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1 Introduction

Higgs decay into a fermion anti-fermion pair (h→ ff̄) is a benchmark process in the Stan-
dard Model (SM). At present, the LHC has measured Higgs decays into b-quarks [1, 2] and
τ -leptons [3, 4], both with an O(10%) precision, and put limits on decays into muons [5, 6]
and charm quarks [7, 8]. At lepton colliders, decays into b-quarks, c-quarks, and τ -leptons
should reach percent-level precision, with somewhat worse performance for decays into
muons [9–13].

As measurements become more precise, h→ ff̄ decays will allow the measurement of
the SM Yukawa interactions and place strong constraints on non-standard Higgs couplings.
Assuming that any potential new physics (NP) contributions come only from particles with
masses much heavier than the electroweak (EW) scale, Standard Model Effective Theory
(SMEFT) offers a model-independent, systematically improvable quantum-field theoretical
framework for analyses of Higgs decays beyond the SM. One possible improvement, which
has received much interest of late, is to include next-to-leading order (NLO) perturbative
corrections at a fixed dimension in the operator expansion [14–41].

In [42], we built upon the results of [43, 44] to calculate the full set of NLO corrections
from dimension-6 SMEFT operators to the decay rate h → bb̄. On the phenomenological
side, those results provide a baseline for future precision studies of that decay mode using
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effective field theory. From the perspective of SMEFT development, that paper laid out a
hybrid renormalization scheme appropriate for combining EW and QCD corrections. The
main idea, outlined in section 2, was to use the “FJ tadpole scheme” [45] within SMEFT
to define gauge-independent MS renormalized light fermion masses and QED/QCD gauge
couplings, while all other masses are renormalized on-shell. Expressing the decay rate in
terms of the corresponding MS parameters defined in a five-flavor version of QCD×QED
requires one to add on to the decay rate virtual corrections involving the top quark and
heavy electroweak bosons characteristic of on-shell renormalization through terms involving
perturbatively calculable decoupling constants. The benefit of this procedure is that a set
of large logarithms of the ratio mf/mH appearing in QCD×QED corrections is resummed
into the definitions of the MS parameters, while spuriously large tadpole corrections from
top-quark loops cancel from the decay rate, as in a purely on-shell scheme.

The goal of the present work is to apply that framework to obtain the NLO dimension-
6 SMEFT corrections to Higgs decays into charm quarks, τ leptons, and muons, thus
extending the results of [42] to cover the full spectrum of phenomenologically relevant
h→ ff̄ decays. While these cases are conceptually similar to h→ bb̄, the explicit Feynman
diagrams and dimension-6 Wilson coefficient entering the calculation differ, necessitating us
to calculate from scratch the large majority of EW corrections. After setting some notation
for mass-basis Wilson coefficients, also in Minimal Flavor Violation (MFV), in section 3,
we give a small subset of the analytical results in section 4, accompanied by illustrative
numerical studies in section 5. The complete analytical results are rather lengthy and
included in electronic form with the electronic submission of this article. In addition to
our analysis of individual decay channels, we emphasize in section 6 the advantages of
studying ratios of decay modes in SMEFT. In particular, since a large number of Wilson
coefficients drop out of ratios, particularly if MFV is imposed, ratios of decay rates may
allow for stronger constraints on Wilson coefficients than decay rates alone. We summarize
our findings in section 7, and in appendix A we list results for the decoupling constants
used in the renormalization procedure.

2 Calculational set-up

In this section we outline the procedure used to obtain the NLO corrections to the decay
rates h → ff̄ , with h the Higgs boson and f a fermion, in dimension-6 SMEFT. The
results depend on a set of input parameters and the renormalization scheme in which they
are defined. A main outcome of the NLO SMEFT calculation of h → bb̄ decays in [42]
was the development of a hybrid renormalization scheme that minimizes the impact of
potentially large higher-order corrections that appear when naively combining QCD and
EW corrections. It uses as input the following parameters:

mEW ,mf , α, αs, Ci, Vij . (2.1)
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Some comments on the input parameters and notation are in order:

• The massive electroweak bosons and top quark are considered as heavy particles with
masses denoted collectively by mEW ∈ {mW , mZ , mH , mt}. These are renormalized
in the on-shell scheme.

• The light fermion masses mf ≡ mf (µ), with f any fermion other than the top quark,
are renormalized in the MS scheme in a 5-flavor version of QED×QCD, where the
top quark is integrated out. The same is true of the electromagnetic fine-structure
and strong coupling constants, α = e2/(4π) ≡ α(µ) and αs = g2

s/(4π) ≡ αs(µ). In
all cases mf � mEW , and to simplify results we work to first non-vanishing order in
this “small-mass limit”.1 The decay rates are finite in this limit, with the exception
of double logarithms in the ratio mf/mH appearing in NLO SMEFT corrections
proportional to effective hγγ and hgg vertices, see section 4.1. We have checked
that corrections to the small-mass limit are typically at or below the percent level,
depending on the particular Wilson coefficient.

In [42] the alternative notation m`
f and α` was used for MS parameters renormalized

in 5-flavor QED×QCD, in order to make explicit the difference between the corre-
sponding parameters in the full SM, where heavy particles also contribute to the
running. We omit the superscript ` in the present work, with the understanding that
the running of MS parameters is driven exclusively by light particles. Effects of heavy
particles are integrated out and added on to the decay rate perturbatively through
terms involving decoupling constants as discussed in appendix A.

• The Ci ≡ Ci(µ) are Wilson coefficients of the dimension-6 SMEFT operators
Qi ≡ Qi(µ), for which we use the Warsaw basis [46] in table 3. The Wilson coef-
ficients are renormalized in the MS scheme, with all SM particles contributing to the
running. We use the notation where the dimension-6 piece of the SMEFT Lagrangian
is L(6) =

∑
CiQi, so the Ci have mass dimension minus 2.

• As standard in EW calculations, we use the numerical approximation where the CKM
matrix Vij = δij .

The decay rate up to NLO in perturbation theory is written as

Γ(h→ ff̄) ≡ Γf = Γ(0)
f + Γ(1)

f , (2.2)

where the superscripts (0) and (1) refer to the LO and NLO contribution in perturbation
theory. We split these contributions into an SM part and a piece containing exactly one
Wilson coefficient of a dimension-6 operator as

Γ(0)
f = Γ(4,0)

f + Γ(6,0)
f ,

Γ(1)
f = Γ(4,1)

f + Γ(6,1)
f , (2.3)

1Decay into first-generation fermions is not considered and we set their masses to zero throughout
the paper.
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so that the double superscripts (i, j) refer to the dimension-i contribution at j-th order in
perturbation theory. It is useful to subdivide the NLO corrections into two pieces as

Γ(i,1)
f = Γ(i,1)

f,(g,γ) + Γ(i,1)
f,weak . (2.4)

The Γ(i,1)
f,(g,γ) contain 1-loop diagrams involving at least one photon or gluon propagator,

in addition to contributions from the three-body processes h → ff̄(g, γ), whereas Γ(i,1)
f,weak

contains the remaining NLO corrections.
The procedure for obtaining Γ(1)

f in the hybrid renormalization scheme described above
was set forth in [42], and applied to the case of h→ bb̄.2 It included a careful treatment of
tadpoles in the FJ-tadpole scheme, and the calculation of decoupling constants relating MS-
renormalized quantities in 5-flavor QCD×QED to the corresponding quantities in the full
SM. The benefit of this renormalization scheme is threefold. First, it treats contributions
from light-particle loops, which are sensitive both to mEW and mf , in the MS scheme, thus
resumming a set of corrections of the form lnmf/mH that appear in Γ(i,1)

f,(g,γ) through the
use of the running mass mf . Second, contributions from heavy-particle loops depending
on mEW appear in Γ(i,1)

f,weak through decoupling constants for mf and α; these pieces are
effectively calculated in the on-shell scheme, where tadpoles cancel between different terms
in the decay rate, so enhanced EW corrections scaling as m4

t /m
2
Hv

2 (where v is defined in
eq. (4.1) below) due to these tadpoles are absent. Finally, the running of the parameters
mf and α does not depend on the SMEFT Wilson coefficients Ci to leading order in
mf/mEW , so these are easily related to MS-renormalized parameters extracted from low-
energy experiments and LEP.

It is worth mentioning that the main benefits of our renormalization scheme (cancel-
lation of heavy-particle tadpole contributions and resummation of small-mass logarithms
through the use of running light-fermion masses) would be retained in the “αGµ” scheme,
where one uses as inputs {Gµ, MW , MZ} in the EW sector by trading α for a function
of Gµ, MW , MZ , and Ci, with Gµ the Fermi constant. Within SMEFT, the αGµ scheme
has been implemented in widely used tools for tree-level calculations such as [48]. More-
over, partial results needed for NLO applications have been given in [19], which however
makes certain flavor assumptions and neglects tadpoles as appropriate in a purely on-shell
scheme. General comments about the relative merits of the different schemes within the
SM can be found, for instance, in [49], but no systematic study exists in SMEFT. One
potential benefit is that NLO corrections scaling as m2

t /M
2
W in the large-mt limit are often

smaller in the αGµ scheme. We have explored this issue by adapting the results of [42, 43]
to compare the large-mt limit corrections to h → ff̄ in the two schemes, and found that
in most cases the corrections from SMEFT Wilson coefficients common to the two cases
are indeed somewhat milder in the αGµ scheme. On the other hand, the number of Wilson
coefficients appearing in the decay rate is larger in the αGµ scheme, due to the appearance
of four-fermion operators unrelated to Higgs decays. Given that a full implementation of
the αGµ scheme for h→ ff̄ at NLO would require to generalize the calculation of [19], and

2The SM result Γ(4,1)
f was first calculated in on-shell scheme for all parameters in [47].
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that the large-mt corrections are not anomalously large in either scheme, we do not pursue
this issue further. An important observation is that the scheme dependence largely drops
out when studying ratios of decay rates into different fermion species as in section 6.

There are no conceptual complications in extending the methods for h → bb̄ to other
cases such as h→ cc̄ or h→ τ τ̄ . Indeed, the NLO results for Γ(i,1)

f,(g,γ), as well as the contribu-
tions of four-fermion operators to Γ(i,1)

f,weak can be obtained straightforwardly from [42–44].
We give these partial NLO results in analytic form in section 4. However, the same is
not true of Γ(i,1)

f,weak. These weak corrections receive flavor-dependent contributions from
a large set of one-loop diagrams entering mass renormalization, the decoupling constants,
and the bare one-loop matrix elements, which we must calculate from scratch. To this
end, we have altered the in-house code developed to automate the one-loop h → bb̄ cal-
culation [42]. It implements the SMEFT Lagrangian in the mass basis, including ghosts,
into FeynRules [50], and then uses FeynArts [51] and FormCalc [52] to generate and cal-
culate the one-loop diagrams. Package-X [53] has also been used for analytic cross-checks
of certain loop integrals.

The full NLO results are rather lengthy, and are included in computer files in the arXiv
submission of this work. They involve contributions from 40 different dimension-6 operators
for h → τ τ̄ , 40 for h → µµ̄, and 47 for h → cc̄. Electronic results for the decoupling
constants are given as well, although these are compact enough to list in appendix A. We
have performed the standard consistency checks on our results. In particular, we calculate
the weak corrections in both Feynman and unitary gauge, check the cancellation of UV and
IR poles in the dimensional regulator, and make sure that the decay rate is independent
of unphysical renormalization scales up to NLO.

3 Wilson coefficients and MFV

The dimension-6 SMEFT operators in table 3 are defined in the weak basis, but the physical
decay rates and on-shell renormalization conditions are defined in the mass basis. Moreover,
with the exception of the top quark, Higgs couplings to fermions in the SM are suppressed
by small and hierarchical Yukawa couplings, a feature not inherited by generic SMEFT
interactions. In order to avoid pushing the UV scale of the effective theory to values far
above the TeV scale to avoid flavor constraints, one often considers the SMEFT Wilson
coefficients to be constrained by MFV, and we ourselves will study this scenario at the
level of decay-rate ratios in section 6. The purpose of this section is to briefly outline both
of these issues, and to set up the notation required to implement them in our results.

We first explain our treatment of Wilson coefficients in the mass basis. As an example,
consider the term in the Lagrangian involving the operator QuH defined in the weak basis
in table 3. The explicit form of this term, which we denote by LuH , is

LuH = CwuH
rs

(H†H)(q̄wr uws H̃) . (3.1)

The superscript w indicates that the Wilson coefficient and fermion fields are defined in
the weak basis, and the subscripts r, s are flavor indices. The mass-basis fermion fields are
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related to the weak-basis fields via the unitary transformations

uwR = UuRu
m
R ,

qwL = UuL

(
umL
V dmL

)
. (3.2)

Using that the CKM matrix Vij ≡ (U †uLUdL)ij ≈ δij , the Lagrangian contribution can be
written as

LuH = CmuH
rs

(H†H)(q̄mr ums H̃) , (3.3)

where qm = (umL , dmL )T is a doublet of mass-basis fields and the mass-basis Wilson coefficient
is defined as

CmuH
rs
≡ [U−1

uL
]riCwuH

ij
[UuR ]js . (3.4)

This pattern holds in general: the SMEFT Lagrangian in terms of mass-basis fermion fields
and Wilson coefficients is obtained by interpreting the fermion fields in the list of operators
table 3 to be in the mass basis, and multiplying it with a corresponding mass-basis Wilson
coefficient, which can be related to the weak-basis one through rotations such as eq. (3.4).3

In quoting analytic and numerical results in the coming sections, we always work with
mass-basis quantities, and for simplicity drop the superscripts m on the fields and Wilson
coefficients. Moreover, within our approximations, h→ ff̄ decay is sensitive to a group of
generation-diagonal operators involving right-handed fermion fields. For these, we use the
shorthand notation where e.g. CcH ≡ CuH

22
, thus allowing us to suppress flavor indices. In

fact, the only Wilson coefficients appearing in our calculation which require explicit flavor
indices are the class-7 quantities C(1,3)

Hl and C
(1,3)
Hq , in addition to the coefficients of the

class-8 four-fermion operators.
We next turn to our implementation of MFV. A pedagogical discussion of MFV can be

found in, for instance, [55]. Its implementation in SMEFT was discussed in detail in [56].
In short, imposing MFV in SMEFT constrains the flavor indices of the Wilson coefficients
to be carried by certain combinations of Yukawa matrices. Upon rotation to the mass
basis, Yukawa couplings are converted to powers of the fermion masses, which for light
fermions f can be expanded in the small-mass limit mf � mEW .

As an explicit example we consider the class-5 Wilson coefficients, starting with CuH .
MFV implies that the weak-basis coefficient takes the form [56]

CwuH
rs

=
[
YuGuH

(
YdY

†
d , YuY

†
u

)]
rs
, (3.5)

where the function GuH is regular in the limit that its arguments go to zero, but otherwise
arbitrary. In the approximation where the CKM matrix is the unit matrix, the MFV

3The definition of mass-basis Wilson coefficients beyond the approximation Vij ≈ δij is not unique. For
one possible choice see [54].
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scaling for the mass basis coefficient is obtained by making the replacement Yu → Mu,
where the mass-basis Yukawa matrices for f ∈ {e, u, d} are given by

[Mf ]ij =
√

2[mf ]ij
v

,

[me] = diag(0,mµ,mτ ) ,
[mu] = diag(0,mc,mt) ,
[md] = diag(0,ms,mb) , (3.6)

with v defined in eq. (4.1). The mass-basis Yukawas are diagonal matrices and their
elements vanish in the small-mass limit, with the exception of [Mu]33 which is proportional
to the top-quark mass and thus order one in that limit. Therefore, to leading order in the
small-mass limit, we can write

[
GuH

(
YdY

†
d ,YuY

†
u

)]
ks

= δksGuH(0,0)+δk3δs3

∞∑
k=1

y2k
t

k!

(
dk

(dy2
t )k

GuH(0,y2
t )
∣∣∣∣
yt→0

)
, (3.7)

where y2
t = 2m2

t /v
2. It follows that the expansion of the mass-basis coefficient CuH in the

small-mass limit within MFV is given by

CuH
rs
≈ [Mu]rk

[
C1
uH
ks

+O
(
m2

v̄2

)]
, (3.8)

where m is any light-fermion mass and the explicit expression for C1
uH can be read off

by matching with eq. (3.7). Here and below the superscript j on the calligraphic Wilson
coefficients Cji indicates that they multiply j explicit powers of mass-basis Yukawa matrices.
Note that the object C1

uH
ks

is flavor-diagonal, but non-universal in the sense that C1
uH
11

=

C1
uH
22
6= C1

uH
33

. Similar statements hold for the MFV version of CdH in the small-mass limit,
which can be obtained from the CuH result by the replacement u→ d.

For the corresponding leptonic operator the MFV expression is

CweH
rs

=
[
YeGeH

(
YeY

†
e

)]
rs
. (3.9)

All elements of the mass-basis Yukawa coupling Me vanish in the small-mass limit, so the
mass-basis coefficient is given by

CeH
rs
≈ [Me]rs

[
C1
eH +O

(
m2

v̄2

)]
, (3.10)

where C1
eH = GeH(0) carries no flavor indices and is thus universal, in contrast to the

quark cases.
It is a straightforward exercise to obtain analogous results for the other Wilson coeffi-

cients in MFV in the small-mass limit. For our analysis in section 6, the important point is
whether, after factoring out j overall Yukawa factors, the calligraphic Wilson coefficients Cji
are flavor universal (as in the case of i = eH), or flavor non-universal due to contributions
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from top-quark Yukawas (as in the case of i = dH, uH). The flavor-universal cases used in
this paper are

CeH
pr
≈ [Me]prC1

eH , CHd
pr
≈ δprC0

Hd ,

CeF
pr
≈ [Me]prC1

eF , CHe
pr
≈ δprC0

He ,

C
(1,3)
H`
pr

≈ δprC(1,3),0
H` , C le

prst
≈ δprδstC0

le , (3.11)

where F is any gauge field appearing in the class-6 operators. The flavor non-universal
cases are

CuH
pr
≈ [Mu]prC1

uH
pr
, CHud

pr
≈ [Mu]pr[Md]prC2

Hud
pr

,

CdH
pr
≈ [Md]prC1

dH
pr
, C

(1,8)
qu
prst
≈ δprδstC(1,8),0

qu
prst

,

CuF
pr
≈ [Mu]prC1

uF
pr
, C

(1,8)
qd
prst

≈ δstδprC(1,8),0
qd
pr

,

CdF
pr
≈ [Md]prC1

dF
pr
, Cledq

prst
≈ [Me]pr[Md]stC2

ledq
st

,

C
(1,3)
Hq
pr

≈ δprC(1,3),0
Hq
pr

, C
(1,8)
quqd
prst

≈ [Mu]pr[Md]stC
(1,8),2
quqd
prst

,

CHu
pr
≈ δprC0

Hu
pr
, C

(1,3)
lequ
prst

≈ [Me]pr[Mu]stC(1,3),2
lequ
st

, (3.12)

where there is no implied summation on repeated indices on the right-hand side of the
approximations; this notation makes clear that the calligraphic coefficients are flavor diag-
onal in the pairs of indices pr and st. We note that while the Wilson coefficients C(1,8)

qd ,
Cledq and C(1,3)

lequ carry four flavor indices, their corresponding small-mass MFV expansion
functions, Ci, are a function of (and therefore only carry) two flavor indices.

It is worth mentioning that all the SMEFT coefficients can also depend on Yukawas
through functions of flavor invariants such as

Tr
(
YeY

†
e

)
, Tr

(
YdY

†
d

)
, Tr

(
YuY

†
u

)
. (3.13)

In the small-mass limit these are either constants, or functions of y2
t . They can thus be

absorbed into the definitions of the Cji above. For consistency of notation, we make explicit
that Wilson coefficients in classes 1-4 depend on the above invariants and should also be ex-
panded in the small-mass limit. Since those Wilson coefficients carry no flavor indices, this
amounts to a change of notation Ci → C0

i , where the superscript indicates that the small-
mass limit has been taken in the flavor invariants on which the coefficients can depend.

4 Analytical results

In this section we provide a subset of analytic results for the decay rates h → ff̄ . This
also allows us to fix some notation used in the rest of the paper. For instance, in order
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to express results in terms of the input parameters eq. (2.1), we introduce the derived
quantities

v ≡ 2MW ŝw
e

, ĉ2
w ≡

M2
W

M2
Z

, ŝ2
w ≡ 1− ĉ2

w . (4.1)

We can then write the LO dimension-4 and dimension-6 contributions to the h→ ff̄ decay
rates defined in eq. (2.3) as

Γ(4,0)
f = Nf

c mH

8π
m2
f

v2 ,

Γ(6,0)
f = 2Γ(4,0)

f

[
CH� −

CHD
4

(
1− ĉ2

w

ŝ2
w

)
+ ĉw
ŝw
CHWB −

v

mf

CfH√
2

]
v2 , (4.2)

where Nf
c = 1 if f is a lepton and Nf

c = 3 if f is a quark. To NLO in dimension-6 SMEFT,
the decay rates depend only on the real parts of the dimension-6 Wilson coefficients. We
leave this implicit, such that Ci ≡ Re(Ci) for any Wilson coefficient Ci that appears in the
decay rates, not only above but in the rest of the paper. Furthermore, we work with the
mass-basis Wilson coefficients discussed in section 3 (without imposing MFV) such that
CfH multiplies an operator that alters the hff vertex in that basis.

4.1 QED×QCD corrections

The QED×QCD corrections may be deduced from the results in [42]. The results are

Γ(4,1)
f,(g,γ) = Γ(4,0)

f

(
δf,qCFαs +Q2

fα

π

)[
17
4 + 3

2 ln
(
µ2

m2
H

)]
,

Γ(6,1)
f,(g,γ) = Γ(6,0)

f

Γ(4,1)
f,(g,γ)

Γ(4,0)
f

+ v2

π
Γ(4,0)
f

×
{

m2
H√

2vmf

(
δf,q

CF
gs
αsCfG + Qf

e
α
(
CfB ĉw + 2T 3

fCfW ŝw
))

+
(
δf,qCFαsCHG +Q2

fα chγγ
) [

19− π2 + ln2
(
m2
f

m2
H

)
+ 6 ln

(
µ2

m2
H

)]

+ chγZ vfQfαFhγZ

(
M2
Z

m2
H

,
µ2

m2
H

,
m2
f

m2
H

)}
, (4.3)

where vf = (T 3
f − 2Qf ŝ2

w)/(2ŝw ĉw) is the vector coupling of f to the Z-boson, T 3
f is the

weak isospin of fermion f (i.e. T 3
τ = −1

2 and T 3
c = 1

2), δf,q = 1 if f is a quark and δf,q = 0
if f is a lepton, CF = (N2

c − 1)/(2Nc) with Nc = 3, and the combinations of Wilson
coefficients multiplying the hγγ and hγZ vertices are

chγγ = CHB ĉ
2
w + CHW ŝ

2
w − CHWB ĉwŝw ,

chγZ = 2(CHB − CHW )ĉwŝw + CHWB(ĉ2
w − ŝ2

w) . (4.4)
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In the small-mass limit the function FhγZ takes the form

FhγZ
(
z, µ̂2, 0

)
= −12 + 4z − 4

3π
2z̄2 +

(
3 + 2z + 2z̄2 ln(z̄)

)
ln(z) + 4z̄2Li2(z)− 6 ln(µ̂2) ,

(4.5)
where z = 1− z.

An interesting feature of eq. (4.3) is the double logarithm in the ratio m2
f/m

2
H multi-

plying CHG and chγγ . In the SM, logarithms of this type first appear at NNLO, and are
related to diagrams where the Higgs couples to a top-quark loop which in the large-mt

limit can be shrunk to an effective hAA vertex, where A = γ, g, multiplied by an mt-
dependent matching coefficient. These SM corrections, not only the logarithms but also
the finite parts, are thus proportional to the SMEFT corrections given above (see for in-
stance eq. (8) of [57]). As noted already in [58], these double logarithms cancel against
corresponding terms in the h→ AA decay rate, such that total Higgs decay width remains
finite in the limit of vanishing fermion masses. In a less inclusive quantity such as h→ ff ,
they introduce sizeable flavor-dependent contributions to the decay rate, even though they
multiply flavor-universal Wilson coefficients. We return to this issue when studying ratios
of decay rates (in MFV) in section 6.

4.2 Four-fermion operators

Contributions from four-fermion operators (“class-8” in table 3) are obtained as in [42, 43].
In this section we generalize those results to the generic decay h→ ff̄ , including contribu-
tions from second-generation fermions which were neglected in previous analyses of h→ bb̄

and h→ τ τ̄ .
We first introduce some notation. In cases where top-quark loops contribute, the

results involve the functions

F8S

(
m2
t

m2
H

,
µ2

m2
H

)
= β2

t

(
2βtarccot (βt)− ln µ2

m2
t

− 2
)
,

F8V

(
m2
t

m2
H

,
µ2

m2
H

)
= β2

t

(
−8βtarccot (βt) + 4 ln µ2

m2
t

+ 6
)
, (4.6)

where

βt ≡
√

4m2
t

m2
H

− 1 . (4.7)

Contributions from other fermions involve the real part of the above functions in the limit
mt → 0, given by

F8S

(
0, µ

2

m2
H

)
= 2 + ln µ2

m2
H

,

F8V

(
0, µ

2

m2
H

)
= −6− 4 ln µ2

m2
H

. (4.8)

The functions with subscripts 8V arise from four-fermion operators of the form (L̄L)(R̄R)
in table 3, whereas those with subscripts 8S arise from four-fermion operators of the form
(L̄R)(R̄L) or (L̄R)(L̄R) given in the last row of that table.
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In terms of the above functions, the results for h→ τ τ̄ are

Γτ8 = m2
HΓ(4,0)

τ

16π2

{[
C le

3333
+ mµ

mτ
C le

2332

]
F8V

(
0, µ

2

m2
H

)
− 2Nc

mt

mτ
C

(1)
lequ
3333

F8S

(
m2
t

m2
H

,
µ2

m2
H

)

+ 2Nc

[
mb

mτ
C ledq

3333
− mc

mτ
C

(1)
lequ
3322

+ ms

mτ
C ledq

3322

]
F8S

(
0, µ

2

m2
H

)}
. (4.9)

The expression for h→ µµ̄ is obtained after obvious replacements and reads

Γµ8 = m2
HΓ(4,0)

µ

16π2

{[
C le

2222
+ mτ

mµ
C le

2332

]
F8V

(
0, µ

2

m2
H

)
− 2Nc

mt

mµ
C

(1)
lequ
2233

F8S

(
m2
t

m2
H

,
µ2

m2
H

)

+ 2Nc

[
mb

mµ
C ledq

2233
− mc

mµ
C

(1)
lequ
2222

+ ms

mµ
C ledq

2222

]
F8S

(
0, µ

2

m2
H

)}
. (4.10)

For h→ cc̄, we find instead

Γc8 = m2
HΓ(4,0)

c

16π2

{[
C

(1)
qu

2222
+CFC(8)

qu
2222

]
F8V

(
0, µ

2

m2
H

)

+mt

mc

[
C

(1)
qu

2332
+CFC(8)

qu
2332

]
F8V

(
m2
t

m2
H

,
µ2

m2
H

)
+
(
mb

mc

[
C

(1)
quqd
3223

+CFC(8)
quqd
3223

+2NcC
(1)
quqd
2233

]

+ms

mc

[
(1+2Nc)C(1)

quqd
2222

+CFC(8)
quqd
2222

]
−2mτ

mc
C

(1)
lequ
3322
−2mµ

mc
C

(1)
lequ
2222

)
F8S

(
0, µ

2

m2
H

)}
. (4.11)

To simplify the results, we have used relations such as C(k)
qu

2332
= C

(k)†
qu

3223
(with k = 1, 8) which

follow from the Hermiticity of the SMEFT Lagrangian. Finally, the result for h→ bb̄ is

Γb8 = m2
HΓ(4,0)

b

16π2

{[
C

(1)
qd

3333
+ CFC

(8)
qd

3333
+ ms

mb

(
C

(1)
qd

2332
+ CFC

(8)
qd

2332

)]
F8V

(
0, µ

2

m2
H

)

+ mt

mb

[
(1 + 2Nc)C(1)

quqd
3333

+ CFC
(8)
quqd
3333

]
F8S

(
m2
t

m2
H

,
µ2

m2
H

)

+
(
mc

mb

[
C

(1)
quqd
3223

+ CFC
(8)
quqd
3223

+ 2NcC
(1)
quqd
2233

]
+ 2mτ

mb
C ledq

3333
+ 2mµ

mb
C ledq

2233

)
F8S

(
0, µ

2

m2
H

)}
.

(4.12)

In all cases, contributions where the Higgs couples to a top-quark loop are enhanced by
a large factor of mt/mf . If MFV is imposed, the Wilson coefficients multiplying these
contributions pick up factors proportional to mf , thus removing this enhancement. More-
over, contributions from top loops to decay into charm quarks vanish in MFV, under the
approximation where the CKM matrix is the unit matrix, as can be seen by using MFV
scalings for the Wilson coefficients in section 3.
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mH 125GeV e(mH)
√

4π/128

mt 173GeV αs (mH) 0.1

MW 80.4GeV mb(mH) 3.0GeV

MZ 91.2GeV mτ (mH) 1.7GeV

v(mH) 240GeV mc(mH) 0.7GeV

Table 1. Input parameters used in numerics. The derived quantity v(mH) = 2MW ŝw/e(mH) is
listed for convenience.

5 Numerical results

In this section we give numerical results for the h → τ τ̄ and h → cc̄ decay rates. We list
contributions from the full set of Wilson coefficients at the scale µ = mH in section 5.1,
and then examine scale uncertainties for the numerically dominant ones in section 5.2. The
numerical inputs used throughout the paper are given in table 1.

5.1 Decay rates at µ = mH

It is convenient to normalize all results to the LO SM decay rate at the scale µ = mH . To
this end, in analogy with eq. (2.3) we define the ratios

∆(i,j)
f (µ) ≡

Γ(i,j)
f (µ)

Γ(4,0)
f (mH)

, (5.1)

as well as the LO and NLO ratios

∆LO
f (µ) ≡ ∆(4,0)

f (µ) + ∆(6,0)
f (µ) ,

∆NLO
f (µ) ≡ ∆LO

f (µ) + ∆(4,1)
f (µ) + ∆(6,1)

f (µ) . (5.2)

We also define dimensionless Wilson coefficients as

C̃i(µ) ≡ Λ2
NPCi(µ) , (5.3)

where ΛNP is a UV scale characteristic of heavy new physics beyond the SM. Contributions
to the decay rate from dimension-6 operators are suppressed by a factor of v̄2/Λ2

NP ≈ 5%,
where the numerical value refers to ΛNP = 1TeV and C̃i ∼ 1.

The LO result for the decay h→ ff̄ at the scale µ = mH is

∆LO
f (mH) = 1 + v2

Λ2
NP

[
3.74C̃HWB + 2.00C̃H� − 1.41 v

mf
C̃fH + 1.24C̃HD

]
, (5.4)

where here and below all MS-renormalized quantities (in this case v, C̃i, mf ) are evaluated
at the scale mH . The contribution from C̃fH is enhanced by a factor of v/mf compared to
other contributions. We have left this factor symbolic, such that the numerical coefficient
multiplying it is finite in the limit mf → 0. In a theory which respects MFV, the enhance-
ment factor would indeed be compensated by an implicit scaling of the Wilson coefficient.
While we are not necessarily advocating MFV, we choose to write all our results in such
a way that all numerical factors multiplying dimension-6 Wilson coefficients are free of
large enhancement factors. This affects several more coefficients at NLO, and for the same
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reason we leave factors of 1/e and 1/gs appearing in operators such as Qf(B,W ) and QfG,
where gauge fields couple to fermions through field-strength tensors rather than covariant
derivatives, symbolic.

The NLO corrections depend on the flavor of the fermion f . For h→ τ τ̄ , we find

∆NLO
τ (mH) = 0.98+ v2

Λ2
NP

{
3.63C̃HWB+2.11C̃H�−1.50 v

mτ
C̃τH+1.20C̃HD+0.16C̃HB

+
(
−9.0C̃(3)

Hq
33
−7.9C̃Ht+6.8C̃HW +5.2C̃(1)

Hq
33
−4.6C̃tH−3.8mt

mτ
C̃

(1)
lequ
3333

+2.4C̃H

+2.0mb

mτ
C̃ ledq

3333
+2.0ms

mτ
C̃ ledq

3322
−2.0mc

mτ
C̃

(1)
lequ
3322

+1.5C̃(3)
Hl
33
−1.0C̃ le

3333
−1.0mµ

mτ
C̃ le

2332

)

×10−2+
(
−9
[
C̃tB
e

+C̃(3)
Hq
11

+C̃(3)
Hq
22
−C̃(1)

Hl
33

+C̃Hu+C̃Hc

]
−7C̃W +4

[
C̃

(1)
Hl
11

+C̃(1)
Hl
22

+C̃He+C̃Hµ−C̃(1)
Hq
11
−C̃(1)

Hq
22

+C̃Hd+C̃Hs+C̃Hb
]
−3
[
C̃

(3)
Hl
11

+C̃(3)
Hq
22

]
+2 C̃tW

e

+ v

mτ

C̃τW
e

)
×10−3+(4×10−4)

(
C̃Hτ−

v

mτ

C̃τB
e

)}
. (5.5)

While our main focus in this section is h → τ τ̄ , we mention in passing that results for
h→ µµ̄ can be obtained from the above result by exchanging mτ ↔ mµ along with appro-
priate changes on flavor indices of the Wilson coefficients. The only implicit mτ dependence
in the small-mass limit is in the α ln(m2

τ/m
2
H) terms in eq. (4.3); for h→ µµ̄, these change

the coefficients of C̃HWB, C̃HW , C̃HB from the values listed above to 3.49, 0.14, 0.41,
respectively.

The results for h→ cc̄ are given by

∆NLO
c (mH) = 1.16 + v2

Λ2
NP

{
4.95C̃HG + 4.31C̃HWB + 2.46C̃H� − 1.75 v

mc
C̃cH

+ 1.41C̃HD +
(

9.4C̃HB − 8.9C̃(3)
Hq
33
− 7.9C̃Ht − 6.3mt

mc
C̃

(8)
qu

2332
+ 5.4C̃HW

+ 5.2C̃(1)
Hq
33
− 4.8mt

mc
C̃

(1)
qu

2332
− 4.6C̃tH + 2.4C̃H + 2.4ms

mc
C̃

(1)
quqd
2222

+ 2.0mb

mc
C̃

(1)
quqd
2233
− 1.3C̃(8)

qu
2222

− 1.0C̃(1)
qu

2222
+ 1.0C̃(3)

Hq
22
− 1.0C̃(1)

Hq
22

)
× 10−2 +

(
− 9

[
C̃tB
e

+ C̃
(3)
Hq
11

+ C̃Hu

]
+ 8 v̄

mc

C̃cG
gs

− 7mτ

mc
C̃

(1)
lequ
3322
− 7mµ

mc
C̃

(1)
lequ
2222
− 7C̃W − 5C̃Hc + 4

[
mb

mc
C̃

(8)
quqd
3223

+ ms

mc
C̃

(8)
quqd
2222

+ C̃
(1)
Hl
11

+ C̃
(1)
Hl
22

+ C̃
(1)
Hl
33
− C̃(1)

Hq
11

+ C̃He + C̃Hµ + C̃Hτ + C̃Hd + C̃Hs + C̃Hb

]
− 3

[
− mb

mc
C̃

(1)
quqd
3223

+ C̃
(3)
Hl
11

+ C̃
(3)
Hl
22

+ C̃
(3)
Hl
33

]
+ 2 C̃tW

e
+ v

mc

C̃cW
e

)
× 10−3 + (2× 10−4) v

mc

C̃cB
e

}
. (5.6)

– 13 –



J
H
E
P
1
1
(
2
0
2
0
)
0
7
9

h→ τ τ̄ SM C̃HWB C̃H� C̃fH C̃HD

NLO QED 1.1% −1.3% 1.1% 1.1% 1.1%

NLO weak −2.8% −1.5% 4.5% 5.3% −5.0%

NLO correction −1.7% −2.9% 5.5% 6.3% −3.9%

h→ cc̄

NLO QCD-QED 18.5% 17.0% 18.5% 18.5% 18.5%

NLO weak −2.8% −1.6% 4.4% 5.3% −5.2%

NLO correction 15.7% 15.3% 22.9% 23.8% 13.3%

Table 2. Size of NLO corrections to different terms in LO decay rate, split into QED(-QCD) and
weak corrections for h→ τ τ̄ (top) and h→ cc̄ (bottom). See text for further explanation.

Compared to LO, a total of 36 new Wilson coefficients appear at NLO in h→ τ τ̄ and
43 in h→ cc̄. While the size of these contributions depends on the values of the in general
unknown Wilson coefficients, it is possible to make some general statements.

First, in all cases the potentially largest NLO contributions are from those coefficients
which carry a non-trivial scaling with mf in MFV. Higgs decays thus offer an interesting
testing ground for MFV, which becomes more involved beyond LO. Second, since leptonic
decays h → `¯̀ have no QCD corrections to this order, the NLO corrections are generally
mild, the most sizeable (apart from MFV-breaking enhancements) being that from C̃HB,
which is enhanced by the double logarithm in m`/mH in eq. (4.3). For h → cc̄ this
double logarithm also multiplies the QCD correction from C̃HG, and the correction is so
large that actually dominates over coefficients appearing at LO. Finally, the corrections
to the operators appearing at LO are much larger in h → cc̄ than in h → `¯̀ due to QCD
corrections, although in neither case are these well approximated by applying an SM-like
K-factor to the LO results. To illustrate this latter point we show in table 2 the NLO
corrections to coefficients appearing at LO in h → τ τ̄ and h → cc̄ decays, split into the
QED-QCD and weak corrections, i.e. Γ(i,1)

f,(g,γ) and Γ(i,1)
f,weak in eq. (2.4), respectively.

5.2 Scale uncertainties

The truncation of the perturbative series to finite order introduces dependence of the
decay rates on unphysical renormalization scales. The change in the decay rate under
ranges of scale choices is often used to estimate uncertainties associated with uncalculated,
higher-order corrections. Ideally, the uncertainty bands shrink upon adding higher-order
perturbative corrections, and also show good overlap between orders.

In this section, we study scale uncertainties in the LO and NLO SMEFT calculations of
h→ τ τ̄ and h→ cc̄ decay rates. This requires knowledge of how the MS-renormalized input
parameters depend on renormalization scale. In the SM this is simple, as the light-fermion
masses and QED/QCD couplings have been extracted numerically at certain reference
scales, and can be evolved to any other scale using RG equations.
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In SMEFT, on the other hand, the dimension-6 Wilson coefficients have no accepted
numerical values. In order to study scale uncertainties in a meaningful way, we must
therefore express decay rates at different scales in terms of Wilson coefficients evaluated at
a fixed reference scale. We choose this reference scale to be mH . The Wilson coefficients
at an arbitrary scale µC can then be determined from their values at mH through use of
RG equations. Since in our analysis the µC will be at most a factor of two away from
the reference value µC = mH , we can use the fixed-order solutions to the RG equations.
In fact, the same is true of the MS-renormalized masses and couplings, so to study scale
variations we will need only the following equations:

Ci(µC) = Ci(mH) + ln
(
µC
mH

)
Ċi(mH) ,

mf (µR) = mf (mH)
[
1 + γf (mH) ln

(
µR
mH

)]
,

α(µR) = α(mH)
[
1 + 2γe(mH) ln

(
µR
mH

)]
,

αs(µR) = αs(mH)
[
1− 2γg(mH) ln

(
µR
mH

)]
. (5.7)

Expressions for Ċi ≡ dCi/d lnµ at one loop can be found in [56, 59, 60], and we have made
use of their electronic implementation from [61]. The corresponding SM expressions are

γf (µ) = − 3
2π
[
δf,qαs(µ)CF + α(µ)Q2

f

]
,

γe(µ) = α(µ)
3π

[
3Q2

` +Nc

(
2Q2

u + 3Q2
b

)]
,

γg(µ) = αs(µ)
4π

(11
3 CA −

2
3nl

)
, (5.8)

where nl = 5 is the number of light fermions and CA = 3. The notation makes clear
that we are free to choose the two renormalization scales µC and µR independently. We
will indeed do so, such that the expansion coefficients in eq. (5.1) become functions of two
scales, ∆(i,j)

f (µ) → ∆(i,j)
f (µC , µR). The explicit logarithmic dependence on the two scales

can be deduced through an RG analysis and is given in eq. (5.7) of [42].
With these expressions at hand, we can fix a procedure for quantifying scale uncer-

tainties. We follow the method advocated in [42]. First, we set µC = µR = mH by default.
We then vary µC to the values mH/2 and 2mH , keeping µR = mH , and use the results to
calculate upper and lower uncertainties from µC variations. We obtain uncertainties from
µR variations analogously, and add the µC and µR uncertainties in quadrature to get a
total uncertainty.

For h→ τ τ̄ , the LO result obtained in this way is

∆LO
τ (mH ,mH) = (1+0.002

−0.003) + v2

Λ2
NP

{
(3.74± 0.14)C̃HWB + (2.00± 0.12)C̃H�

− (1.41± 0.06) v

mτ
C̃τH + (1.24± 0.09)C̃HD ± 0.19C̃(1)

Hq
33
± 0.18C̃Ht ± 0.09mt

mτ
C̃

(1)
lequ
3333

± 0.05C̃tH ± 0.05C̃(3)
Hq
33

+ . . .

}
, (5.9)
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while at NLO we find

∆NLO
τ (mH ,mH) = (0.98+0.0001

−0.0002) + v2

Λ2
NP

{
(3.62+0.00

−0.01)C̃HWB + (2.11+0.00
−0.02)C̃H�

+ (−1.50+0.01
−0.00) v

mτ
C̃τH + (1.20+0.00

−0.01)C̃HD + (0.16+0.00
−0.00)C̃HB + (−0.09+0.02

−0.00)C̃(3)
Hq
33

+ (−0.08+0.03
−0.00)C̃Ht + (0.07+0.00

−0.00)C̃HW + (0.05+0.00
−0.03)C̃(1)

Hq
33

+ (−0.05+0.01
−0.00)C̃tH + . . .

}
.

(5.10)
In the above equations and in the results for h→ cc̄ that follow, the ellipses denote terms
whose magnitude is smaller than 5%.4

The uncertainties are significantly reduced when including the NLO corrections, and
in general the LO uncertainty ranges encompass the true value of the NLO correction,
showing a good convergence of the perturbative series. There are two notable exceptions.
The first is the SM itself, where the LO and NLO uncertainty bands show little overlap.
This is mainly due to the fact that there is a correlation between the running of mτ

and v, such that the ratio mf (µR)/v(µR) is more stable under scale variations that the
numerator and denominator alone. A more conservative option would be to introduce
and vary independently separate renormalization scales for the fermion masses and the
electromagnetic coupling constant, but we do not pursue that option here. The second
exception is CHB and CHW , which get NLO corrections proportional to α ln2(m2

τ/m
2
H)

that are inaccessible to an RG analysis.
For h→ cc̄, the LO result is

∆LO
c (mH ,mH) = (1± 0.08) + v2

Λ2
NP

{
(3.74+0.37

−0.36)C̃HWB + (2.00+0.22
−0.21)C̃H�

+ (−1.41± 0.07) v
mc

C̃cH + (1.24+0.15
−0.14)C̃HD ± 0.35C̃HG ± 0.19C̃(1)

Hq
33

± 0.18C̃Ht ± 0.08mt

mc
C̃

(8)
qu

2332
± 0.06mt

mc
C̃

(1)
qu

2332
± 0.05C̃tH ± 0.05C̃(3)

Hq
33

+ . . .

}
, (5.11)

and at NLO we have

∆NLO
c (mH ,mH) = (1.16+0.02

−0.04)+ v2

Λ2
NP

{
(4.95+0.89

−0.84)C̃HG+(4.31+0.06
−0.15)C̃HWB

+(2.46+0.05
−0.10)C̃H�+(−1.75+0.04

−0.03) v
mc

C̃cH+(1.41+0.02
−0.05)C̃HD+(0.00+0.12

−0.08) C̃tG
gs

+(0.09+0.01
−0.01)C̃HB+(−0.09+0.03

−0.01)C̃(3)
Hq
33

+(−0.08+0.06
−0.01)C̃Ht+(−0.06+0.01

−0.02)mt

mc
C̃

(8)
qu

2332

+(0.05+0.01
−0.01)C̃HW +(0.05+0.01

−0.06)C̃(1)
Hq
33

+(−0.05+0.01
−0.02)mt

mc
C̃

(1)
qu

2332
+(−0.05+0.02

−0.02)C̃tH+. . .
}
.

(5.12)
4More precisely, for a term of the form x+y

−z , we neglect terms where both |x+ y| and |x− z| are smaller
than 5%.
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The qualitative behavior is similar to the case of h→ τ τ̄ . There are however some differ-
ences for decay into quarks rather than leptons. There is a worse overlap between the LO
and NLO results for the SM and dimension-6 coefficients appearing at tree level. This is
mainly due to the fact that the NLO QCD corrections in the SM are slightly larger than
what one gets by varying the scale in mc. More significantly, the correction proportional to
αs ln2(m2

c/m
2
H) multiplying the CHG contribution is much larger than the corresponding

terms in h→ τ τ̄ , due to the appearance of the QCD coupling, and is well outside the LO
uncertainty estimate. In fact, the running of CHG introduces a new coefficient, CtG, into
the NLO uncertainty estimate, which is an α2

s ln2(m2
c/m

2
H) correction to the LO result and

is numerically similar to the NLO corrections for other Wilson coefficients.

Since CHG itself gets NNLO corrections of order α2
s ln4(m2

c/m
2
H), which are substantial,

it is clear that more reliable predictions for h → cc̄ would involve a resummation of the
logarithmic terms. While techniques for such a resummation exist for the virtual h→ AA

amplitudes (where A = γ, g) [62–66], it is not clear how to translate them to the inclusive
h→ ff̄ decay rate, which receives double-logarithmic corrections from both real and virtual
contributions.

6 Ratios of decay rates

LHC measurements are to a large extent limited to h→ bb̄ and h→ τ τ̄ . At lepton colliders,
on the other hand, measurements of Higgs decays into muons and charm quarks should
also be possible, which motivates studying ratios of decay rates into different fermions.
This is a benefit in the SM, as ratios of decay rates are more stable under perturbative
corrections than the decay rates themselves. It is even more advantageous in SMEFT, as
many flavor-universal dimension-6 contributions drop out of ratios. This also eliminates, to
a large extent, dependence on the choice of input parameters used in the renormalization
procedure, for instance on the freedom to trade α for the Fermi constant GF as is often
done in SM calculations. Finally, as we shall see in a moment, ratios of decay rates offer
interesting tests of MFV, as well as probes of anomalous hgg and hγγ couplings induced
by SMEFT operators.

From the theoretical side, the cleanest possible ratios are those involving fermions with
the same charges under the SM gauge group. Lepton colliders should be able to measure
the tau to muon ratio, so we focus on this as a concrete possibility. Let us first define

Rτ/µ =
m2
µ

m2
τ

Γτ
Γµ

. (6.1)

In the SM, up to NLO in perturbation theory and ignoring terms suppressed by m2
`/m

2
H ,

Rτ/µ = 1. In SMEFT, keeping only dimension-6 terms in the ratio up to NLO in perturba-
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tion theory and usingmµ(mH) = 100MeV, we find the following result at the scale µ = mH :

Rτ/µ−1 = ∆NLO
τ (mH)−∆NLO

µ (mH)−∆(4,1)
τ

(
∆(6,0)
τ −∆(6,0)

µ

)
= v2

Λ2
NP

{
−1.53

(
v

mτ
C̃τH−

v

mµ
C̃µH

)
−0.25C̃HB+0.13C̃HWB+

[
−7.2C̃HW

−3.8
(
mt

mτ
C̃

(1)
lequ
3333
−mt

mµ
C̃

(1)
lequ
2233

)
+2.0

(
mb

mτ
C̃ ledq

3333
−mb

mµ
C̃ ledq

2233
+ms

mτ
C̃ ledq

3322
−ms

mµ
C̃ ledq

2222

−mc

mτ
C̃

(1)
lequ
3322

+mc

mµ
C̃

(1)
lequ
2222

)
+1.8

(
C̃

(3)
Hl
33
−C̃(3)

Hl
22

)
−1.0

((
mµ

mτ
−mτ

mµ

)
C̃ le

2332
+C̃ le

3333

−C̃ le
2222

)]
×10−2+

[
4
(
C̃

(1)
Hl
33
−C̃(1)

Hl
22
−C̃Hτ+C̃Hµ

)
+
(
v

mτ

C̃τW
e

− v

mµ

C̃µW
e

)]
×10−3−(4×10−4)

(
v

mτ

C̃τB
e
− v

mµ

C̃µB
e

)}
, (6.2)

where have used that ∆(4,1)
µ = ∆(4,1)

τ in the first equality.
The results simplify if some form of universality is assumed for the generation-

dependent Wilson coefficients. As a concrete realization, we study the scenario where
the SMEFT Wilson coefficients are constrained by MFV. The expressions and notation
needed in the analysis are given in section 3. Dropping contributions to the ratio that are
suppressed by powers of mf/mH after taking the MFV limit, we find the simple result[

Rτ/µ − 1
]

MFV
= αv2

π
Chγγ

(
ln2 m

2
τ

m2
H

− ln2 m
2
µ

m2
H

)

= v2

Λ2
NP

(
−0.25C̃0

HB + 0.13C̃0
HWB − 0.072C̃0

HW

)
, (6.3)

where Chγγ has been obtained from chγγ in eq. (4.4) by replacing the Wilson coefficients by
their LO expansion in the small-mass limit as explained at the end of section 3. We have
listed the analytic expression in order to emphasize that the deviation of the ratio from
unity is due to the double logarithmic corrections generated by the effective hγγ vertex
and given explicitly in eq. (4.3). Uncertainties from higher orders estimated from scale
variations using the method described in the previous section are found to be less than 1%
for all dimension-6 coefficients involved.

The above results illustrate important features of decay-rate ratios in SMEFT. First,
for a generic flavor structure, whereas Γτ + Γµ depends on 48 Wilson coefficients, Rτ/µ
depends on 26 Wilson coefficients, as almost all operators that do not contain fermion
fields drop out of the ratio; in an MFV scenario the ratio depends only on three coefficients.
Second, for a generic flavor structure it is possible to have significant deviations from the
SM in Γµ, Γτ , and Rτ/µ simultaneously. However, in an MFV scenario, even if there were
significant deviations in both Γτ and Γµ due to modified Higgs couplings to fermions, they
would not propagate into Rτ/µ. In this sense, the ratio not only offers a very clean test
of MFV, but also an independent constraint on the flavor-independent Wilson coefficients
appearing in eq. (6.3) in such a scenario, beyond what is currently used in global fits. To
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illustrate the sensitivity of Rτ/µ to these coefficients, we have varied them to the extreme
edges of the 95% C.L. limits from a recent global fit marginalized over a set of 19 SMEFT
Wilson coefficients in [67], and found that deviations in Rτ/µ from the SM value on the
order of a few percent are not ruled out.

As a second example, involving quarks instead of leptons, we consider the ratio Rc/b,
defined in analogy to eq. (6.1). The result is not as simple as for Rτ/µ, since the b and c
quarks have different couplings to the electroweak gauge bosons. QCD corrections cancel
from the SM result up to NLO, so deviations from unity are due to both to SM electroweak
corrections and dimension-6 effects. In particular, we find

Rc/b−1 = ∆NLO
c −∆NLO

b −∆(4,1)
c ∆(6,0)

b −∆(4,1)
b ∆(6,0)

c +2∆(4,1)
b ∆(6,0)

b

= 0.03+ v2

Λ2
NP

{
2.20C̃HG−1.57 v

mc
C̃cH+1.59 v

mb
C̃bH+

[
8.5C̃HB−6.3mt

mc
C̃

(8)
qu

2332

−4.8mt

mc
C̃

(1)
qu

2332
−4.4mt

mb
C̃

(1)
quqd
3333

+4.4C̃HWB+4.2C̃HD+2.7C̃HW +2.6C̃(3)
Hq
33

+2.4ms

mc
C̃

(1)
quqd
2222

+2.0
(
mb

mc
−mc

mb

)
C̃

(1)
quqd
2233

+1.9C̃(3)
Hq
22

+1.9 v

mb

C̃bW
e
−1.5C̃tH+1.5 C̃tW

e

−1.3
(
C̃

(8)
qu

2222
−C̃(8)

qd
3333
−ms

mb
C̃

(8)
qd

2332

)
−1.0

(
C̃

(1)
qu

2222
−C̃(1)

qd
3333
−ms

mb
C̃

(1)
qd

2332

)]
×10−2

+
[
8
(
v

mc

C̃cG
gs
− v

mb

C̃bG
gs

)
−8mt

mb
C̃

(8)
quqd
3333
−7
(
mτ

mc
C̃

(1)
lequ
3322

+mτ

mb
C ledq

3333
+mµ

mc
C̃

(1)
lequ
2222

+mµ

mb
C ledq

2233

)
−6C̃(1)

Hq
33
−5C̃(1)

Hq
22

+4
(
mb

mc
−mc

mb

)
C̃

(8)
quqd
3223

+4ms

mc
C̃

(8)
quqd
2222

+4 v

mb
C̃Htb

+3
(
mb

mc
−mc

mb

)
C̃

(1)
quqd
3223

+3C̃Hc+2C̃Hb+
v

mc

C̃cW
e

]
×10−3+(2×10−4) v

mc

C̃cB
e

+(4×10−5) v
mb

C̃bB
e

}
. (6.4)

The deviation of the ratio from unity is only 3% in the SM, and while Γb+Γc depends on 60
Wilson coefficients, Rc/b depends on 41 Wilson coefficients. Again imposing MFV we find[

Rc/b−1
]

MFV
= 0.03+ v2

Λ2
NP

{
2.24C̃1

bH−2.22C̃1
cH+2.20C̃0

HG+
[
8.5C̃0

HB−4.5C̃(1),2
quqd
3333

+4.4C̃0
HWB+4.2C̃0

HD+2.7 C̃
1
bW

e
+2.7C̃0

HW +2.6C̃(3),0
Hq
33

+1.9C̃(3),0
Hq
22
−1.6C̃1

tH

+1.5 C̃
1
tW

e
−1.3

(
C̃(8),0
qu

2222
−C̃(8),0

qd
33

)
+1.1

(
C̃1
cG

gs
− C̃

1
bG

gs

)

−1.0
(
C̃(1),0
qu

2222
−C̃(1),0

qd
33

)]
×10−2+

[
−9C̃(8),2

quqd
3333
−6C̃(1),0

Hq
33
−5C̃(1),0

Hq
22

+5C̃2
Htb

+3C̃0
Hc+2C̃0

Hb+2 C̃
1
cW

e

]
×10−3+(3×10−4) C̃

1
cB

e
+(6×10−5) C̃

1
bB

e

}
. (6.5)
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where we have used that C(1,3),0
Hq
11

= C(1,3),0
Hq
22

. The result still depends on 28 dimension-6 Wil-

son coefficients, a number which can only be reduced by assuming universality for Wilson
coefficients of operators containing up and down type quarks of different generations not
present in MFV. Still, regardless of any flavor assumptions by far the largest numerical
contributions multiply C̃0

HG, C̃1
bH , and C̃1

cH . Contributions from the additional coefficients
C̃0
HD, C̃0

HWB, C̃0
H�, which appear at LO in the decay rates, either begin at NLO in the

ratio, or else drop out entirely. The contribution from C̃0
HG is due to terms of the form

αs ln2(m2
f/m

2
H), so as remarked above it would be desirable to resum such terms to obtain

a more reliable prediction. However, this coefficient is quite constrained by LHC data,
again using the 95% C.L. limits from the recent global fit [67] we find contributions to Rc/b
that are below the 1% level.

7 Conclusions

We have computed the NLO corrections from dimension-6 SMEFT operators to the decays
h → ff̄ , where f ∈ {µ, τ, c}, thus extending the results for h → bb̄ from [42] to cover the
full spectrum of phenomenologically viable Higgs decays into fermions.

Many lessons learned from h → bb̄ carry over to the generic decay modes h → ff̄ .
For instance, it is advantageous to use a hybrid renormalisation scheme which avoids spu-
riously large tadpole corrections while resumming a series of single-logarithmic corrections
in the ratio mf/mH through the use of running masses mf , defined in five-flavor version of
QED×QCD. At the same time, it is a poor approximation to estimate NLO corrections to
the dimension-6 operators appearing in the LO result by assuming they are proportional
to the NLO correction in the SM.

On the other hand, considering several modes at once also opens up the possibility to
study ratios of decay modes, which turns out to be even more advantageous in SMEFT
than in the SM, since many flavor-universal dimension-6 Wilson coefficients drop out of
the ratios. Amusingly, even in scenarios where the Wilson coefficients are constrained
by MFV, the flavor-universal SMEFT coefficients which alter the hgg and hγγ couplings
introduce at NLO flavor-dependence in ratios of decay rates normalised to their respec-
tive LO SM results. This dependence is from double logarithmic corrections of the form
(α, αs) ln2(m2

f/m
2
H), which cancel in total decay width but are present in the exclusive

decay into a particular fermion pair.
The analytic expressions for the h→ ff̄ decay rates, given as computer files with the

arXiv submission of this work, will be useful in future precision analysis of these decay
modes in effective field theory, as well as for benchmarking all-purpose tools for automated
NLO SMEFT calculations as they become available.
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A Decoupling constants

The MS-renormalized input parameters in eq. (2.1) are defined in a five-flavor version of
QED×QCD, where particles with masses at the EW scale are integrated out. These are
related to the corresponding quantities in SMEFT through decoupling constants. Adapting
the notation of [42] to the current paper, we define these decoupling constants as

mSM
f (µ) = ζf (µ,mt,mH ,MW ,MZ)mf (µ) ,
eSM(µ) = ζe(µ,mt,mH ,MW ,MZ)e(µ) , (A.1)

where the parameters with the superscript “SM” include all particles in the renormalization
procedure. The decoupling constants are calculated as a double series in the operator
expansion and in perturbation theory. In order to obtain the decay rate in terms of our
chosen input parameters, the prescription is to first do the calculation in the full SM, then
include terms involving decoupling constants to convert to the MS-renormalized parameters
in five-flavor QED×QCD. The exact relations are

Γ(4,0)
f = Γ(4,0)

f,SM ,

Γ(6,0)
f = Γ(6,0)

f,SM ,

Γ(4,1)
f = Γ(4,1)

f,SM + 2Γ(4,0)
f

(
ζ

(4,1)
f + ζ(4,1)

e

)
,

Γ(6,1)
f = Γ(6,1)

f,SM + 2Γ(4,0)
f

(
ζ

(6,1)
f + ζ(6,1)

e

)
+ 2Γ(6,0)

f ζ
(4,1)
f

+
√

2CfH
v3

mf
Γ(4,0)
f

(
ζ

(4,1)
f + ζ(4,1)

e

)
, (A.2)

where in all cases the expressions on the right-hand side are evaluated using the parameters
in eq. (2.1) directly.

The decoupling constants for the electric charge and the b-quark mass were given in [42].
Here we give results for the decoupling constants for the τ -lepton and c-quark masses. In
writing the results, it is convenient to split up tadpole and non-tadpole contributions. This
separation is gauge dependent, although the sum of the terms and the decoupling constants
themselves are gauge independent. We define the tadpole contributions in Feynman gauge,
making use of the quantities

T
(4)
Feyn. = 1

32π2v

{
Â0(M2

W )(12M2
W + 2m2

H)− 8M4
W + Â0(M2

Z)(6M2
Z +m2

H)

− 4M4
Z + 3m2

HÂ0(m2
H)− 8Ncm

2
t Â0(m2

t )
}
,

T
(6)
Feyn. = v

32π2

{
4
(
CH� −

CHD
4

)
m2
H

(
Â0(m2

H)− Â0(M2
W )
)
− 2CH�m

2
HÂ0(M2

Z)

− 6CHv2Â0(m2
H) +

(
24Â0(M2

W )− 16M2
W

)
CHWM

2
W +

(
3Â0(M2

Z)− 2M2
Z

)
M2
Z

×
[
CHD + 4

(
CHW ĉ

2
w + CHB ŝ

2
w + CHWB ĉwŝw

)]
+ 4Nc

√
2vmtCtHÂ0(m2

t )
}

+ v2
[
CH� −

CHD
4 + ĉw

ŝw

(
CHWB + ĉw

4ŝw
CHD

)]
T

(4)
Feyn. , (A.3)
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where the superscript represents a contribution at mass dimension i and

Â0(m2) = m2 +m2 log
(
µ2

m2

)
. (A.4)

For the τ -lepton and charm-quark masses in the SM, the decoupling constants are

ζ(4,1)
mτ = 1

64π2v2

{
58M2

W − 40M2
W ĉ

2
w − 21M2

Z + 4M2
W ln

(
µ2

M2
W

)
+
(
72M2

W

− 48M2
W ĉ

2
w − 22M2

Z

)
ln
(
µ2

M2
Z

)}
− 1
vm2

H

T
(4)
Feyn. , (A.5)

ζ(4,1)
mc = 1

576π2v2

{
182M2

W − 160M2
W ĉ

2
w − 49M2

Z + 36M2
W ln

(
µ2

M2
W

)
+ 6

(
40M2

W

− 32M2
W ĉ

2
w − 5M2

Z

)
ln
(
µ2

M2
Z

)}
− 1
vm2

H

T
(4)
Feyn. . (A.6)

The dimension-6 contributions to themf decoupling constants can be written in the generic
form

ζ(6,1)
mf

= − 1
m2
Hv

T
(6)
Feyn. −

1
2m2

Hv

Γ(6,0)
f

Γ(4,0)
f

T
(4)
Feyn. + ζ

(6,1)
mf , no-tad. , (A.7)

ζ
(6,1)
mf , no-tad = ζ

(6,1)
mf ,NL + ζ

(6,1)
mf ,LH log

(
µ2

m2
H

)
+ ζ

(6,1)
mf ,LW log

(
µ2

M2
W

)
+ ζ

(6,1)
mf ,LZ log

(
µ2

M2
Z

)

+ ζ
(6,1)
mf ,Lt log

(
µ2

m2
t

)
. (A.8)

For f = τ we find

ζ
(6,1)
mτ ,NL =− 1

128π2MWM3
Z ŝ

3
w

{
−3CHDMWMZ ŝw

(
6M4

W +7M4
Z−14M2

WM
2
Z

)
+12CHWBM

2
WM

2
Z ŝ

2
w

(
4M2

W−3M2
Z

)
+2M2

Z ŝ
3
w

[
6
√

2
ŝw

ve

mτ
CτWMWMZ

×
(
2M2

W−M2
Z

)
+2
√

2 vē
mτ

CτBM
2
Z

(
4M2

W−3M2
Z

)
+8Nc

m3
t

mτ
C

(1)
lequ
3333

MWMZ

+
√

2 v

mτ
CτHMWMZ

(
3m2

H+2M2
W +M2

Z

)
+2MWMZ

((
10M2

W−7M2
Z

)
C

(1)
Hl
33

+
(
16M2

W−7M2
Z

)
C

(3)
Hl
33

+
(
10M2

W−8M2
Z

)
CHτ

)]}
, (A.9)

ζ
(6,1)
mτ ,LH =−3

√
2m2

H

64π2
v

mτ
CτH , (A.10)

ζ
(6,1)
mτ ,LW = ĉ2

w

32π2MZ ŝ3
w

{
4CHWBMWM

2
Z ŝ

2
w+CHDM2

WMZ ŝw

−
√

2 v

mτ
M3
Z ŝ

2
w (6CτW ē+CτH ŝw)

}
, (A.11)
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ζ
(6,1)
mτ ,LZ =− 1

64π2MWM3
Z ŝ

3
w

{
CHDMWMZ ŝw

(
22M2

WM
2
Z−12M4

W−11M4
Z

)
+4CHWBM

2
WM

2
Z ŝ

2
w

(
6M2

W−7M2
Z

)
+
√

2 v

mτ
CτHMWM

5
Z ŝ

3
w

+6
√

2 ve
mτ

M4
Z ŝ

2
w (CτB ŝw+CτW ĉw)

(
4M2

W−3M2
Z

)
− 24

(
C

(1)
Hl
33

+C(3)
Hl
33

)
MWM

5
Z ŝ

5
w+12CHτMWM

3
Z ŝ

3
w

(
2M2

W−M2
Z

)}
, (A.12)

ζ
(6,1)
mτ ,Lt =− Nc

8π2
m3
t

mτ
C

(1)
lequ
3333

. (A.13)

For f = c one finds

ζ
(6,1)
mc,NL = − 1

1152π2M3
Z ŝ

3
w

{
CHDMZ ŝw

(
98M2

WM
2
Z − 49M4

Z − 22M4
W

)
− 12CHWBMW

(
17M4

Z + 26M4
W − 43M2

WM
2
Z

)
+ 18
√

2 v

mc
CcHM

3
Z ŝ

3
w

×
(
3m2

H + 2M2
W +M2

Z

)
+ 12M3

Z ŝ
3
w

[
−
√

2
ĉw

ev

mc
CcB

(
8M2

W − 5M2
Z

)
+
√

2
ŝw

ev

mc
CcW

(
14M2

W − 5M2
Z

)
− C(1)

Hq
22

(
20M2

W − 11M2
Z

)
+ C

(3)
Hq
22

(
38M2

W − 11M2
Z

)
− 2CHc

(
10M2

W − 7M2
Z

)
+ 12m

3
t

mc

(
C

(1)
qu

2332
+ CFC

(8)
qu

2332

)]}
, (A.14)

ζ
(6,1)
mc,LH = −3

√
2m2

H

64π2
v

mc
CcH , (A.15)

ζ
(6,1)
mc,LW = 1

32π2M5
Z ŝ

3
w

{
CHDM

4
WM

3
Z ŝw + 4CHWBM

3
WM

4
Z ŝ

2
w

−
√

2 v

mc
CcHM

2
WM

5
Z ŝ

3
w − 6

√
2 ev
mc

CcWM
2
WM

5
Z ŝ

2
w

}
, (A.16)

ζ
(6,1)
mc,LZ = 1

192π2MWM5
Z ŝ

3
w

{
CHDMWM

3
Z ŝw

(
8M4

W + 5M4
Z − 10M2

WM
2
Z

)
+ 12CHWBM

2
WM

4
Z ŝ

2
w

(
5M2

Z − 4M2
W

)
− 3
√

2 v

mc
CcHMWM

7
Z ŝ

3
w

+ 6
√

2 ev
mc

M6
Z ŝ

2
W

(
8M2

W − 5M2
Z

)
(CcB ŝw − CcW ĉw)

+ 48MWM
7
Z ŝ

5
w

(
C

(3)
Hq
22
− C(1)

Hq
22

)
+ 12CHcMWM

5
Z ŝ

3
w

(
4M2

W −M2
Z

)}
, (A.17)

ζ
(6,1)
mc,Lt = − 1

4π2
m3
t

mc

{
C

(1)
qu

2332
+ CFC

(8)
qu

2332

}
. (A.18)
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1 : X3

QG fABCGAνµ GBρν GCµρ

Q
G̃

fABCG̃Aνµ GBρν GCµρ

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH� (H†H)�(H†H)

QHD
(
H†DµH

)∗ (
H†DµH

)
5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GAµνG
Aµν

Q
HG̃

H†H G̃AµνG
Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνB
µν

Q
HB̃

H†H B̃µνB
µν

QHWB H†σIHW I
µνB

µν

Q
HW̃B

H†σIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)σIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GAµν

QuW (q̄pσµνur)σIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GAµν

QdW (q̄pσµνdr)σIHW I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q
(1)
Hl (H†i←→D µH)(l̄pγµlr)

Q
(3)
Hl (H†i←→D I

µH)(l̄pσIγµlr)

QHe (H†i←→D µH)(ēpγµer)

Q
(1)
Hq (H†i←→D µH)(q̄pγµqr)

Q
(3)
Hq (H†i←→D I

µH)(q̄pσIγµqr)

QHu (H†i←→D µH)(ūpγµur)

QHd (H†i←→D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q
(1)
qq (q̄pγµqr)(q̄sγµqt)

Q
(3)
qq (q̄pγµσIqr)(q̄sγµσIqt)

Q
(1)
lq (l̄pγµlr)(q̄sγµqt)

Q
(3)
lq (l̄pγµσI lr)(q̄sγµσIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q
(1)
ud (ūpγµur)(d̄sγµdt)

Q
(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q
(1)
qu (q̄pγµqr)(ūsγµut)

Q
(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q
(1)
qd (q̄pγµqr)(d̄sγµdt)

Q
(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q
(1)
quqd (q̄jpur)εjk(q̄ksdt)

Q
(8)
quqd (q̄jpTAur)εjk(q̄ksTAdt)

Q
(1)
lequ (l̄jper)εjk(q̄ksut)

Q
(3)
lequ (l̄jpσµνer)εjk(q̄ksσµνut)

Table 3. The 59 independent baryon number conserving dimension-6 operators built from Standard
Model fields, in the notation of [59]. The subscripts p, r, s, t are flavor indices, and σI are Pauli
matrices.
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