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Abstract

Electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) are used to extract crystallographic information
from bulk samples, such as their crystal structure and orientation as well as the presence of any dislocation and grain boundary defects.
These techniques rely on the backscattered electron signal, which has a large distribution in electron energy. Here, the influence of plasmon
excitations on EBSD patterns and ECCI dislocation images is uncovered by multislice simulations including inelastic scattering. It is shown
that the Kikuchi band contrast in an EBSD pattern for silicon is maximum at small energy loss (i.e., few plasmon scattering events following
backscattering), consistent with previous energy-filtered EBSD measurements. On the other hand, plasmon excitation has very little effect
on the ECCI image of a dislocation. These results are explained by examining the role of the characteristic plasmon scattering angle on the
intrinsic contrast mechanisms in EBSD and ECCI.
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Introduction

The channeling dependence of the electron backscatter yield in a
scanning electron microscope (SEM) is exploited in techniques
such as electron backscatter diffraction (EBSD) and electron
channeling contrast imaging (ECCI). EBSD provides information
on crystal phases, their orientation, grain boundaries, and strain
(Zaefferer, 2007; Schwartz et al., 2009), while ECCI is used for
imaging crystal defects such as dislocations, stacking faults, and
subgrain boundaries (Wilkinson & Hirsch, 1997; Zaefferer &
Elhami, 2014). Simulations are often essential for interpreting
subtle features in the data, such as ferroelectric domains (Burch
et al., 2017), chirality (Winkelmann & Nolze, 2015), and strain
(Britton et al., 2010) in EBSD, as well as the contrast due to elastic
strain fields in ECCI (Picard et al., 2014; Kriaa et al., 2019). While
there have been several attempts at modeling electron backscatter-
ing under channeling conditions (Spencer et al., 1972; Dudarev
et al., 1995), current Bloch wave-based simulation methods
(Winkelmann et al., 2007; Winkelmann, 2008, 2009; Callahan &
De Graef, 2013; Picard et al., 2014; Pascal et al., 2018) rely on
the observation that electron backscattering is largely incoherent,
so that the backscatter signal from any given atom is proportional
to the local electron beam intensity. Furthermore, in EBSD the
reciprocity principle (Winkelmann, 2008) is invoked to simplify
calculation of the backscattered wave propagation toward the
detector, while in ECCI the column approximation (Hirsch

et al., 1965) is assumed so that Bloch waves can be applied to a
defect crystal in a tractable manner.

An important feature of Bloch wave calculations is that inelas-
tic scattering is modeled phenomenologically via a complex crys-
tal potential (Hirsch et al., 1965). The imaginary term of the
potential results in an electron flux that is continuously depleted
as the electron beam propagates through the crystal. Since the
exact distribution of the diffuse scattered intensity within the
specimen is unknown, it is difficult to accurately calculate its con-
tribution to the backscattered signal. On the other hand, the phys-
ical optics-based multislice method (Cowley & Moodie, 1957;
Kirkland, 2010), using either the (quasi-elastic) frozen phonon
model (Loane et al., 1991) or the quantum excitation of phonons
model (Forbes et al., 2010; Forbes & Allen, 2016), can reproduce
the diffuse scattered intensity distribution due to phonon scatter-
ing. This is essential for correctly modeling the intensity of
Kikuchi bands and higher-order Laue zone (HOLZ) rings
(Kirkland, 2010). Chen & Van Dyck (1997) developed a more
accurate multislice method that is applicable to the lower electron
beam energies in an SEM. For reasons that will be discussed later
(see "Methods" section), this produces better agreement with
experimental EBSD patterns compared to the conventional, high-
energy multislice calculations (Liu et al., 2016).

Apart from phonon losses, the incident electron can also scat-
ter inelastically through collective plasmon excitations as well as
single electron ionization and interband transition events. Of
these, plasmons typically have the largest scattering cross-section
(Egerton, 1996). Energy-filtered EBSD patterns have shown that
for the standard experimental geometry of a 70° tilted sample,
the Kikuchi band contrast first increases with energy loss,
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reaching maximum contrast at few tens or hundreds of eV, before
slowly decreasing at higher energy losses (Deal et al., 2008; Vos &
Winkelmann, 2019). The energy loss at peak contrast is well
below that of single electron ionization but greater than the recoil
energy for backscattering (Winkelmann & Vos, 2013), which sug-
gests that the contrast mechanism may also involve plasmon and/
or interband transitions. Therefore, accurate simulation of EBSD
patterns requires at least plasmon scattering to be included along-
side phonons. To our knowledge, there are no reports of energy-
filtered ECCI images, although the introduction of Timepix direct
electron detectors with energy thresholding (Vespucci et al., 2015)
may make acquiring such images possible.

Recently, Monte Carlo methods have been used to include plas-
mon excitations in multislice simulations (Mendis, 2019, 2020;
Barthel et al., 2020). The underlying principle is that plasmon exci-
tations are highly delocalized (Muller & Silcox, 1995) and are,
therefore, not significantly affected by electron beam channeling.
Computer-generated random numbers are used to estimate the
plasmon scattering depth and angle. The depth is sampled from
a Poisson distribution with the mean value equal to the plasmon
mean free path, while the angle is sampled from a Lorentzian dis-
tribution with half-width-at-half-maximum equal to the plasmon
characteristic scattering angle (Egerton, 1996). Following plasmon
excitation at the estimated depth, the estimated scattering angle is
used to modify the subsequent electron trajectory through the sam-
ple (the change in electron wavelength due to plasmon energy loss
is often sufficiently small to be neglected). This process is repeated
for many plasmon “configurations” and the results incoherently
summed to give a statistically averaged result. Plasmon multislice
simulations have been shown to reproduce experimental energy-
filtered diffraction patterns (Mendis, 2019), as well as the angular
distribution of scattering in position averaged convergent beam
electron diffraction (PACBED) patterns (Barthel et al., 2020).
These calculations were, however, for high-energy electron diffrac-
tion in transmission geometry.

In this paper, we introduce plasmon excitations to the multi-
slice method of Chen & Van Dyck (1997) with the purpose of
uncovering their role in the contrast mechanisms in EBSD and
ECCI. This is an improvement over current simulation methods
(Winkelmann et al., 2007; Winkelmann, 2008, 2009; Callahan &
De Graef, 2013; Picard et al., 2014; Pascal et al., 2018) which
assume no inelastic scattering (apart from phonons) before or
after the backscattering event in ECCI and EBSD, respectively.
The energy of backscattered electrons can vary over all energies
up to the primary energy of the incident electron beam.
However, much of the channeling contrast signal is contained
in those electrons with low energy loss (Deal et al., 2008; Vos &
Winkelmann, 2019), while the higher energy-loss electrons con-
tribute a background signal with no useful information. While
our simulations cannot reproduce the full energy spectrum of
the backscattered electrons, it does offer insight into the underly-
ing scattering mechanisms that govern channeling contrast. It
could also be useful for quantitative comparison with energy-
filtered data or for estimating the optimum experimental condi-
tions for a given measurement.

Methods

Multislice Method

The conventional multislice method, first proposed by Cowley &
Moodie (1957), is based on an approximate form of the

Schrödinger equation, where the second derivative of the electron
wavefunction Ψ with respect to depth z (i.e., the ∂2Ψ/∂z2 term) is
assumed to be small (Kirkland, 2010). This approximation is valid
at high energies (*100 keV) of the incident electron beam since
then scattering is weak and the wavefunction changes only slowly
as a function of depth within the specimen. For sufficiently small
slice thickness, the error is O(λ3), where λ is the incident electron
wavelength (Chen & Van Dyck, 1997). For lower beam energies
(e.g., SEM) the more accurate multislice method of Chen &
Van Dyck (1997), based on the full Schrödinger equation, may
be required. For example, at lower energies, the electron refractive
index will depend on higher-order terms in the specimen poten-
tial (Lentzen, 2017); this limits the accuracy of the phase grating
function as used in the conventional multislice model, where
the phase shift due to scattering is taken to be proportional to
the slice potential (Kirkland, 2010). Similarly, the higher scatter-
ing angles at lower energies may mean that the parabolic approx-
imation assumed for the Ewald sphere propagator function is no
longer valid (Ming & Chen, 2013). A further benefit of the Chen
and Van Dyck method is that it is also accurate for large beam
tilts (Chen et al., 1997). This is particularly important for the
EBSD simulations in this work, where the beam tilt is as large
as 30° (see "Methods" section). For these reasons we use the
more accurate multislice method of Chen & Van Dyck (1997)
for the simulations, the implementation of which is summarized
below.

In multislice, the specimen is divided into a series of thin slices
of thickness ϵ in the z-direction. The full Schrödinger equation
for the jth-slice, which extends from z = ( j− 1)ϵ to z = jϵ, can
be expressed as follows (Chen & Van Dyck, 1997):

∂2Cj(r)
∂z2

+ [2pk̂j(R)]
2Cj(r) = 0, (1a)

k̂j(R) = Ko

����������������������������
1+ ∇2

xy

(2pKo)
2 +

s

pKo
Uj(R)

√
, (1b)

Uj(R) = 1
1

∫ j1

( j−1)1
U(r)dz, (1c)

where Ψj(r) is the electron wavefunction for the jth-slice at the
position vector r = (R, z), with R being a two-dimensional posi-
tion vector in the xy-plane of the specimen. Ko is the wavenumber
of the incident electron, ∇2

xy = (∂2/∂x2)+ (∂2/∂y2) is the
Laplacian in the xy-plane and σ = 2πem/(Koh

2) is the interaction
constant (e and m are the charge and mass of the electron and
h is Planck’s constant). Uj(R) is the slice potential U(r) projected
along the z-direction. The k̂j(R) operator is valid for scattering in
the forward direction (Chen & Van Dyck, 1997). Note that equa-
tion (1a) includes the ∂2Ψj/∂z2 term which is required for higher
accuracy.

By use of suitable boundary conditions (i.e., Ψj and ∂Ψj/∂z are
continuous at the boundary between neighboring slices), the for-
ward scattered wave can be calculated using a so-called transfer
matrix method; see Chen & Van Dyck (1997) for details. For
materials where backscattering is negligible (e.g., light atomic
number elements such as silicon), it can be shown that the for-
ward scattered wave Ψm for the mth-slice is given by the following
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equation (Chen & Van Dyck, 1997):

Cm =
∏m−1

j=1

e2pik̂j1
( )

Cp, (2)

with Ψp being the incident wavefunction at the specimen
entrance surface. The exponential operator in equation (2)
represents evolution of the wavefunction as it propagates
between neighboring slices. It has been shown that a
second-order expansion of the operator is sufficient for
accurate simulation of EBSD patterns under SEM beam
voltages (Liu et al., 2016). Expanding equation (1b) to sec-
ond order:
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and so:

e2pi(k̂j−Ko)1 ≈ o(R)p2(R)p1(R)q(R), (3b)
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(3e)

where ∇4
xy = (∂4/∂x4)+ (∂4/∂y4). In equation (3b), a constant

phase term exp(−2πiKoϵ) has been included to simplify the
operator expansion (Chen & Van Dyck, 1997), but which
otherwise has no effect on the calculated beam intensities.
q(R) is a modified phase grating function, p1(R) is the stan-
dard propagator function in conventional multislice
(Kirkland, 2010) and p2(R) is a higher-order propagator
function. The propagator functions represent a convolution
in real space and are therefore more efficiently calculated in
reciprocal space (Kirkland, 2010). The Fourier transforms
(FT) are given by the following equations (see Kirkland
(2010) for a derivation for p1(R); the result for p2(R) follows

similar lines):

FT{ p1(R)} = exp(−ipl1k2) and

FT{ p2(R)} = exp − ipl31
4

(k4x + k4y)

[ ]
,

(4)

where k = (kx,ky) is a reciprocal space vector. Equation (3b)
follows from equation (3a) and makes use of the general
expansion exp(A + B) = exp(A)exp(B), which is only true if
the two operators A and B commute, that is, AB = BA
(Kirkland, 2010). The commutative property is, however,
not valid for the phase grating function q(R) and propagator
functions p1(R), p2(R), so that equation (3b) is only valid to
first order (Kirkland, 2010). The so-called mixed operator
o(R) represents propagation of the electron beam within the
specimen potential (as opposed to free space). It does not
have a simple Fourier transform and must, therefore, be eval-
uated in real space. For the simulations on silicon in this
work, it is found that o(R) does not have a significant effect
on the results, although its effect may be more important for
specimens of higher atomic number (Ming & Chen, 2013). If
o(R) is neglected, the multislice simulations can be performed
using Fast Fourier Transforms, which is computationally
more efficient than real space calculation of the
exp[2pi(k̂j − Ko)1] operator used previously (Cai & Chen,
2012; Spiegelberg & Rusz, 2015; Liu et al., 2016).
Nevertheless, in this work, o(R) was included for complete-
ness; it was expanded up to second order and evaluated in
real space. In order to reduce aliasing artifacts during convo-
lution the bandwidth of q(R), p1(R), and p2(R) are limited to
two-thirds the Nyquist limit, similar to conventional multi-
slice simulations (Kirkland, 2010).

For EBSD and ECCI simulations, we are interested in the back-
scattered electron intensity, which is dominated by high-angle
thermal diffuse scattering (Winkelmann et al., 2007;
Winkelmann, 2009). This is easily seen for scattering by a single
atom, where the elastic and thermal diffuse scattered (TDS) inten-
sities for scattering vector q are proportional to |f (q)|2exp(−2Bq2)
and |f (q)|2[1−exp(−2Bq2)], respectively, with f (q) being the atom
scattering factor and B the Debye–Waller factor. At sufficiently
large q, the TDS contribution becomes greater than the elastic
scattering (Pennycook & Jesson, 1991). As an example, for silicon
at 5 kV (the simulation conditions in this paper), the cross-over
point is at 12°, which is well below the minimum angle of 20°
required for backscattering in a standard EBSD measurement
with 70° beam incidence angle. As further evidence for the dom-
inance of TDS scattering in a crystal, we have used the Chen &
Van Dyck (1997) multislice method to simulate the purely elastic
backscattered diffraction pattern for [001]-silicon. The simulated
results are presented in the Appendix and appear very different
to experimental EBSD patterns, thereby confirming that TDS is
the dominant mechanism responsible for backscattering.

In the incoherent limit (i.e., large collection solid angle), the
TDS inelastic scattered intensity is proportional to (Lugg et al.,
2014)

∫ ∑
n

|Cn(r)|2
{ }

V(r)dr, (5)
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where V(r) is the interaction potential and Ψn(r) is the electron
wavefunction with the specimen in the nth-phonon configura-
tion. Equation (5) is integrated over the entire analytical volume.
For backscattering, the TDS interaction potential is well approx-
imated by a delta function centered on each atom (Rossouw
et al., 1994), so that the TDS backscattered signal from a given
atom is proportional to the local electron beam intensity [i.e.,
the summation term within the curly brackets in equation
(5)]. The electron beam intensity can be calculated using equa-
tion (2) alongside a quantum excitation of phonons model
(Forbes et al., 2010; Forbes & Allen, 2016) for the different pho-
non configurations.

Plasmon Excitations

In this section, the Monte Carlo method for simulating plasmon
excitations is summarized. The plasmon scattering depth (s),
polar (θ), and azimuthal (ϕ) scattering angles are estimated
using the following formulas (Mendis, 2019; Barthel et al., 2020):

s = −lpln(R1), (6a)

u = uE

�������������������
u2c + u2E

u2E

( )R2

− 1

√
, (6b)

f = 2pR3, (6c)

where R1, R2, and R3 are computer-generated linear random var-
iables within the range [0,1], λp is the plasmon mean free path,
and θE and θc are the characteristic and critical plasmon scatter-
ing angles, respectively (Egerton, 1996). θE can be calculated
from Ep/(2Eo), where Ep is the plasmon energy [17 eV for silicon
(Mendis, 2019)] and Eo is the primary beam energy. Barthel
et al. (2020) obtained values of λp = 1000 Å and θc = 15 mrad
by fitting simulations to experimental PACBED patterns of
[110]-Si at 300 kV. Extrapolating to 5 kV, the beam voltage
used for the present simulations, we obtain λp = 16.7 Å and θc
= 132 mrad. These values are derived from the fact that λp is
approximately proportional to Eo and that the critical scattering
vector magnitude q = sin(θc)/λ is independent of Eo (Egerton,
1996).

Following propagation of the electron beam to a depth s within
the sample, the scattering angles θ and ϕ due to plasmon
excitation modify the subsequent electron trajectory. The wave-
function must, therefore, be multiplied by a phase ramp term,
exp(2πiΔkt⋅R), where Δkt is the change in transverse wavevector
due to plasmon scattering (Barthel et al., 2020). This method
has been shown to accurately reproduce the angular distribution
of scattering in PACBED patterns (Barthel et al., 2020). A similar
approach is, therefore, adopted here, that is, at the slice m where
plasmon scattering takes place the wavefunction Ψm [equation
(2)] is multiplied by exp(2πiΔkt⋅R). Δkt is rounded to the nearest
pixel of the multislice supercell in reciprocal space, to comply
with the periodic boundary conditions of the simulation and
avoid aliasing artifacts (Barthel et al., 2020). The large θc value
of 132 mrad at 5 kV can also pose problems with the available
bandwidth for the multislice supercell, especially when multiple
scattering is involved. To mitigate this, an upper θ limit of 50θE
(i.e., 85 mrad or nearly twice the {220} Bragg angle) is imposed.

This does not lead to a significant error since the cross-section
at a scattering angle of θ = 50θE is smaller by four orders of mag-
nitude compared to forward scattering. Implementation of plas-
mon excitations is computationally more efficient in multislice
compared to Bloch waves since for the latter the Bloch wave coef-
ficients and excitations must be re-calculated after each plasmon
event, which is more time-consuming. However, in all cases,
inclusion of plasmons increases the overall simulation time com-
pared to standard calculations for elastic and phonon scattering
only.

EBSD and ECCI Simulations

EBSD and ECCI simulations are carried out on a [001]-silicon
specimen using a 5 kV electron beam. 5 kV, rather than a higher
beam voltage, was selected in order to achieve a reasonable com-
putation time for the EBSD simulations. The shorter plasmon
mean free path at 5 kV requires a smaller supercell thickness
for examining the role of multiple plasmon scattering on EBSD
contrast. Kirkland’s atom scattering factors (Kirkland, 2010)
were used to calculate the projected potential of the supercell
slices. The quantum excitation of phonons model (Forbes et al.,
2010; Forbes & Allen, 2016), with 0.078 Å root-mean-square
uncorrelated atom displacement (Kirkland, 2010), is used to
model phonon scattering. Plasmon excitations are simulated
using the method described previously. In all simulations, only
the TDS backscattered signal is calculated via equation (5) and
assuming a delta function interaction potential (Rossouw et al.,
1994). The TDS backscattered signal is, therefore, proportional
to the local electron beam intensity [i.e., |Ψm|2 in equation (2)]
at the backscattering atom (Winkelmann et al., 2007;
Winkelmann, 2008, 2009; Callahan & De Graef, 2013; Picard
et al., 2014; Pascal et al., 2018).

EBSD calculations are based on the principle of reciprocity
(Winkelmann, 2008). As illustrated schematically in Figure 1a,
backscattering from an atom “P” can take place in many direc-
tions, but only those multiple scattered electrons that exit the
sample in the direction of the EBSD camera will be detected.
Each pixel in the (far-field) EBSD camera corresponds to back-
scattered electrons that share a common wavevector. By reciproc-
ity, the backscattered signal from atom “P” is, therefore,
proportional to the local electron beam intensity at “P” with the
EBSD detector pixel as the source, which is in the far-field
and therefore effectively corresponds to an incident plane wave
with wavevector along the direction from pixel to sample.
Strictly speaking, the backscattered signal must also include a
weighting term due to the energy-depth distribution of the inci-
dent electrons prior to backscattering (Pascal et al., 2018),
although this is ignored in the simplified reciprocity model
which only focuses on the outgoing electron trajectory following
backscattering. Each pixel in an EBSD pattern represents a
unique incident wavevector that must be calculated separately,
that is, the incident plane wave is propagated into the sample
and the local electron beam intensity at every atom is summed
and assigned to the corresponding pixel in the EBSD detector
[equation (5)]. To avoid aliasing artifacts, the EBSD pattern is
sampled on the same 256 × 256 pixel reciprocal space grid as
the (square) multislice supercell, which has a real space linear
dimension of 27.15 Å or 5ao, where ao is the lattice parameter
of the silicon unit cell. The slice thickness was ao/4 or 1.36 Å.
Due to symmetry only 1/8th of the [001]-silicon EBSD pattern
was simulated, and the rest filled in using mirror reflection.
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The supercell thickness was 100 Å. With a plasmon mean free
path (λp) of 16.7 Å this corresponds to, on average, ∼6 plasmon
scattering events. The energy loss for this number of plasmon
excitations is sufficiently small to be ignored, the relative change
in electron wavenumber being only ∼1%. Therefore, only the
plasmon scattering angle, and not the energy loss, was included
in the simulations. Other ionization events, such as the Si L- and
K-edges, were ignored due to the much smaller cross-sections
(Egerton, 1996; Vos & Winkelmann, 2019). Experimentally, it
is known that the useful information in an EBSD pattern origi-
nates from within the first few nanometers (or tens of nm) of the
specimen surface (Zaefferer, 2007; Chen et al., 2011). Therefore,
as will become clear from the results, a supercell thickness of
100 Å at 5 kV is sufficient to capture the essential physics of
EBSD contrast.

The ECCI intensity profile for a ½[110] Burgers vector screw
dislocation is also simulated. The supercell for multislice simula-
tion was generated in two steps. First, a [001]-oriented silicon
supercell was constructed with the screw dislocation lying in the
plane of the specimen (Fig. 1b). At any given point, the atomic
displacement, u(ω), is along the dislocation line direction and is
expressed as follows:

u(v) = bv
2p

, (7)

where b is the Burgers vector magnitude and ω is the angle mea-
sured with respect to the (1�11) slip plane with dislocation core at
the origin (Hull & Bacon, 2001). Next, the supercell was tilted
away from the [001] zone-axis by 12.9° (equivalent to five
Bragg angles for the 220 reflection), with the dislocation line as
the tilt axis. In this geometry, the (220) planes are end-on and
the strongest Bragg reflections are along the g = ±220 systematic
row (symmetry orientation). The thickness of this new supercell
was 100 Å with the dislocation at a depth of 50 Å. This dislocation
depth was chosen since it corresponds to, on average, only three
plasmon excitations for a 5 kV beam; dislocations buried signifi-
cantly deeper within the sample cannot be simulated using our
method since we do not take into account large energy losses,
such as ionization, which are more probable at greater depths.
A larger supercell dimension of 217.24 Å (40ao) with 1024 pixel

sampling was used so that aliasing artifacts caused by the long-
range elastic strain field of the dislocation are minimized. The
ECCI signal was calculated by propagating the incident SEM
probe into the sample and summing the local electron beam
intensity at each atom position [equation (5)]. The summed
value is proportional to the backscattered ECCI signal for that
probe position (assuming the detector solid angle is sufficiently
large that channeling of the electrons after backscattering can
be neglected). By “rastering” the SEM probe over the sample sur-
face, an ECCI image or profile can be constructed. An ECCI pro-
file was calculated by scanning a 5 kV, 10 mrad semi-convergence
angle probe across the dislocation in steps of 10 Å. All electron
optic aberrations of the probe were set to zero. The supercell
slice thickness was ao/4 or 1.36 Å. It is computationally expensive
to simulate the full, long-range strain field of the dislocation,
which can extend to several tens of nanometers (Picard et al.,
2014; Kriaa et al., 2019). Instead, the focus is on simulating the
dislocation core region, which in real materials is of potential
interest due to dissociation into partial dislocations (Balk &
Hemker, 2001; Hull & Bacon, 2001; Mendis et al., 2006). The
core region is also not accessible in conventional Bloch wave
ECCI simulations (Picard et al., 2014; Kriaa et al., 2019), due to
the large strain fields and reliance on the column approximation
(Hirsch et al., 1965).

Results and Discussion

EBSD Patterns

Figure 2a shows the [001]-Si EBSD pattern simulated with only
phonon scattering, that is, plasmon scattering was not included.
Five phonon configurations were averaged. Kikuchi bands, as
well as excess and defect Kikuchi lines (arrowed), are visible. In
Bloch wave simulations, due to the phenomenological treatment
of phonon scattering, the atom scattering factor must be modified
to reproduce the anisotropy of Kikuchi line intensities
(Winkelmann, 2008). Multislice simulations, however, have no
such limitation and, therefore, better reproduce the expected
intensities. Figure 2b shows the simulated [001]-Si EBSD pattern
with both phonon and plasmon scattering. A total of 50 plasmon/
phonon configurations were simulated for each EBSD pixel. The
Kikuchi lines are barely visible, and the contrast of the Kikuchi

Fig. 1. (a) Schematic illustrating backscattering in EBSD. The arcs represent Huygen wavelets due to scattering of the primary beam by atom "P". Multiple scat-
tering can take place within the sample, as indicated by a change in propagation direction of the Huygen wavelets. Those backscattered electrons that exit the
sample with a common wavevector in the far-field are detected by a single pixel in the EBSD detector. (b) The geometry of the screw dislocation used for ECCI
simulations. The screw dislocation has a ½[110] Burgers vector b and glides on the (1�11) slip plane. Note that for a screw dislocation the line vector is along the
same direction as the Burgers vector.
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bands are also a lot weaker. The EBSD patterns for “zero” energy
loss as well as one, two, three, four, and six plasmon events are
shown in Figures 2c–2h, respectively (here, “zero” energy loss
includes the phonon losses during backscattering as well as prop-
agation to the specimen surface). The “energy-filtered” EBSD pat-
terns were taken from the same simulation dataset in Figure 2b.
The Kikuchi band contrast increases between “zero” energy loss
(Fig. 2c) and one plasmon event (Fig. 2d), but decreases for
higher-order plasmon scattering, such that by six plasmon events
(Fig. 2h) even the Kikuchi bands are barely visible. This trend of
maximum contrast at an energy loss greater than the recoil energy
is consistent with experimental results on energy-filtered EBSD
(Deal et al., 2008; Vos & Winkelmann, 2019). It should be
noted that in the simulation, only the number of plasmon events
as the backscattered electron leaves the specimen is recorded,
while in experiment what is measured is the absolute energy,
which also includes any energy loss prior to the backscattering
event. This means that the maximum contrast measured by exper-
iment will be shifted to higher energy losses compared to
simulation.

Figure 3 shows the number of TDS backscattering events con-
tributing to the EBSD pattern of a given energy plotted as a func-
tion of specimen depth. For visual clarity only results for “zero”
loss, double plasmon and six plasmon events following backscat-
tering are plotted. “Zero” loss backscatter events occur close to the
beam entrance surface, but as the energy loss increases, the distri-
bution broadens and shifts deeper into the solid. This is consistent
with the trends expected of a Poisson distribution. Kikuchi band
contrast is a result of phonon scattering, which is estimated to
have a longer mean free path compared to elastic or plasmon scat-
tering (Vos & Winkelmann, 2019). Since “zero” loss backscatter
events are confined to the near-surface region, there is much
less phonon scattering that occurs as the electrons escape the
solid. Consequently, for good Kikuchi band contrast, the back-
scatter event must occur deeper within the material, a criterion
that is satisfied at higher energy loss. However, there is a trade
off since beyond a certain number of plasmon scattering events
the contrast starts decreasing again due to the so-called plasmon
“de-channeling” effect (Mendis, 2019). For strong phonon scat-
tering, the electron beam must first channel along the atom

Fig. 2. (a) 5 kV [001]-silicon EBSD pattern simulated with only phonon scattering and no plasmon losses. The red arrows denote excess and defect Kikuchi lines. (b)
5 kV [001]-silicon EBSD pattern including plasmon losses. The “energy-filtered” EBSD patterns for “zero” loss, one, two, three, four, and six plasmon losses are
shown in (c– to (h), respectively. The numerical value at the top right-hand corner is the percentage contribution of each diffraction pattern to the total intensity
in (b). The dark corners in the diffraction patterns are due to bandwidth limiting in the multislice simulations.
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columns. During plasmon excitation, the incident electron is
deflected on average by θE, which is relatively small for a single
plasmon event (e.g., 1.7 mrad at 5 kV). For multiple plasmon
scattering, however, the cumulative effect of the beam deflection
is such that the channeling, and hence Kikuchi band contrast, is
diminished.

The ratio (θB/θE), where θB is the Bragg angle, can be taken as
a simple measure of the strength of plasmon de-channeling. The
larger θE is compared to θB, the stronger the de-channeling dur-
ing plasmon excitation; recall that a variation in incidence angle
by ∼θB is sufficient to change the channeling behavior of the

incident electrons (Hirsch et al., 1965). It is easy to show that
(θB/θE) is proportional to √E, where E is the energy of the back-
scattered electron. Therefore, plasmon scattering should have a
greater effect on Kikuchi band contrast at lower electron energies.
In the simulations, we only considered energies close to the 5 keV
primary beam energy, although the energy spectrum of backscat-
tered electrons covers the full range of values (Deal et al., 2008).
This is due to energy loss of the incident electrons prior to the
backscattering event, as well as the fact that backscatter electrons
can escape from depths far larger than the 100 Å considered in
the present simulations. Therefore, it is necessary to simulate all
allowed electron energies and not just small energy losses
(Callahan & De Graef, 2013; Pascal et al., 2018). However,
those electrons with energy significantly less than the primary
beam energy are likely to have been backscattered from deeper
within the specimen. While escaping the solid the electrons will
therefore, on average, undergo multiple plasmon scattering.
Since the ratio (θB/θE) is also smaller for these electrons, they
are likely to generate very little Kikuchi band contrast and there-
fore only contribute to the background signal. This is probably the
reason why the relative intensity of the featureless background in
experimental EBSD patterns increases with the primary beam
energy, as demonstrated for a silicon [001] single crystal in
Figure 4. Higher primary beam energies have a larger spread in
backscattered energy values, and since Kikuchi band contrast is
contained predominantly in those electrons with small energy
losses, there will be more electrons in the “tail” of the energy dis-
tribution that contribute to the background signal. Finally, we
note that EBSD is related to electron channeling patterns (ECP)
through the principle of reciprocity (Joy et al., 1982; Wells,
1999), so that plasmon excitations should have a similar effect
on the latter.

Fig. 3. The number of TDS backscattering events of a given energy plotted as a func-
tion of specimen depth. The data are extracted from the 5 kV [001]-silicon EBSD sim-
ulations (Fig. 2) and includes results from 50 plasmon configurations. For clarity, only
the results for “zero” loss, double, and six plasmon energy losses are shown.

Fig. 4. Experimental EBSD patterns from a [001]-silicon single crystal acquired at (a) 5 kV, (b) 15 kV, and (c) 25 kV. Only the unprocessed EBSD patterns are dis-
played, that is, the background intensity has not been subtracted. Note that due to the 70° tilt of the specimen the [001] zone-axis appears at the top of the EBSD
pattern, as indicated in (a).
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ECCI Profile of a Screw Dislocation

Figure 5a shows the ECCI profile across the ½[110] screw dis-
location obtained from a simulation that included phonon,
but no plasmon, scattering. Ten phonon configurations were
averaged. The ECCI profile shows a left-right asymmetric inten-
sity, consistent with previous experimental and simulated
results (Wilkinson & Hirsch, 1997; Zaefferer & Elhami, 2014;
Kriaa et al., 2019). The asymmetry is due to the dislocation
strain field causing a reversal in lattice plane bending, and
therefore electron beam channeling, either side of the disloca-
tion. There is also a narrow (∼30 Å width) peak in ECCI inten-
sity at the dislocation core, which to our knowledge has not
been reported previously, probably due to the resolution being
better in the simulation compared to experiment and/or
signal-to-noise issues arising from a large background in the
experiment. Changing the sense of the dislocation displacement

[equation (7)] reversed the left-right asymmetry of the ECCI
intensity profile, but the small peak at the dislocation core
remained.

Figure 5b shows the ECCI profile after including plasmon
losses; 100 phonon/plasmon configurations were averaged.
Unlike EBSD patterns, there is no significant change compared
to the pseudo-elastic result (Fig. 5a). The ECCI profiles for
“zero” loss and one to six plasmon losses are shown in Figures
5c–5i, respectively (note that only plasmon events prior to back-
scattering are recorded). Interestingly, all the “energy-filtered”
ECCI profiles look very different from Figure 5b, indicating that
there is not one dominant contributing energy loss. This can be
understood by comparing plasmon de-channeling with the
change in channeling conditions induced by the dislocation strain
field. The change in deviation parameter sd for a reciprocal vector
g due to a displacement vector field u is given as follows (Hirsch

Fig. 5. (a) ECCI intensity profile across a ½[110] screw dislocation in silicon at a depth of 50 Å from the free surface. The sample is tilted for strong g = ±220 system-
atic row excitation in the symmetry orientation. The screw dislocation is at the origin of the graph. The simulation includes only phonon scattering and no plasmon
losses. (b) The same ECCI profile but with plasmon losses also included. (a, and (b) Plotted on the same intensity scale to aid direct visual comparison. The
“energy-filtered” ECCI profiles for “zero”, one, two, three, four, five, and six plasmon losses are shown on the same intensity scale in (c– to (i), respectively. In
all simulations, the 5 kV incident beam had a 10 mrad probe semi-convergence angle and zero electron-optic aberrations.
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et al., 1965; Kriaa et al., 2019):

sd = g · ∂u
∂z

. (8)

For our simulations, the 220 reflection g is parallel to u. The
magnitude of u is given by equation (7) and z represents the spa-
tial coordinate along the electron optic axis. Similarly, the devia-
tion parameter vector sg for an incident wavevector Ko in a perfect
crystal satisfies (Spence & Zuo, 1992):

2Ko · sg = K2
o − |Ko + g|2. (9)

It follows that for normal incidence, the change in deviation
parameter (sp) following plasmon scattering is approximately

sp = −g · Dkt
Ko

. (10)

Equation 10 is evaluated assuming g is parallel to Δkt and |Δkt|≈KoθE
(small-angle approximation). The ratio |sd/sp| is then a simple
measure for evaluating the role of plasmon scattering on ECCI
contrast. If the ratio is large plasmon de-channeling is relatively
minor and the ECCI contrast will mainly be due to the dislocation
strain field. Figure 6 maps the logarithm of the |sd/sp| ratio as a
function of position in the (110) plane (see Fig. 1b), with the
screw dislocation end-on and at the origin of the plot. Plasmon
de-channeling is only significant in regions where |sp|>|sd|, that
is, when the logarithm of |sd/sp| has a negative value. From
Figure 6, this condition is satisfied in only small regions of the
100 Å thick simulation “volume”. Furthermore, close to the dislo-
cation core region, the |sd/sp| ratio is several orders of magnitude
large. For dislocations close to the beam entrance surface, the
ECCI contrast will, therefore, be dominated by the intrinsic strain
field. Plasmon losses have a negligible effect, as confirmed by the
simulation results in Figure 5. Backscattered electrons with energy
significantly lower than the primary beam energy are likely to be
generated deeper within the sample, where the dislocation strain

field is small. Therefore, these electrons do not produce any dis-
location contrast and will only contribute a featureless back-
ground signal, similar to EBSD. Removal of this background,
using for example a Timepix direct electron detector with energy
thresholding [30], would improve the peak-to-background ratio of
the ECCI signal and potentially enable analysis of the dislocation
core structure (e.g., the small peak in Figs. 5a and 5b).

Conclusions

The multislice method of Chen and Van Dyck has been extended
to include plasmon losses and is used to simulate EBSD patterns
and ECCI intensity profiles of a ½[110] screw dislocation in
[001]-silicon. The EBSD simulations reproduce many of the
trends observed experimentally. In particular, it is found that
the Kikuchi band contrast is maximum for small energy loss
(i.e., few plasmon scattering events) following backscattering.
This can be understood by considering the competition between
phonon scattering of the outgoing backscatter wave and plasmon
de-channeling. For strong phonon scattering and Kikuchi band
contrast, the backscatter event must take place deeper within
the sample. However, this must be balanced by the fact that the
probability for plasmon excitation is also greater; the cumulative
effect of many plasmon events with characteristic scattering
angle θE is to de-channel the backscattered wave off the atom col-
umns, thereby decreasing phonon scattering. For the same reason,
it follows that those backscattered electrons with energy signifi-
cantly lower than the primary beam energy will have very little
Kikuchi band contrast and therefore contribute mainly to the
background signal in an EBSD pattern. Simulated ECCI profiles
for dislocations, on the other hand, show a very different behav-
ior. Here, plasmon losses have a negligible effect on the ECCI pro-
file because the lattice plane bending by the dislocation strain field
has a greater effect on electron beam channeling, and hence back-
scattering, compared to the plasmon scattering angle θE.
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APPENDIX

In this section, we compare simulated elastic backscattered diffraction patterns
with experimental EBSD patterns. The elastic backscattered wave can be calcu-
lated using the Chen & Van Dyck (1997) multislice method. The solution has
a simple form [see equation 48 in Chen & Van Dyck (1997)] in the “single
backscattering” approximation, where multiple backscattering events are
assumed to be negligible. Note that since the backscattering is purely elastic
(i.e., TDS scattering is only in the forward direction), the backscattered
waves from different specimen depths can interfere with one another (Chen
& Van Dyck, 1997). Fourier transforming the net wavefunction at the speci-
men surface gives the backscattered diffraction pattern.

Figure A.1a shows the simulated [001]-silicon elastic backscattered diffrac-
tion pattern for a 5 kV, aberration-free, 10 mrad semi-convergence angle probe
at normal incidence. The specimen thickness was 100 Å and ten phonon con-
figurations were averaged. Plasmons were not included in the simulations. The
intensity of the Kikuchi bands are much weaker compared to the Bragg reflec-
tions (the intensity is plotted on a logarithmic scale). The diffraction pattern
for the forward scattered wave at the specimen exit surface (Fig. A.1b), on
the other hand, displays more prominent Kikuchi bands along with Bragg
reflections. Experimental EBSD patterns (e.g., Fig. 4) are dominated by
Kikuchi band contrast and only occasionally show weak RHEED (reflection
high-energy electron diffraction) spots (Vespucci et al., 2015). This is

Fig. 6. Natural logarithm of the |sd/sp| ratio plotted as a function of position. The
viewing direction is [110] with the dislocation end-on and at the origin. The dashed
line represents the trace of the (1�11) slip plane (see Fig. 1b).
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inconsistent with Figure A.1a and indicates that high-angle TDS is the domi-
nant contribution to EBSD patterns even in crystalline specimens.
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