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Abstract 10 

This work aims to understand the properties of co-formers that form co-amorphous 11 

pharmaceutical materials and to predict co-amorphous system formation. A partial least 12 

square – discriminant analysis (PLS-DA) was performed using known co-amorphous systems 13 

described by 36 variables based on the properties of the co-former and the binding energy of 14 

the system. The PLS-DA investigated the propensity to form co-amorphous material of the 15 

active pharmaceutical ingredients: mebendazole, carvedilol, indomethacin, simvastatin, 16 

carbamazepine and furosemide in combination with 20 amino acid co-formers. The variables 17 

that were found to favour the propensity to form co-amorphous systems appear to be a 18 

mailto:jon.steed@durham.ac.uk


2 

 

relatively large value for average molecular weight and the sum of the difference between 19 

hydrogen bond donors and hydrogen bond acceptors for both components, and a relatively 20 

small or negative value for excess enthalpy of mixing, excess enthalpy of hydrogen bonding 21 

and the difference in the Hansen parameter for hydrogen bonding of the coformer and the 22 

active pharmaceutical ingredient (API). To test the predictive power of this model, 29 23 

potential co-formers were used to form either co-amorphous or crystalline two-component 24 

materials with mebendazole. Of these 29 two-component systems, the co-amorphous nature 25 

of a total of 26 materials was correctly predicted by the model, giving a predictive hit rate of 26 

90 %. 27 

Keywords 28 

Co-amorphous 29 

Partial least squares discriminant analysis 30 

Amino acids 31 

Multi-variate analysis 32 

Molecular descriptors 33 

1. Introduction 34 

A large proportion of newly discovered active pharmaceutical ingredients (APIs) display 35 

poor solubility in the gastrointestinal fluids, which is likely to decrease their bioavailability 36 

(Di et al., 2012; Kalepu and Nekkanti, 2015; Khadka et al., 2014; Savjani et al., 2012). To 37 
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improve the aqueous solubility of APIs, different formulation methods have been designed 38 

including amorphous forms, which have no long-range crystallographic order and higher 39 

internal energy compared with their respective crystalline forms (Berry and Steed, 2017; 40 

Healy et al., 2017; Khodadadi and Meesters, 2018; Williams et al., 2013). However, pure 41 

amorphous APIs are often physically unstable and can crystallise as a result of increased 42 

molecular mobility, especially when stored above their glass transition temperature or in 43 

humid environments (Kissi et al., 2018; Rams-Baron et al., 2018; Sun et al., 2012). Methods 44 

to improve the stability of amorphous APIs include the formation of amorphous solid 45 

dispersions and co-amorphous (COAM) materials (Karagianni et al., 2018; Ma and Williams, 46 

2019; Van Den Mooter, 2012; Wu et al., 2018). 47 

Amorphous solid dispersions are formed by (molecularly) dispersing an API in a (usually 48 

amorphous) polymer such as polyvinylpyrrolidone and cellulose based polymers, which act 49 

as an inactive stabilizer (Chavan et al., 2019; Nielsen et al., 2015; Vasconcelos et al., 2016). 50 

Stabilization (even above the solubility limit of the API in the polymer) is caused by the 51 

polymer increasing the glass transition temperature and forming intermolecular interactions, 52 

which in turn result in reduced molecular mobility (Baghel et al., 2016; Frank and Matzger, 53 

2018; Medarević et al., 2019). The main challenges with using amorphous solid dispersions 54 

are their often high hygroscopicity (causing increased molecular mobility of the API), and the 55 

usually large mass ratios of polymer to API (causing downstream formulation problems when 56 

high API dosages are required) (Marsac et al., 2008; Rumondor et al., 2009; Tian et al., 57 

2015). 58 

COAM systems are formed by mixing an API with a low molecular weight compound called 59 

a co-former, which is usually inactive but could also be another API (Gao et al., 2013; 60 
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Newman et al., 2018; Shayanfar and Jouyban, 2013; Shi et al., 2019). The ratio of API to co-61 

former can be relatively high which helps in the formation of high API dosage tablets (Jensen 62 

et al., 2016b; Wang et al., 2019). COAM systems are similar to co-crystals with them both 63 

containing two components, usually with one API and one co-former (Karimi-Jafari et al., 64 

2018). The difference between co-crystals and COAM systems is that co-crystals are based 65 

on a repeating three dimensional crystal lattice whereas COAM systems have no repeating 66 

units and an amorphous structure (Newman et al., 2018). The physical stability of COAM 67 

systems is usually higher than that of pure amorphous materials and COAM systems often 68 

have improved dissolution characteristics compared to pure amorphous APIs (Löbmann et 69 

al., 2013a; Löbmann et al., 2012b). COAM systems are stabilised, for example, by the 70 

formation of hydrogen bonds, π-π stacking and ionic bonds between the two compounds, as 71 

shown by infrared spectroscopy (Löbmann et al., 2012a; Löbmann et al., 2013b). Methods to 72 

produce COAM systems include co-melting, solvent evaporation and mechanochemistry 73 

(Chavan et al., 2016). Co-melting involves melting the components followed by rapid cooling 74 

to avoid nucleation and recrystallization (Hoppu et al., 2009; Knapik et al., 2015; Teja et al., 75 

2015). A key challenge in co-melting is that some of the APIs or co-formers may thermally 76 

degrade if kept at high temperatures for too long (Fan et al., 2019; Goodwin et al., 2018). 77 

Solvent evaporation involves dissolving the two components into a solvent or solvent mixture 78 

followed by rapidly evaporating the solvent to prevent nucleation and recrystallization 79 

(Ahmed Mahmoud Abdelhaleem et al., 2015; Yamamura et al., 2002). However, finding a 80 

solvent or solvent mixture which can dissolve both the co-former and the API without one 81 

component crystallising prematurely is a challenge (Mishra et al., 2018). Mechanochemistry 82 

involves using mechanical stress to reduce crystallinity and induce intimate mixing (Chieng 83 

et al., 2009; Hu et al., 2014). The conventional method used for mechanochemistry is milling. 84 

A low temperature is preferred during milling to promote the formation of an amorphous 85 
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material by keeping the mixture below the glass transition temperature of the amorphous 86 

system (Blaabjerg et al., 2017). 87 

The possible co-formers used to form COAM systems are numerous but there is no clear 88 

method of predicting whether a certain co-former will form a COAM system with a specific 89 

API. Mizoguchi et al. (2019) linked the formation of COAM systems to the mixing enthalpy 90 

and the difference in lipophilicity (Δlog P). This work used COSMOquick, a computational 91 

program which uses the Conductor like Screening Model for Real Solvents (COSMO-RS) 92 

method to derive charge density surfaces which describe each molecule and can be used to 93 

calculate interaction energies with other components (Klamt, 2018). COSMOquick can be 94 

used to screen for potential co-crystals and provides values for the Gibbs energy of mixing 95 

(ΔGmix), which determines whether mixing between potential co-crystal formers at constant 96 

temperature and pressure is spontaneous, as well as the excess enthalpy of mixing, which is 97 

the enthalpy released or absorbed upon mixing (Loschen and Klamt, 2015). Ueda et al. 98 

(2016) performed a multivariate analysis of physiochemical variables of co-formers and 99 

concluded that a range of these variables (crystallisation tendency, glass transition 100 

temperature and molecular flexibility) contributed to COAM formation; however, this study 101 

only used one API (naproxen) and a small number of co-formers (felbinac, flufenamic acid, 102 

loxoprofen, ketoprofen, indomethacin, aceclofenac, indoprofen).  103 

Meng-Lund et al. (2018) used a range of molecular descriptors to produce a PLS-DA model 104 

to predict the likelihood of success of co-amorphisation between amino acids and an API. 105 

The model used a dataset formed from 6 APIs and 20 amino acids from Kasten et al. (2016). 106 

The variables used include physical properties, Hückel theory descriptors, subdivided surface 107 

areas, atom counts, bond counts, pharmacophore feature descriptors, partial charge 108 
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descriptors, surface area, volume and shape descriptors. To test the model, one of the six 109 

APIs was left out of the model and used as a validation set. Out of the 20 systems in the 110 

validation set, 19 were correctly assigned. The model showed that polar amino acids were 111 

less likely to form COAM systems and non-polar side chains were more likely to form 112 

COAM systems. However, this model only investigated amino acid co-formers. 113 

The current study aims to develop a method to improve the selection of co-formers to 114 

formulate COAM systems. The previously reported COAM screen by Kasten et al. (2016) 115 

was used to understand which variables affect the formation of COAM systems. Variables 116 

used to describe the systems were obtained using COSMOquick to calculate properties that 117 

describe the two-component systems and Pubchem to source physico-chemical variables to 118 

describe the co-formers. The 36 variables from COSMOquick and Pubchem were used to 119 

develop a partial least squares-discriminant analysis (PLS-DA) prediction method to identify 120 

which co-formers are likely to form COAM systems. 121 

2. Materials and Methods 122 

2.1 Materials 123 

Succinic acid was purchased from Avocado Research Chemicals (Heysham, UK). Glycine 124 

(GLY) was purchased from BDH Chemicals Limited (Hull, UK). Carvedilol (CAR) was 125 

obtained from Cilpa Ltd. (Mumbai, India). L-alanine (ALA), flurbiprofen, furosemide (FUR), 126 

L-isoleucine (ILE), L-leucine (LEU), L-lysine (LYS), mebendazole (MEB) and L-tyrosine 127 

(TYR) were purchased from Flourochem (Hadfield, UK). Indomethacin (IND) was purchased 128 

from Hawkins Pharmaceutical group (Minnesota, USA). Urea was purchased from Lancaster 129 

Synthesis (Lancaster, UK). Maleic acid was purchased from M&B Chemicals (London, UK). 130 

3-aminobenzoic acid, 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, L-131 
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arginine (ARG), ascorbic acid, L-asparagine (ASN), L-aspartic acid (ASP), 4,4’-bipyridine, 132 

caffeine, catechol, L-cysteine (CYS), 2,4 dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 133 

fumaric acid, gallic acid, L-glutamine (GLN), L-glutamic acid (GLU), glycolic acid, L-134 

histidine (HIS), imidazole, isonicotinamide, ketoprofen, L-methionine (MET), nicotinamide, 135 

oxalic acid, L-phenylalanine (PHE), phenazine, piperazine, piracetam, L-proline (PRO), 136 

pyrogallol, salicylic acid, L-serine (SER), tartaric acid, theophylline, L-threonine (THR), L-137 

tryptophan (TRP) and L-valine (VAL) were purchased from Sigma Aldrich (Missouri, USA). 138 

2.2 Mebendazole co-former screening 139 

Ball milling was used to screen for potential COAM systems. A 1:1 molar ratio of API and 140 

co-former (total 100 mg), was placed into a 5 mL milling jar and premixed at a frequency of 141 

30 Hz for 5 minutes without a mixing ball to homogenize the material. A stainless-steel ball 142 

with a diameter of 5 mm was added and the mixture was milled at 30 Hz for 60 min. The 143 

milling time of 60 min was selected due to it matching the original study the model was 144 

produced from (Kasten et al., 2016). Milling was performed using a Mixer mill MM200, 145 

vibrational ball mill, from Retsch GmbH & Co. (Haan, Germany). The mixtures were 146 

analysed by XRPD to assess crystallinity (see below). 147 

2.3 Film casting mebendazole – gallic acid 148 

A 1:1 molar ratio of mebendazole to gallic acid (63.5 mg: 36.5 mg), was dissolved in a 149 

minimum amount of formic acid (approx. 10 mL). The solution was cast onto a petri dish and 150 

the formic acid was left to evaporate. Once the mixture was dry, it was analysed by XRPD 151 

(see below). 152 
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2.4 X-ray powder diffraction (XRPD) 153 

XRPD measurements were performed using a Bruker D8 X-ray diffractometer (Billerica, 154 

Massachusetts) with CuKα radiation (1.54187 Å), and acceleration voltage and current of 40 155 

kV and 40 mA, respectively. The samples were scanned in reflectance mode between 2° and 156 

35° 2θ with a scan rate of 0.067335° 2θ/s and a step size of 0.026°. 157 

2.5 COSMOquick calculations 158 

COSMOquick version 1.7 (COSMOlogic GmbH & Co. KG, Leverkusen, Germany) was used 159 

to calculate the Gibbs energy of mixing (ΔGmix), excess enthalpy of mixing (ΔHmix) and excess 160 

enthalpy of hydrogen bonding (ΔHhb), of the two-component system. For each component the 161 

following variables were calculated and displayed in Table 1: the number of Rotatable bonds; 162 

rotbsdmod, a general molecular flexibility parameter; M2, M3, M4, M5 and M6, the different 163 

order sigma moments; the dielectric energy; the molecular COSMO volume; Macc1, Macc2, 164 

Macc3 and Macc4, the different order sigma acceptor moments; Mdon1, Mdon2, Mdon3 and 165 

Mdon4, the different order sigma donor moments; avratio, the surface-volume ratio based on 166 

COSMO; ovality, the ratio of the molecular COSMO area to the area of a sphere with the 167 

same volume as the molecule; µ, the pseudo chemical potential of the pure solute; δd, the 168 

Hansen parameter for dispersion; δp, the Hansen parameter for permanent dipole-dipole 169 

interaction; δh, the Hansen parameter for hydrogen bonding. The difference between the API 170 

and co-former values were calculated and used as the variables in the PLS-DA. 171 

Table 1: The definitions of all the variables used to find the PLS-DA model. 172 

Variable Definition 

ΔGmix Gibbs energy of mixing. 
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ΔHhb Excess enthalpy of hydrogen bonding. 

ΔHmix Excess enthalpy of mixing.  

Δlog P 
The difference between the log of the octanol/water partition coefficient 
of the API and the co-former 

AV. log P 
The average value of the log of the octanol/water partition coefficient of 
the API and the co-former 

ΣHBCself 

The sum of the difference of hydrogen bond donors to hydrogen bond 
acceptors for the individual components, for both the API and co-
former. To represent the hydrogen bonding present in the individual 
components. 

ΣHBCAPI-COF 
The sum of the difference of hydrogen bond donors to hydrogen bond 
acceptors for the mixed components, for both the API and co-former. 
To represent the hydrogen bonding between the two components. 

AV. TM The average melting point of the two components.  

Δ TM The difference of the melting point of the co-former and the API. 

AV. MW The average molecular weight of the API and the co-former. 

Δ MW The difference of the molecular weights of the API and the co-former. 

AV. TPSA 
The average topological polar surface area of the API and the co-
former. 

ΔTPSA 
The difference between the topological polar surface area of the API 
and the co-former. 

Δrotatable 
bonds 

The difference between the number of rotatable bonds of the co-former 
and the API. 

Δrotbsdmod 
The difference between the general molecular flexibility parameter of 
the co-former and the API. 

ΔM2 
The difference between the second order sigma moments of the co-
former and the API. 

ΔM3 
The difference between the third order sigma moments of the co-
former and the API. 

ΔM4 
The difference between the fourth order sigma moments of the co-
former and the API. 

ΔM5 
The difference between the fifth order sigma moments of the co-former 
and the API. 
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ΔM6 
The difference between the sixth order sigma moments of the co-
former and the API. 

ΔDielectric 
energy 

The difference between the number of rotatable bonds of the co-former 
and the API. 

Δvolume 
The difference between the dielectric energy of the co-former and the 
API. 

ΔMacc1 
The difference between the first order sigma acceptor moments of the 
co-former and the API. 

ΔMacc2 
The difference between the second order sigma acceptor moments of 
the co-former and the API. 

ΔMacc3 
The difference between the third order sigma acceptor moments of the 
co-former and the API. 

ΔMacc4 
The difference between the fourth order sigma acceptor moments of 
the co-former and the API. 

ΔMdon1 
The difference between the first order sigma donor moments of the co-
former and the API. 

ΔMdon2 
The difference between the second order sigma donor moments of the 
co-former and the API. 

ΔMdon3 
The difference between the third order sigma donor moments of the co-
former and the API. 

ΔMdon4 
The difference between the fourth order sigma donor moments of the 
co-former and the API. 

Δavratio 
The difference between the surface-volume ratio based on COSMO of 
the co-former and the API. 

Δovality 
The difference between co-former and the API of the ratio of the 
molecular COSMO area to the area of a sphere with the same volume 
as the molecule. 

Δµ 
The difference between the pseudo chemical potential of the pure 
solute of the API and the co-former. 

Δ(δd) 
The difference between the Hansen parameter for dispersion in MPa0.5 
of the API and the co-former. 

Δ(δp) 
The difference between the Hansen parameter for permanent dipole-
dipole interactions in MPa0.5 of the API and the co-former. 
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Δ(δh) 
The difference between the Hansen parameter for hydrogen bonding in 
MPa0.5 of the API and the co-former. 

 173 

2. 6 Partial least squares – discriminant analysis 174 

Partial least squares – discriminant analysis  (PLS-DA) was performed using SIMCA V.16 175 

(Umetrics, Umeå, Sweden) to plot 36 variables for each combination of API and co-former 176 

(Brereton and Lloyd, 2014; Sadeghi-Bazargani et al., 2010). The 36 different variables 177 

plotted were ΔGmix, ΔHmix, ΔHhb, Δlog P, AV.log P, ΣHBCself, ΣHBCAPI-COF, AV.TM, ΔTM, 178 

AV.MW, ΔMW, AV.TPSA, ΔTPSA, ΔRotatable bonds, Δrotbsdmod, ΔM2, ΔM3, ΔM4, ΔM5, 179 

ΔM6, ΔDielectric energy, Δvolume, ΔMacc1, ΔMacc2, ΔMacc3, ΔMacc4, ΔMdon1, ΔMdon2, 180 

ΔMdon3, ΔMdon4, Δavratio, Δovality, Δµ, Δ(δd), Δ(δp) and Δ(δh) (Table 1). The data was 181 

scaled using unit variance. Each system was assigned as either COAM or not COAM (any 182 

crystalline material present) as determined by Kasten et al. (2016) based on analysing the 183 

mixture by XRPD after ball milling for 60 minutes. The PLS-DA was fitted using two latent 184 

variables and all 36 variables. The quality of the model was assessed using an internal cross-185 

validation procedure which involved leaving one out using seven cross-validation groups. 186 

The prediction ability of the model was assessed by checking the predicted values of COAM 187 

formation of the 120 API-amino acid dataset and comparing the values with the experimental 188 

results. The prediction gives a predicted numerical value with a value closer to one being 189 

COAM and a value closer to zero being not COAM. The prediction of the model was also 190 

assessed by using a dataset of 29 co-formers paired with mebendazole. The predicted values 191 

for the mebendazole-co-former dataset were compared with the experimental values to 192 

determine the prediction ability. 193 
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Variable selection was used to reduce the number of variables from 36 to 7 based on 194 

optimising the number of correctly predicted samples for the API-amino acid dataset. The 195 

final model was produced in JMP Pro 15 to view the equation used to assign the COAM 196 

value (Equation 1) (JMP, Version Pro 15. 1989-2020). 197 

Predicted COAM value198 

= (−0.123 × 𝛥𝐻ℎ𝑏) + (−0.136 × 𝛥𝐻𝑚𝑖𝑥) + (−0.00350 × 𝛴𝐻𝐵𝐶𝑠𝑒𝑙𝑓)199 

+ (0.00297 × 𝐴𝑉. 𝑀𝑊) + (−0.00176 × 𝛥𝑇𝑃𝑆𝐴) + (0.0105 × 𝛥µ)200 

+ (−0.0441 × 𝛥(𝛿ℎ)) + (−0.204)  201 

Equation 1: The equation to describe the relation of the seven key variables to the predicted 202 

COAM value. All numbers have been rounded to 3 significant figures. A value closer to one 203 

indicates the system should be COAM and a value closer to zero indicates it should not be 204 

COAM. 205 

3. Results and Discussion 206 

3.1 Correlation of ΔHmix and Δlog P with co-amorphisation 207 

The COAM systems used in this screen were experimentally identified by Kasten et al. 208 

(2016) and the responses listed in supplementary materials Table S1 indicate which systems 209 

formed COAM materials after 60 min of ball milling. The APIs used were carvedilol (CAR), 210 

furosemide (FUR), indomethacin (IND) simvastatin (SIM), carbamazepine (CBZ) and 211 

mebendazole (MEB). Previous research on theoretical descriptors for the prediction of the 212 

formation of a COAM system identified two indicators (ΔHmix and Δlog P) using a 213 

combination of APIs with other APIs or sugars to screen for COAM systems using 214 

differential scanning calorimetry (Mizoguchi et al., 2019). The ΔHmix was calculated using 215 
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COSMOquick and the Δlog P was sourced from Pubchem; it was found that COAM systems 216 

form with a Δlog P below 6 and a negative ΔHmix and a clear divide between the COAM 217 

systems and the crystalline systems was observed. When the ΔHmix and Δlog P for the 218 

API/amino acids systems tested by Kasten et al. (2016) were plotted against each other the 219 

same clear divide was not evident (Figure 1). The data indicates that COAM materials tend to 220 

form in systems with a lower value of Δlog P and a negative ΔHmix. However, many 221 

combinations break these trends; a few COAM systems form with a Δlog P above 6 and 222 

many systems with a Δlog P below 6 remain crystalline. Furthermore, COAM systems form 223 

with positive values of ΔHmix. To further assess the prediction ability for COAM formation of 224 

the two variables a range of 29 different co-formers (supplementary materials Table S2) were 225 

paired with mebendazole and analysed using the two variables. The 29 different co-formers 226 

were then ball milled with mebendazole to determine whether they formed COAM mixtures 227 

and the results were compared with the predicted trends. Figure 2 shows that all the systems 228 

including COAM and not COAM have a Δlog P below 6 suggesting Δlog P is not a good 229 

predictor of COAM material formation. Figure 2 also shows that the majority of the 29 230 

systems have negative values of ΔHmix but not all the systems are COAM and there is no clear 231 

divide between COAM and not COAM systems. Using these two variables to predict the 232 

formation of co-amorphous API-co-former systems was insufficient suggesting that more 233 

variables were required to predict the propensity to form COAM systems. 234 
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 235 

Figure 1. Relationship between the formation of COAM systems from Kasten et al. (2016), 236 

ΔHmix and Δlog P. Green markers indicate COAM systems were formed and red markers 237 

indicate not COAM systems. The red dotted line is the expected boundary line between 238 

COAM and not COAM systems (Mizoguchi et al., 2019). 239 
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 240 

 241 

Figure 2. Relationship between the formation of COAM systems of mebendazole with 29 co-242 

formers, ΔHmix and Δlog P. Green markers indicate COAM systems were formed and red 243 

markers indicate not COAM systems were formed. The red dotted line is the expected 244 

boundary line between COAM and not COAM systems based on previous research by 245 

Mizoguchi et al. (2019). Abbreviations of the coformers are as follows: 2,4-dihydroxybenzoic 246 

acid (2,4-DHBA), 3,5-dihydroxybenzoic acid (3,5-DHBA), 3-aminobenzoic acid (3-ABA), 247 

4,4’-bipryidine (BIPY), 4-aminobenzoic (4-ABA), 4-aminosalicylic acid (4-AS), 5-248 

aminosalicylic acid (5-AS), ascorbic acid (ASCA), caffeine (CAF), catechol (CATEC), 249 

flurbiprofen (FLURB), fumaric acid (FUMA), gallic acid (GALA), glycolic acid (GLYA), 250 

imidazole (IMID), isonicotinamide (INICO), ketoprofen (KETO), maleic acid (MALA), 251 
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nicotinamide (NICO), oxalic acid (OXA), phenazine (PHENA), piperazine (PIP), piracetam 252 

(PIRA), pyrogallol (PYROG), salicylic acid (SALCA), succinic acid (SUCA), tartaric acid 253 

(TARTA), theophylline (THEO), and urea (UREA). 254 

3.2 PLS-DA 255 

To improve the prediction of COAM systems, 34 additional variables were selected to 256 

describe the properties and interactions of the two components and combined with ΔHmix and 257 

Δlog P. These 36 variables (Table 1) were used to produce a PLS-DA model to understand 258 

which variables affect COAM system formation. Variable selection was then used to reduce 259 

the initial 36 variables to seven key variables. Variable selection was performed by removing 260 

variables one after the other and checking the effect on the prediction ability of the model for 261 

the API amino acid data set; if the variable had no effect it was removed and if the prediction 262 

ability was reduced it was retained. The variables selected describe differences between the 263 

API and co-former allowing the model to be applied to systems where the API and co-former 264 

cannot be easily defined, such as systems formed from two APIs. The final PLS-DA model 265 

includes the seven descriptors (Table 1): ΔHhb, ΔHmix, ΣHBCself, AV. MW, ΔTPSA, Δµ and 266 

Δ(δh). The goodness of fit is R2Y = 33.0 %, R2X = 47.8 % and the goodness of prediction is 267 

Q2 = 29.0 % based on two latent variables. Latent variables are variables which cannot be 268 

measured and are inferred from mathematical models. 269 

3.3 Model 270 

The score scatter plot of the PLS-DA model for the API amino acid systems (Figure 3) shows 271 

a division between COAM and not COAM systems with COAM systems appearing more in 272 

the top right quadrant. The dotted line in Figure 3 shows the predicted separation for 273 

visualization purposes between the COAM and not COAM systems. The not COAM systems 274 
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occur on the left of the plot and mainly in the bottom left quadrant. Equation 1 shows the 275 

relationship of each variable to the overall prediction. 276 

 277 

Figure 3. PLS-DA score scatter plot of latent variables (LV) 1 and 2. The red markers 278 

indicate not COAM systems and the green markers show COAM systems. The APIs are 279 

displayed with different markers with carvedilol (CAR) displayed as an X, carbamazepine 280 

(CBZ) as a triangle, furosemide (FUR) as a hollow square, indomethacin (IND) as a cross, 281 

mebendazole (MEB) as a circle and simvastatin (SIM) as a hollow diamond. The dashed blue 282 

line shows the predicted separation between COAM and Not COAM systems for 283 

visualization purposes. 284 
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The loading plot (Figure 4) shows how each variable is related to COAM formation. The 285 

variables closest to the COAM response are linked to COAM formation and the variables 286 

closest to the not COAM response are linked to not COAM formation. The two variables 287 

ΔTPSA and Δµ are located roughly in the middle between the COAM and not COAM point 288 

and therefore, do not appear to influence the COAM formation to a strong degree, however, 289 

when they are removed the prediction ability of the model is reduced. The variables related to 290 

COAM formation, therefore, appear to be a relatively large value of AV. MW and ΣHBCself, 291 

and a relatively small or negative value of ΔHmix, ΔHhb, and Δ(δh). A large AV.MW seems to 292 

correlate with COAM formation possibly due to slower diffusion which would inhibit 293 

recrystallization. A large value of ΣHBCself correlates with COAM formation, which is 294 

expected due to molecules that do not have a similar number of hydrogen bond donor atoms 295 

and hydrogen bond acceptor atoms are unlikely to form as strong crystal structures and may 296 

be more likely to interact with the other component (Corpinot and Bučar, 2019). A negative 297 

value of ΔHmix favours COAM formation, as expected since negative values indicate that the 298 

mixed system has a lower free energy state due to stronger attractive forces between the 299 

mixed molecules compared to the individual component interaction. A negative value ΔHhb 300 

also favours COAM formation which is due to stronger hydrogen bonding between the mixed 301 

molecules when compared with the individual components. A small Δ(δh) seems to favour 302 

COAM formation suggesting molecules with similar hydrogen-bonding potential are more 303 

likely to interact and stabilise a COAM system. 304 
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 305 

Figure 4. PLS-DA loading weights scatter plot of the latent variables (LV) 1 and 2. The 306 

responses are shown with orange circles and the variables with blue circles. The responses 307 

show how the two groups are related to the variables. 308 

The score plot (Figure 3) shows the two clusters of COAM and not COAM samples overlap 309 

to some degree. Overall, the misclassification table (which shows if the prediction matches 310 

the experimental result) (Table 2) of the 120 API – amino acid dataset shows that 81 % of the 311 

data points are correctly placed, suggesting the PLS-DA model is successful at modelling the 312 

amino acid data. Out of the 23 misplaced systems, 18 are close to the separation line and five 313 

are very far from the separation line, these five systems are MEB with LYS, LEU and ILE, 314 

SIM with LYS, and IND with HIS. The MEB with LYS, LEU and ILE and SIM with LYS 315 

systems were shown by Kasten et al. (2019) to have a low stability and underwent 316 
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crystallisation within a few weeks suggesting the model helps identify stable COAM systems. 317 

The fifth system furthest from the separation line was IND with HIS which was not COAM 318 

by milling, however a study by Jensen et al. (2016a) showed IND with HIS system was co-319 

amorphous when spray dried, this suggest the model could be valid for other co-amorphous 320 

production methods.  321 

Table 2. Misclassification table showing the percentage of correctly assigned observations of 322 

the 120 API-amino acid combinations. Fisher’s probability of 4.7 x 10-8. 323 

Model Members Correct 
Not 
COAM 

COAM 

Not 
COAM 

84 90.48% 76 8 

COAM 36 58.33% 15 21 

Total 120 80.83% 91 29 

3.5 Prediction of co-amorphous formation by mebendazole with 29 co-formers 324 

To test the applicability of the PLS-DA model (Figure 3, Figure 4) to other non-amino acid 325 

systems, a new dataset of 29 different co-formers with mebendazole was used. Mebendazole 326 

was selected due to it forming a range of both of COAM and not COAM systems with the 327 

amino acids; therefore, it was expected to form a range of both co-amorphous and not COAM 328 

systems with other co-formers. The 29 co-formers were selected on the basis of being small 329 

molecules capable of forming a range of different hydrogen-bonding motifs. The model was 330 

applied to predict the classification of the mebendazole co-former mixtures and the prediction 331 

was compared to experimental data. The misclassification table (Table 3) shows that overall, 332 

86 % of the samples were predicted correctly and only four of 29 mixtures were predicted 333 

incorrectly. The score plot of the predicted scores (Figure 5) shows a clear divide between 334 
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systems that were COAM and systems that were not COAM, with only a slight overlap of the 335 

two clusters. 336 

 337 

Figure 5. Score scatter plot of the predicted scores for the mebendazole-co-former 338 

combinations. COAM samples are shown in green, not COAM samples are shown in red. 339 

The hollow circles indicate samples which have been predicted incorrectly. The blue dashed 340 

line shows the predicted separation line for visualization purposes. 341 

Table 3. Misclassification table showing the percentage of correctly assigned observation of 342 

the 29 MEB-co-former combinations. Fisher’s probability of 1.8 x 10-4. 343 

Model Members Correct 
Not 
COAM 

COAM 
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Not 
COAM 

17 88.24% 15 2 

COAM 12 83.33% 2 10 

Total 29 86.21% 17 12 

The four samples that were predicted incorrectly were MEB combinations with theophylline, 344 

3-aminobenzoic acid, maleic acid and gallic acid, with predicted COAM values of 0.43, 0.52, 345 

0.40 and 0.86, respectively. The COAM values indicate how close the prediction is to 346 

assigning the system as COAM or not COAM with a value above 0.5 indicating COAM and 347 

a value below 0.5 indicating not COAM. Three of the samples had COAM values close to the 348 

cross over point at 0.5, suggesting they were close to being predicted correctly and may have 349 

been misplaced by one or two variables having extreme values. Theophylline appears to be 350 

incorrectly predicted due to the system having a relatively high value of ΔHmix and ΔHhb 351 

compared to the other systems. 3-aminobenzoic acid was misplaced due to a relatively 352 

small/negative ΔHmix and ΔHhb and a small Δ(δh). Maleic acid is misplaced due to a small 353 

MW. The gallic acid system is the furthest away from the crossover line between COAM and 354 

not COAM systems, suggesting it should be COAM. The mebendazole gallic acid system 355 

was investigated using film casting which resulted in a COAM system, this suggests the 356 

model is not limited to system produced by only ball milling. Film casting was selected 357 

because it involves a thermodynamic pathway with the initial solution containing no 358 

crystalline material compared to ball milling which is a kinetic pathway involving the 359 

disruption of the crystal lattice (Karagianni et al., 2018). Therefore, film casting is likely to 360 

help the formation of a co-amorphous system if the initial crystalline material is too stable to 361 

be broken down by ball milling. With the mebendazole gallic acid system now being classed 362 

as COAM the misclassification table improves and the correct prediction percentage is now 363 

90 % (Table 4). The model now shows an even clearer divide between the two clusters with 364 
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only a few outliers which are close to the cross over line. Film casting was not used to test 365 

other systems due to other co-amorphous formation methods usually producing a similar 366 

result (Karmwar et al., 2011; Lim et al., 2016).  367 

Table 4: Misclassification table showing the percentage of correctly assigned observations of 368 

the 29 MEB-co-former combinations after gallic acid was confirmed as being COAM by film 369 

casting. Fisher’s probability of 2.4 x 10-5. 370 

Model Members Correct 
Not 
COAM 

COAM 

Not 
COAM 

16 93.75% 15 1 

COAM 13 84.62% 2 11 

Total 29 89.66% 17 12 

 371 

4. Conclusion 372 

Known COAM systems formed with APIs and amino acid co-formers were analysed to 373 

identify properties of the co-former that correlate with COAM material formation (Kasten et 374 

al., 2016). A range of 36 variables was used to describe the properties of the API-amino acid 375 

systems and a multivariate PLS-DA was used to create a prediction model. The initial 36 376 

variables were reduced to seven variables including ΔHhb, ΔHmix, ΣHBCself, AV. MW, ΔTPSA, 377 

Δµ and Δ(δh). The model predicts 81 % of the API-amino acid systems correctly. The model 378 

was tested using a dataset of mebendazole with 29 different co-formers and 90 % of the 379 

systems were correctly predicted. Overall, the model can predict the potential COAM 380 
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formation of a range of co-formers significantly expanding its applicability beyond the 381 

relatively limited set of amino acid co-formers. 382 
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