄n)/σ2

0(T`(n)) and note that, by (3.3), there is a constant C ∈ (1,∞) such that sn < C .
Therefore, since T̄n ≤ T`(n) and x 7→ x

x+y is increasing on R+ for y > 0, we get

λ2
τ,n(0) =

σ2
0(T̄n) log2 T̄n

Var(Xτ(k)) + σ2
0(T̄n) log2 T̄n

≤Cλτ,τ(`(n))(`(n))−→ 0, (3.64)

from which (3.61) follows.
(b) As in the proof of (a), we examine the sequence of vectors (λ0↓

τ,τ(k))k∈N and prove that it converges to λq with

q = limk→∞ λτ,τ(k)(k). Abbreviate qk := λτ,τ(k)(k) and note that (1− qk)2Var(Yk) = q2
k

∑k−1
i=1 Var(Yi). Adding (1−

q2
k)
∑k−1
i=1 Var(Yi) on both sides, we get

(
1− q2

k

) k∑
i=1

Var(Yi) =

k−1∑
i=1

Var(Yi). (3.65)

Since, Var(Yk−j) = q2
k−j

∑k−j
i=1 Var(Yi), recursively applying (3.65), yields to Var(Yk−j) = q2

k−j
∏j
i=1(1−q2

k−j+i)
∑k
i=1 Var(Yi),

which implies that

λ2
τ,τ(k)(k− j) =

Var(Yk−j)

Var(Xτ(k))
= q2

k−j

j∏
i=1

(
1− q2

k−j+i
)
. (3.66)

For any k ∈N, λτ,τ(k)(0) = 0. As for j ∈N, since qk→ q > 0,

lim
k→∞

(
λ0↓
τ,τ(k)(j)

)2

= lim
k→∞

λ2
τ,τ(k)(k− j + 1) = q2

(
1− q2

)j−1
, (3.67)
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and since ‖λq‖2 = 1, the first part of (b) follows from a direct application of Theorem 2. As to the second part of (b), if
λτ,ni(0)→w, then

1−w2 = lim
k→∞

Var(Xτ(`(nk)−1))

Var(Xnk)
. (3.68)

From (3.67) and (3.68), for any i ∈N,

lim
i→∞

(
λ0↓
τ,nk

(j)
)2

= lim
i→∞

λ2
ni,τ (`(ni)− j)

= lim
i→∞

Var
(
Xτ(`(ni)−1)

)
Var(Xni)

λ2
τ,τ(`(ni)−1)(`(ni)− j)

=
(
1−w2

)
q2
(
1− q2

)i−1
.

(3.69)

Then, By Theorem 2, V ⊗λni,τ
(d)−→wσ−1

V V0 + (1−w2)
1
2V ⊗λq .

�

3.4. Divergence of cooling maps and crossovers

In this section we examine the different classes of cooling maps presented in Section 1.4.2 and identify the corresponding
limit laws.

Proof. We treat the different examples one by one.

(Ex.3) Polynomial cooling When k−βTk→B, we have

lim
n→∞

n
B
β+1 `(n)β+1

= 1. (3.70)

Furthermore, by (3.3) we get that

lim
k→∞

Var(Yk)

σ2
V σ

4
0 log4(Bkβ)

= 1. (3.71)

Since
∑`
k=1 log4(Bkβ)

β4` log4 `
→ 1, it follows that

lim
`→∞

Var(Xτ(`))∑`
k=1 σ

2
V σ

4
0 log4(Bkβ)

= lim
`→∞

Var(Xτ(`))

σ2
V σ

4
0β

4` log4 `
= 1. (3.72)

It follows that λ2
τ,τ(`)(`)→ 0, Var(Xn)

Var(Xτ(`(n)−1))
→ 1, and by (3.72)

Var(Xn)

σ2
V σ

4
0( β
β+1 )4

(
β+1
B n

) 1
β+1

log4 n

→ 1. (3.73)

Finally, note that (3.73) implies

Xn −E[Xn]

σ2
0n

1
2(β+1) log2 n

= αn
(
Xn −E[Xn]

)
, with αn→ σV

(
β

β + 1

)2(
β + 1

B

) 1
2(β+1)

. (3.74)

By Corollary (1)(a), it follows that

Xn −E[Xn]

σ2
0n

1
2(β+1) log2 n

Lp−→ σV

(
β

β + 1

)2(
β + 1

B

) 1
2(β+1)

Φ. (3.75)
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(Ex.4) Exponential cooling When k−1 logTk→ c ∈ (0,∞),

`−1 log τ(`)→ c. (3.76)

Since
∑`
k=1 k

4

`5 → 1
5 , via (3.3) it follows that

lim
`→∞

Var(Xτ(`))∑`
k=1 σ

2
V σ

4
0k

4
= lim
`→∞

Var(Xτ(`))

σ2
V σ

4
05−1c−5 log5 τ(`)

= 1, (3.77)

that λ2
τ,τ(`)(`)→ 0, and that Var(Xτ(`(n)−1))

Var(Xn) → 1. From (1.22) we obtain that E[Xn]→ 0. Finally, note that

Xn

1√
5c5
σV σ2

0 log
5
2 n

= αn
(
Xn −E[Xn]

)
+ βn (3.78)

with αn→ 1, and βn→ 0. By (3.78) and Corollary (1)(a),

Xn

1√
5c5
σV σ2

0 log
5
2 n

Lp−→Φ. (3.79)

(Ex.5) Double exponential cooling When k−1 log logTk→ c ∈ (0,∞),

τ(`)

T`
→ 1,

∑`
k=1 log4 Tk∑`
k=1 e

4ck
→ 1. (3.80)

From (3.3) it follows that Var(Xτ(`))

σ2
V σ

4
0e

4c`(1−e−4c)−1 → 1 and therefore

λ2
τ,τ(`)(`)→ e4c−1

e4c = q2
c . (3.81)

Note that

lim
`→∞

Var(Xτ(`))

σ2
V σ

4
0 log4 τ(`)

= lim
`→∞

∑`
k=1 log4 Tk

log4 T`

log4 T`

log4 τ(`)
= q−2

c . (3.82)

Combining (3.81) and (3.82) with Corollary 1(b), we conclude that

Xτ(`)

σ2
0 log2 τ(`)

=

√
Var(Xτ(`))

σ2
0 log2 τ(`)

Xτ(`)√
Var(Xτ(`))

= σV

√
Var(Xτ(`))

σV σ2
0 log2 τ(`)

Xτ(`)
Lp−→ σV q

−1
c V ⊗λqc .

(3.83)

(Ex.6) Faster than double exponential cooling In this case

τ(`)

T`
→ 1,

∑`
k=1 log4 Tk

log4 T`
→ 1, (3.84)

from which, by (3.3), it follows that

lim
`→∞

λτ,τ(`)(`) = 1, lim
`→∞

Var(Xτ(`))

σ2
0σ

4
V log4 T`

= 1, (3.85)

and therefore λ2
τ,τ(`)(`)→ 1. By (3.85) and Corollary 1(b),

Xτ(`)

σ2
0 log2 τ(`)

(d)−−−→
`→∞

V. (3.86)
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Subsequences In (Ex.5) and (Ex.6) we need to examine the effect of the boundary. Let (ni)i∈N be a subsequence for
which (1.37) holds. Then

log τ(`(ni)− 1)

logni
→
{

1, if b≤ 1,

b−1, if b > 1.
(3.87)

Decompose Xni =Xτ(`(ni)−1) + Ȳ ni . By conveniently rewriting the scaling factors, we obtain

Xni

σV σ2
0 log2 ni

=
log2 τ(`(ni)− 1)

log2 ni
×

(
Xτ(`(ni)−1)

σV σ2
0 log2 τ(`(ni)− 1)

+
log2 T̄ni

log2 τ(`(ni)− 1)

Ȳ ni

σV σ2
0 log2 T̄ni

)
.

(3.88)

Using (3.83) and (3.86) in combination with (3.87) and (3.88), we conclude that

Xni

σV σ2
0 log2 ni

Lp−→


q−1
c V ⊗λqc + b2σ−1

V V0, if b≤ 1,

b−2q−1
c V ⊗λqc + σ−1

V V0, if b > 1.

(3.89)

4. Proofs: Gaussian fluctuations

4.1. Convergence in the Gaussian regime

PROOF OF THEOREM 3 By Theorem 4,

σ2
s(n) := Var

[
Zn√
n

]
−→ σ2

s . (4.1)

Consider a probability space (S,S,P) that is rich enough to include a sequence of i.i.d. standard normal random variables
(Φk)k∈N0

and a collection of random variables (R(k)
n )k,n∈N0 satisfying (recall (H1)–(H4) in Section 3.1):

(H1’) For any k,n ∈N0 and x ∈R,

Pµ0

(
Zn −Eµ0 [Zn]

σs(n)
≤ x
)

=P
(

Φk +R(k)
n ≤ x

)
. (4.2)

(H2’) For all k,n ∈N0, E [R(k)
n ] = 0.

(H3’) (Φk,R(k)
n )n,k∈N0 are independent in k under P .

(H4’) R(k)
n vanishes in L2, i.e.,

lim
n→∞

sup
k∈N0

E
[(
R(k)
n

)2
]

= 0. (4.3)

Note that, by (1.24)
∑`(n)−1
k=0 λτ,n(k)Φk

(d)
= Φ. and by (4.2),

Xn −E [Xn]
(d)
=

`(n)−1∑
k=0

λτ,n(k)
(

Φk +R(k)
Tk

)
(d)
= Φ +

`(n)−1∑
k=0

λτ,n(k)R(k)
Tk
. (4.4)

i.e., Xn−E[Xn] has the same distribution as a standard normal distribution, up to an error term that is negligible because
of (4.3). By (H2’) and (H3’), we have

E


`(n)−1∑

k=0

λτ,n(k)R
(k)
Tk

2
=

`(n)−1∑
k=0

λ2
τ,n(k)E

[(
R

(k)
Tk

)2]
. (4.5)
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Since
∑`(n)−1
k=0 λ2

τ,n(k) = 1, it follows from (4.3) that

lim
J→∞

lim sup
n→∞

E


`(n)−1∑

k=0

λτ,n(k)Rk1{Tk>J }

2
= 0. (4.6)

On the other hand, for any fixed J > 0, under P, (Yk1{Tk≤J })k∈N is a collection of bounded independent random
variables. Thus, by the CLT for i.i.d. random variables, we get

lim
n→∞

∣∣∣∣∣E
[
f

(
`(n)−1∑
k=0

λτ,n(k)
Yk −E [Yk]

σs,Tk
1{Tk≤J }

)]

−E
[
f

((
`(n)−1∑
k=0

λ2
τ,n(k)1{Tk≤J }

) 1
2

Φ

)]∣∣∣∣∣= 0

(4.7)

Theorem 3 follows from (4.6) and (4.7) by applying the same arguments that led to (3.16), it follows that

Xn −E [Xn]
(d)−→Φ. (4.8)

To prove the convergence in L2 of (X̃2
n)n∈N, as in (3.11) we consider the truncated random variables Φ

0,J

n , Φ
J,∞
n ,Rn

0,J
,

Rn
0,J

. Now,

lim
M→∞

sup
n∈N0

E
[
X̃2
n1{ X̃2

n>M }

]
= lim
M→∞

sup
n∈N0

E
[((

Φ
0,∞
n +Rn

0,∞)2

1{ X̃2
n>M }

)]
≤ inf

J
sup
n∈N0

E
[(
Rn

J,∞)2
]

= 0,

(4.9)

where we used the uniform integrability in L2 of (Φ
0,J

n )n∈N0
and (R0,J

n )n∈N0
to obtain the the inequality.

�

4.2. Limit points and stability of the variance

PROOF OF COROLLARY 2 Note first that (σs,τ (n))n∈N is a bounded sequence. Indeed, C := supTk∈R σs(Tk)<∞ by
(4.1), and by independence we obtain that

Var (Xn)

n
=

`(n)∑
k=0

Tk
n
σ2
s(Tk)<C. (4.10)

To prove (1.40), note that as the sequence (σs,τ (n), n ∈N) is bounded, it admits a convergent subsequence. Furthermore
if σs,τ (ni)→ σ, then

Xn −E[Xni ]√
ni

=
(
σs,τ (ni)

)
(Xni −E [Xni ])

L2

−→ σΦ. (4.11)

Note that (4.10) proves tightness of the sequence (n−1/2
(
Xn − E[Xn])n∈N, and (4.11) characterizes its limit points as

scalar multiples of a standard Gaussian random variable.
To prove (1.41), use (4.1). Indeed, if Tk→∞, then σ2

s(Tk)→ σ2
s and

lim
n→∞

σ2
s,τ (n)

σ2
s

= lim
n→∞

Var (Xn)

nσ2
s

= lim
n→∞

`(n)∑
k=0

Tk
n

σ2
s(Tk)

σ2
s

= 1, (4.12)

where the last equality follows from the Toeplitz Lemma [14, Thm.1.2.3].
�
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4.3. Stable centering and counterexample

Proof. We first turn to (Ex.7). To prove (1.44), note that the L2-convergence in (1.46) implies that

E
[
Zn − nvµ√

n

]
→ 0. (4.13)

Let Cn :=
∑`(n)−1
k=0 λτ,n(k) and C := supn∈NCn. Condition (1.42) corresponds to C <∞. In this case, by Markov’s

inequality, Theorem 5(II) and the Toeplitz lemma [14, Thm.1.2.3], we have∣∣∣∣E[Xn − nvµ
σs
√
n

]∣∣∣∣≤ `(n)−1∑
k=0

λτ,n(k)

C

∣∣∣∣E[Yk − Tkvµσs
√
Tk

]∣∣∣∣−−−−→n→∞
0. (4.14)

From (4.12) and (4.14) it follows that

Xn − nvµ
σs
√
n

= αn (Xn −E [Xn]) + βn (4.15)

with αn→ 1, βn→ 0, and (1.44) follows from (1.39).
We next turn to (Ex.8). To show (1.45), consider the sets

N+ := {n ∈N : Eµ0 [Zn]> 0}, N− := {n ∈N : Eµ0 [Zn]< 0}. (4.16)

By Theorem (5)(2), there exists an s-transient α for which at least one of these sets is infinite. Assume without loss that
N+ = {n1 < n2 < . . .} is infinite. Define the cooling map by successively picking N` consecutive increments of size n`
for every ` ∈N, where the values of (N`)`∈N are chosen such that

N`√∑`
m=1Nmnm

(Eµ0 [Zn` ]− vµ)> `. (4.17)

Let s(0) := 0, and for ` ∈N, define s(`) := s(`− 1) +N`n`. Therefore,

E
[
Xn(k)

]
−
√
s(k)vµ =

k∑
`=1

N`√∑`
m=1Nmnm

(Eµ0 [Zn` ]− vµ)> k, (4.18)

which proves (1.45).

Appendix A: Lp-convergence in the Gaussian regime

We prove Theorem 4.

Preparation Recall that ρj = 1−ω(j)
ω(j) . Following Zeitouni [19, Section 2.2], we have

∆(j,ω) :=−1 + vµΣ(θjω), j ∈ Z, (A.1)

where

Σ(ω) :=

0∑
i=−∞

1

ωi

0∏
j=i+1

ρj (A.2)

and θ denotes the spatial shift operator acting on (0,1)Z (i.e., (θω)(j) = ω(j + 1), j ∈ Z). Now define, for n ∈N,

Mn := Zn − vµn+ Sn +Rn, (A.3)
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where (S0 = 0)

Sn :=

nvµ∑
j=0

∆(j,ω), Rn :=


∑nvµ
j=Zn

∆(j,ω), if Zn < nvµ,

0, if Zn = nvµ,∑Zn−1
j=nvµ+1 ∆(j,ω), if Zn > nvµ.

(A.4)

Note that, in this decomposition, Sn depends only on ω. Therefore we will distinguish between the different measures
and write Eµ for expectation with respect to µ. Next, by [16, Theorem 1.16 (i)], v−1

µ =Eµ [Σ(ω)], and consequently

Eµ [∆(x,ω)] = 0. (A.5)

Therefore, for s ∈ (2,∞), (A.3) is a decomposition of (Zn − vµn)n∈N0
into a martingale (Mn)n∈N0

with respect to the
natural filtration of the random walk Fn = σ(Zi : 0 ≤ i ≤ n) and the probability measure Pω0 for any ω ∈ (0,1)Z; a
mean-zero stationary sequence (Sn)n∈N0

with respect to the shift operator θ and the measure µ; and a remainder term
(Rn)n∈N0

. Furthermore, the assumptions of [19, Theorem 2.2.1] are satisfied and, under the annealed measure Pµ0 ,

n−
1
2Rn

(d)−→ 0, n−
1
2Mn

(d)−→ σ1,µΦ1, n−
1
2Sn

(d)−→ σ2,µΦ2. (A.6)

where σ1,µ, σ2,µ will be introduced below and Φ1, Φ2 are standard normal random variables. To prove Lp-convergence,
it suffices to show that, for any p ∈ (2, s)

sup
n∈N

Eµ0

[∣∣∣n− 1
2Rn

∣∣∣p]<∞, (A.7)

sup
n∈N

Eµ0

[∣∣∣n− 1
2Mn

∣∣∣p]<∞, (A.8)

sup
n∈N

Eµ

[∣∣∣n− 1
2Sn

∣∣∣p]<∞. (A.9)

These conditions ensure uniform integrability in Lp for p < s and, combined with (A.6), yield the desired result. The
proof of (A.7) is given in Section A.1, and the proofs of (A.8), (A.9) are given in Section A.2.

A.1. Remainder term

For p ∈ (2, s), note that

sup
n∈N

Eµ0

[∣∣∣n− 1
2Rn

∣∣∣p]= sup
n∈N

∫ ∞
0

pδp−1Pµ0

(
n−

1
2 |Rn|> δ

)
dδ. (A.10)

As Pµ0 (|Zn − nvµ|> 2n) = 0, by (A.4), we have

Pµ0

(
n−

1
2 |Rn|> δ

)

≤ µ

 max
j−,j+∈(vµn−2n,vµn+2n)

∣∣∣∣∣∣
j+∑
i=j−

∆(i,ω)√
n

∣∣∣∣∣∣≥ δ


= µ

 max
j−,j+∈(−2n,2n)

∣∣∣∣∣∣
j+∑
i=j−

∆(i,ω)√
n

∣∣∣∣∣∣≥ δ


≤ 2µ

 max
j∈(0,2n)

∣∣∣∣∣∣
0∑
i=j

∆(i,ω)√
n

∣∣∣∣∣∣≥ δ

2

 ,

(A.11)
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where in the first inequality, since the random variable does not depend on the random walk and is a function of the
environment ω only, we replace Pµ0 by µ; the equality follows from the stationarity of ∆(i,ω) and to obtain the last
inequality we estimate the invcrement from j− to j+ in terms of the distance to the origin and use symmetry. By
Markov’s inequality,

µ

(
max

j∈(0,2n)

∣∣∣∣∣
j∑
i=0

∆(i,ω)√
n

∣∣∣∣∣≥ δ
)
≤ 1

δp
Eµ

[
max

j∈(0,2n)

∣∣∣∣∣
j∑
i=0

∆(i,ω)√
n

∣∣∣∣∣
p]
. (A.12)

We estimate this expectation with the help of [11, Proposition 7],

Eµ

(
max

j+∈(0,n)

∣∣∣∣∣
j+∑
i=0

∆(i,ω)√
n

∣∣∣∣∣
p)
≤Cp

(∑n
i=1 bi,n,p
n

) p
2

, (A.13)

where

bi,n,p := max
i≤`≤n

∥∥∥∥∥∆(i,ω)
∑̀
k=i

µ [∆(k,ω)|Gi]
∥∥∥∥∥
p
2

, (A.14)

Gi := σ(ω(j) : j ≤ i), and ‖f‖p =
∫ 1

0
|f(ω)|p dµ(ω). Below we show that

sup
i,n

bi,n,p =:K <∞. (A.15)

To conclude the proof of (A.7) with the help of (A.15), note that (A.13) is uniformly bounded in n ∈N and therefore by
combining it with (A.11)–(A.12) we can bound the right-hand side of (A.10) by∫ 1

0

pδp−1Pµ0

(
n−

1
2 |Rn|> δ

)
dδ+C

∫ ∞
1

δp−1 1

δp′
dδ (A.16)

for some C > 0 and p′ ∈ (p, s). Since for p′ > p the second integral above is finite, this conclude the proof of (A.7). It
remains to verify (A.15).

Bound on bi,n,p. To prove (A.15), the expression (A.2) allows us to bound the conditional expectation in (A.14) by

Eµ [∆(i+ k,ω)|Gi] =−1 +
1

Eµ [Σ(ω)]

×
(
〈ω(0)−1〉

(
1 + 〈ρ〉+ · · ·+ 〈ρ〉k−1

)
+ 〈ρ〉kΣ(θiω)

)
≤ 1

Eµ [Σ(ω)]
〈ρ〉k

(−〈ω(0)−1〉
1− 〈ρ〉 + Σ(θiω)

)
,

(A.17)

where the inequality follows from observing that

Eµ [Σ(ω)] = 〈ω−1〉
(
1 + 〈ρ〉+ 〈ρ〉2 + · · ·

)
. (A.18)

The right-hand side of (A.14) is bounded by∑
k∈N0

‖∆(i,ω)Eµ [∆(i+ k,ω)|Gi]‖p
2

≤
∑
k∈N0

vµ〈ρ〉k
∥∥∥∥(−1 + vµΣ(θiω)

)(−〈ω−1〉
1− 〈ρ〉 + Σ(θiω)

)∥∥∥∥p
2

≤
∞∑

k∈N0

vµ〈ρ〉kC
(

1 + µ
[(

Σ(θiω)
)p]) 2

p

=
1

1− 〈ρ〉vµC (1 + µ [(Σ(ω))
p
])

2
p <∞,

(A.19)
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where in the second inequality we used that ab≤ a2 + b2 to separate the constants from the random variable Σ(θiω), and

C > 0 is a constant that does not depend on k or i. The last equality follows from Σ(θiω)
(d)
= Σ(ω), and the final bound

follows from Eµ [(Σ(ω))
p
]<∞ for p < s, as can be seen by applying Minkowsky’s inequality on the Lp norm of (A.2).

A.2. Lp-convergence to the normal

To prove (A.8) and (A.9) we will bound the expectations with a bound on the difference of the distribution functions of
the each random variables and the standard normal distribution.

Let (Wn)n∈N be a sequence of random variables, P the underlying probability measure and E its corresponding
expectation. Assume that this sequence converges in distribution to the standard normal. To prove that this convergence
is also in Lp- we need to show that, for p < s,

sup
n∈N

E [|Wn|p]<∞. (A.20)

We have

E [|Wn|p] =

∫ ∞
0

dxpxp−1P (|Wn|> x)

=

∫ ∞
0

dxpxp−1
[
P (|Wn|> x)− P (|Φ|> x)

]
+

∫ ∞
0

dxpxp−1P (|Φ|> x) .

(A.21)

Since
∫∞

0
dxpxp−1P (|Φ|> x)<∞, if

|P (|Wn| ≥ x)− P (|Φ|> x)| ≤C an f(x), (A.22)

where an and f(x) satisfy

sup
n∈N

an <∞,
∫ ∞

0

dxxp−1 f(x)<∞, (A.23)

then (A.20) follows.

A.2.1. Martingale part
We will use a result in [6] to prove (A.8). Define M0 = 0, and the square-integrable martingale difference sequence
(Dn)n∈N by Dk := Mk −Mk−1. As shown in [19, p.211], the quadratic variation of (Mn)n∈N under Pω0 is given by
Aωn :=

∑n
k=1E

ω
0 [D2

k|Fk−1], where

Eω0 [D2
k|Fk−1]

= v2
µ

[
ω̄0(k)

(
Σ(ω̄(k))− 1

)2
+ (1− ω̄0(k))(Σ

(
θ−1ω̄(k)) + 1

)2]
,

(A.24)

As shown in [19, Corollary 2.1.25], the sequence (ω̄(k) := θZkω)k∈N is stationary and ergodic under Q ⊗ Pω0 , where
Q(dω) := Λ(ω)P (dω), and Λ(ω) := 1

ω0
+ 1

ω0
ρ1 + 1

ω0
ρ1ρ2 + · · ·= 1

ω0

(∑∞
i=0

∏i−1
j=0 ρj

)
. Therefore, letting EQ denote

the expectation with respect to Q, we see that the following limit exists Q-almost surely:

σ2
µ,1 := lim

n→∞

1

n

n∑
k=1

Eω0
[
D2
k|Fk−1

]
=EQ

[
v2
µ

[
ω0

(
Σ(ω)− 1

)2
+ (Σ

(
θ−1ω) + 1

)2]]
.

(A.25)

Fix δ > 0 such that 2 + 2δ < s, let Dk,n := (σµ,1
√
n)−1Dk , and consider the following two quantities:

An,δ :=

n∑
k=1

Eµ0

[
|Dk,n|2+2δ

]
, (A.26)
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Bn,δ :=Eµ0

∣∣∣∣∣1−
n∑
k=1

Eµ0
[
D2
k,n|Fk−1

]∣∣∣∣∣
1+δ
 . (A.27)

Since

Eµ0

[
|Dk,n|2+2δ

]
=

1

σ2+2δ
µ,1 n1+δ

Eµ0

[
|Mk −Mk−1|2+2δ

]
, (A.28)

we can bound An,δ by:

supk∈NE
µ
0

[
|Mk −Mk−1|2+2δ

]
σ2+2δ
µ,1 nδ

. (A.29)

Since 2 + 2δ < s, we have supk∈NE
µ
0 [|Mk −Mk−1|2+2δ

]<∞, and therefore An,δ→ 0.
To estimate Bn,δ , we first note that

Eµ0
[
D2
k|Fk−1

]
=

∫ 1

0

Eω0
[
D2
k|Fk−1

]
dµ(ω). (A.30)

Now note that since Λ(ω)≥ 1, for all positive f , EQ [f ]≥Eµ0 [f ]. Next, we apply the von Neumann Lp-ergodic theorem
in [18, Corollary 1.14.1] to the ergodic sequence (Eω0 [D2

k|Fk−1])k∈N in L1+δ(Q⊗ Pω0 ), to conclude that

lim
n→∞

EQ

∣∣∣∣∣1−
n∑
k=0

Eω0
[
D2
k,n|Fk−1

]∣∣∣∣∣
1+δ
= 0 (A.31)

and that limn→∞Bn,δ = limn→∞E
µ
0

[∣∣∣1−∑n
k=0E

ω
0

[
D2
k,n|Fk−1

]∣∣∣1+δ
]

= 0. By [6, Theorem 1], whenever an,δ :=

An,δ +Bn,δ < 1, then for any δ > 0 there exists a finite constant Cδ such that∣∣∣∣∣Pµ0
(

n∑
k=1

Dk ≤ x
)
− P (|Φ|> x)

∣∣∣∣∣≤Cδ a 1
3+2δ
n,δ

(
1 + |x|2+2δ

)−1
(A.32)

for all x ∈ R. Since an,δ → 0, the terms in (A.32) satisfy (A.23). If we replace Wn in (A.20) by Mn

σµ,1
√
n

, then we
obtain (A.8).

A.2.2. Stationary part
We show (A.9) with the help of [7, Theorem 2.4]. Indeed, if {∆(j,ω)}j∈N satisfies [7, Assumption 2.1], then for some
constants Cp > 0 and bn,p > 0∣∣∣∣∣Eµ0

(
nvµ∑
k=1

∆(j,ω)≤ σµ,2
√
nx

)
− φ(x)

∣∣∣∣∣≤Cp bn,p (1 + |x|p)−1, (A.33)

for any x ∈R, where

σ2
µ,2 := lim

n→∞

1

n
Eµ0

( n∑
k=0

∆(k,ω)

)2
 . (A.34)

To verify the conditions in [7], we need to introduce some notation.
Let ω′(0) ∈ (0,1) be an independent random variable selected according to α, and define

ω′(k) :=

{
ω(k), if k 6= 0,

ω′(0), if k = 0.
(A.35)
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Recall (A.1) and (A.4). Since the sequence (ωx)x∈Z is stationary with respect to θ under µ, we have

∆(j,ω) is stationary with respect to θ under µ. (A.36)

In what follows, we verify the remaining conditions [7, Assumption 2.1] and fix p ∈ (2, s). First note that

‖∆(k,ω)‖p ≤ 1 + vµ ‖Σ(ω)‖p <∞, Eµ0 [∆(j,ω)] = 0. (A.37)

Next note that, since ‖∆(k,ω)−∆(k,ω′)‖p ≤Cp ‖ρ‖
k
p with ‖ρ‖p < 1 (because p < s), we obtain that

∞∑
k=1

k2 ‖∆(k,ω)−∆(k,ω′)‖p <∞. (A.38)

To verify the last condition note that, since ∆(j, θ−kω) = ∆(j − k,ω), by expanding (A.34) and using the stationarity of
∆(k,ω), we get

σ2
µ,2 =Eµ0

[
∆(0, ω)2

]
+ 2

∑
k∈N

Eµ0 [∆(0, ω) ∆(k,ω)] . (A.39)

Since

Σ(θkω) =
1

ωk
+

1

ωk−1
ρk + · · ·+ 1

ω1
ρk × · · · × ρ2 + ρk × . . .× ρ1Σ(ω), (A.40)

by (A.5) it follows that

Eµ0 [Σ(ω)Σ(θkω)] = v−2
µ (1− 〈ρ〉k) + 〈ρ〉kEµ0

[
Σ(ω)2

]
. (A.41)

Since, for non-degenerate α, Eµ0 [Σ(ω)2]>Eµ0 [Σ(ω)]2 = v−2
µ , we obtain that

σ2
µ,2

∑
k∈N

Eµ0 [∆(0, ω) ∆(k,ω)]> 0, (A.42)

which implies that σ2
µ,2 > 0. Conditions (A.36), (A.37), (A.38) and (A.42) allow us to apply the result in [7] and ob-

tain (A.33). By substituting (A.33) into the right-hand side of (A.21) we obtain (A.9) and thereby conclude the proof of
Theorem 4.

Appendix B: Oscillations of mean displacement

B.1. Asymmetry in the Sinai regime

We prove Theorem 5(I).

Proof. To show that{
α : 〈logρ〉= 0, Eµ0 [Zn] 6= 0 i.o.

}
6= ∅, (B.1)

define, for x ∈ (0,1), αx := xδx + (1− x)δη(x), where η(x) ∈ (0,1) is defined by the relation 〈logρ〉= 0, which makes
αx recurrent. Let µx = αZ

x (recall (1.1)), and consider the sets

An := {x ∈ (0,1) : Eµx0 [Zn] = 0}, n ∈N. (B.2)

By the implicit function theorem, x 7→ η(x) is analytic. ThereforeAn is finite (otherwise x 7→ Eµx0 [Zn] would be constant
equal to 0, which is not the case because limx↑1E

µx
0 [Zn] = n and limx↓1E

µx
0 [Zn] =−n). Consequently, A := ∪n∈NAn

is countable and hence Ac := (0,1) \A 6= ∅. Now (B.1) follows because, for any x ∈Ac, Eµx0 [Zn] 6= 0 ∀n ∈N.
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B.2. Asymmetry in the Gaussian regime

In this section, we prove Theorem 5(II).

Proof. Fix s ∈ (2,∞). To show that{
α : 〈logρ〉< 0, 〈ρs〉= 1, Eµ0 [Zn] 6= vµn i.o.

}
6= ∅, (B.3)

we proceed as above. Define αx as in B.1, but define η(x) ∈ (0,1) to satisfy

x

(
1− x
x

)s
+ (1− x)

(
1− η(x)

η(x)

)s
= 1, (B.4)

which implies that ηx satisfies 〈ρ〉< 0. Let µx = αZ
x , and consider the sets

Bn := {x ∈ (0,1) : Eµx0 [Zn] = vµn}, n ∈N. (B.5)

By the implicit function theorem, x 7→ η(x) is analytic. Consequently, B := ∪n∈NBn is countable and hence Bc :=
(0,1) \B 6= ∅. Now (B.3) follows because, for any x ∈Bc, Eµx0 [Zn] 6= vµn ∀n ∈N.

Appendix C: Bound on recurrent fluctuations

We prove Theorem 5(III). The line of proof was suggested by Zhan Shi.

Proof. Throughout this section, C is a constant that does not depend on n and may vary from line to line.

Scaled potential process Define Uω,n(t) := 1
σ0 logn U

ω(bt log2 nc), where

Uω(k) =


∑k
i=1 logρi, k ∈N,

0, k = 0,

−∑0
i=k+1 logρi, k ∈−N.

(C.1)

From (1.1) and (1.2) it follows that t 7→ Uω,n(t) converges weakly to a Brownian motion. Let b
n

be the position of the
bottom of the smallest valley (an, b

n
, cn) of the process (Uω,n(t))t∈R, which contains the origin and has depth larger

than 1 (for a formall definition of the smallest valley see [19, Sec. 2.5]). Similarly, for any δ > 0, let (anδ , b
n

δ , c
n
δ ) be the

smallest valley containing the origin with depth larger than 1 + δ. We start with the decomposition

Zn

log2 n
=
( Zn

log2 n
− bn

)
+ b

n
=: B̄n + b

n
. (C.2)

To control the left-hand side above, it suffices to show that for any ε > 0 there is a C ∈ (0,∞) such that

Eµ
[
b
n] ≤ C

log
2
3−ε n

, (C.3)

Eµ0
[
B̄n
]
≤ C

log
2
3−ε n

. (C.4)

• Decay of Eµ
[
b
n]

The proof of (C.3) is done via a Skorohod embedding. It is organised in three parts. In the first part
we define the Skorohod embedding. In the second part, using the Skorohod embedding we compare the bottom of the
valley b

n
of the scaled potential process with the bottom of the valley b̂n embedded potential process. In this part we use

Kolmogorov’s inequality combined with estimates on the random times that define the embedding. The third part consists
of comparing the bottom of the embedded valley with the bottom of the underlying Brownian motion that we used for the
embedding. This part relies on the control of the oscilations between the random times in the embedding together with
the relation between conditioned Brownian motion and the Bessel bridge.
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Skorohod embedding Let (Bt)t∈R be a two sided Brownian motion with B0 := 0 defined on the probability space
(Ω̂, F̂ ,{ F̂t }t∈R, P̂ ), endowed with the double sided filtration generated by (Bt)t∈R starting from 0, i.e., F̂t =
σ(B st

|t|
,0 ≤ s ≤ |t|). By the Skorokhod embedding [5, Thm 7.6.3, p. 404] for each n, there is a sequence of stopping

times, (T̂n,k)k∈Z with T̂n,0 = 0 and satisfying

Uω,n
(

k

log2 n

)
(d)
= BT̂n,k . (C.5)

Let tn,k := k log−2 n denote the jump times of the scaled potential process. From now on(
Ûω,n(t))

)
t∈R

(C.6)

refers to the embedded potential process determined by (Bt)t∈R with jump times T̂n,k . We denote by (ân, b̂n, ĉn) the
smallest valley of the process (Ûω,n(t)))t∈R that contains the origin and has depth larger than 1. We write Ê to denote
expectation w.r.t. the embedded random variables (logρi)i∈Z that regulate the jumps of the scaled and embedded potential
processes.

Let (â, b̂, ĉ) be the smallest valley of depth 1 containing the origin of the Brownian motion (Bt)t≥0. Note that the
distribution b̂ is given by (1.7) and by symmetry:

Ê[b̂] = 0. (C.7)

Note first that b̄n ≤ cn−an. As shown in [3, Appendix C], the random variable J̄n := cn−an satisfies suppE
[ ∣∣J̄n∣∣p ]<

∞. Note next that

max{ |b̄n|, |b̂n|, |b̂| } ≤ J̄n. (C.8)

The general idea to prove (C.3) is to find sets An for which

Ê[b̄n1An ]≤ C

log
2
3−ε n

, P̂ [Acn]≤ C

log
2
3−

ε
2 n

. (C.9)

To obtain (C.3), we use Hölder’s inequality to bound Ê[b̄n1Acn ] by

Ê[J̄n1Acn ]≤ Ê
[ ∣∣J̄n∣∣p ] 1

p

(
1

log
2
3−

ε
2 n

) p−1
p

≤ C

log
2
3−ε n

, (C.10)

where the last inequality follows by taking p sufficiently large. More specifically, to prove (C.3) will show that there are
sets An and En for which

Ê
[∣∣∣b̄n − b̂n∣∣∣1An]≤ C

log
2
3−ε n

, P̂ (Acn)≤ C

log
2
3−

ε
2 n

, (C.11)

Ê
[∣∣∣b̂n − b̂∣∣∣1(An∩Ecn)

]
≤ C

log
2
3−ε n

, P̂ (Acn ∪En)≤ C

log
2
3−

ε
2 n

. (C.12)

Reasoning as in (C.9)–(C.10), using (C.7) (C.8), (C.11) and (C.12), we obtain

Ê
[
b
n]≤ Ê [|bn − b̂n|]+ Ê

[
|b̂n − b̂|

]
≤ C

log
2
3−ε n

. (C.13)

In the next two paragraphs we will show (C.11) by comparing the deterministic times tn,k with the random times T̂n,k
with the help of moment estimates. After that we will show (C.12) by comparing the location of the embedded minimum
b̂n with the location of the true minimum b̂ with the help of estimates on Bessel bridges.
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Comparing tn,k with T̂n,k Let an := ān log2 n, bn := b̄n log2 n and cn := c̄n log2 n and let J(n) := cn − an. The times
(τ̂n,k := T̂n,k − T̂n,k−1)k∈Z defined by the Skorokhod embedding theorem stated in [5, Thm 7.6.3] are i.i.d. and satisfy

Ê [τ̂n,k] = Ê

[(
logρ0

σ0 logn

)2
]

=
1

log2 n
,

Ê
[
τ̂2
n,k

]
≤CÊ

[(
logρ0

σ0 logn

)4
]
<

C

log4 n
.

(C.14)

Furthermore, since B2k − pk(t) is a martingale for some polynomial pk(t) of degree k, the optional stopping theorem
and (1.2) give

Ê
[
(τ̂n,k)

k
]
≤CÊ

[
B2k
τ̂n,k

]
=CÊ

[(
logρ0

σ0 logn

)2k
]
≤ C

log2k n
. (C.15)

Therefore, by Markov’s inequality, for any k ∈N,

P̂

(
τ̂n,k > 2

σµ

log2−ε n

)
≤ (logn)

k(2−ε)

σ2
µ

C

log2k n
≤ C

logkε n
. (C.16)

For kε− 2> 2 + 2ε, and any fixed J0 > 0, a union bound gives that

P̂

(
∃k ≤ J(n) : τ̂n,k > 2

σµ

log2−ε n
,
J(n)

log2 n
≤ J0

)
≤ C

log2+2ε n
. (C.17)

Abbreviate J̄n := J(n) log−2 n and define the set

An :=

{
ω : sup

k≤J(n)

τ̂n,k < 2
σµ

log2−ε n
, J̄(n)≤ (log log4 n)

}
. (C.18)

We have

P̂
(
J̄n > log log4 n

)
≤ c1P̂

(
sup

t∈[0,log log4 n]

|Bt|< 1

)
≤ C

log4 n
, (C.19)

where c1 stands for a constant that takes into account the double-sided necessary estimates to the right and to the left of
the origin. Furthermore, the constant c1 also absorbs the uniform approximation error of the discrete walk, with respect
to the Brownian motion. From (C.17) and (C.19) it follows that

P̂ (Acn)≤ C

log2+2ε n
. (C.20)

Therefore, on An, using that
(
τ̂n,k − log−2 n

)
k∈Z is a sequence of i.i.d. mean zero random variables, by Kolmogorov’s

inequality and (C.14) it follows that, for any ε > 0,

P̂

(
sup

an≤j≤cn
tn,j − T̂n,j >

1

logn
, An

)

≤ P̂
[

sup
j≤log log4 n

j∑
k=0

τ̂n,k − log−2 n >
1

logn

]

≤ (log2 n)Ê


log(log4 n)∑

k=0

τ̂n,k − log−2 n

2


≤ (log log4 n) log2 n
C

log4 n
≤ C

log2− ε2 n
.

(C.21)
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Let

An,≤ :=

{
ω : sup

an≤j≤cn
tn,j − T̂n,j ≤

1

logn

}
. (C.22)

Since b̂n = T̂n,bn , by (C.20) and (C.21), and arguing as in (C.9)–(C.10), we get that

Ê
[∣∣∣bn − b̂n∣∣∣]≤ Ê [∣∣∣bn − b̂n∣∣∣1An]+ Ê

[∣∣∣bn − b̂n∣∣∣1Acn]
≤ 1

logn
+ Ê

[∣∣J̄n∣∣1Ac
n,≤

1An

]
+ Ê

[∣∣J̄n∣∣1Acn]≤ C

log
2
3−ε n

.
(C.23)

Comparing b̂n with b̂ To prove (C.3) it suffices to show that

Ê
[
|b̂n − b̂|1An

]
≤ C

log
2
3−ε n

. (C.24)

To prove (C.24) we first note that, conditioned on b̂ being the bottom of the valley (â, b̂, ĉ) of depth 1, the trajectory of the
Brownian motion Bt behaves as a two-sided Bessel bridge of dimension 3 (see [12]). Taking the point (b̂,Bb̂) to be the
origin, we see that the two bridges we are considering can be described by

dXt =

(
1

Xt
+

1

1−Xt
+

Xt − 1

t− (ĉ− b̂)

)
dt+ dBt for t≤ ĉ− b̂, (C.25)

dXt =

(
1

Xt
+

1

1−Xt
+

Xt − 1

t− (b̂− â)

)
dt+ dBt for t≤ b̂− â. (C.26)

By the symmetry of Brownian motion, it suffices to analyse (C.25), which, in integral form, for t≤ (ĉ− b̂) reads as

Yt =

∫ t

0

(
1

Xs
+

1

Xs − 1
+

1−Xs

s− (ĉ− b̂)

)
ds+Bt. (C.27)

By the invariance of Brownian motion, B1
(d)
= −B1

(d)
= Bt√

t
. Then, by (C.27), for any δ > 0 and η ∈ (0, 1

4 ) we get

P̂ ( sup
t∈[0,δ]

Yt < η)≤ P̂
(

1

2
η−1δ +Bδ < η

)

= P̂

(
1

2
η−1δ

1
2 − ηδ− 1

2 <B1

)
.

(C.28)

Next, by taking δn = log−α n, ηn = log−β n < 1
4 with β = 1

3 − 1
4ε and α= 2

3 − ε, with ε > 0 sufficiently small, we get

P̂ (∃ t≤ δn with Yt > ηn) = 1− P̂ ( sup
t∈[0,δn]

Yt < ηn)

≥ 1− P̂
(

1

2
log

ε
2 n− log−

ε
2 n <B1

)
≥ 1− 1

exp(c logε n)
,

(C.29)

for some c > 0. Now let B(δn, ηn) := {ω : ∃ t≤ δn with Yt > ηn } and note that

P̂ (B(δn, ηn))≤ 1

exp(c logε n)
. (C.30)

By the construction of the Skorohod embedding and by (1.2),

sup
k∈N

sup
t∈[Tn,k−1,Tn,k]

∣∣∣Bt −BT̂n,k−1

∣∣∣≤ log
1− c

c

1

logn
. (C.31)
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So, on the event B(δn, ηn), |b̂n − b̂|> 1

log
2
3
−ε n

implies

inf
t≤ĉ−b̂

Yt <
1

log1−ε n
when Y0 =

1

log
1
3−

ε
4 n

. (C.32)

Let

En :=

{
ω : inf

t≤ĉ−b̂
Yt <

1

log1−ε n
given Y0 =

1

log
1
3−

ε
4 n

}
. (C.33)

From the hitting times for Bessel processes [8, Problem 3.3.23, p.162] it follows that

P̂ (En)≤ C

log
2
3−

3ε
4 n

. (C.34)

Noting that J̄n ≤ log log4 n on An and using (C.8) and (C.32), we get

Ê
[
|b̂n − b̂|1An

]
≤ 1

log
2
3−ε n

+ Ê

[
|b̂n − b̂|1An1{

|b̂n−b̂|>log−( 2
3
−ε) n

}]
≤ 1

log
2
3−ε n

+ log log4 n
(
Ê [1En ] + Ê

[
1(B(δn,ηn))c

])
≤ C

log
2
3−ε n

,

(C.35)

where the last inequality uses (C.30) and (C.34). Using (C.35), (C.23), and (C.13), we conclude the proof of (C.3).

• Decay of Eµ0 [B̄n] It remains to show (C.4). We follow [19, pp. 249–251], with appropriate modifications. We define
the set of “good environments", with δ and J both depending on n, as

AJ,δn :=

ω :

b
n

= b
n

δ ,

any refinement(a, b, c) of (anδ , b
n
, cnδ )

with b 6= b
n

has depth < 1− δ,
|anδ |+ |cnδ | ≤ J,
inft−b̄n>δBt −Bb̂ > δ

3
2 ,

 (C.36)

with δ and J chosen as

δ = δ(n) :=
1

logr n
, J = J(n) := log log4 n, (C.37)

with r ∈ (0,1) a parameter to be fixed later. From now on, we simply write P and E for the annealed measure and
corresponding expectation, as well as for the measure of the underlying Brownian motion that was used for the embedding
in the previous paragraph and its corresponding expectation.

Recall that B̄n = Zn−bn
log2 n

. Let

Gn := {ω : (Xi),0≤ i≤ n hits the boundary of [anδ , c
n
δ ]}. (C.38)
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With these definitions, we split E[|B̄n|] as

E[|B̄n|] =E
[
|B̄n|1(AJ,δn )c

]
+E

[
|B̄n|1AJ,δn

]
= In +E

[
|B̄n|1AJ,δn 1{bn<0}

]
+E

[
|B̄n|1AJ,δn 1{bn>0}

]
= In + IIn +E

[
|B̄n|1AJ,δn 1{bn>0}1Gcn

]
+E

[
|B̄n|1AJ,δn 1{bn>0}1Gn

]
= In + IIn + IIIn + IVn,

(C.39)

where

In :=E
[
|B̄n|1(AJ,δn )c

]
, IIIn :=E

[
|B̄n|1AJ,δn 1{bn>0}1Gcn

]
,

IIn :=E
[
|B̄n|1AJ,δn 1{bn<0}

]
, IVn :=E

[
|B̄n|1AJ,δn 1{bn>0}1Gn

]
.

(C.40)

To prove (C.4), it suffices to show that there is a constant C > 0 for which

max{ In, IIn, IIIn, IVn } ≤
C

log
2
3−ε n

. (C.41)

In what follows we will show that this bound holds for each of the above terms.

Estimate of In The estimate of IVn follows directly from the definition of AJ,δn . By Hölder’s inequality, for p, q > 1
with 1

p + 1
q = 1,

IVn ≤E
[
|B̄n|p

] 1
p P ((AJ,δn )c)

1
q . (C.42)

Since supn∈NE
[
|B̄n|p

]
<∞ (see [3]), it suffices to estimate P ((AJ,δn )c). The definition of AJ,δn consists of four condi-

tions. Therefore we estimate

P ((AJ,δn )c)≤ P (b̄n 6= b̄nδ )

+ P (∃ refinement (a, b, c) of (anδ , b
n
, cnδ )

with b 6= b
n

and depth > 1− δ)
+ P (|anδ |+ |cnδ |> J)

+ P ( inf
t−b̄n>δ

Bt −Bb̂ < δ
3
2 ).

(C.43)

Note that

{ b̄n 6= b̄nδ } ⊂
{
∃ refinement (a, b, c) of (anδ , b

n
, cnδ )

with b 6= b
n

and depth > 1− δ
}
.

(C.44)

Furthermore, the probability of having a valley of depth larger than 1− δ is bounded from above by the probability for a
Bessel bridge starting from 1 to reach a value smaller than δ, which in turn is bounded from above by the probability for
the infimum of a Bessel process of dimension 3 starting from 1 to be smaller than δ. By the estimate for hitting times of
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Bessel process, it follows that

P
(
∃ refinement (a, b, c) of (anδ , b

n
, cnδ )

with b 6= b
n

and depth > 1− δ
)

≤ 2P ( Bessel process of dimension 3

started from 1 reaches a value smaller than δ)

≤ 2δ ≤ 2

logr n
,

(C.45)

where the factor 2 takes into account the double-sided necessary estimates (to the right and to the left of b̄n). Combining
(C.44) with (C.45), we get

P ((AJ,δn )c)≤ C

logr n
+ P (|anδ |+ |cnδ |> J) + P ( inf

t−b̄n>δ
Bt −Bb̂ < δ

3
2 ). (C.46)

To estimate the remaining terms in (C.43), we first note that, by (C.19),

P (|ānδ |+ |c̄nδ |> J)≤ C

log4 n
. (C.47)

The last term in (C.43) can be bounded via the same reasoning used in (C.30) and (C.34), and so we get that

P

(
inf

t−b̄n>δ
Bt −Bb̂ > δ

3
2

)
≤ C

logr n
. (C.48)

Therefore, with r = 2
3 in (C.37) it follows from (C.46), (C.47) and (C.48) that there is a choice of p, q in (C.42) such that

In ≤ C

log
2
3
−ε n

.

Estimate of IIn The estimate of IIn is analogous to IIIn + IVn.

Estimate of IIIn Before proving the this estimate, we recall the expression for the hitting times as stated in [19, p.196
(2.1.4)]): for a < x< b,

Pωx (Ha <Hb) =

∑b−1
i=x expUω(i)∑b−1
i=a expUω(i)

,

Pωx (Hb <Ha) =

∑x−1
i=a expUω(i)∑b−1
i=a expUω(i)

,

(C.49)

where, for any y ∈ Z, Hy := inf{i ∈ N0 : Zi = y}. On the event Ecn ∩ AJ,δn ∩ {b̄n > 0} the random walk (Zt)t∈N0

is equivalent to the reflecting random walk at an denoted by (Z̃t)t∈N0
. More formally Z̃t is the random walk in the

environment ωz := ωz for z > anδ , ω+
anδ

= 1 and ω+
anδ−1 = 0. Therefore, for ω ∈AJ,δn ,

Eω0

(∣∣∣∣ Zt

log2 n
− bn

∣∣∣∣ , Gcn)

≤ log log4 nPω0 (Hbn > n) +Eω0

(∣∣∣∣∣ Z̃t

log2 n
− bn

∣∣∣∣∣1{Tbn<n}
)

≤ log log4 nPω0 (Tbn > n) + max
t∈[0, n]∩Z

Eωbn

(∣∣∣∣∣ Z̃t

log2 n
− bn

∣∣∣∣∣
)
.

(C.50)

The arguments that lead to [19, Eqs. (2.4.4)–2.5.5, pp. 249-250], imply that

Pω0 (Hbn > n)≤ C

exp(2−1δn logn)
≤ C

exp
(
2−1 log1−r n

) . (C.51)
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Therefore, for any r < 1 there is a C > 0 for which

(log log4 n)Pω0 (Tbn > n)≤ C

log
2
3−ε n

. (C.52)

To estimate the second term in the right-hand side of (C.50), we follow [19, pp.250–251]. Define

f(z) :=

∏
anδ+1≤i<z ωi∏

anδ+1≤i<z(1− ωi+1)
=

(1− ωanδ+1)

ωz
n−[Uω,n(z)−Uω,n(anδ )],

f(z) :=
f(z)

f(bn)
.

(C.53)

For g : Z→R, let νg =
∑
z∈Z δzg(z), where δz is the Dirac measure concentrated at z. The one-step transition operator

of this process A acts on a measures on Z as follows:

(νA) (z) := ωz−1 ν(z − 1) + (1− ωz+1)ν(z + 1). (C.54)

Note that, by (C.53) and (C.54), νfA= νf . In words, νf is an invariant measure for the reflecting random walk (Zt)t≥0.
Since f(z)≥ 1bn(z) for all z, and gA≥ 0 for all g ≥ 0, we obtain that

Pωbn(Zt = z) = ν1bnAt(z) ≤ νfAt(z) = f(z)

=
ω+
bn

ω+
z
n−[Uω,n(z)−V (bn)] ≤ 1

c
n−[Uω,n(z)−Uω,n(bn)],

(C.55)

the last inequality being a consequence of the uniform ellipticity assumption (ω+
0 ≥ c). Note now that, for ω ∈AJ,δn ,

|z − bn|> δn =⇒ Uω,n(z)−Uω,n(b̄n)≥ δ
3
2
n =

1

log
3r
2 n

. (C.56)

Hence, uniformly in all t≥ Z+, for any r < 2
3 there is a C > 0 for which

Eωbn

(∣∣∣∣ Zt

log2 n
− bn

∣∣∣∣)=
∑

z∈[anδ ,c
n
δ ]∩Z

Pωbn(Zt = z)

∣∣∣∣ z

log2 n
− bn

∣∣∣∣
≤ 1

c log2 n

∑
z∈[anδ ,c

n
δ ]∩Z

|z − bn|n−[Uω,n(z)−Uω,n(bn)]

≤ 2δn +
(J log2 n)2

c log2 n
sup

z−bn>δ log2 n

e− logn[V (z)−v(bn)]

≤ 2

logr n
+C log2 n

(
log log4 n

)
e− log(1− 3r

2
) n ≤ C

logr n
,

(C.57)

which yields the bound for IIIn.

Estimate of IVn By Hölder’s inequality, for p, q > 1 with 1
p + 1

q = 1,

In ≤E
[
|B̄n|1AJ,δn 1{ b̄n>0}1Gn

]
≤E

[
|B̄n|p

] 1
p P({ b̄n > 0} ∩AJ,δn ∩Gn)

1
q .

(C.58)

As supnE
[
|B̄n|p

]
<∞, we estimate P({ b̄n > 0} ∩AJ,δn ∩Gn). Define

Hb,n := inf{i≥ 0: Zi = bn},
Ha,b,n := inf{i≥ 0: Zi = bn or Zi = anδ }.

(C.59)
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Then, by (C.49), we have (this is the same inequality as in [19, Eq. (2.5.4)])

Pω0 (ZHa,b,n = anδ )≤ J log2 n

nδ
. (C.60)

Again, denote by (Zt)t≥0 the random walk in random environment with a reflecting barrier at anδ , and let Ha,b,n be the
analogue of Ha,b,n for (Zt)t≥0, and Ha,n be the hitting time of bn by the reflecting walk. Then, by (1.2),

Eω0 [Ha,b,n]≤Eω0
[
Hb,n

]
=

bn∑
i=1

i−1−anδ∑
j=0

1

ωi−j−1

j∏
k=1

ρ(i− k)

≤ 1

c

bn∑
i=1

i−1−anδ∑
j=0

exp(Uω,n(i)−Uω,n(i−j)) logn

≤
(
2J log2 n

)2
c

exp(1−δ) logn,

(C.61)

see [19, p.250]. Consequently, for ω ∈AJ,δn satisfying b
n
> 0, by (C.60) and (C.61) and Markov’ s inequality, we obtain

Pω(Hb,n ≥ n)≤ Pω(Ha,b,n < n,ZHa,b,n = anδ ) + Pω(Ha,b,n ≥ n)

J log2 n

nδ
+

1

n

2(J logn)2

c
e(1−δ)(logn) =

J log2 n+ 2(J logn)2

c

nδ
.

(C.62)

This is the analogue of [19, Eq. (2.5.5)] and says that, with overwhelming probability, the random walk hits bn before
time n. Let us now argue that, with overwhelming probability, after hitting bn, the random walk will come back to bn

before hitting either anδ or cnδ . By (C.49), for all ω ∈AJ,δn ,

Pωbn−1 ((Zi)i∈N0
hits anδ before bn)≤ n−(1+ δ

2 ),

Pωbn+1 ((Zi)i∈N0
hits cnδ before bn)≤ n−(1+ δ

2 ).
(C.63)

Compare with [19, Eq.(2.5.6)].] As such, for ω ∈AJ,δn the Pω-probability of the event that “after hitting bn, the random
walk exits [anδ , c

n
δ ] within the next n steps” is bounded by

1−
(

1− n−(1+ δ
2 )
)n
≤ C

n
δ
2

, (C.64)

Combined with (C.62), this gives

Pω(AJ,δn ∩Gn)≤ J log2 n+ 2(J logn)2

c

nδ
+

2

n
δ
2

≤ C

n
δ
2

. (C.65)

Applying Hölder’s inequality and the Lp bound supp,n∈NE[
∣∣B̄n∣∣p]<∞, we find that IVn ≤ C

n
δ
3

≤ C
log4 n

, which proves

the desired estimate in (C.4).
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