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Abstract: The control of self-driving cars has received growing attention recently. While existing research shows promising results
in vehicle control using video from a monocular dash camera, there has been very limited work on directly learning vehicle control
from motion-based cues. Such cues are powerful features for visual representations, as they encode the per-pixel movement
between two consecutive images, allowing a system to effectively map the features into the control signal. We propose a new
framework that exploits the use of a motion-based feature known as optical flow extracted from the dash camera, and demonstrates
that such a feature is effective in significantly improving the accuracy of the control signals. Our proposed framework involves two
main components. The flow predictor, as a self-supervised deep network, models the underlying scene structure from consecutive
frames and generates the optical flow. The controller, as a supervised multi-task deep network, predicts both steer angle and
speed. We demonstrate that the proposed framework using the optical flow features can effectively predict control signals from a
dash camera video. Using the Cityscapes dataset, we validate that the system prediction has errors as low as 0.0130 rad/s on
steer angle and 0.0615 m/s on speed, outperforming existing research.

1 Introduction

Self-driving vehicles have attracted much attention due to the
prospect of driving robustly without human involvement in the con-
trols. To achieve this, the ability to analyze the environment using
data coming from sensors and the ability to control the car accord-
ingly are essential [1]. Significant effort has been dedicated to the
design of vision-based autonomous driving systems thanks to the
recent advancement in computer vision. In general, such research
can be divided into two categories. The first way is to deploy geomet-
ric analysis algorithms to create a model of the vehicle’s surrounding
environment, which is then used for planning and control [2]. The
second way is to learn a policy that directly maps the sensory input,
such as the live feed from a front-facing camera, to a set of control
commands by imitating an expert driver [3]. We follow the latter as it
allows the system to directly extract features from the input that are
relevant to the control problem, thereby facilitating suitable features
to be extracted.

In order to mimic expert drivers, imitation learning has been
applied to a variety of driving tasks, including articulated motion
[4], road following [3, 5] and obstacle avoidance [6, 7]. The control
policy is typically trained using supervised learning, where expert
reference is provided. The system performance is improved by auto-
matically learning the necessary internal representation from raw
sensory input. Compared with rule-based solutions [2, 8], imitation
learning systems are capable of recognizing visual cues that might
be difficult to anticipate, allowing it to understand features that could
have been missed by human drivers.

The recent development of deep learning has significantly
improved the control quality in imitation learning. Bojarski et al.
[3] utilize synthetic images to train an end-to-end system, which
deduces the shift and rotation required for a scenario according to
the recorded control signals. Toromanoff et al. [5] use a lateral con-
trol model to generate the failure cases of driving, such that machine
learning systems can learn how to recover from failure cases. More
recent works leverage auxiliary tasks for feature learning. Tasks such
as segmentation [9] and optical flow estimation [10] can be applied
to enhance the quality of training for the vehicle control prediction
problem. Furthermore, multi-task frameworks have been shown to

be effective in controlling multiple aspects of driving at the same
time. Chowdhur et al. [6] train the system to predict the steering
angle and speed simultaneously using the multi-task learning frame-
work. They collect recovery data in real sites as a special driving
behavior. Yang et al. [11] also trained a multi-task network to regress
control commands and use the inferred speed to compute the recov-
ering label. In particular, temporal information has been taking into
consideration for further improving the robustness in autonomous
driving. Some researchers proposed using Long Short-Term Mem-
ory (LSTM) in their deep learning frameworks to infer steering
angles [9, 10, 12]. However, while these methods work well under
normal circumstances, relying on a period of temporal information
for driving controls could be risky as unexpected discrete events
such as a car crash can happen instantaneously. How best to apply
temporal information remains an open problem.

Fig. 1: The optical flow feature as a better cue for learning control
signals We proposed to generate the optical flow feature (upper) that
highlights movement across frames from a color dash camera frame
(lower). Such a feature is a powerful cue in learning self-driving car
controls.
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In this paper, we propose a new framework for controlling self-
driving cars utilizing optical flow [13] as a core feature to represent
motion cue, as shown in Fig. 1. Such features are powerful for
control tasks, as they encode the per-pixel movement between two
consecutive images. This allows an effective mapping between the
features and the control signals. Building around the optical flow
feature, we propose a deep learning system to generate the con-
trol signals. Because the flow can encode the temporal information
between two frames, our system does not need a recurrent module
[9, 10, 12], although we can include such modules for considering
a longer temporal duration. The frame-based nature of our system
allows the system to react quickly to unexpected events.

Our framework has two major components. The first component
is the flow predictor. As opposed to the approach in [6] and [9], our
model does not require expensive annotations for the flow predic-
tion task. This is made possible by a self-supervised mechanism [14]
to model the underlying scene structure observed from consecutive
frames and to generate the optical flow. The second component is
the controller, which is a supervised convolution neural network. Its
task is to learn the mapping between the input flow and the con-
trol signals. Motivated by previous success of previous work [6, 11],
we design the controllers as a multi-task deep learning structure to
simultaneously estimate the control speed and yaw rate. Our multi-
task setup generates slightly superior results than the single-task one.
It is also able to generate both control signals within the same archi-
tecture, which ensures that the two signals agree with each other to
form a coordinated control strategy.

To evaluated the proposed self-driving model, the Cityscapes
dataset [15] is used. The results demonstrate the effectiveness of
the use of optical flow in self-driving car controls. We outperform
Bojarski et al.’s [3] steer prediction network by 48.9% in Mean
Absolute Error (MAE). Our multi-task network also demonstrates
improvements over traditional single-task setups, boosting the MAE
of steer prediction by 5.8%.

The main contributions of the paper are:
(1) We propose a new framework that utilizes optical flow as an

motion cue for self-driving car controls. We demonstrate that the fea-
ture is effective in improving the accuracy of the control signal, and
our deep learning system outperforms existing methods significantly.

(2) We propose a multi-task deep neural network to predict both
the yaw rate and speed from the optical flow input. We show that the
multi-task setup not only performs slightly better than the traditional
single-task one, but also capable of generating both controls under
the same architecture, ensuring the coherence of the control strategy.

The rest of the paper is arranged as follows. We first review
previous work in Section 2. We explain our flow-feature informed
framework including a flow predictor and a controller in Section 3.
We present the Cityscapes dataset used in our experiment in Section
4 and show the results of our proposed systems in Section 5. Finally,
we conclude the paper and discuss on possible future directions in
Section 6.

2 Related Work

In this section, we review some prior research that is closely related
to our work. We first cover learning based methods used for vehicle
steering control, as well as the data required for training the sys-
tem. We then discuss the extraction methods of optical flow features
particularly on self-driving applications.

2.1 Deep Learning for Self-driving

Recently, as a promising approach, there is a growing interest in
imitation learning to train self-driving systems. Bojarski et al. [3]
proposed a deep learning framework with convolutional neural net-
works (CNNs) that parsed high-dimensional camera inputs through
some convolutional layers into the driver’s actions. The proposed
system learns the internal representations of useful visual cues, such
as road signs and objects, from the input images. It then correlates
them with a simple control signal (i.e. the steering angle) during

the training stage. This allows training for the driving policy effec-
tively. Codevilla et al. [7] proposed a CNN framework that exploited
the expert’s intention representations in addition to front images for
predicting the vehicle speed and steering angle. The proposed con-
ditional imitation learning framework takes a high-level command
together with the corresponding front image as the input to guide the
vehicle, allowing controls such as deciding the turning direction in
an upcoming intersection. Similarly, Chowdhuri et al. [6] used mode
indicators as the second input in their CNN training. Specifically,
three behavioral modes, namely Direct, Follow and Furtive, were
used in the training the networks as a multi-modal multi-task learn-
ing problem. Such a secondary high-level input command enables
the change of driving behavior. It also provides the system with more
flexibility and can potentially adapt better to different situations. We
also use CNN in our work to extract information from the optical
flow feature and the camera image.

Xu et al. [9] developed a framework that integrates CNN with
long short-term memory (LSTM). It learns jointly from control loss
and image segmentation loss to predict control commands based on
a sequence of camera frames. The main difference between their
work and the prior ones is the use of uncalibrated, crowd-sourced
video data in the training stage. While this makes the model training
more challenging, the trained models are more robust in different
situations. They further contribute to the community by making
their large-scale annotated video dataset, the Berkeley DeepDrive
Video Dataset (BDD-V), available to the public. We use optical flow
to represent the per-pixel movement between two frames, and we
achieve good results without the use of LSTM, although our design
is compatible with it.

To provide the passengers and practitioners with more insight of
the learned driving policies, Kim et al. [12] implemented a CNN
with attention model and exploited visual explanations to inter-
pret the steering angle predictions. In particular, the regions on the
image that are influencing the driving control signals are highlighted.
Recently, they [16] presented a new framework to generate tex-
tual explanations for their self-driving systems. On top of applying
the attention-based models to understand the relationships between
visual cues and driving control commands, the system also pro-
vides textual description for a corresponding video. Bojarski et al.
[17] also proposed a method to visualize the intermediate layers
to explain their CNN framework PilotNet in [3]. The key idea is
to find the salient objects that are the most influential to the driv-
ing commands in the road image. Due to the simplicity of the
method compared with existing saliency detection approaches such
as sensitivity-based and deconvolution-based approaches, the sys-
tem is fast enough to be used on the NVIDIA DRIVETM PX 2 AI
car computer.

2.2 Data for Training

Training data has been a common problem for different learning
techniques. Several large-scale datasets are developed to enable
supervised learning in autonomous driving. Some aforementioned
approaches, such as [9] and [12], were tested on public datasets
that include dash camera videos with time-synchronized speed and
steering commands recorded from human drivers, including the
BDD100k [18] and the comma.ai datasets [19]. The KITTI dataset
[20], which is the main benchmark for autonomous driving, has the
front image sequences along with the camera pose. The Cityscapes
dataset [15] is another benchmark. It contains preceding video
frames and the time-synchronized speed (m/s) and yaw rate (rad/s).
Combining them allows the calculation of the vehicle trajectory
based on the kinematic model in [21]. In this research, we train our
model to recognize the change in vehicle’s movement from flow
features such as rapid acceleration or sharp turns. Therefore, the
Cityscapes dataset [15] was used as it comes with the time reference.

Unbalanced training data has introduced risks of generating unex-
pected control behaviours [22]. The data is captured from human
drivers, and in most of cases, they are driving on a desired trajectory.
This results in a dominate amount of normal behaviors data, and
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the systems have little chance to learn about recovering the vehi-
cle from abnormal situations. Furthermore, in autonomous driving,
latent shifts accumulate over time leading to the vehicle driving away
from the expert trajectory [6]. The accumulated prediction error in
vehicle steering angle eventually causes the vehicle to drift off the
road. To tackle the problem of data bias and error accumulation,
synthetic images corresponding to lateral failure cases were cre-
ated to train the neural networks in [3, 5]. Reinforcement learning
can be used to reduce the amount of training data needed, which
rely on trial-and-error instead of pre-recorded data for training. The
approaches have been used to approximate the observed values, for
state or goal [23]. Still, the nature of reinforcement learning is infea-
sible for real-world driving due to the potential danger to road users.
As a solution, Pan et al. [24] trained a driving policy by reinforce-
ment learning in a virtual environment and adapted it to the real
world. Since there was a large difference between the real-world
road image and the virtual-world synthesized image, a generative
adversarial network (GAN) based image translation network was
proposed for image conversion. In this work, we do not focus on
the data imbalance problem, but our framework is compatible with
GAN for tackling it.

In autonomous driving, the visual feedback is obtained in a sparse
manner and an abstracted representing the knowledge is key to an
effective reinforcement learning process. To tackle this problem,
Kulkarni et al. [25] combined hierarchical approaches with deep
reinforcement learning to control agents. Agent behaviors and goals
were simultaneously learned from experience with two levels of hier-
archy. For compound learning, multiple inputs were often fused into
a shared representation through concatenation [26]. This shared rep-
resentation was then learned to infer the expected goals. We also
apply data concatenation to combine the use of the captured color
image and its corresponding optical flow for generating the control
signals.

2.3 Optical Flow

The essential cues for self-driving in dynamic scenes, such as phys-
ical scene constraints, spatial patterns and existence of objects, can
be obtained based on relative motion between the camera and the
scene. Optical flow serves as an effective representation to estimate
such information [13]. It represents the pattern of object movement
over time, mostly considering two consecutive image frames [27]. It
is more challenging to adapt it to outdoor environments, where the
scene contains more local ambiguities resulted from reflective sur-
faces and less-textured surfaces [28]. This is because local features
are fundamental factors for matching pixel patches when estimating
the flow. One possible solution is to make use of the depth informa-
tion on continuous objects which provides strong geometric cues for
matching pixels in neighboring frames [29].

Optical flow has been used heavily in a wide variety of appli-
cations particularly in self-driving [30]. Kashyap et al. estimated
optical flow from a front-view camera. They separated the flow into
the image velocity component and the object motion using the cam-
era motion estimated from a deep network [31]. Hou et al. [10]
proposed to utilize two pre-trained auxiliary networks, one for image

segmentation and one for optical flow prediction, to guide the main
encoder network to generate low-dimensional deep feature, which is
then inputted to an LSTM module for predicting the control signals.
We believe that the use of the LSTM module to model tempo-
ral information may not be necessary, as the optical flow features
already define the movement feature across time effectively. We
therefore demonstrate that by using optical flow directly as the input,
control signals can be accurately predicted. We further propose a
multi-task structure that utilizes two sub-branches to predict two dif-
ferent control signals, the steering angle and speed, as opposed to
[10] that outputs them in the same layer. Due to the use of individual
subbranches, our system has a better capacity to generalize to control
signals in which angle and speed are in some unusual combinations.

To further improve the performance of autonomous driving,
researchers have been trying to estimate the 3D location of the vehi-
cle from the ego-centric video captured from the dash camera. This
can be done by estimating the camera pose (including both the loca-
tion and orientation) and the spatial information between the vehicle
and the environment. Such information are taken into account when
learning the driving policies. Zhou et al. [14] used an explainability
mask to exclude moving objects from dashcam videos. They created
an unsupervised framework to simultaneously estimate the depth
map and the camera egomotion with two CNNs. Remarkably, they
achieved better camera pose estimation results compared with the
established SLAM system. We utilize [14] to estimate the depth map
and egomotion, which are then inputted to an analytical algorithm to
calculate the optical flow. By modeling the scene and the dynamic
objects, Casser et al. [32] improved Zhou’s work by incorporating a
3D object motion estimators and achieved better results, ego motion
prediction very close to the ground truth odometry and proposed
a refinement method applicable to fine-tune the result in an online
fashion. To jointly estimate depth and camera motion, it is common
to assume that the scenes are mostly rigid. Ranjan et al. [33] used
a competitive collaboration framework to reason about every pixel
across the image (i.e. static or not), by exploiting low-level informa-
tion like depth, camera motion and optical flow. In this research, we
train a CNN controller to distinguish which of the pixel displacement
is dominated by the camera motion.

3 The Optical Flow Informed Framework

We propose a deep neural network framework that consists of a flow
predictor and a driving controller. The former is to construct the opti-
cal flow features, while the latter use such features to deduce driving
control signals.

The overview of our framework is shown in Fig. 2. Given two
consecutive frames It−1 and It from the dash camera, the flow pre-
dictor estimates the depth images Dt at frame t and the egomotion
(i.e. camera motion) Et−1→t from frame t− 1 to frame t, based
on two jointly trained self-supervised convolutional neural networks
(CNNs). The depth image and the egomotion are used to calculate
the optical flow image flowt−1→t from frame t− 1 to frame t.
The flow image is spatially concatenated with the current frame It
to form the input of the controller, which is a supervised multi-task

Fig. 2: The overview of our optical flow informed self-driving framework. Our framework consists of a flow predictor and a driving
controller. The flow predictor estimates the depth image and the egomotion (i.e. camera motion) from consecutive monocular dash camera
frames to calculate the optical flow. The flow and the current camera image are strong features representing the current scene. They are
concatenated as the input of the driving controller, which deduces the control signals yaw rate and speed.
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CNN to predict the driving control commands, including the yaw
rate yawRatet and the speed speedt.

There are two major design concepts in our framework. The first
one is that the front-view images and the motion-based cues between
consecutive frames (i.e. optical flows) serve as a powerful repre-
sentation of the current scene. Comparing with methods that do not
explicitly represent the motion cues [3, 5, 12], our system performs
more robustly, with the control signals predicted more accurately.
The second key design is to directly use the image-based input gen-
erated from the monocular dash camera to train the control policy.
Unlike existing work that apply prior knowledge to model the scene
[9, 11], our framework ensures that the control policy is informed by
all features obtainable from the image and flow with the least amount
of user intervention.

3.1 The Flow Predictor

The flow predictor generates the optical flow image from two con-
secutive frames It and It−1, as shown in the left part of Fig. 2. To
do so, we first utilize the method proposed in [14] to estimate the
camera egomotion and depth map from the two frames. We then
introduce an analytical algorithm to calculate the optical flow from
the estimated egomotion and depth map.

Here, the dash camera should be setup to obtain a clear view with
little occlusion, so that the camera motion can be effectively esti-
mated from image features such as the geometry of the streets. An
unoccluded scene is also a pre-condition for human driving, and the
vast majority of available datasets fulfill this condition.

Fig. 3: The depth CNN for estimating the depth map The depth
CNN has an encoder-decoder architecture, with the input layer (top
left block) being the color image and the output layer (top right
block) being the estimated depth image.

3.1.1 Self-supervised CNNs for Egomotion and Depth: The
flow predictor consists of two deep convolutional neural networks
for two different tasks.

First, the depth CNN is a convolutional encoder-decoder architec-
ture producing a dense depth map from a single RGB image. That is,
it takes the frame It and estimates the depth map Dt. As visualised
in Fig. 3, the input layer from the top left block is the RGB image.
A series of convolution layers shown in the left branch reduces the
images to a low-dimensional deep feature (lower left block). Then,
a series of deconvolution layers shown in the right branch restores
the deep feature into the original dimensionality (upper right block),
with the nature of the images being converted into the depth map. In
this network, the convolution layers are in pairs, consisting of one
layer with a stride of 2 and another with a stride of 1. The former
reduces the dimensionality of the feature, while the latter improves
the generalization power of the network.

Second, the egomotion CNN takes a sequence of two RGB frames
as the input and produces a 6 degree-of-freedom transformation vec-
tor between the frames as the output, represented as 3D translation
and 3D rotation. That is, it takes the frames It and It−1 to estimate
the egomotion, which is the camera motion, Et−1→t. As visualised
Fig. 4, the input layer is the image formed by concatenating It and
It−1 (top left block). The left branch is an encoder-decoder structure
that reduces the image into a low dimensional deep feature (middle
left block). Such a feature is passed into the right branch with future
convolution layers to regress the 6 DoF camera egomotion vector.

The two networks are trained together such that the overall sys-
tem is self-supervised. We implement a differentiable image warping
operator ψ that reconstructs a target image from a source image with
a camera motion. In each epoch, using ψ, the inverse of the ego-
motion Et−1→t is applied on the RGB image It with geometry
information from the depth image Dt to recreate the projected ver-
sion of frame It−1, which we called It→t−1. Such a projected frame
is compared with the original image It−1 using a photometric loss
in the RGB space to construct the self-supervise signal:

Loss = ||It→t−1 − It−1|| (1)

Fig. 4: The egomotion CNN for estimating the camera egomotion
The egomotion CNN has an encoder-decoder architecture as shown
in the left branch, with the input layer (top left block) being the two
concatenated color images and the output layer (lower right block)
being the estimated 6 DoF camera egomotion.
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Fig. 5: The geometric relationship between reference and target
views. Given a car is turning right and merging into a traffic lane.
Point P is a static point on the road surface. The pixel point P0 is the
point P from a reference view Iref . The pixel point P1 is the point
P from a target view Itar . The flow image is from the reference view
Iref .

The loss informs the performance of both the egomotion CNN and
the depth CNN, and is used to train both systems. Regarding the
implementation, we scale the images in our dataset to fit the input
dimensions of the depth and pose networks, which helps to avoid
changing the network structure.

3.1.2 Optical Flow Calculation: A major requirement for self-
driving systems is to understand highly dynamic environments and
extract robust features. This motivates us to represent the motion
features using dense optical flow, which indicates the displace-
ment of all pixels between two consecutive frames. On the one
hand, traditional color images, depth images segmentation features
used in self-driving vehicles [14] [36] can only represent a static
frame. Therefore, they typically require the deep learning network
to include a temporal module such as LSTM [10] for understanding
motion and predict the control signals. With the optical flow that rep-
resents motion features directly, we demonstrate that the temporal
module is not necessary for our system. On the other hand, tradi-
tional features for temporal tracking such as HOG and HOF are 2D
in nature, and the tracking performance depends heavily on whether
distinctive feature points are available [37]. Our optical flow is cal-
culated by first projecting the 3D point cloud from the depth image
with the camera egomotion, and then mapping the angle and magni-
tude of the per-pixel 3D motion into the 2D color space, as shown
in Fig. 1 as an example. Therefore, our optical flow represents dense
3D motion features for self-driving controls.

As illustrated in Fig. 5, when an observed point P on a surface
remains static between the two frames, the observed optical flow is
purely driven by the camera motion. For the sake of better under-
standing, an example of a car turning right and merging into a traffic
lane is used here. Point P is a static point on the road surface.
The pixel point P0 is the point P from a reference view Iref . The
pixel point P1 is the point P from a targeted view Itar . Since the
camera moves along with the car, the pixel point P0 moves to P1
accordingly.

More specifically, we calculate the optical flow field due to the
camera motion. Given two consecutive images It−1 and It, we first
estimate the depth map Dt and the relative camera pose Et−1→t by
the self-supervised CNNs and Eq. 2 mentioned in Section 3.1.1. We
then calculate the optical flow:

flowt−1→t = φ(Dt, Et−1→t,K) (2)

where φ is an analytical algorithm, K is a matrix representing the
camera’s intrinsic parameters.

The algorithm φ can be broken down into multiple key steps.
First, we create two matrices u and v that represent pixel displace-
ment along the x and y axes respectively:

u =


0 1 ... w
0 1 ... w

. . .
0 1 ... w

 , v =


0 0 ... 0
1 1 ... 1

. . .
h h ... h

 (3)

where w and h are the width and height of the input image It−1 and
It. We then use u and v to represent the depth map Dt in a point
cloud representation consisting of the x, y and z components:

PC = [PCx, PCy, PCz , 1] (4)

where

PCx = Dt � u
PCy = Dt � v
PCz = Dt

where � represent the element-wise multiplication. On the other
hand, we estimate the normalized camera egomotion considering the
intrinsic parameters K:

ˆEt−1→t = K · Et−1→t ·K−1 (5)

where K−1 denotes the inverse of K. We then project the point
cloud with the normalized egomotion to obtain the movement
matrix:

P̂C = ˆEt−1→t · PCT (6)

where PCT denotes the transpose of the PC matrix. Finally, the
two components of the optical flow are calculated as:

flowt−1→t,u =
ˆPCx
ˆPCz
− u (7)

flowt−1→t,v =
ˆPCy
ˆPCz
− v (8)

where PCx, PCy and PCz are the x, y and z component of PC
respectively. The 2D flow image flowt−1→t is represented by map-
ping the angle and magnitute of the optical flow into the color
space.

The flow flowt−1→t and the image It are considered as strong
features and are used as the input of the CNN-based controller
network.

In addition, following [14], we implement a depth smoothing
strategy. Specifically, we trained our flow predictor on the KITTI
dataset [20] and then applied the online refinement technique pro-
posed in [32] to fine-tune the flow prediction module in this work.
We found that the predicted flow fields successfully reflect the scene
level consistent movement governed by the camera motion.

3.2 The Controller Network

In this section, we explain the controller network that predicts the
control signals yaw rate and speed through a multi-task network
architecture. Such an approach improves the generalization and
exploiting commonalities between the two tasks in order to achieve
a better performance in controlling the vehicle.

We adapt the end-to-end CNN architecture in [3], as its effective-
ness in mapping raw pixels directly to vehicle control signals has
been demonstrated. The ene-to-end architecture means that images
features are mined directly from the raw input with minimal human
interventions.

We modify the architecture in [3] to create our controller network
by introducing a multi-modal multi-task CNN structure, as shown in
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Fig. 6: The CNN architecture for our controller module. The
network takes multi-modal input (i.e. image and optical flow) and
performs multitask control prediction (i.e. yaw rate and speed).

Fig. 6. From the top of the image, the network takes the concatenated
image of the current image, It, and the optical flow, flowt−1→t as
the input, which is a 3-channel RGB image. The 5 convolution layers
extract the image features that are useful to our task. The flatten layer
generate a 1-D vector that represents the deep features. Then, the left
hand side part of the network colored in white, consisted of 3 fully
connected layers, generates the yaw rate, yawRatet→t+1. The right
hand side part colored in blue, consisted of 3 fully connected layers
as well, generates the speed, speedt→t+1.

This multi-task structure allows the system to model the correla-
tion between different tasks, which are the steering angle and speed
in our case. The shared layers are used to model common knowl-
edge between the two tasks, while the separate sub-branches are used
to model the task-specific knowledge. During backpropagation, the
ground-truth signal of each task update both the shared layers and
its task-specific branch. Through the shared layers, the knowledge
between the two tasks is generalized.

The loss function of our framework is defined as the mean abso-
lute error between the predicted yaw rate yawRatet→t+1 and
the ground truth yawRate′t→t+1, together with that between the
predicted speed speedt→t+1 and the corresponding ground truth
speed′t→t+1:

Loss = α1||yawRatet→t+1 − yawRate′t→t+1||

+ α2||speedt→t+1 − speed′t→t+1|| (9)

where α1 and α2 are the parameters to balance the influence of yaw
rate and speed loss respectively on the prediction task. An ablation
study with different loss weight ratios α1/α2 has been conducted
to find out the best prediction performance, which is described in
Section 5.

Furthermore, in terms of implementation, different from the CNN
architecture in [3], we adopt a larger kernel size of 12×12 in the
first few convolutional layers. This is driven by the observation that
larger kernels are more suitable for environmental contexts extrac-
tion from front-view cameras [11]. Bojarski et al. [3] resizes the
input to 66× 200 pixels, which limits the network’s ability to learn
from smaller objects in the large scene. Motivated by [34] where
contextual representations are learned from a large receptive field
using dilated convolution layers, we increase the dilation rate in
the convolutional operation, which allows learning from the images
with less computational cost with a larger dimensions of 140× 208
pixels.

3.2.1 The Baseline Setup: We set up a baseline network with
only the yaw rate network but taking the multi-modal input of an
image frame and the corresponding optical flow. This allows us
to demonstrate the effectiveless of our multi-task architecture that
considers both yaw rate and speed.

The baseline network is represented as the white part of the net-
work in Fig. 6 without the blue part. The network still takes the
multi-modal input of both the current image, It, and the optical flow,
flowt−1→t, but it only predicts the yaw rate, yawRatet→t+1.

The loss function is defined as:

Loss = ||yawRatet→t+1 − yawRate′t→t+1|| (10)

where yawRate′t→t+1 is the corresponding ground-truth value.

4 The Cityscapes Dataset

In this section, we introduce the benchmark Cityscapes dataset
[15] and the data pre-processing methods used in this work. Such
a dataset fits the best in our system for several reasons. First,
Cityscapes provides both the vehicular ego motion data and the cam-
era intrinsic parameters, which are both necessary information in
our system. Other popular datasets such as BDD100K [18] do not
provide camera information. Second, it provides control informa-
tion including both speed and steering angle, which is not present in
other datasets such as KITTI [20]. Third, the dataset consists of many
rapid acceleration/deceleration periods and sharp turns in a compli-
cated city environment, which serve as challenging scenarios for the
system to learn the driving signal. In comparison, the comma.ai [19]
dataset consists of mainly highway scenarios, and the Ford Cam-
pus Vision and Lidar Data Set [35] consists of mainly straight roads.
Both are considered to be less challenging.

The Cityscapes dataset is a large-scale dataset with mainly urban
street scenes. It contains 5,000 preceding video sequences and time-
synchronized ego-motion parameters from the vehicle odometry
including the speed (m/s) and the yaw rate (rad/s) annotation for
every frame. Every video sequence has 30 frames collected within
1.8 seconds. Because images sampled at a high rate would be highly
similar and thus provide less useful information [3], we extracted
pairs of images and ego-motion labels from each video sequence at
the same sampling rate as in [32] for feature extraction. Furthermore,
unnecessary parts of the images such as the automobile hood and the
sky were cropped out to improve the efficiency of the training pro-
cess. The resultant images are scaled for normalization to match the
input size of the networks.

Video sequences in the Cityscapes dataset were collected in the
daytime under good or medium weather conditions in 50 cities, with
4 types of camera intrinsic settings. Some examples of the contained
street scenes with varying background and scene layout are shown
in Fig. 7 and Fig. 9.

4.1 Annotating data using the speed ratio

In order to make the control predictions smooth and conform to
motion laws, we tried to adopt the speed ratio that compares the
speed of the current frame with the previous frame as the label as
in [11] and [16]. We would like our controller to regress a vehicle’s
movement trend ∆s = si/si−1 from the RGB image and the flow

IET Intell. Transp. Syst., pp. 1–11
6 c© The Institution of Engineering and Technology 2015



image, and then determine the speed si based on the vehicle’s prior
movement state si−1. For both of the aforementioned speed label
preparation methods, the samples with a very low speed (less than
0.1 m/s) are discarded to ensure a consistent driving condition. We
demonstrate the performance gain and justify our choice in using
speed ratio in an ablation study in Section 5.4.1.

5 Experimental Results

In this section, both quantitative and qualitative experimental results
are presented. In particular, we compare the proposed multi-task net-
work with [3] and the baseline model explained in Section 3.2.1,
demonstrating that our multi-task system performs the best.

5.1 Experiments Setup

We used the same preprocessing settings and neural network hyper-
parameters for all the models. Samples were partitioned according
to the setup of the Cityscapes dataset (59.5% training, 10% valida-
tion and 30.5% testing) and were randomly shuffled. All the models
were trained and tested using Keras utilizing a Tensorflow backend
on a GeForce GTX 1080 GPU based system. We used the Adam
optimizer with β1 = 0.99, β2 = 0.999 and a fixed learning rate of
1× 10−4 in all experiments. The training time for the multi-task
network was about 5 hours for 30 epochs.

5.2 Qualitative Evaluation

Some examples of video frames and the corresponding intermediate
images (i.e. depth maps and flow features) are illustrated in Fig. 7
to Fig. 10 to demonstrate the high-quality results obtained using our
proposed framework. In particular, brighter color in the depth map
denotes greater relative motion and shorter distance. Brighter color
in the optical flow features indicates a larger drift or movement. It
can be seen that the extracted features are highly indicative of steer-
ing angle prediction (the going through and turning behaviors) in
Fig. 9 and Fig. 10. In addition, the depth information on objects
like cars, pedestrians and bicycles provides strong geometric cues
for inference, which can be seen in Fig. 7 and Fig. 8.

The depth maps computed from a wide range of different situa-
tions are presented in Fig. 7 and Fig. 8. The samples in Fig. 7 (a),
(b) and (c) clearly highlights the spatial distances between the cam-
era and other vehicles are estimated accurately. In Fig. 8 (a), it can
be seen that the shapes and depth information of the objects (i.e.
cars and pedestrian) is well-captured. We further show 2 challeng-
ing scenes in Fig. 8 (b) and (c) in which a cyclist is included in the
scenes with moderate traffic. Again, our proposed method extracted
high-quality shape and depth information.

Examples of the flow features computed by our method can be
found in Fig. 9 and Fig. 10. The results indicate that our method
produces smooth and accurate flow features in different situations
consistently. When the cars are moving together in relatively high
speed, the flow features indicates that correctly in Fig. 10 (b) and
(c). The samples in Fig. 9 (a), (b) and (c) do not contain a lot of
moving vehicles. As a result, the region surrounding the vanishing
point will have larger changes and indicated by a brighter color in the
flow features. Fig. 10 (a) shows a traffic jam scenario with vehicles
move slowly. Similar to Fig. 9 (a) to (c), the region surrounding the
vanishing point will have larger movement.

5.3 Quantitative Evaluation

5.3.1 System Performance: The performance of the proposed
multi-task model to predict both yaw rate and speed on the
Cityscapes dataset is shown in Table 1. We show the mean average
error (MAE) and root mean square error (RMSE) for the yaw rate
and the speed ratio.

It can be noted that the minimum yaw rate error is obtained with
the weight ratio α1 : α2 = 1 : 1, in which the MAE is 0.0130 and
RMSE is 0.0281. The minimum speed error is obtained with the

weight ratio α1 : α2 = 1 : 3, in which the MAE is 0.0615 and the
RMSE is 0.0867.

It can also be observed that the weight ratio does not significantly
increase the error, making it easy to pick the parameters that does
well on both yaw rate and speed. For example, the parameter ratio
2 : 1, 1 : 1, 1 : 2 and 1 : 3 all generate good results in both yaw rate
and speed, and they all outperform other methods we compare with.
Such comparisons will be explained in the next section.

5.3.2 Comparison with Other Methods: We compare the pro-
posed multi-task system with [3] and the baseline model as explained
in Section 3.2.1 on the Cityscapes dataset. Since both [3] and the
baseline can only generate yaw rate, we optimized the models with
respect to the yaw rate.

The result is shown in Table 2. Our optimized multi-task model
outperforms both [3] and the baseline, with the smallest mean aver-
age error (MAE) and the smallest root mean square error (RMSE).
The multi-task model is set up using the parameter ratio α1 : α2 =
1 : 1 and using the speed ratio as the target of the regression.

In particular, compared with [3], we observe an improvement in
MAE of yaw rate from 0.0270 rad/s to 0.0138 rad/s, which is equiva-
lent to a relative improvement of 48.9%. The RMSE is reduced from
0.0487 rad/s to 0.0282 rad/s, by 42.1%. It highlights the effective-
ness of using flow features to help the model better understand the
scene geometry and spatial pattern and thus generate a much more
accurate yaw rate prediction.

Also, compared with the baseline, the proposed system improved
the MAE from 0.138 to 0.130 and RMSE from 0.282 to 0.281,
despite the need of solving two tasks at the same time. This shows
that the two tasks are highly relevant to each other. The proposed
multi-task framework effectively solves them in the same network
and generates better results.

While the best result for the yaw rate is obtained with the weight
ratio α1 : α2 = 1 : 1, we can see from Table 1 that even when we
pick the weight ratio that is optimized for speed (i.e. α1 : α2 = 1 :
3), the proposed multi-task system still performs better than [3] and
the baseline.

We further compare our work with [36], which achieved the
second-best performance in the ICCV 2019 Learning to Drive chal-
lenge. It comes with the source code that we can use to retrain the
network with the Cityscapes dataset for experimental comparisons.
We include both the single image (CNN_SINGLE_IMAGE) and
stacked (CNN_STACKED) implementations in [36] for comparison.
As shown in Table 3, it can be seen that aligning with the findings
in [36], the stacked implementation performs better. However, both
networks cannot produce results as good as our proposed system,
either using the parameter ratio of 1:1 or 1:3. This indicates that the

Table 1 The yaw rate and speed prediction errors with the proposed multi-
task model on Cityscapes.

Yaw Rate Yaw Rate Speed Speed
α1 : α2 MAE (rad/s) RMSE (rad/s) MAE (m/s) RMSE (m/s)

2:1 0.0132 0.0287 0.0632 0.0885
1:1 0.0130 0.0281 0.0649 0.0902
1:2 0.0132 0.0278 0.0635 0.0885
1:3 0.0135 0.0287 0.0615 0.0867
1:4 0.0139 0.0291 0.0627 0.0880
1:5 0.0146 0.0300 0.0627 0.0874
1:7 0.0148 0.0291 0.0629 0.0882

Bold values are best results.

Table 2 Comparisons with [3] and baseline on Cityscapes

Yaw Rate Yaw Rate
Model MAE (rad/s) RMSE (rad/s)

Bojarski et al.’s model [3] 0.0270 0.0487
The baseline model (explained in Section 3.2.1) 0.0138 0.0282
The proposed multi-task model 0.0130 0.0281

Bold values are best results.
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(a) Another car in proximity (b) Typical traffic (c) A lot of parked cars

Fig. 7: Examples of depth maps computed from different situations.

(a) With pedestrian (b) More complicated scene with a cyclist (c) A more complicated scene with a cyclist

Fig. 8: Examples of depth maps computed from different situations.

use of optical flow has a positive effect on estimating the control
signals.

5.4 Ablation Studies and Parameter Analysis

5.4.1 The Speed Label Preparation Strategy: Here, we fur-
ther evaluate the performance of incorporating the multi-task model
in the proposed framework. Specifically, this ablation test focuses on
the effect of the strategy of using the speed ratio annotated data in
the proposed multi-task model.

For yaw rate prediction, as shown in Fig. 11(a), the use of the pre-
vious dynamic state produced encouraging results by bringing down
the yaw rate MAE for all the tests with different loss weight ratios.
Without the use of previous dynamic state, the minimal MAE of
0.0144 was achieved when using 1:2 loss weight for yaw rate and
speed prediction. With the use, the minimal MAE of 0.0130 was
achieved when using 1:1 loss weight.

Similarly, for speed prediction, the use of previous dynamic state
improved the results significantly in all weight ratios as shown in
Fig. 11(b). Without it, the minimal MAE of 1.9177 was achieved
with the weight ratio of 2:1. With it, the minimal MAE of 0.0615
was achieved with the weight ratio of 1:3.

5.4.2 The Loss Weight Ratio: Here, we present the results of
an ablation study on changing the loss weight ratios in our multi-task
model. The results are shown in Fig. 12. The best yaw rate prediction
performance is achieved with the 1:1 loss weight ratio, while the best
speed prediction is obtained with the ratio of 1:3.

Table 3 Comparisons with [36] on Cityscapes

Yaw Rate Yaw Rate Speed Speed
Model MAE (rad/s) RMSE (rad/s) MAE (m/s) RMSE (m/s)

[36] Single Image 0.0470 0.0759 2.6911 3.4776
[36] Stacked 0.0246 0.0441 1.9261 2.5235
Our model (1:1) 0.0130 0.0281 0.0649 0.0902
Our model (1:3) 0.0135 0.0287 0.0615 0.0867

Bold values are best results.

Notice that our system performs generally well in the ratio range
between 2:1 and 1:4. For example, using the ratio 1:1 where yaw
weight achieves the best result, the speed error is only increased by
5%. Using the ratio of 1:3 where the speed achieves the best result,
the yaw rate error is only increased by 4%. Finally, the ratio 1:2
resulting in a balance between yaw rate and speed.

6 Conclusion

Without learning from motion-based cues, vehicle control prediction
networks are susceptible to complicated road scenes. In this paper,
we develop a CNN framework to learn from dashcam videos and
flow features between frames to predict driving control commands
including yaw rate and speed. Our experiments show that flow fea-
tures help the proposed approach to achieve a new state-of-the-art
on the Cityscapes benchmark. With the speed prediction task, our
multi-task network largely outperforms the previous steer prediction.

In the future, we are interested in implementing a driving test with
a pre-recorded video in a simulator to further evaluate our work.
Specifically, the simulator sends the first two frames of the test video
to our trained model. The flow predictor creates the flow image and
then the controller network infers the control commands for the sec-
ond frame. The control predictions including speed and yaw rate are
fed into the vehicle kinematic model [21] to compute the yaw and
the displacement travelled by the virtual car. We will assume the
ground is flat so we can transform the car’s yaw and displacement
in the world coordinate system to a camera motion in the camera
coordinate system with camera calibration.

With the camera pose and multi-view images, we are able to syn-
thesize a novel view for the updated position and orientation of the
car. Ideally, the simulator then sends the new synthetic frame and the
second frame to the model and the process repeats. Since the camera
motion is available when creating the flow image and our model also
predict control commands based on the flow image, it is convenient
to calibrate the lane center associated with each frame and augment
recovering data for failure case using the formula in [11]. By observ-
ing whether the simulated car would drift away in time, we will be
able to evaluate the performance of the controller in managing to
perform lane-keeping and car following tasks.
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(a) Pedestrians crossing the road slowly (b) Low traffic (c) Low traffic

Fig. 9: Examples of flow features computed from different situations.

(a) A lot of parked cars (b) Cars moving together with higher speeds (c) Cars moving together with higher speeds

Fig. 10: Examples of flow features computed from different situations.

While this research can accurately predict the control signals from
a video feed, control signal prediction is only one part of a fully
self-driving vehicle system. When deployed onto a car, issues such
as control signal delay and control noises would affect the system.
With the use of driving simulation systems or even real cars, we may
perform closed-loop tests to identify potential gaps in the control
loop. In this aspect, we may also look into more dedicated control
systems such as feedback controls to fill the gaps.
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