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1 Introduction

Understanding the dynamics of antibranes in fluxed background, particularly anti-D3
branes in Klebanov-Strassler background, has been of revived interest in recent years.
This is due, in part, to the debate over the validity of the KKLT (Kachru, Kallosh, Linde,
Trivedi) construction of de-Sitter vacua [1], in which metastable state of anti-D3 branes
remains a controversial prerequisite [2].
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A brief review. The KPV (Kachru-Pearson-Verlinde) state [3] is a proposed configu-
ration of anti-D3 branes at the tip of the Klebanov-Strassler [4] background. Originally
in [3], it was argued that anti-D3 branes can polarise into a spherical NS5 brane, and that,
in probe approximation, in the regime of p/M1 between 0 and pcrit with pcrit ≈ 0.080488,
the polarised anti-D3-NS52 brane balances its own “weight” with “electromagnetic” forces
from the fluxes to form a metastable configuration.

Because of the singularities found when considering backreaction of anti-D3 branes to
the throat [5], concerns about the existence of the state were raised. It’s important to
note that the KPV state is actually an anti-D3-NS5 state formed by the polarisation of
anti-D3 branes under non-trivial fluxes as opposed to a state of localised anti-D3 branes.
Nevertheless, the singularities still mean bad news for KPV especially when [6] pointed out
that the KPV state is outside of the regime of validity of probe analysis.

The first evidence in favour of the existence of the KPV state came in the form of [7],
where, through consideration of a single anti-D3 brane, it was argued that there exists a
possibility that the previously found singularities can be avoided. However, this possibility
was later explored in [8] where it was shown that, at least in certain regime of parameters,
the possibility cannot be realised. Subsequently, [9] observed that singularities are not
expected to appear once we consider extremal anti-D3-NS5 branes. Treating backreaction
perturbatively through the blackfold approach, [10] showed evidence of the existence of
the KPV configuration exactly where no-go theorems are evaded. More precisely, it was
found that the polarised anti-D3-NS5 branes could form a metastable state at the tip of
the throat, and such solution would disappear as soon as we heat up the polarised state
sufficiently that it geometrically resembles localised black anti-D3 branes.

Our focus. It is important to note that the claim regarding metastability of the relevant
anti-D3-NS5 state in [3] and subsequently in [10] is only with respect to some modes of
deformations and not a general statement of stability. For example, in [10], only spherically
homogeneous transformations were considered. This means spherically non-homogeneous
deformations of the KPV state were ignored. For the purpose of cosmological model build-
ing through uplifting, we need not only that the configuration exists but also that it is long
lived. However, there is evidence suggesting that this might not be the case, at least for
certain regimes of parameters.

In [6], from the perspective of localised anti-D3 branes, it was argued that there exists
a direction along which the branes feel repulsive forces among themselves and destabilise
away from the KPV state. This suggests that, in appropriate regime of parameters, the
KPV configuration suffers from fragmentation instability.

From the complementary perspective of anti-D3-NS5 branes, we study the stability
properties of the KPV state using the blackfold approach. Before continuing, let us stress
what our analysis does not do. As blackfold is based on the idea of matched asymptotic
expansion, one need to specify a seed metric as the description of the solution in the near

1p denotes the number of the anti-D3 branes and M the strength of the Klebanov-Strassler background
flux.

2NS5 branes with dissolved anti-D3 brane charge.
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zone. By choosing the stacked anti-D3-NS5 branes solution as the near zone seed, we have
effectively ignored all brane splitting and fragmentation deformations. Moreover, as noted
in [10], the analysis is reliable when p/M is not too close to zero, at which point the NS5
brane shrinks and the localised anti-D3 perspective becomes the better description. Since
the analysis in [6] is done from the localised anti-D3 branes perspective and the discovered
instabilities are brane splitting instabilities, the blackfold results presented here should
be thought of as complimentary and not contradictory to that of [6]. Another important
caveat is that, as blackfold theory is an effective theory of long-wavelength interactions,
claim of stability is made only with respect to long-wavelength perturbations. For more
discussions of the blackfold approach as an effective theory, we refer readers to [11].

Let us note that a preliminary study of the stability of the KPV state was done in [12]
where it was argued that the spherical NS5 shell is unstable under perturbations. While
keeping in mind that the regime of validity of the analysis done in [12] and of ours are
different, as we shall see shortly, our results do not support the picture proposed in [12].

Our results. Introducing generic long-wavelength worldvolume dependent deformations
to the blackfold description of the KPV state, we observe that the blackfold equations
(constraints on long-wavelength deformations) prohibit the existence of tachyonic modes.
It’s interesting to mention also that counter-intuitively, the KPV state, a polarised state of
anti-D3 branes, can feel an electromagnetic repulsion away from the tip of the Klebanov-
Strassler throat. Nevertheless, this electromagnetic repulsion is “out-weighted” by the
gravitational pull so the KPV state is still stabilised radially by a net force downward.3

Outlook. Although not discussed in this paper, generalisation of the stability analysis
to account for non-extremal branes can be achieved with the same method. If the frag-
mentation instability is observed for extremal KPV states (in a full analysis of the system,
perhaps beyond the method of this paper), then it would be interesting to study thermal
effects to see if it is resolved. This possibility is one we would like to pursue in later works.

Outline of paper. The plan of the paper is as follows. A short derivation of the KPV
state from blackfold analysis is reviewed in section 2. The blackfold stability analysis of the
KPV state is presented in section 3. A discussion of the Klebanov-Strassler background
near the apex is provided in appendix A. Details on the construction of the equivalent
currents used in the KPV state derivation is collected in appendix B. Lastly, the deriva-
tion of blackfold perturbation equations used in the stability analysis of the KPV state is
summarised in appendix C.

2 KPV state from blackfold

Overview. Blackfold theory [13–15] is a long wavelength effective theory of gravity, con-
ceptually based on the technique of matched asymptotic expansions. As a thorough dis-
cussion of blackfold and its application to antibranes metastable state has already been

3In the previous version, which does not include warping effects of the Klebanov-Strassler throat, we ob-
serve a window of instability near pcrit. In presence of these effects, the window of instability no longer exists.
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given in [10] and [16], we shall not repeat it here. Nevertheless, let us briefly present the
fundamental of the blackfold argument for the existence of metastable antibranes.

The blackfold equations are the constraint equations of the backreacted metric and
gauge fields that match the anti-D3-NS5 branes in the near zone and asymptote the
Klebanov-Strassler background in the far zone to first order in a derivative expansion. Anal-
ogous to the fluid equations of the Fluid/Gravity correspondence [17], because of the inter-
play between derivative expansion and constraint equations, the blackfold equations will de-
termine the zeroth order terms of the derivative expansion. By explicitly solving the black-
fold equations, we have proven the necessary conditions for the existence of the KPV state.

In general, one might be worried that solving the constraint equations alone does not
automatically guarantee a full solution. However, in all examples of matched asymptotic
expansions that have been worked out in details (most notably [18]), the constraint equa-
tions not only provide the necessary conditions but also the sufficient conditions for a
regular solution to first order in derivative expansion. It is therefore natural to conjecture
that there is a one to one correspondence between a solution of the blackfold equations
and a regular solution of the gravitational equations. This conjecture is almost analogous
to the statement in Fluid/Gravity that there is a one to one map between a solution of the
fluid equations and a regular solution of the gravitational equations.

The purpose of this section is to provide a brief derivation of the KPV state from
the blackfold approach. Various aspects of anti-D3-NS5 blackfold, including the recovery
of the KPV state, have already been discussed in [10]. Nevertheless, we find it useful to
revisit the starting point of our stability analysis. We will also take this opportunity to
state our conventions, provide some relevant details and explanations, and fix some typos
in the literature.

Conventions.

1. The signature is mostly plus (−+ + + . . .).

2. The Hodge star operator of a p-form on an n-dimensional manifold is defined as

(∗A)µ1...µn−p = 1
p!εν1...νpµ1...µn−pA

ν1...νp (2.1)

with εν1...νpµ1...µn−p the Levi-Civita tensor.

3. Gauge invariant field strengths are defined as

F̃q+2 = Fq+2 −H3 ∧ Cq−1 (2.2)

with the exception of the self-dual F̃5 which is defined as

F̃5 = F5 +B2 ∧ F3 (2.3)

where Fq+2 ≡ dCq+1.

4. Electric currents appear with a − sign in the forced Maxwell equations:

d ? Fp+2 = −16πG Jp+1 (2.4)
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5. Magnetic currents appear with a + sign in the forced Maxwell equations:

dFp+2 = 16πG jn−q−3 (2.5)

Klebanov-Strassler throat. We refer readers to appendix A for a complete description
of the Klebanov-Strassler background near the apex. For the purpose of deriving the KPV
state, we shall only present here the metric and the flux components that contribute to
the derivation. As the dilaton of the Klebanov-Strassler solution is a constant, we shall set
gs = 1 for our convenience. As discussed in the appendices, the Klebanov-Strassler metric
near the apex is given by

gµνdx
µdxν = Mb2

0

(
− dt2 + (dx1)2 + (dx2)2 + (dx3)2 + dr2

+ dψ2 + sin2 ψ
(
dω2 + sin2 ωdϕ2

)
+ r2(dω̃2 + sin2 ω̃dϕ̃2)

)
+ . . . (2.6)

and relevant fluxes are given by

F3 = 2M sin2 ψ sinω dψ ∧ dω ∧ dϕ+ . . . (2.7)
H7 = −2M3b4

0 sin2 ψ sinω dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dψ ∧ dω ∧ dϕ+ . . . (2.8)

where b2
0 ≈ 0.93266 and the dots refer to components of the metric/flux that do not

contribute in our derivation.4

Anti-D3-NS5 branes. As demonstrated in the literature, the blackfold equations can
be obtained as the conservation equations of equivalent sources induced by the branes onto
the background in the far zone. Therefore, to obtain the anti-D3-NS5 blackfold equations,
one could go to the far zone and ask what equivalent sources can mimic the effects of these
branes. In the interest of time and space, let us relegate the details of this process to
appendix B and simply present the results here. For the extremal anti-D3-NS5 branes, we
have the equivalent energy-stress tensor

T ab = C
(
−r2

h sin2 θ(γab − vavb − wawb)− r2
h cos2 θγab

)
(2.9)

and the equivalent currents

J2 = Cr2
h sin θ cos θ v ∧ w (2.10)

J4 = Cr2
h sin θ ∗ (v ∧ w) (2.11)

j6 = −Cr2
h cos θ ∗ 1 (2.12)

where C = Ω3
8πG , and ∗ is the worldvolume Hodge dual operator.

4Some terms in the dots are important to our stability analysis and shall be discussed appropriately
later on.
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Blackfold equations. In the blackfold set-up of extremal anti-D3-NS5 branes in
Klebanov-Strassler background, the variables of the system are

r, ω̃, ϕ̃, ψ, rh, tan θ, va, wa (2.13)

The variables r, ω̃, ϕ̃, ψ are the embedding degrees of freedom of the anti-D3-NS5 branes
to the background. The variables rh, tan θ, va, wa are the characteristic degrees of freedom
describing the horizon length, the charge distribution, and the flow of the dissolved charge.5

As noted in the introduction, the blackfold equations will describe the zeroth order
terms in the derivative expansion of the metric and gauge fields that asymptote the stacked
anti-D3-NS5 branes in the near zone and the Klebanov-Strassler background in the far
zone. These zeroth order terms are obtained from promoting the variables to slowly vary-
ing functions of the worldvolume coordinates σ. For the purpose of describing the KPV
configuration, as we are only interested in static and spatially homogeneous configurations
of anti-D3-NS5 branes at the tip of Klebanov-Strassler throat, we can already fix variables
r, ω̃, ϕ̃, va, wa (see equations (2.26)–(2.27) for detailed expressions) and set the remaining
variables rh, ψ, tan θ to be constant with respect to the worldvolume coordinates. In our
conventions, the blackfold equations are given by6

1. The energy-momentum conservation equations

∇aT ab = ∂bXµFµ (2.14)

T abK
(i)

ab = Fµ n(i)
µ (2.15)

where n
(i)
µ denotes the normal vectors of the anti-D3-NS5 blackfold, K

(i)
ab =

K ρ
ab n

(i)
ρ , and the force term Fµ is given by

Fµ = − 1
6!H

µa1...a6
7 j6a1...a6 + 1

2! F̃
µa1a2
3 J2a1a2 + 3

4!H
µa1a2
3 Ca3a4

2 J4a1...a4

+ 1
4! F̃

µa1...a4
5 J4a1...a4 (2.16)

For the purpose of describing the KPV state, the terms with H3 and F̃5 are not rele-
vant because they vanish at the tip of the throat. Nevertheless, as they will play a role
when we consider perturbations away from the tip, we present them explicitly here.

2. The current conservation equations

d ∗ j6 = 0 (2.17)
d ∗ J4 + ∗j6 ∧ F3 = 0 (2.18)
d ∗ J2 +H3 ∧ ∗J4 = 0 (2.19)

where F3, H3 are the projected background fluxes and ∗ is the 6-dimensional Hodge
dual of the worldvolume directions.

5The intuition for the variables rh and tan θ can be obtained from considering the D3-NS5 supergravity
solution in B.1, in which rh is the extremal horizon radius and tan θ is the ratio of D3 brane charge density
over NS5 brane charge density Q3/Q5.

6For the definitions of the geometric quantities used here, one can see appendix C.
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From the current conservation equations, we can define the conserved Page charges Q3
and Q5 that keep track of the number of anti-D3 branes and NS5 branes:

Q5 = ∗j6 = Cr2
h cos θ (2.20)

Q3 =
∫
S2
∗ (J4 + ∗(∗j6 ∧ C2)) (2.21)

= −4π
(
Cr2

h sin θMb2
0 sin2 ψ + Cr2

h cos θM
(
ψ − 1

2 sin 2ψ
))

(2.22)

where we have used C2 = M(ψ − 1
2 sin 2ψ) sinωdω ∧ dϕ. It follows immediately that we

can write tan θ as
tan θ = 1

b2
0 sin2 ψ

(
πp

M
−
(
ψ − 1

2 sin 2ψ
))

(2.23)

where we have made the identification
−Q3
4πQ5

= πp (2.24)

From the energy-momentum tensor conservation equations, after some algebraic acrobatics,
we can write all variables in term of ψ and obtain the equation

cotψ − 1
b2

0

√
1 + tan2 θ − 1

b2
0

tan θ = 0 (2.25)

Integrating equation (2.25) gives us the KPV potential originally obtained from the DBI
approach in [3].

The KPV state. We can numerically determine that equation (2.25) has a metastable
solution for 0 < p/M < pcrit where pcrit ≈ 0.080488. These metastable solutions are the
KPV states. For our convenience later, let us note down some explicit information of the
configuration. With respect to our variables, the KPV states are specified by

r = 0, ψ = ψ0, tan θ = 1
b2

0 sin2 ψ0

(
πp

M
− ψ0 + 1

2 sin(2ψ0)
)

(2.26)

rh =

√
Q5

C cos θ , va∂a = 1√
Mb0 sinψ0

∂ω, wa∂a = 1√
Mb0 sinψ0 sinω

∂ϕ (2.27)

where ψ0 is the metastable solution of

cotψ − 1
b2

0

√
1 + tan2 θ − 1

b2
0

tan θ = 0 (2.28)

We note also the induced metric on the worldvolume of the anti-D3-NS5 branes

γabdσ
adσb = Mb2

0

(
−dt2 + (dx1)2 + (dx2)2 + (dx3)2 + sin2 ψ0

(
dω2 + sin2 ωdϕ

))
, (2.29)

the non-zero components of the worldvolume Christoffel symbol Θa
bc

Θϕ
ωϕ = Θϕ

ϕω = cotω Θω
ϕϕ = − cosω sinω , (2.30)
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the relevant components of the background Christoffel symbol Γµαβ

Γψωω = − cosψ0 sinψ0 Γψϕϕ = − cosψ0 sinψ0 sin2 ω (2.31)

and the non-zero component of the extrinsic curvature K ρ
ab

K ψ
ωω = − cosψ0 sinψ0 K ψ

ϕϕ = − cosψ0 sinψ0 sin2 ω . (2.32)

Regime of validity. Starting from a seed solution, the blackfold approach aims to add
long wavelength deformations to the seed in such a way that yields a perturbative solution
with the background asymptotics. This process is only possible if the scale of the seed is
much smaller than the scale of the background. In the case of anti-D3-NS5 seed and KS
background, this translates to the condition

rh �
√
M sinψ0 (2.33)

It’s easy to see that, as long as ψ0 is not too close to 0, this condition can always be satisfied
with a large enough M . From the description of the KPV state above, we see that ψ0 is
finite for all KPV configurations except for when one push p/M parametrically close to
zero, at which point ψ0 also goes very close zero. Let us note further that, because of our
definition of p in (2.24), the parameter p/M remains finite even when M is very large.

This concludes the review of the KPV state from the blackfold approach. We refer
readers to [10] for more information on the derivation as well as discussions on other aspects
of the KPV state.

3 Stability of KPV state

The goal of this section is to analyse generic deformations of the KPV configuration. Start-
ing with the blackfold description of the configuration, we introduce generic perturbations
by varying slightly all its variables. As the blackfold equations provide the necessary
conditions for the perturbed configuration to be a legitimate solution, we shall use the
blackfold equations to constrain allowed perturbations. We shall see that, with respect to
deformations amendable to the blackfold description, unstable modes are not allowed.

3.1 Perturbation parameters

To introduce perturbations to our system, we vary slightly the variables of the configuration
around their KPV values. Explicitly, we have

r = 0 + δr, ψ = ψ0 + δψ, rh =
√

Q5
C cos θ(ψ0) + δrh, (3.1)

tan θ = 1
b2

0 sin2 ψ0

(
πp

M
− ψ0 + 1

2 sin(2ψ0)
)

+ δ tan θ (3.2)

va∂a = 1√
Mb0 sinψ0

∂ω + δva∂a, (3.3)

wa∂a = 1√
Mb0 sinψ0 sinω

∂ϕ + δwa∂a (3.4)

– 8 –
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where all variations are functions of the worldvolume coordinates, e.g. δrh(σ). To simplify
our syntax, from here on we shall denote the variable values at the KPV configuration by
the variables themselves, e.g. ψ0 will be denoted as ψ, the value of tan θ at KPV is denoted
as tan θ, etc.

Let us make use of symmetries and constraints to minimise the number of parameters
we work with while still preserve all the relevant information for the stability analysis.
Firstly, because of Lorentz symmetry of the blackfold equations and the original KPV con-
figuration, without loss of generality, we can consider variations involving the worldvolume
coordinate t only instead of the full Minkowskian coordinates t, x1, x2, x3. Secondly, using
the unitary constraints on v and w, i.e. vava = wawa = 1, we can show that

δvω = − cosψ√
Mb0 sin2 ψ

δψ (3.5)

δwϕ = − cosψ√
Mb0 sin2 ψ sinω

δψ (3.6)

Thirdly, as we use v and w together as normal vectors to specify the anti-D3 charge
flow inside the NS5 branes, it’s obvious that we have a rotational gauge symmetry here.
Making use of this gauge symmetry along with the orthogonality constraint, i.e. vawa = 0,
we can set

δvϕ = δwω = 0 (3.7)

With the simplifications noted above, our relevant variation parameters are

δr(t, ω, ϕ), δψ(t, ω, ϕ), δrh(t, ω, ϕ), δ tan θ(t, ω, ϕ), (3.8)
δvt(t, ω, ϕ), δvω(t, ω, ϕ), δwt(t, ω, ϕ), δwϕ(t, ω, ϕ) (3.9)

where δvω, δwϕ can be written in term of δψ as expressed in (3.5)–(3.6).

3.2 Blackfold perturbation equations

In this subsection, we present the blackfold equations for perturbations around the KPV
state. We relegate the exciting details on the derivation of these equations to appendix C.

3.2.1 Conservative currents & charges

As shown in (C.23), the j6 conservation equation implies

∂a δQ5 = 0 (3.10)

where Q5 = Cr2
h cos θ. This means δQ5 is a constant of motion. Recall that Q5 keeps

track of the number of NS5 branes. As we are interested in the dynamical stability of the
KPV configuration, we impose the condition that δQ5 vanishes. Note that the imposition
δQ5 = 0 automatically fixes δrh in term of δ tan θ

δrh = 1
2rh cos θ sin θδ tan θ . (3.11)

– 9 –
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As shown in (C.29), the J4 conservation equation implies

−Q5Mb2
0 sin2 ψ sinω

(
∂tδ tan θ + 2 tan θ cotψ∂tδψ + 2

b2
0
∂tδψ

)

= Q5M
3/2b3

0 tan θ sinψ
(
∂ϕδw

t + ∂ω
(
sinωδvt

) )
(3.12)

Integrating over ω and ϕ and enforcing the periodicity conditions

δwt|ϕ=0 = δwt|ϕ=2π (3.13)

we obtain7

∂aδQ3 = 0 (3.14)

where

δQ3 =
∫
S2
δ
(
∗J̃4

)
= −Q5Mb2

0 sin2 ψ

∫
dωdϕ sinω

(
δ tan θ + 2

(
tan θ cotψ + 1

b2
0

)
δψ

)
(3.15)

This means δQ3 is a constant of motion. In a similar fashion to how the Q5 charge keeps
track of the number of NS5 branes, the Q3 charge keeps track of the number of anti-D3
branes. As we are interested in the dynamical stability of the KPV configuration, we shall
impose that δQ3 = 0. However, note that unlike the Q5, the imposition δQ3 = 0 doesn’t
automatically guarantee the satisfaction of the current perturbation equation.
Finally, as shown in (C.31), the J2 conservation equation implies

cot θ cos2 θ∂ωδ tan θ +
√
Mb0 sinψ∂tδvt = 0 (3.16)

cot θ cos2 θ∂ϕδ tan θ +
√
Mb0 sinψ sinω∂tδwt = 0 (3.17)
∂ϕδv

t − ∂ω(sinωδwt) = 0 (3.18)

3.2.2 Energy-momentum conservation equations

Recall from (2.14)–(2.15), the intrinsic and extrinsic blackfold equations

∇aT ab = ∂bXµFµ (3.19)

T abK
(i)

ab = Fµ n(i)
µ (3.20)

Focusing on perturbations around the KPV state, as shown in (C.42), the intrinsic equation
implies for b = t, ω, ϕ respectively

1. The t intrinsic perturbation equation

∂tδ tan θ +
√
Mb0

sinψ tan θ
(
∂ωδv

t + 1
sinω∂ϕδw

t + cotωδvt
)

+2
(

cotψ tan θ + 1
b2

0

)
∂tδψ = 0 (3.21)

7Let us note that the equation keeps constant the Q3 Page charge while put no restrictions on the Q3

brane charge, which is free to vary.
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2. The ω intrinsic perturbation equation
√
Mb0 sinψ tan2 θ∂tδv

t + sin θ cos θ∂ωδ tan θ = 0 (3.22)

3. The ϕ intrinsic perturbation equation
√
Mb0 sinψ sinω tan2 θ∂tδw

t + sin θ cos θ∂ϕδ tan θ = 0 (3.23)

Similarly, as shown in (C.62), the extrinsic blackfold equation implies

1. The ψ extrinsic perturbation equation

(∂t)2δψ − cos2 θ

sin2 ψ
∇2δψ = 2 cos2 θ

sin2 ψ
δψ + 2

b2
0

cos2 θ (1 + sin θ) δ tan θ (3.24)

2. The r extrinsic perturbation equation

(∂t)2δr − cos2 θ

sin2 ψ
∇2δr = 8a2

a0
sin θδr + 8a2

a0
δr − 16a0 + 20a2

5a0
cos2 θδr

+ 4
5 cos2 θ sin2 ωδr (3.25)

where a0 ≈ 0.71805, a2 = −(3 × 61/3)−1 are the warping constants of the KS
throat (A.44) and ∇2 is the normalised Laplacian, i.e. ∇2 = (∂ω)2 + 1/ sin2 ω(∂ϕ)2 +
cotω∂ω.

Before continuing, let us note an interesting fact about the r extrinsic equation. If one
follows the details in paragraph C.3.2, it can be easily seen that the term

8a2
a0

sin θδr (3.26)

is the F̃5 electromagnetic force term while the terms

8a2
a0

δr − 16a0 + 20a2
5a0

cos2 θδr + 4
5 cos2 θ sin2 ωδr (3.27)

are the gravitational force terms coming from the warping of the throat. The direction
of the electromagnetic force term depends on the sign of the D3 brane charge carried by
the KPV state Q3 ∼ Cr2

h sin θ. As KPV is a polarised state of anti-D3 branes, one might
naively expect that this force is always attractive. However, this is not the case. The reason
is because, in a fluxed setting, the D3 Page charge (2.21) and the D3 brane charge (B.9) are
not necessarily the same. In particular, for a range of p/M near pcrit, the Q3 brane charge
flips sign and, consequently, the electromagnetic force becomes repulsive. This effect can
also be seen with the KP (Klebanov-Pufu) configuration [19] of anti-M2 branes at the tip of
the CGLP (Cvetic-Gibbons-Lu-Pope) throat [20]. Even though not explicitly stated, from
the blackfold treatment of the KP state in [16], one can easily infer the effect mentioned.
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3.3 Stability analysis

Immediately from the blackfold perturbation equations above, we see that the δr variation
decouples from other variations and is controlled only by equation (3.25). This allows
us to study separately stability of the non-radial perturbations and stability of the radial
perturbations. For our convenience, before continuing, let us expand all our perturbations
into momentum and spherical harmonic modes. We have

δvt =
∫
dλ e−iλt

∞∑
l=0

l∑
m=−l

(Svt)ml (λ)Y m
l (ω, ϕ) (3.28)

δwt =
∫
dλ e−iλt

∞∑
l=0

l∑
m=−l

(Swt)ml (λ)Y m
l (ω, ϕ) (3.29)

δ tan θ =
∫
dλ e−iλt

∞∑
l=0

l∑
m=−l

(Stan θ)ml (λ)Y m
l (ω, ϕ) (3.30)

δψ =
∫
dλ e−iλt

∞∑
l=0

l∑
m=−l

(Sψ)ml (λ)Y m
l (ω, ϕ) (3.31)

δr =
∫
dλ e−iλt

∞∑
l=0

l∑
m=−l

(Sr)ml (λ)Y m
l (ω, ϕ) (3.32)

where Y m
l (ω, ϕ) are the standard spherical harmonics. Note that we do not write down

the expansion for δvω, δwϕ, and δrh because they can be expressed in term of other
perturbations as shown in (3.5), (3.6), and (3.11).

Stability of non-radial perturbations. Assuming λ 6= 0, expanding our perturbations
in momentum and spherical harmonic modes, the ω intrinsic perturbation equation (3.22)
yields

∞∑
l=0

l∑
m=−l

(Svt)ml Y m
l = − i cot θ cos2 θ

λ
√
Mb0 sinψ

∞∑
l=0

l∑
m=−l

(Stan θ)ml ∂ωY m
l (3.33)

where λ, ω, ϕ dependence of Sml (λ) and Y m
l (ω, ϕ) have been subdued for syntactical sim-

plicity. Similarly, from the ϕ intrinsic perturbation (3.23), we have

∞∑
l=0

l∑
m=−l

(Swt)ml Y m
l = − i cot θ cos2 θ

λ
√
Mb0 sinψ sinω

∞∑
l=0

l∑
m=−l

(Stan θ)ml ∂ϕY m
l (3.34)

Let us note that satisfying the ω and ϕ intrinsic perturbation equation automatically
guarantee the satisfaction of the J2 conservation equations (3.16)–(3.18). Turning our
attention to the t intrinsic perturbation equation (3.21), making use of the expressions
above along with the identity ∇2Y m

l = −l(l + 1)Y m
l , we can show that

(Stan θ)ml = −2λ2 sin2 ψ
(
cotψ tan θ + 1/b2

0
)

λ2 sin2 ψ − l(l + 1) cos2 θ
(Sψ)ml (3.35)

Again, let us note that satisfying the t intrinsic perturbation equation automatically guar-
antee the satisfaction of the J4 conservation equation (3.12) and the conservation of Q3
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Figure 1. Plot of λ2 of non-radial perturbations against p/M .

charge (3.15). Plugging in the expression of (Stan θ)ml in term of (Sψ)ml into the ψ extrinsic
perturbation equation (3.24) yields a quadratic equation for λ2

λ4 + bλ2 + c = 0 (3.36)

where the constants b and c are given respectively by

b = − 4
b2

0
cos2 θ(sin θ + 1)

(
cotψ tan θ + 1

b2
0

)
− 2

(
l2 + l − 1

) cos2 θ

sin2 ψ
(3.37)

c = (l − 1)l(l + 1)(l + 2) cos4 θ

sin4 ψ
(3.38)

Then, it trivially follows that

λ2 = −b±
√
b2 − 4c

2 (3.39)

It’s important to remember that, as declared in the “Perturbation parameters” para-
graph 3.1, ψ and θ denote the values of the variables evaluated at the KPV configuration.
This means, for any KPV configuration, we can write down explicitly the values of b and
c, thus, the value of λ2.

It can be shown that λ2 is positive for all KPV configurations. The case when
l = 0 corresponds to having spherically homogeneous deformations around the KPV con-
figuration and, as one would expect, it recreates the picture previously found. Includ-
ing non-spherically homogeneous deformations does not change the statement regarding
(meta)stability. In figure 1, we present the values of λ2 for KPV configurations with
p/M ∈ (0, pcrit) for l equals 0, 1, 2, and 5.

Before continuing, let us ask the question: what happens if λ = 0? If λ = 0, the
conservation of Q3 charge (3.15) and the ψ extrinsic perturbation equation (3.24) both
provide constraints on the Y 0

0 spherical harmonics mode of δ tan θ and δψ. These conditions
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can only be simultaneously satisfied when

1
sin2 ψ

− 2
b2

0
(1 + sin θ)

(
tan θ cotψ + 1

b2
0

)
= 0 (3.40)

Recall that the KPV states exist when the parameter p/M is in the range p/M ∈ (0, pcrit)
where pcrit ≈ 0.080488. As one can easily checked, equation (3.40) cannot be satisfied with
any KPV states strictly in the regime p/M ∈ (0, pcrit). It is only satisfied when p/M = pcrit
as one would expect.

Stability of radial perturbations. Turning our attention to radial perturbations, ex-
panding δr in equation (3.25) into momentum and spherical harmonic modes yields

− λ2
∞∑
l=0

l∑
m=−l

(Sr)ml Y m
l + cos2 θ

sin2 ψ

∞∑
l=0

l∑
m=−l

(Sr)ml l(l + 1)Y m
l

=
(

8a2
a0

sin θ + 8a2
a0
− 16a0 + 20a2

5a0
cos2 θ + 8

15 cos2 θ

) ∞∑
l=0

l∑
m=−l

(Sr)ml Y m
l

− 16
15

√
π

5 cos2 θ
∞∑
l=0

l∑
m=−l

(Sr)ml Y 0
2 Y

m
l (3.41)

where we have used
sin2 ω = 2

3 −
4
3

√
π

5Y
0

2 (3.42)

Considering spherical harmonic modes Y m
l , we note that even though equation (3.41)

doesn’t mix m modes, because of the Y 0
2 Y

m
l contraction in the last term, l modes are

coupled and have to be studied together. Recall that the contraction of spherical harmonics
with the Y 0

2 mode can be expressed as a sum of harmonics

Y 0
2 Y

m
l =

√
5(2l + 1)

4π
∑
l3

(−1)m
√

2l3 + 1
(

2 l l3
0 m −m

)(
2 l l3
0 0 0

)
Y m
l3 (3.43)

where
(

2 l l3
0 m −m

)
and

(
2 l l3
0 0 0

)
are the Wigner 3j-symbols, which vanish unless |l−2| ≤

l3 ≤ l + 2. By writing down the condition for each individual l mode, equation (3.41) can
be expressed as a set of linear equations of (Sr)ml .

As m modes decoupled, let us discuss in details the spherical harmonic modes with
m = 0. The associated matrix of the linear system of (Sr)0

l is given by

(
A 0

)
=


λ2 + d 0 −8 cos2 θ

15
√

5 . . . 0
0 λ2 + d− 2 cos2 θ

sin2 ψ
− 16

75 cos2 θ 0 . . . 0
−8 cos2 θ

15
√

5 0 λ2 + d− 6 cos2 θ
sin2 ψ

− 16
105 cos2 θ . . . 0

...
...

... . . . ...


(3.44)
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Figure 2. Plot of λ2 of radial perturbations against p/M .

where, for convenience, we have defined a constant d as

d = 8a2
a0

sin θ + 8a2
a0
− 16a0 + 20a2

5a0
cos2 θ + 8

15 cos2 θ (3.45)

The system of linear equations is only satisfied when the determinant of the associated
matrix vanishes, i.e. detA = 0. Even though A is not diagonal, as the contribution of the
off-diagonal terms to the determinant of A is numerically much smaller than that of the
diagonals, the determinant of A can be well-approximated by the product of the diagonal
terms. With this approximation, it’s trivial that λ2 is always positive. Let us mention also
that cases of m 6= 0 can be treated the same way and yield a similar conclusion.

In figure 2, we plotted the smallest λ2 root computed both with the diagonal approxi-
mation8 and without the diagonal approximation, truncating A to be of order 21×21. From
the plot, it can easily be seen that the off-diagonal corrections are indeed very minimal and
don’t affect the underlying physics of the system. Lastly, let us note that the dip in λ2 near
pcrit is because of the effect mentioned in the discussion below equation (3.27) where the Q3
charge flips sign and the electromagnetic force becomes repulsive. Nevertheless, as demon-
strated here, this electromagnetic repulsion is outweighed by gravitational attraction.
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A Klebanov-Strassler throat

The Klebanov-Strassler (KS) throat is a 10-dimensional type IIB supergravity solution.
The throat involves a 6 dimensional deformed conifold, a 4 dimensional Minkowskian space,

8Practically, this is a plot of λ2 = −d.
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and non-trial F3, F5, H3 fluxes, which in turn induce warping effects on the flat space
and the conifold. In this appendix, we shall discuss aspects of the KS throat that are
immediately relevant for us. For a complete discussion of the KS throat, we refer the
readers to the original paper [21] or the review [22].

A.1 The 6-dimensional deformed conifold

The 6 dimensional deformed conifold of the KS solution is given by the equation
4∑
i=1

z2
i = ε2 (A.1)

where zi are complex numbers and ε characterises the degree of deformation, i.e. if ε = 0,
we have a normal cone. In order to obtain a parametrisation of the space, a clever trick
one can do is to define the matrix

W =
(
z3 + iz4 z1 − iz2
z1 + iz2 −z3 + iz4

)
(A.2)

then the defining equation becomes

detW = −ε2 (A.3)

It’s easy to see that

W0 =
(

0 εeτ/2

εe−τ/2 0

)
(A.4)

is one possible solution. Furthermore, if we define two SU(2) matrices Lj with j = 1, 2
then

W = L1.W0.L
†
2 (A.5)

also satisfies the equation detW = −ε2. As argued in [23], the metric of the deformed
conifold is then given by

ds2 = Ftr
(
dW †dW

)
+ G|tr(W †dW )|2 (A.6)

where

F(τ) = (sinh 2τ − 2τ)1/3

2× 21/3 × ε2/3 sinh τ
(A.7)

G(τ) = 2− 3 coth2 τ + 3τ(cosh τ/ sinh3 τ)
12× ε8/3(cosh τ sinh τ − τ)2/3 (A.8)

Angular parametrisation of the deformed conifold. One can parametrise the Lj
matrices using Euler angles as

Lj =
(

cos θj

2 e
i(ψj+φj)/2 − sin θj

2 e
−i(ψj−φj)/2

sin θj

2 e
i(ψj−φj)/2 cos θj

2 e
−i(ψj+φj)/2

)
(A.9)

with (ψj , φj) range from 0 to 2π and θ ranges from 0 to π. Plugging the parametrised
expression of W = L1.W0.L

†
2 into (A.6) yields the metric of the deformed conifold written
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in angular coordinates ψj , θj , φj . As the coordinates ψ1 and ψ2 only appear in W as
ψ1 + ψ2, we can define a new coordinate ψ = ψ1 + ψ2. The deformed conifold metric in
these coordinates is then given by

ds2
6 = 1

2ε
4/3K(τ)

[
1

3K3(τ)(dτ2+(g5)2)+cosh2
(
τ

2

)
[(g3)2+(g4)2]+sinh2

(
τ

2

)
[(g1)2+(g2)2]

]
(A.10)

where the function K(τ) is given by

K(τ) = (sinh 2τ − 2τ)1/3

21/3 sinh τ
(A.11)

and the gi forms are given by

g1 = − sin θ1dφ1 − cosψ sin θ2dφ2 + sinψdθ2√
2

(A.12)

g2 = dθ1 − sinψ sin θ2dφ2 − cosψdθ2√
2

(A.13)

g3 = − sin θ1dφ1 + cosψ sin θ2dφ2 − sinψdθ2√
2

(A.14)

g4 = dθ1 + sinψ sin θ2dφ2 + cosψdθ2√
2

(A.15)

g5 = dψ + cos θ1dφ1 + cos θ2dφ2 (A.16)

where ψ is a special angular coordinate going from 0 to 4π while (θj , φj) are the standard
S2 spherical coordinate going from 0 to π and 0 to 2π respectively.

Let us note further that, as argued in [23], the metric

ds2 = 1
2(g5)2 + (g4)2 + (g3)2 (A.17)

and
ds2 = (g1)2 + (g2)2 (A.18)

are the metric of respectively the standard S3 sphere with radius
√

2 and the standard S2

sphere with radius
√

2.

A.2 Klebanov-Strassler throat near the apex in Euler angles

For the leading order stability analysis of the KPV state, we are only interested in the
description of the KS throat near the apex. From the full description of the throat, we
expand the metric and gauge fields in τ and keep only the relevant terms. To be more
specific, we keep in the metric and gauge fields terms of the required order such that
the profile of metric and fields solve the Supergravity equations to first order in τ . For
convenience, let us also set9 gs = 1 and α′ = 1 in all our discussions of the KS throat.

9Setting gs = 1 is possible because the KS solution a has constant dilaton.
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The KS metric near the apex is approximated by

ds2
10 = A1(τ)

(
−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

)
+A2(τ)

(
d(τ)2 + (g5)2

)
+A3(τ)

(
(g3)2 + (g4)2

)
+A4(τ)

(
(g1)2 + (g2)2

)
(A.19)

where

A1(τ) = ε4/3

21/3(a0)1/2M
− a2 τ

2 ε4/3

2×21/3(a0)3/2M
+ 3(a2)2 τ4 ε4/3

8×21/3(a0)5/2M
− a4 τ

4 ε4/3

2×21/3(a0)3/2M
(A.20)

A2(τ) = (a0)1/2M

2×61/3 + (a0)1/2M τ2

10×61/3 + a2M τ2

4×61/3(a0)1/2 −
(a2)2M τ4

16×61/3(a0)3/2

+ (a0)1/2M τ4

210×61/3 + a4M τ4

4×61/3(a0)1/2 + a2M τ4

20×61/3(a0)1/2 (A.21)

A3(τ) = (a0)1/2M

61/3 + 32/3(a0)1/2M τ2

20×21/3 + a2M τ2

2×61/3(a0)1/2 + a4M τ4

2×61/3(a0)1/2

+ 17(a0)1/2M τ4

2800×61/3 − (a2)2M τ4

8×61/3(a0)3/2 + 32/3a2Mτ4

40×21/3(a0)1/2 (A.22)

A4(τ) = (a0)1/2M τ2

4×61/3 − (a0)1/2M τ4

240×61/3 + a2M τ4

8×61/3(a0)1/2 + a4M τ6

8×61/3(a0)1/2

− (a2)2M τ6

32×61/3(a0)3/2 −
a2M τ6

480×61/3(a0)1/2 + 59(a0)1/2M τ6

50400×61/3 (A.23)

with the constants a0 ≈ 0.71805, a2 = −(3× 61/3)−1, and a4 = (18× 61/3)−1.
The KS fluxes near the apex are approximated by10

H3 =−M2

((
τ2

4 −
τ4

16

)
dτ ∧g1∧g2 +

(
1
3 + τ2

60 + τ4

1008

)
dτ ∧g3∧g4

+
(
τ

6 −
7

180τ
3
)
g5∧(g1∧g3 +g2∧g4)

)
(A.24)

H7 =− ε8/3

2×22/3a0M

((
1− τ

2

12−
a2τ

2

a0

)
dx0∧ . . .∧dx3∧g3∧g4∧g5

+ τ

6dx
0∧ . . .dx3∧dτ ∧

(
g1∧g3 +g2∧g4

)
+ τ2

12dx
0∧ . . .∧dx3∧g1∧g2∧g5

)
(A.25)

F3 = M

2

((
1− τ

2

12 + 7τ4

720

)
g5∧g3∧g4 +

(
τ2

12−
7τ4

720

)
g5∧g1∧g2

+
(
τ

6 −
7τ3

180

)
dτ ∧(g1∧g3 +g2∧g4)

)
(A.26)

F5 = ε8/3

M2

(
τ

3×31/3a2
0
− τ3

9×31/3a2
0
− 2a2 τ

3

3×31/3a3
0

)
dx0∧dx1∧dx2∧dx3∧dτ (A.27)

10As our convention of the Hodge star operator is different from that of [21], our description of H3 and
F̃5 have different signs from those of [21].
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F̃5 = ε8/3

M2

(
τ

3×31/3a2
0
− τ3

9×31/3a2
0
− 2a2 τ

3

3×31/3a3
0

)
dx0∧dx1∧dx2∧dx3∧dτ

−
(
M2 τ3

36

)
g1∧g2∧g3∧g4∧g5 (A.28)

A.3 Klebanov-Strassler metric near the apex in adapted coordinates

The description of the KS throat near the apex above is in the angular coordinates x0, x1,
x2, x3, τ , ψ, θ1, φ1, θ2, φ2 as presented in the original paper of Klebanov and Strassler.
However, for our purpose, it proves useful to express the KS metric near the apex in adapted
coordinates t, x1, x2, x3, r, ψ, ω, ϕ, ω̃, ϕ̃ as used in the rest of the paper.11

One might also wish to write the fluxes in term of the adapted coordinates. But, as
the fluxes enter the blackfold equations only when coupled to the anti-D3-NS5 currents,
only some components are relevant. As a result, we shall not attempt to transform the
full description of the fluxes to the adapted coordinates but only the relevant components
when needed.

The Minkowskian coordinates x0, x1, x2, x3 and the radial coordinates τ of the angular
coordinate system are respectively, up to some scaling, equivalent to the coordinates t, x1,
x2, x3, and r used in the rest of the paper. In particular, one can transform from one to
the other as

x0 →
√

2√a0M

31/6 × ε2/3 t (A.29)

xi →
√

2√a0M

31/6 × ε2/3 xi (A.30)

τ → 2 r (A.31)

Let us turn to the base of the conifold, which originally was expressed using Euler angles (ψ,
θ1, φ1, θ2, φ2), and attempt to parametrise it using the spherical coordinates (ψ, ω, ϕ, ω̃, ϕ̃).

Spherical parametrisation of the deformed conifold. For our analysis, it’s most
convenient to parametrise both the S3 at the tip and the transverse S2 using spherical
coordinates, i.e. (ψ, ω, ϕ) and (ω̃, ϕ̃) respectively. To do this, we shall apply the same
parametrisation process as before but with an emphasis on identifying the 3 parameters
of the tip S3 and incorporate the remaining 2 parameters as we go up the throat. Recall
from (A.6) that the metric of the deformed conifold is given by

ds2 = Ftr
(
dW †dW

)
+ G|tr(W †dW )|2 (A.32)

where
W = L1.W0.L

†
2 (A.33)

with
W0 =

(
0 εeτ/2

εe−τ/2 0

)
(A.34)

11Note that the duplicate coordinates x1, x2, x3, and ψ of the two coordinates system are different. We
decided not to change them to be consistent with the literature.
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and Lj with j = 1, 2 are two SU(2) matrices. As noted before that the coordinates ψ1 and
ψ2 only appear in W as ψ1 + ψ2, so instead of relabelling the final result, we parametrise
L2 with only two variables (θ2, φ2)

L2 =
(

cos θ2
2 e

iφ2/2 − sin θ2
2 e

iφ2/2

sin θ2
2 e
−iφ2/2 cos θ2

2 e
−iφ2/2

)
(A.35)

Expanding W0 in τ , we have

W0 = εf(τ)σ1 + εg(τ)σ2 (A.36)

where

σ1 =
(

0 1
1 0

)
σ2 =

(
0 1
−1 0

)
(A.37)

and

f(τ) = 1 + τ2

8 + τ4

384 +O
(
τ6
)

g(τ) = τ

2 + τ3

48 +O
(
τ5
)

(A.38)

Thus, we have

W = L1.
(
εf(τ)σ1 + εg(τ)σ2

)
.L†2 (A.39)

= εf(τ)L+ εg(τ)L.L̂ (A.40)

where L ≡ L1.σ1.L
†
2 and L̂ ≡ L2.(σ1)−1.σ2.L

†
2.

As L is an unitary complex matrix with detL = −1, we can parametrise L using
spherical coordinates as12

L =
(
− sinψ sinω cosϕ+ i sinψ sinω sinϕ cosψ − i sinψ cosω

cosψ + i sinψ cosω sinψ sinω cosϕ+ i sinψ sinω sinϕ

)
(A.41)

On the other hand, the parametrisation of L̂ comes directly from the parametrisation of
L2. We have

L̂ =
(
− cos θ2 −eiφ2 sin θ2

−e−iφ2 sin θ2 cos θ2

)
(A.42)

Plugging the spherically parametrised W into (A.32), we obtain the metric of the deformed
conifold in spherical coordinates.

Klebanov-Strassler metric near the apex in adapted coordinates. Recall
from [21], the KS metric is given by

ds2
10 = h−1/2(τ)

(
−dx2

0 + dx2
1 + dx2

2 + dx2
3

)
+ h1/2(τ)ds2

6 (A.43)

12To obtain the deformed conifold metric, it’s algebraically simpler to write the matrix L in Hopf coordi-
nates first, carry out the necessary computations, then transform Hopf to spherical. Nevertheless, the final
answers are the same.
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where ds2
6 is the metric of the deformed conifold and the h(τ) is the warping effects induced

by the non-trivial fluxes:

h(τ) = M2 22/3ε−8/3
∫ ∞
τ

dx
x coth x− 1

sinh2 x
(sinh 2x− 2x)1/3 (A.44)

= M222/3ε−8/3 (a0 + a2τ
2 + a4τ

4) +O(τ6) (A.45)

where, as written down earlier, a0 ≈ 0.71805, a2 = −(3× 61/3)−1, and a4 = (18× 61/3)−1.
Substituting in the spherically parametrised deformed conifold metric, applying the

coordinate transformations (A.29)–(A.31), relabelling θ2 → ω̃ and φ2 → ϕ̃, and restricting
our attention to some leading orders of r, we obtain the expression of the KS metric near the
apex in our desired adapted coordinates. However, as the expression is long and ugly, we
shall not write it explicitly here. Instead, we shall only write down components/properties
that are immediately relevant for us.

Firstly, as you would as expect, if we subdue terms of order r2 or higher in all but the
(ω̃, ϕ̃) directions, we recover the metric in (2.6):

gµνdx
µdxν = Mb2

0

(
− dt2 + (dx1)2 + (dx2)2 + (dx3)2 + dr2

+ dψ2 + sin2 ψ
(
dω2 + sin2 ωdϕ2

)
+ r2(dω̃2 + sin2 ω̃dϕ̃2)

)
(A.46)

where b2
0 = 22/3√a0

31/3 ≈ 0.93266.
Secondly, as they will be relevant for our stability analysis, we note the following

derivatives

∂2
rgtt

∣∣∣
r=ω̃=ϕ̃=0

= 4× 22/3a2M

31/3√a0
∂2
rgxixi

∣∣∣
r=ω̃=ϕ̃=0

= −4× 22/3a2M

31/3√a0
(A.47)

∂2
rgωω

∣∣∣
r=ω̃=ϕ̃=0

= 4× 22/3M

5× 31/3√a0
sin2 ψ

(
4a0 + 5a2 − 2a0 cos2 ψ sin2 ω

)
(A.48)

∂2
rgϕϕ

∣∣∣
r=ω̃=ϕ̃=0

= 4× 22/3M

5× 31/3√a0
sin2 ψ sin2 ω

(
4a0 + 5a2 − 2a0 sin2 ψ sin2 ω

)
(A.49)

with a0 ≈ 0.71805 and a2 = −(3× 61/3)−1.

B D3-NS5 branes

B.1 D3-NS5 supergravity solution

For the convenience of the readers, let us present here the known supergravity description
of the D3-NS5 bound state as well as its thermodynamic data (see [24, 25] for detailed
discussion). In the string frame, the metric is given by

ds2 = D−1/2
(
−fdt2 +D

(
(dx1)2 + (dx2)2

)
+

5∑
i=3

(dxi)2
)

+HD−1/2
(
f−1dr2 + r2dΩ2

3

)
(B.1)
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with

f = 1− r2
0
r2 , D =

(
sin2 θH−1 + cos2 θ

)−1
(B.2)

H = 1 + r2
0 sinh2 α

r2 (B.3)

where dΩ2
3 is the standard S3 metric dΩ2

3 = dψ2 + sin2 ψ
(
dω2 + sin2 ωdϕ2). The dilaton

field is given by
e2φ = HD−1 (B.4)

and the gauge fields are given by

C2 = − tan θ(H−1D − 1) dx1 ∧ dx2 (B.5)
B2 = −2r2

0 sinh2 α cos θ ϕ sin2 ψ sinωdψ ∧ dω (B.6)

C4 = (H−1 − 1) sin θ dt ∧ dx3 ∧ dx4 ∧ dx5 + r2

r2
0 sinh2 α cos2 θ

B2 ∧ C2 (B.7)

The thermodynamics of this solution are

ε = Ω3
16πGr

2
0

(
3 + 2 sinh2 α

)
s = Ω3

4Gr
3
0 coshα T = 1

2πr0 coshα (B.8)

Φ3 = sin θ tanhα Q3 = Ω3
8πGr

2
0 sin θ sinhα coshα (B.9)

Φ5 = cos θ tanhα Q5 = Ω3
8πGr

2
0 cos θ sinhα coshα (B.10)

where Ω3 = 2π2 is the volume of the unit radius round S3. And, the effective energy stress
tensor is given by

Tab = T s
(
uaub −

1
n
γab

)
−

∑
q= 3,5

ΦqQqh(q)
ab (B.11)

The extremal D3-NS5 solution can be obtained by taking the limit r0 → 0, α→∞ in such a
way that we can define a finite extremal horizon radius rh ≡ r0 sinhα. In fact, for the pur-
pose of this paper, we shall only be interested in the D3-NS5 solution in the extremal limit.

B.2 Far-zone equivalent currents

As discussed in [26], there are at least three sensible notions of charges in a supergravity the-
ory. For the purpose of constructing equivalent currents, we shall be interested in something
called the Maxwell charge. The key idea for the Maxwell charges is that the Chern-Simons
terms in the equation of motion can be thought of as a source for the gauge field. For ex-
ample, let us look at the equation of motion for the C4 gauge field in type IIB supergravity:

d ? F̃5 −H3 ∧ F3 = −16πG ? J4 (B.12)

In this case, the Maxwell current is given by

d ? F̃5 = −16πG ? JMaxwell
4 = −16πG ? J4 +H3 ∧ F3 (B.13)
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where the sign and factors in front of JMaxwell
4 is to make sure it is compatible with our

conventions of J4. The Maxwell charge can be computed easily from Gauss’s law of the
F̃5 flux and, thus, can be interpreted as the monopole source that will reproduce the F̃5
flux far away.

Turning our attention to the case of D3-NS5 branes, we have the relevant forced
Maxwell equations are

d ? F̃3 = −16πG ? JMaxwell
2 (B.14)

d ? F̃5 = −16πG ? JMaxwell
4 (B.15)

d ? H7 = 16πG ? jMaxwell
6 (B.16)

We do not know the exact expressions of these Maxwell currents, however, we can mimic
their effects far away by using Maxwell charges to construct a set of equivalent currents.
Adopting the convention that Q =

∫
?J , using the description of extremal D3-NS5 branes

in (B.1)–(B.7), we obtain the Maxwell charges

QMaxwell
1 = V ol4 Cr

2
h sin θ cos θ (B.17)

QMaxwell
3 = V ol2 Cr

2
h sin θ (B.18)

QMaxwell
5 = −Cr2

h cos θ (B.19)

Requiring that they reproduce the same Maxwell charges at r →∞, our equivalent currents
can now be easily constructed. These are13

Jequiv
2 = Cr2

h sin θ cos θ v ∧ w (B.20)

Jequiv
4 = Cr2

h sin θ ∗ (−v ∧ w) (B.21)

jequiv
6 = −Cr2

h cos θ ∗ (−1) (B.22)

where ∗ is the 6-dimensional worldvolume Hodge star, and v, w are orthogonal vectors used
to describe the distribution of the dissolved D3 charge.

In the description of D3-NS5 branes above, we have not restricted the range of θ ∈
(0, 2π). For the construction of KPV state, we are interested in anti-D3-NS5 branes, which
corresponds to the range θ ∈ (π, 3π/4) of our description.14 For convenience, we can do
a reparametrisation θ → θ − π to bring it to the regime θ ∈ (0, π/2). In the new θ, our
currents are given by

J2 = Cr2
h sin θ cos θ v ∧ w (B.23)

J4 = Cr2
h sin θ ∗ (v ∧ w) (B.24)

j6 = −Cr2
h cos θ ∗ (1) (B.25)

where we have drop the superscript equiv for syntactical simplicity.
13The equivalent currents are localised (δ function) currents in the full 10 dimensional picture.
14The statement that anti-D3-NS5 branes are described by θ in the regime of (π, 3π/4) is only strictly

true for background where Maxwell charges and Page charges are the same.
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C Blackfold perturbation equations

In this appendix, we shall derive the blackfold perturbation equations for deformations
around the KPV state. We start with a discussion of embedding geometry and compu-
tations of some useful variational expressions. Subsequently, we present the derivation
of the blackfold perturbation equations used in the main text. For further discussion on
embedding geometry and blackfold perturbation equation, see [27–29].

C.1 Useful definitions & formulae

Definitions. Given a manifold M and a submanifold W defined by the embedding
Xµ(σa), we can define the induced metric

γab ≡ ∂aXµ∂bX
νgµν (C.1)

the tangential projector
hµν ≡ γab∂aXµ∂bX

ν (C.2)

and the orthogonal projector
⊥µν≡ gµν − hµν (C.3)

For convenience, let us define the object ∂aXµ as

∂aXµ ≡ gµνγab∂bXν (C.4)

then the pullback of a general tensor fromM to W is given by

T a1a2...an
b1b2...bm

≡ ∂a1Xµ1 . . . ∂b1X
ν1 . . . T µ1...µn

ν1...νm
(C.5)

Let us define also the extrinsic curvature

K ρ
µν ≡ hσν∇µhρσ = −hσν∇µ ⊥ρσ (C.6)

where ∇µ = hρµ∇ρ. By substitutions, we can show that

K ρ
ab = ∂aX

µ∂bX
νK ρ

µν = ∇a (∂bXρ) + Γρµν∂aXµ∂bX
ν (C.7)

where ∇a acts only on the b index of ∂bXρ: ∇a(∂bXρ) = ∂a(∂bXρ) − Θc
ab∂cX

ρ with Θc
ab

the Christoffel symbols of the induced metric γab.

Variation of induced metric. Hitting δ to the definition of γab in (C.1), we obtain the
expression

δγab = ∂aX
µ∂bX

ν
(
∇µ (δXαgαν) +∇ν (δXαgαµ)

)
(C.8)

When we embed a surface without edges in a higher dimensional background, the vari-
ations along the brane directions of the embedding functions Xµ(σ) can be cancelled by
a reparametrisation of the worldvolume coordinates. As a result, we only have to worry
about the variations of the transverse scalars δXµ

⊥(σ) (i.e. ∂aXµδX
µ
⊥ = 0). Making use of

equation (C.7), we have
δγab = −2K ρ

ab (δXα
⊥gαρ) (C.9)

Using the identity γabγbc = δca, we can easily deduce that

δγab = 2Kab
ρδX

ρ
⊥ (C.10)
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Variation of normal vectors. We note that the normal vectors are implicitly defined
by

∂aX
ρn(i)

ρ = 0 (C.11)

n(i)
ρ n

ρ
(j) = δ

(i)
(j) (C.12)

Hitting δ to both equations yields respectively the variation of n(i)
ρ along the worldvolume

directions and normal to the worldvolume directions.15

hρσ δn
(i)
ρ = −∂aXσ∂aδX

ρ
⊥n

(i)
ρ (C.13)

⊥ρσ δn(i)
ρ = 1

2n
α (i)nβ (i)∂γgαβδX

γ
⊥n

(i)
σ (C.14)

All together, we have

δn(i)
ρ = −∂aXρ∂aδX

σ
⊥n

(i)
σ + 1

2n
α (i)nβ (i)∂γgαβδX

γ
⊥n

(i)
ρ (C.15)

Variation of extrinsic curvature. Hitting δ to the expression of K ρ
ab in (C.7), we

obtain

δK ρ
ab = ∇a

(
∂bδX

ρ
⊥
)
− δΘc

ab∂cX
ρ + δΓρµν∂aXµ∂bX

ν + 2Γρµν∂aδX
µ
⊥∂bX

ν (C.16)

Considering the variation of the projected extrinsic curvature K (i)
ab , we have

δ
(
K

(i)
ab

)
= δ

(
K ρ
ab n

(i)
ρ

)
= δ

(
K ρ
ab

)
n(i)
ρ +K ρ

ab δ
(
n(i)
ρ

)
(C.17)

Making use of results in (C.15) and (C.16), we can write

δ
(
K

(i)
ab

)
= n(i)

ρ ∇a
(
∂bδX

ρ
⊥
)

+ n(i)
ρ δX

α
⊥∂αΓρµν∂aXµ∂bX

ν + 2n(i)
ρ Γρµν∂aδX

µ
⊥∂bX

ν

+ 1
2K

ρ
ab

(
nα (i)nβ (i)∂γgαβδX

γ
⊥n

(i)
ρ

)
(C.18)

Variation of anti-D3-NS5 blackfold energy-momentum tensor. Hitting δ to the
expression of T ab in (2.9), we obtain the expression

δT ab = −Q5 sin θδ(tan θ)γab −Q5
1

cos θ
(
2Kab

ρδX
ρ
⊥

)
+ Q5

(
δ(va)vb + vaδ(vb) + δ(wa)wb + waδ(wb)

)
tan θ sin θ

+ Q5(vavb + wawb) sin θδ(tan θ) + Q5(vavb + wawb) sin θ cos2 θδ(tan θ) (C.19)

We can also provide the general expressions for the variations of the blackfold currents.
However, as the blackfold currents either enter our equations with a Hodge dual or coupled
to the background fluxes, let us write down only the needed components when we use them.

15As normal vectors are used collectively to specify the position of the branes inside the background, it’s
obvious that we have a rotational gauge symmetry in defining these vectors. Therefore, we can safely ignore
variations regarding rotations of the normal vectors among themselves.
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C.2 Current conservation equations

Recall from (2.17)–(2.19) the blackfold current conservation equations

d ∗ j6 = 0 (C.20)
d ∗ J4 − ∗j6 ∧ F3 = 0 (C.21)
d ∗ J2 +H3 ∧ ∗J4 = 0 (C.22)

1. Considering the j6 conservation equation, we can easily show that it gives rise to the
perturbation equation

∂aδQ5 = 0 (C.23)

where we have used ∗j6 = Q5.

2. Considering the J4 conservation equation, firstly, we note that it can be rewritten as

d ∗ J̃4 = 0 (C.24)

where

∗J̃4 = ∗J4 − ∗j6 ∧ C2 (C.25)
= −Cr2

h sin θ v ∧ w − Cr2
h cos θ C2 (C.26)

From the unitary condition vava = wawa = 1, it can be easily shown that

δvω =
√
Mb0 cosψ δwϕ =

√
Mb0 cosψ sinω (C.27)

Therefore, we have

δ
(
∗J̃4

)
=−Q5δtanθv∧w−Q5tanθ(δv∧w+v∧δw)−Q5δC2 (C.28)

=−
(
Q5Mb2

0sin2ψδtanθ+2Q5Mb2
0tanθcosψsinψδψ+2Q5M sin2ψδψ

)
sinωdω∧dϕ

−
(
Q5tanθ

√
Mb0sinψδwt

)
dω∧dt−

(
Q5tanθ

√
Mb0sinψsinωδvt

)
dt∧dϕ

where we have used that C2 at the tip is given by C2 = M(ψ− 1
2 sin 2ψ) sinωdω∧ dϕ

and corrections away from the tip start at order O
(
r2). Thus, the J4 perturbation

equation is given by

−Q5Mb2
0 sin2 ψ sinω

(
∂tδ tan θ + 2 tan θ cotψ∂tδψ + 2

b2
0
∂tδψ

)

= Q5M
3/2b3

0 tan θ sinψ
(
∂ϕδw

t + ∂ω
(
sinωδvt

) )
(C.29)

where we have used δvt = −Mb2
0 δv

t and δwt = −Mb2
0 δw

t.

– 26 –



J
H
E
P
1
1
(
2
0
2
0
)
0
5
5

3. Considering the J2 conservation equation, we have the variation of ∗J2 is given by

δ
(
∗ J2

)
= Q5 (δ sin θ) ∗ (v ∧ w) + Q5 sin θδ (∗(v ∧ w)) (C.30)

= Q5
(
cos3 θδ tan θ

)√
−γ
(
vωwϕdt ∧ . . . ∧ dx3

)
− 2Q5 sin θ(

√
−γγωωKωω

ψδψ)
(
vωwϕdt ∧ . . . ∧ dx3

)
+ Q5 sin θ

√
−γ
(
δvtwϕdx1 ∧ . . . ∧ dx3 ∧ dω + vωδwtdx1 ∧ . . . dx3 ∧ dϕ

+ δvωwϕdt ∧ . . . ∧ dx3 + vωδwϕdt ∧ . . . ∧ dx3
)

As δ (H3 ∧ ∗J4) = δH3 ∧ ∗J4 + H3 ∧ δ(∗J4) = 0, the J2 perturbation equation is
equivalent to the set of equations

cot θ cos2 θ∂ωδ tan θ +
√
Mb0 sinψ∂tδvt = 0 (C.31)

cot θ cos2 θ∂ϕδ tan θ +
√
Mb0 sinψ sinω∂tδwt = 0 (C.32)
∂ϕδv

t − ∂ω(sinωδwt) = 0 (C.33)

where we have used (3.5)–(3.6).

C.3 Energy-momentum conservation equations

Recall from (2.14)–(2.15), the intrinsic and extrinsic blackfold equations

∇aT ab = ∂bXµFµ (C.34)

T abK
(i)

ab = Fµ n(i)
µ (C.35)

where Fµ denotes the force terms coming from the coupling of the currents to the
fluxes (2.16).

C.3.1 Intrinsic perturbation equation

The blackfold intrinsic perturbation equation is given by

δ
(
∇aT ab

)
= δ

(
∂bXµFµ

)
(C.36)

Considering the l.h.s. , we have

δ
(
∇aT ab

)
= ∇aδT ab−T bc∇c

(
KρδX

ρ
⊥
)
−2T ac∇c

(
K b
a ρδX

ρ
⊥

)
+T ac∇b

(
KacρδX

ρ
⊥
)
(C.37)

where Kρ = γabK ρ
ab and we have used the identity

δΘb
ac = 1

2γ
bd(∇aδγcd +∇cδγad −∇dδγac) (C.38)

Considering the r.h.s. , we have

δ
(
∂bXµFµ

)
= δ

(
∂bXµ

)
Fµ + ∂bXµδ (Fµ) (C.39)

= γtbgψψ∂tδψ
(
Fψωϕ3 J2ωϕ

)
(C.40)
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where we have made use of the explicit expression of Fµ in (2.16). Altogether, we have
the intrinsic perturbation equation

∇aδT ab − T bc∇c
(
KρδX

ρ
⊥
)
− 2T ac∇c

(
K b
a ρδX

ρ
⊥

)
+ T ac∇b

(
KacρδX

ρ
⊥
)

= γtbgψψ∂tδψ
(
Fψωϕ3 J2ωϕ

)
(C.41)

Substituting in appropriate expressions, we obtain for b = t, ω, ϕ respectively

1. The t intrinsic perturbation equation

∂tδ tan θ +
√
Mb0

sinψ tan θ
(
∂ωδv

t + 1
sinω∂ϕδw

t + cotωδvt
)

+2
(

cotψ tan θ + 1
b2

0

)
∂tδψ = 0 (C.42)

2. The ω intrinsic perturbation equation
√
Mb0 sinψ tan2 θ∂tδv

t + sin θ cos θ∂ωδ tan θ = 0 (C.43)

3. The ϕ intrinsic perturbation equation
√
Mb0 sinψ sinω tan2 θ∂tδw

t + sin θ cos θ∂ϕδ tan θ = 0 (C.44)

C.3.2 Extrinsic equation

The extrinsic blackfold perturbation equation is given by

δ
(
T abK

(i)
ab

)
= δ

(
Fµ n(i)

µ

)
(C.45)

Making use of the results in (C.18), we can easily write the l.h.s. as

δ
(
T abK

(i)
ab

)
= δT abK

(i)
ab + T abn(i)

ρ ∇a
(
∂bδX

ρ
⊥
)

+ T abn(i)
ρ δX

α
⊥∂αΓρµν∂aXµ∂bX

ν (C.46)

+ 2T abn(i)
ρ Γρµν∂aδX

µ
⊥∂bX

ν + 1
2T

abK ρ
ab

(
nα (i)nβ (i)∂γgαβδX

γ
⊥n

(i)
ρ

)
For our purpose, we are interested in the orthogonal directions ψ and r. The unitary
normal vectors specifying these directions are respectively

n(1) =
√
Mb0dψ n(2) =

√
Mb0dr (C.47)

For the ψ direction, the r.h.s. is given by

δ
(
Fµn(1)

µ

)
= δFµn(1)

µ + Fµδn(1)
µ = δFψn(1)

ψ (C.48)

The expression of δFψ can be easily obtained by hitting δ to the force term Fµ (2.16). As
the computation is tedious but straight-forward, we shall not include all the details here.
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Nevertheless, for the convenience of the readers, let us note down the final results along
with some useful (non-vanishing) intermediate steps. We have

δFψωϕ3 = δ
(
gψµγωa1∂a1X

α1γϕa2∂a2X
α2F3µα1α2

)
(C.49)

= gψψ (δγωω) γϕϕF3ψωϕ + gψψγωω (δγϕϕ)F3ψωϕ + gψψγωωγϕϕ (δF3ψωϕ) (C.50)

=
(
4gψψKωω

ψγ
ϕϕF3ψωϕ + gψψγωωγϕϕ∂ψF3ψωϕ

)
δψ (C.51)

Similarly, we have

δHψt...ϕ
7 =

(
4gψψγtt . . . γx3x3

Kωω
ψγ

ϕϕH7ψt...ϕ + gψψγtt . . . γϕϕ∂ψH7ψt...ϕ
)
δψ (C.52)

Let us note also that

δJ2ωϕ = Q5 (δ sin θ) vωwϕ + Q5 sin θ (δvωwϕ + vωδwϕ) (C.53)

=
(
Mb2

0Q5 cos3 θ sin2 ψ sinω
)
δ tan θ +

(
2Mb2

0Q5 sin θ cosψ sinψ sinω
)
δψ (C.54)

and

δj6t...ϕ = −Q5
(
δ
√
−γ
)

= −1
2Q5
√
−γγαβδγαβ (C.55)

=
(
2Q5
√
−γγωωK ψ

ωω gψψ
)
δψ (C.56)

Altogether, we have the variation of the force term δFψ is given by

δFψ = −
(
δHψt...ϕ

7

)
j6t...ϕ −Hψt...ϕ

7 (δj6t...ϕ) +
(
δFψωϕ3

)
J2ωϕ + Fψωϕ3 (δJ2ωϕ) (C.57)

For the r direction, the r.h.s. is given by

δ
(
Fµn(2)

µ

)
= δFµn(2)

µ + Fµδn(2)
µ = δFrn(2)

r (C.58)

Similar to our treatment of δFψ, we shall not present here the full computation of δFr but
only the final results along with some useful (non-vanishing) intermediate steps. We have

δF̃ rt...x
3

5 = δ
(
grνγta1 . . . γx

3a4∂a1X
α1 . . . ∂a4X

α4F̃5να1...α4

)
(C.59)

=
(
grrγtt . . . γx

3x3
∂rF̃5rt...x3

)
δr (C.60)

The variation of the force term δFr is given by

δFr =
(
δF̃ rt...x

3
5

)
J4t...x3 (C.61)

Substituting in appropriate expressions and simplify where possible, we obtain respectively

1. The ψ extrinsic perturbation equation

(∂t)2δψ − cos2 θ

sin2 ψ
∇2δψ = 2 cos2 θ

sin2 ψ
δψ + 2

b2
0

cos2 θ (1 + sin θ) δ tan θ (C.62)

2. The r extrinsic perturbation equation

(∂t)2δr − cos2 θ

sin2 ψ
∇2δr = 8a2

a0
sin θδr + 8a2

a0
δr − 16a0 + 20a2

5a0
cos2 θδr

+ 4
5 cos2 θ sin2 ωδr (C.63)

where ∇2 is the normalised Laplacian, i.e. ∇2 = (∂ω)2 + 1/ sin2 ω(∂ϕ)2 + cotω∂ω.
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