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Abstract 
In education, multisite trials involve randomisation of pupils into intervention and comparison groups 

within schools. Most analytical models in multisite educational trials ignore that the impact of an 

intervention may be school dependent. This study investigates the impact of statistical models on 

the uncertainty associated with an effect size using comparable outcomes and covariates from ten 

multisite educational trials funded by the UK’s Education Endowment Foundation. Ordinary least 

squares (OLS) models often assume that the pupil’s outcomes within schools are independent, which 

is not always true. Multilevel models address this limitation by incorporating heterogeneity between 

schools to account for intra-school dependency. This inflates the confidence interval of an effect size 

obtained from the multilevel models than from an OLS model. For a multisite trial, the heterogeneity 

between schools also includes the differences in the expected impact of intervention between 

schools. Ignoring this additional school-by-intervention variation in a multisite trial could affect both 

its interpretation and conclusions. A robust approach to estimate the confidence intervals for effect 

size from multisite trials is by treating effect size as a parameter with its distribution. This paper is 

important for evaluating evidence from multisite trials by accounting for all sources of variability. 

Keywords: multisite trial; education, multilevel model; effect size 
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Introduction 

Multisite randomised controlled trials are routinely used in education to evaluate the benefit of an 

intervention on educational attainment. A multisite trial involves two or more sites with a common 

intervention and data collection protocol. An important characteristic of a multisite trial is 

randomisation of participants to intervention and comparison groups within sites (Feingold, 2015; 

Meinert, 2012). In education, multisite trials involve randomisation of pupils within schools. This 

design is different from cluster randomised trials, where schools instead of pupils are randomised to 

an intervention or comparison group (see Xiao, Kasim and Higgins 2016, pp. 4 for a fuller explanation 

of the different designs). It is however sometimes erroneously assumed that a multisite trial design 

removes heterogeneity between schools and that pupils from the same school can safely be 

considered as independent (Hill & Rowe, 1996; Hutchison & Styles, 2010). This assumption 

contradicts one of the main strengths of a multisite trial that it provides useful information on how 

the effect of an intervention differs between schools and the fact that impact of an intervention on 

children in a multisite trial could depend on their school (Bloom & Spybrook, 2017). The difference 

in the effect of an intervention between schools or the school-by-intervention interaction poses an 

additional challenge in analysing data from multisite trials, which is often overlooked. Ignoring 

school-by-intervention interaction can also offset the assumed benefit of a multisite trial compared 

with a cluster randomised trial because multisite trials enable a formal testing of the generalizability 

of an intervention over different site settings in which the intervention is implemented (Raudenbush 

& Liu, 2000). Similarly, Wampold and Serlin (2000) also suggest that ignoring intervention-by-site 

interaction can have serious consequences for testing the null hypothesis that the intervention is 

equally effective for each site as well as for estimating its variance. Understanding this variation in 

the impact of an educational intervention across schools has important implications for policy and 

practice (Weiss et al., 2017). A good statistical practice is to ensure that the choice of an analytical 

method is informed by the study design (Shadish, Cook, & Campbell, 2002). In the case of multisite 

trial, it is not sufficient just to assume that school-by-intervention interaction is zero, but a precise 

model should be specified to appropriately capture the variation in the effect of an intervention 

across schools, if such variation exists. Accounting for all sources of variation in a multisite 

educational trials can yield appropriate estimates of intervention effect and reduces the risk of false 

conclusions (Wampold & Serlin, 2000). 
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 There are different analytical approaches to analyse multisite trial data. A common but incorrect 

approach is to treat the pupil level data as independent and ignore the clustering of pupils within a 

school and school-by-intervention interaction (Tracey, Chambers, Bywater, & Elliott, 2016). A second 

approach is to account for school effects in the model (Styles, Clarkson, & Fowler, 2014; Wolgemuth 

et al., 2013), but ignore school-by-intervention interactions. The third and more appropriate 

approach is to account for both school and school-by-intervention interactions in the model 

specification. Ignoring school effects can bias the estimation of the mean difference between 

intervention and comparison groups and its associated standard error (Feaster, Mikulich-Gilbertson, 

& Brincks, 2011). This occurs when children from the same school are more homogeneous than the 

children from another school. The other complication in analysing multisite trial data is to treat 

school and school-by-intervention as fixed or random effects (Clarke, Crawford, Steele, & Vignoles, 

2015). Using a fixed effect model for multisite trials with school-by-intervention interactions can 

obscure the interpretation of results because the effect of an intervention cannot simply be 

evaluated based on the mean difference between the intervention and comparison groups (Feaster 

et al., 2011). In contrary to the common assumption that a random effects model is most appropriate 

when the aim is to draw inferences about the wider population, a random effects model offers a 

flexible framework to account for different sources of variation in a multisite trial (Bloom & Spybrook, 

2017) even if there is no intention to generalise findings beyond the sample. Using a random effects 

model is also not free from disadvantage, particularly when the sample size is very small it can 

overestimate effects (Eager & Roy, 2017). Despite the challenges associated with the random effects 

model, it is the most appropriate model which can fully capture the different sources of variability in 

a multisite trial. We argue that treating schools as fixed effects in a multisite trial, but as random 

effects in a cluster randomised trial creates inconsistency that is difficult to reconcile. The random 

effects model in a multisite trial has two random effects components, one component for main 

random effects for schools and the second component for random effects for school-by-intervention 

interactions (Kasim, Xiao, Higgins, & Troyer, 2017; Raudenbush & Liu, 2000).  

Another important issue in analysing multisite trials is how to calculate an effect size, a common 

metric or standardised mean difference for the impact of an intervention in education trials. The 

benefit of reporting the effect size in educational trials is to have a unitless metric that can also be 
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used in meta-analysis (Hattie, 2009; Higgins et al., 2005).  The effect size ameliorates the 

discrepancies between measuring units, and enables comparisons of educational impact on 

outcomes with different units (Lee, 2016). However, effect size estimators are ratio estimators, 

whose variances must account for estimation errors in their numerators and denominators. But in 

practice, analysts often ignore the variation in the denominator terms, which are assumed to be 

known (Schochet & Chiang, 2011). There are important differences in the way effect sizes and there 

associated confidence intervals are calculated in multisite trials (Borenstein, 2009). The choice of the 

numerator (mean difference between intervention and comparison group) and denominator 

(standard deviation) of the effect size vary across different studies in education. Some studies 

suggest the use of a mean difference between the intervention and comparison group from a 

regression model as the numerator and the standard deviation of the raw post-test outcome as the 

denominator to estimate the effect size (Connolly, Biggart, Miller, O’Hare, & Thurston, 2017; Lipsey 

et al., 2012). Some studies use unconditional variance i.e. variance estimated from a multilevel model 

without covariates (Tymms, 2004; Wijekumar et al., 2014) to estimate the standard deviation. The 

use of an empty multilevel model without covariates seems redundant in the sense that the total 

variance from an empty model should be the same as the variance of the outcome data (Moerbeek, 

van Breukelen, & Berger, 2003). The main point for using unconditional variance is that it allows 

results to be generalised beyond the participants in the trial. This argument is weak because 

generalising results from a randomised control trial to non-participants depends on other important 

factors (Deaton & Cartwright, 2018). The alternative approach as proposed in this study is to use 

conditional variance and to use the standard deviation from the model where other covariates are 

also included as fixed effects. Conditional variance can best capture the effect of an intervention on 

study participants and can help in establishing internal validity. Although establishing the internal 

validity of an intervention in an education trial is necessary, it is not a sufficient condition for external 

validity. 
 

Whatever approach is used for calculating an effect size, it is important always to report a measure 

of uncertainty (Houle, 2007). In education, this is commonly done by reporting the confidence 

interval of an effect size, though there is some controversy here due to lack of probabilistic sampling 
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of participants in most educational trials. Confidence intervals are often interpreted as the range of 

possibilities (Lee, 2016). However, there is no theoretically derived formula for calculating confidence 

intervals for an effect size in a multisite trial using a random effects model. In this paper, we propose 

an approach for quantifying uncertainty in effect size estimation in multisite trials based on a similar 

set of theorems used by Hedges (2007) to derive uncertainty for effect sizes in cluster randomised 

trials. Our approach uses conditional variance and treats effect size as a random variable with its own 

distribution. 

Data 

The Education Endowment Foundation (EEF) is an independent charity that aims to raise the 

attainment of disadvantaged children in primary and secondary schools in England. Different 

educational trials have been conducted by EEF to evaluate a range of interventions directly or 

indirectly involving pupils to improve their educational attainment. All these trials are independently 

evaluated by teams mainly from universities and independent research organisations, who then 

submit the individual pupil-level data from these evaluations to EEF for archiving and further 

research. This study uses individual level pupil data from ten multisite trials extracted from the EEF 

Archive, judged to be of high quality with 3 or higher ‘padlocks’ (Higgins et al., 2016) and involving at 

least ten schools. Brief descriptions of the trials are provided in Table 1. The number of schools varies 

from 10 to 54 schools per trial and the number of pupils ranges from 216 to 11,590, indicating the 

considerable variation in the number of schools and pupils between trials. Most of the multisite trials 

equally allocate children to the intervention and comparison groups, except for the three trials 

Parent Academy, Act, Sing, and Play and ReflectEd where the allocation of children within schools 

was unequal. As expected, a strong correlation between pre-test and post-test reading (or 

mathematics) scores was observed for the multisite trials in this study. More details about the trials 

can be found in their respective evaluation reports (references for the evaluation reports are 

provided in the last column of Table 1).  
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Methods 

Most education trials are analysed using a two-level random effects model to capture the 

heterogeneity between schools and pupils. While this is appropriate for a cluster randomised trial, it 

is not adequate for analysing multisite trials for the reasons outlined above. Suppose 𝑃𝑟𝑒!"  and 𝑌!"  

are the pre-intervention and post-intervention scores, respectively, for pupil 𝑗 in school 𝑖, and 𝑇!"  is 

an indicator variable taking the value 1 if pupil 𝑗 in school 𝑖 is in the intervention group and 0 if the 

pupil is in the comparison group. A random effect model for a multisite trial can be formulated as  

 

 𝑌!" = 𝛽# + 𝛽$𝑃𝑟𝑒!" + 𝛽%𝑇!" + 𝑏!$ + 𝑏!%𝑇!" + 𝜀!" , (1) 

 

 where 𝛽# is the intercept, 𝛽$ is the gradient between post and pre-test intervention score and 𝛽% is 

an adjusted mean difference between the intervention and comparison groups. The random effect 

𝑏!$  is the random intercept quantifying baseline heterogeneity between schools and the random 

effect 𝑏!%  quantifies differential effects of the intervention across schools through school-by-

intervention interactions. Lastly, 𝜀!"  denotes the residual for pupil 𝑗 in school 𝑖 . To complete the 

model formulation, the random effects 𝐛 ∼ 𝑁%(𝟎, 𝚺) and residuals 𝜀!" ∼ 𝑁(0, 𝜎&% ) are assumed as 

independent. The matrix 𝚺 is structured as  

 

 𝚺 = 7𝜎'
% 𝜏
𝜏 𝜎(%

9, (2) 

 

 where 𝜎'%  represents the baseline heterogeneity between schools, 𝜎(%  represents the variation of 

the effect of the interventions across schools, and 𝜏  is the covariance between the baseline 

heterogeneity between school and the differential effect of the interventions. More information 

about multilevel random effects model formulation can be found in Verbeke and Molenberghs 

(2009).  

It follows from equation (1) that the variance of the post-intervention score (𝑌!") would depend on 

whether a pupil is in the intervention or comparison group. Similarly, variance in the longitudinal 

analysis  with random slope can be expressed as a function of time (Fitzmaurice, Laird, & Ware, 2012). 

For pupils in the intervention group, the variance of the score is  

 𝑉𝑎𝑟<𝑏!$ + 𝑏!%𝑇!" + 𝜀!"= = 𝜎'% + 𝜎(% + 2𝜏 + 𝜎&% , (3) 
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 where 𝜎&%  denotes the residual variance. If 𝜏 = 0 it would mean that there is no association between 

school ability prior to the trial and how the effect of the intervention varies between schools. If 𝜎(% =

0, the effect of the intervention is same for every school in the trial. These extra sources of variability 

distinguish analysing cluster randomised trials from multisite trials. For pupils in the comparison 

group, the variance of their scores can be derived as  

 

 𝑉𝑎𝑟(𝑏!$ + 𝜀!") = 𝜎'% + 𝜎&%  (4) 

 

 In a more generalised form equation (1) can be formulated using matrix notation with a closed 

formula for deriving the covariance matrix and also shown in Verbeke and Molenberghs (2009) as:  

 

 𝐘! = 𝐗!𝛃 + 𝐙!𝐛! + 𝛆! , (5) 

 

 where 𝐘!  is a vector of post-test scores in school 𝑖, 𝐗!  is a fixed effect design matrix for pupils in 

school 𝑖 , 𝛃 is a vector of regression coefficients, 𝒁!  is a random effect design matrix for random 

intercept and school-by-intervention interactions, 𝐛!  is a vector of random effects for schools and 

school-by-intervention interactions, 𝛆𝐢  is a vector of residuals for pupils in school 𝑖. According to 

Verbeke and Molenberghs, (2009); Fitzmaurice, Laird, and Ware (2012), the covariance matrix can 

be obtained as: 

𝚺! = 𝐙!𝚺𝐙!′ + 𝜎&% 𝐈*!  

with 𝐈*!  denoting the 𝑛! × 𝑛!  identity matrix, and 𝑛!  is the number of pupils in school 𝑖. 

Suppose we assume that an equal number of pupils within schools were randomised to the 

intervention and comparisons groups and 𝑛! = 4 for illustration purpose only. Then we have  

 𝐙′! = J
1 1 1 1
1 1 0 0 L, 

where the first row is for the random intercepts, and the second row is for the school-by-intervention 

interactions (which is 1 for pupils in the intervention groups within school and 0 for pupils from the 

same school who are randomised to the comparison group). With 𝚺 as in equation (2), the matrix 𝚺!  

can be structured further as  
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𝐙!𝚺𝐙!′ + 𝜎&% 𝐈*! =

⎝

⎜
⎛
𝜎'% + 𝜎&% + 𝜎(% + 2𝜏 𝜎'% + 𝜎(% + 2𝜏 𝜎'% + 𝜏 𝜎'% + 𝜏
𝜎'% + 𝜎(% + 2𝜏 𝜎'% + 𝜎&% + 𝜎(% + 2𝜏 𝜎'% + 𝜏 𝜎'% + 𝜏
𝜎'% + 𝜏 𝜎'% + 𝜏 𝜎'% + 𝜎&% 𝜎'%

𝜎'% + 𝜏 𝜎'% + 𝜏 𝜎'% 𝜎'% + 𝜎&%⎠

⎟
⎞
. 

 

By taking the trace of 𝚺!, the total variance 𝜎+% is defined as 
!"(𝚺!)
&

 ,which in this example will be  𝜎'% +

𝜎&% + 0.5𝜎(% + 𝜏.  

More generally for unbalanced data, the total variance in a multisite trial is defined as  

 

 𝜎!" =
#!(%"

#&%$
# &%%

#&"')&#&(%"
#&%$

# )
#

 (6) 

  

where 𝑁 is the average number of pupils in a school, and 𝑁+  (𝑁,) is the average number of pupils in 

the intervention (comparison) groups, respectively. This shows that the total variance in a multisite 

trial is not as straightforward to obtain as for a cluster randomised trial. 
 

Effect size 
 

The main aim of this paper is to present an alternative approach for calculating confidence intervals 

of the effect size in multisite trials. The common practice is to calculate confidence intervals for the 

effect size in a multisite trial using standardized confidence intervals of the regression coefficients. 

Effect size is usually estimated by the formula defined below: 

 𝐸𝑆 = )'.
!
*)'.

&

+,
 (7) 

The effect of the intervention 𝑌!.
+
− 𝑌!.

,
 is often replaced by the estimated regression coefficient of 

the intervention 𝛽V%. The standard deviation can be defined as the square root of the unconditional 

variance from an empty model without covariates (Tymms, 2004) or the square root of the 

conditional variance. The standard deviation, whether unconditional or conditional, is commonly 

defined as 𝑆𝐷 = Y𝜎'% + 𝜎&% , which correspond to the total variance from a random effect model or 

multilevel model with only school as random effects (Xiao, Kasim & Higgins 2016). As shown in 

equation (6), this does not fully capture total variability in a multisite site trial. From equation (6), 

effect size in a multisite trial  can be calculated using total variance as 
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 𝐸𝑆 = '!.
#
('!.

$

)*
= +,%

-&
#(()

%*(+
% *(,

%*%-)*&$(()
% *(+

% )
&

. (8) 

 

with the variance parameters and intervention effect being replaced by their corresponding 

estimates from a multilevel model with random intercept and random school-by-intervention 

interactions. The lower bound of the confidence interval is calculated as ./"
01

 and the upper bound is 

calculated as 2/"
01

, where 𝐿𝛽% and 𝑈𝛽% are the 95% confidence limits of the regression parameters 𝛽% 

(Maxwell et al., 2014). The major drawback of this approach is that it ignores the uncertaity in 

estimating the standard deviation term and regards it as a constant. As a result, confidence intervals 

based on this approach are likely to be narrower than the true confidence intervals. A more 

appropriate approach is to treat the effect size as a random variable with its own distribution, as 

proposed for cluster randomised trials by Hedges (2007).  
 

Estimating variance of effect size in multisite trials 

The main challenge for deriving confidence intervals for an effect size is that its true distribution is 

unknown, but can be approximated as a noncentral t-distribution as proposed by Hedges (2007). For 

convenience, Theorem 1 for approximating the distribution of an effect size is formulated below, 

while proof of the theorem is included in the appendix. 

Theorem 1: Let 𝑌 ∼ 𝑁(𝛽, 𝑎𝜎%)  and 𝑆%  be a quadratic form in normal variables that is 

independent of 𝑌 so that 𝐸(𝑆%) = 𝑏𝜎% and 𝑉𝑎𝑟(𝑆%) = 2𝑐𝜎3, where 𝑎, 𝑏 and 𝑐 are constants. Then  

𝐷 = '√/
)

 

is a consistent estimate of effect size 𝐸𝑆 = 
+
0

  with approximate variance  

 𝑎 + 1
2/%

(𝐸𝑆)2. 

Balanced data 

Using Theorem 1 and the other theorems in Hedges (2007), it is possible to derive a formula to 

calculate the variance of an effect size in a multisite trial and consequently its associated confidence 

intervals. We first study the case of balanced data. Suppose there are 𝑀 schools with 2𝑛 children (or 

pupils) in each school. Within each school, there are n children from the intervention group and an 
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equal number of children in the comparison group. The school-specific mean 𝛽# + 𝑏!$ is estimated 

via 𝑌!.
,

, while the school-specific intervention effect 𝛽% + 𝑏!%  is estimated by the mean difference 

within school 𝑖, 𝑌!.
+

- 𝑌!.
,

. These estimates are obviously unbiased, with variances  

 𝑉𝑎𝑟 _𝑌!.
,
` = Var d

∑ 5!#
$%

#&'

*
e = 𝜎'% +

6(
"

*
 (9) 

 𝑉𝑎𝑟(𝑌!.
+
) = 𝜎'% + 𝜎(% + 2𝜏 +

6(
"

*
 (10) 

Using variance estimate from equation (9), (10) and the covariance between treatment and control, 

variance of the mean difference in each site can be estimated as.  

              𝑉𝑎𝑟(𝑌!.
+
− 𝑌!.

,
) = 𝜎(% +

%6(
"

*
 (11) 

For balanced data, the fixed effects 𝛽# and 𝛽% are estimated by simply taking the average across the 

sites, i.e. 𝛽V# = 𝑌..
,  and 𝛽V% =			 𝑌..

+
− 𝑌..

,  and the variance of these estimates can be obtained using 

equation (9) and (11):  

 

																																																			𝑉𝑎𝑟(𝛽"0) =
1
𝑀 (𝜎𝐵

2 + 𝜎𝑊
2

𝑛 ), (12) 

                                𝑉𝑎𝑟(𝛽V%) =
$
>
(𝜎(% +

%6(
"

*
) (13) 

To estimate the variance of the effect size, we first define the following four mean squares 

considering all sources of variation in our multilevel nested design.  

 

 𝑆32 = ∑/!01 (∑
2
301 [('!3

#('!.
#
)%6('!3

$('!.
$
)%])

8(2&(2)
 

 𝑆92 = ∑/!01 ('!.
$
('..

$
)%

8(:
 

 𝑆;2 = ∑/!01 ('!.
#
('..

#
)%

8(:
 

 𝑆<2 = ∑/!01 (('!.
#
('!.

$
)(('..

#
('..

$
))%

8(:
. 

𝑆&%  is within school sample variance and the next three mean squares are the sample variances of 

𝑌!.
,

, 𝑌!.
+

 and 𝑌!.
+
− 𝑌!.

,
 respectively. Montgomery (2017) provides more information about defining 

sum of squares and analysis of variance for nested multilevel designs.  
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𝑆&%  is an unbiased estimate of 𝜎&%  (Hedges, 2007) with variance 
0+
4

(&(:)8
.	Mean and variance of the 

next three mean squares according to equation (9), (10), and (11) can be estimated using chi-square 

distribution assumptions (Snedecor & Cochran, 1989).  

 

 𝐸(𝑆92) = 𝜎92 +
0+%

&
							𝑉𝑎𝑟(𝑆92) = 2(0)%6

(+
%

2 )%

8(:
 (14) 

 

 𝐸(𝑆;2) = 𝜎92 + 𝜎<2 + 2𝜏 +
0+%

&
						𝑉𝑎𝑟(𝑆;2) = 2(0)%60,%62=6

(+
%

2 )%

8(:
 (15) 

 

 𝐸(𝑆<2) = 𝜎<2 +
20+%

&
,						𝑉𝑎𝑟(𝑆<2) = 2(0,%6

%(+
%

2 )%

8(:
 (16) 

 

 We first solve the simplest task of estimating effect size based on within school variance 𝐸𝑆?!@A!* =

𝛽%/𝜎&. Using the moments of 𝑆&% , we can estimate 𝑑? as 

 𝐸𝑆i?!@A!* =
/B"
0(

 

To obtain the approximate variance  of 𝑑?, we also need values of 𝑎, 𝑏 and 𝑐 as shown in Theorem 

1. In this case, apply theorem 1 by replacing 𝜎5 = 𝜎𝑊2   and 𝑆% = 𝑆&% .   

𝑎 can be estimated as 
>?"(+,%)
0+%

 where 𝑉𝑎𝑟<𝛽V%= can be obtained from equation (13), this follows 

that 𝑎	 = 0,%6
%(+
%

2
80+

%
 

Since,	𝑆&%  is an unbiased estimate of 𝜎&% , this follows that 𝑏 = 1. Because, the variance of 𝑆&%  is 

0+
4

(&(:)8
, this follows that 𝑐 =

:
28(&(:) 

Together we apply Theorem 1 to estimate  𝑉𝑎𝑟(𝐸𝑆i?!@A!*) 

 𝑉𝑎𝑟(𝐸𝑆1@A!BA&) =
:
8
(0,

%

0+%
+ 2

&
) + (<)6!78!2)%

C8(&(:)  (17) 

 

Note that in Hedges (2007), an external estimate of the intraclass correlation 𝜌 = 𝜎'%/(𝜎'% + 𝜎&% ) is 

required for the value of 𝑎 to be regarded as a constant. In our case, the ratio 𝜎(%/𝜎&%  plays a similar 
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role. In practice, the effect size in the variance formula needs to be replaced by its estimate 𝐸𝑆i?!@A!* 

and internal estimates of 𝜎(% and 𝜎&%  which can be obtained using the mean squares defined above. 

 

To obtain the variance of the effect size based on total variance in a multisite trial data, we propose 

the following:  
 

 (𝐸𝑆1!D!?E) =
0+
0#
(𝐸𝑆1@A!BA&) 

 

 𝑉𝑎𝑟(𝐸𝑆1!D!?E) =
:

80#%
(𝜎<2 +

20+%

&
) + (<)797:;)%

C8(&(:)  (18) 

 

Unbalanced data 

In most educational trials, the number of children per school is different and the assumption of equal 

numbers of children per school is therefore questionable, though it is often assumed in sample size 

calculations. Suppose that there are 𝑀 schools and each school has 𝑛!  = 𝑛!+ + 𝑛!,  children, where 𝑛!+  

and 𝑛!,  are the number of children in the intervention and comparison groups within school 𝑖 

respectively. The school specific intervention effect estimate 𝑌!.
+
− 𝑌!.

,
 has variance  

 𝑉𝑎𝑟(𝑌A.
;
− 𝑌A.

G
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$

&!
#6&!

$. 

Unlike taking a simple average of 𝑌!.
+
− 𝑌!.

,
 across schools, the generalised least squares estimation 

for the overall intervention effect in unbalanced data is the precision weighted average of these 

mean differences within school (Raudenbush & Bryk, 2002) and is defined as  

 𝛽72 = 8∑8AI:
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with variance  

 𝑉𝑎𝑟(𝛽72) = 8∑8AI:
:

0,
%6

(+
%

2<!

:

(:

, (19) 

 The residual variance 𝜎&%  can be estimated by:  
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Similar to the case of balanced data, 𝑆&%  is an unbiased estimate of 𝜎&%  (Hedges, 2007) with variance 

20+
4

∑/!01 (&!(2)
. 

  

Using equation (19) and the mean and variance estimate of 𝑆&% 	above,  we can apply Theorem 1 by 

replacing 𝜎5 = 𝜎𝑊2   and 𝑆% = 𝑆&%  and obtain values of a, b and c as we did in the balanced data case. 

  

 𝑎 = (∑8AI:
&H!0+%

&H!0,%60+%
)(: 

 𝑏 = 1 

 𝑐 =
:

∑/!01 (&!(2)
 

Using theorem 1, a consistent estimate of 𝐸𝑆?!@A!*  (= 𝛽B2
𝑆𝑊

) can be obtained with its approximate 

variance as 

 𝑉𝑎𝑟(𝐸𝑆1@A!BA&) = ;∑8AI:
&H!0+%

&H!0,%60+%
<
(:
+ (<)6!78!2)%

2∑/!01 (&!(2)
 (20) 

  

Similar to the case of balanced data,  relating two effect size 𝐸𝑆?!@A!* and 𝐸𝑆@D@EF ,	variance of the 

effect size can be obtained as: 

 

 𝑉𝑎𝑟(𝐸𝑆1!D!?E) = ;∑8AI:
&H!0#

%

&H!0,%60+%
<
(:
+ (<)797:;)%

2∑/!01 (&!(2)
 (21) 

 

Using equations (8) and (21), we propose to calculate effect size and its associated 95% confidence 

intervals in multisite trials as  

                                      𝐸𝑆1!D!?E ± 1.96A𝑉𝑎𝑟(𝐸𝑆1!D!?E)                                               (22) 
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Model Implementation 

Our analysis aims to estimate the effect size and its confidence intervals using the methods proposed 

in this study for ten multisite trials and compare it with the previous statistical methods typically used 

to analyse multisite trials. Post-test maths/reading scores were the outcome variables and the 

covariates used in each model were pre-test maths/reading scores and intervention indicator. We 

used multilevel models with both random intercept and random school-by-intervention interactions 

as shown in equation 1 to obtain intervention effect and its variance estimates. These estimates were 

compared with a simple OLS model and multilevel model with only random intercepts for school. The 

effect size was estimated using two different approaches. First, dividing the adjusted mean difference 

obtained from a multilevel model by the square root of the total variance from the same model 

(conditional variance) or the empty model (unconditional variance). Confidence intervals were 

generated by directly dividing lower and upper confidence limits of the intervention effect by the 

square root of the total variance estimates from the same model (conditional variance) or the empty 

model (unconditional variance). The second approach for estimating effect size and their confidence 

intervals were based on our theoretical derivation. All these analyses were performed using R 

software. We implemented the OLS model using lm package and multilevel models using lme4 

package in R.  

 
Results 

 In this section, we provide empirical evidence about the impact of the different choices of models 

for analysing multisite trials data. We first investigate whether the difference in the effect of an 

intervention across schools can be assumed to be zero and whether this assertion is supported by 

the multisite educational trials analysed in this study. We further discuss the impact of using 

unconditional or conditional variance. Unconditional variance implies standardising the adjusted 

mean difference by an unadjusted variance. Lastly, we investigate the impact of assuming the same 

distribution for mean difference and effect size by treating the variance estimated from the same 

data as a constant. Although there is no standard distribution for the effect size, it is theoretically a 

random variable and approximating its distribution as proposed by Hedges (2007) is a more coherent 

approach than treating estimated variance from the same data as a constant. 
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Why account for school-by-intervention interactions?  
 

First, it is important to understand that randomisation of children within schools does not imply that 

the data are independent. Table 2 presents the decomposition of the sources of variation in the 

analysed multisite trials. As expected most of the variation is due to the difference in the outcomes 

between the children in each trial. However, there are cases where the proportion of variability 

explained by baseline heterogeneity between schools or the proportion explained by the school-by-

intervention interactions is more than 10%. It should be noted that the proportion explained by 

either school (P.𝜎'% ) or school-by-intervention (P.𝜎(% ) cannot be interpreted as the intracluster 

correlation coefficient because the variation in a multisite trial can also be due to the differences in 

the quality of delivery of the intervention between schools and not just the correlation between pairs 

of pupils from the same school. 

 
As shown in equation (11), baseline heterogeneity between schools does not contribute to the 

standard error associated with the mean difference between intervention and the comparison 

groups because the interventions are delivered within schools. However, the variation resulting from 

the differential effect of an intervention between schools contributes to the standard error. This 

means that assuming that the data is independent is likely to result in a smaller standard error. Table 

3 presents the estimated adjusted mean difference between intervention and the comparison groups 

by first assuming that the data are independent (OLS), second assuming that the data are not 

independent and accounting for baseline difference between schools (MLM_Sch) and lastly that the 

data are not independent and accounting for baseline differences between schools as well as the 

different effects of the interventions between schools (MLM_Sch_Int). 

 

It is interesting to note that for the outcomes where the proportion of variability due to school-by-

intervention interactions is negligible (Table 2), all the three models produced similar point estimates 

and confidence intervals (Table 3). This is apparent for the catchn maths outcome, where point 

estimate and confidence intervals for both MLM_sch and MLM_Sch_Int model shows no difference. 

For the outcomes where the proportion of variability due to school-by-intervention is tangible, the 

multilevel model that accounted for baseline difference between school and the different effect of 

the intervention between schools has much wider confidence intervals. This is the case for maths 

outcomes rflEdm and textpm and the reading outcomes graphorime, rflEdr, sor and ve. It is not 
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unexpected that for trials with substantial heterogeneity in baseline differences between schools, 

the results from OLS and a multilevel model with only school as random effects are comparable. This 

is because as shown in equation (11), the baseline differences between schools cancels out in 

calculating the variance of mean difference in a multisite trial. It is therefore important to re-

emphaise that assuming multisite trial data as independent could be misleading when the effect of 

an intervention vary between schools. A multisite trial is more powerful than a cluster randomised 

trial when there is substantial variation in the effect of an intervention across schools.   

Unconditional or conditional variance? 

An important discussion for calculating the effect size is about using unconditional variance or 

conditional variance. The main argument in favour of using unconditional variance is based on the 

intention to generalise the results from a selective population in randomised control trial to a wider 

population (Millard et al., 2014). In an educational trial, the aim is usually to generalise these results 

beyond the schools and the children that participated in the trial (Schagen & Elliot, 2004). This 

intention relates to the external validity of findings from a trial, which is a greater issue than just 

using unconditional variance. To establish external validity, one must first establish that trial 

participants are representative of the intended population (Deaton & Cartwright, 2018). This is, 

however, difficult to justify in education, where participants are not selected on the basis of 

probabilistic sampling and the sample size is not large enough to be representative of the intended 

population. Using unconditional variance is dipping one foot in external validity and another foot in 

internal validity. This means it cannot be robustly concluded that an intervention worked for the 

participants involved and at the same time conclude that it would work for non-participants from 

the wider intended population. 

 

In line with the power calculation where the correlation between pre and post scores is included to 

increase the power of a trial, using conditional variance with pre-intervention scores would reduce 

unwanted variation in the post-test scores. In terms of the effect size, unconditional variance is 

expected to be greater than conditional variance and will consequently be more likely to result in 

smaller effect size and narrower confidence intervals compared to using conditional variance. 

However, this discussion is most likely for the studies where the effect size and its confidence 

intervals are calculated as a standardised mean difference with standardised confidence intervals of 
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the mean difference (Maxwell et al., 2014). Table 4 present the results of the effect size calculated 

using both unconditional and conditional variance from multilevel models with school and school-

by-intervention as random effects. Unconditional variance consistently results in narrower 

confidence intervals than conditional variance. Although point estimates are similar for most of the 

outcomes except catchn, pr9 and sor. 

Constant variance or random variable? 

It is clear from the previous discussion that it is important to account for all sources of variability in 

multisite trials. It is therefore recommended that conditional variance is used in concordance with 

the power calculation for multisite trials to reduce unwarranted variation between pupils, 

particularly taking advantage of the correlation between pre and post-intervention outcomes. A 

remaining puzzle in effect size calculation is whether to treat effect size as a random variable or 

whether it is sufficient to divide the confidence intervals of the adjusted mean difference by the 

square root of the total variance. Figures 1 and 2 present the plots comparing the effect size and 

their 95% confidence intervals using three different methods for maths and reading outcomes. 

MLM_Sch shows estimates from a multilevel model with only school as a random effect and the 

effect size was estimated dividing the adjusted mean difference by square root of the total variance 

estimates from the same model. MLM_Sch_Int estimates were obtained using a multilevel model 

with school and school-by-intervention as random effects and confidence intervals were estimated 

by dividing the adjusted mean difference by the square root of total variance estimates from the 

same model. Our estimates were generated based on the formula derived in the method section of 

this paper (equation (8), (21) and (22)) and the distribution of the effect size is approximated by a 

noncentral t-distribution. The point to be noted for these figures is that the effect size estimates and 

their confidence intervals are estimated using conditional variance on the basis of our previous 

analysis and discussion in this paper. 

Confidence intervals based on the multilevel model with only school as random effects are generally 

narrower than the confidence intervals estimated from the model where school-by-intervention are 

included as random effects. This concern was more pertinent for the studies where the impact of an 

intervention was significant without accounting for school-by-intervention interactions, but became 

non-significant with the inclusion of school-by-intervention interactions as random effects (Figures 1 
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and 2). This was the case for the reading outcome rflEdr and maths outcome textpm. However, 

confidence intervals based on dividing confidence interval for the mean difference by constant 

variance is consistently similar to the confidence intervals which are estimated using an approximate 

distribution of the effect size. This result is unexpected since treating variance as a constant should 

generally result in narrower confidence intervals than when the effect size is considered as a random 

variable with its own approximate distribution. This should not be concluded as the general case, but 

it can be said for the trial data analysed in this paper. This means that the most important factor for 

calculating effect size in a multisite trial is to capture all the sources of variability in the data as shown 

in Figure 1 and Figure 2. 

Discussion and Conclusions 

This paper provides theoretical and empirical evidence for understanding uncertainty in the effect 

size in multisite trials in education. We investigated the impact of assuming data as independent in 

multisite trials. The impact of using conditional or unconditional variance was also discussed, as well 

as the impact of treating variance as a constant or random variable. The results from the analysed 

trial data clearly show that it is not always the case that the effect of an intervention is the same 

across schools. This extra source of variability in multisite trial design means that the statistical model 

and calculation of the effect size should account appropriately for the school-by-intervention 

interactions, although selection of any statistical model must also depend on the objectives of the 

trial. Further, allowing variation in intervention across schools can increase the level of uncertainty 

in the effect size and random effects model generally requires a larger sample size (Feaster et al., 

2011). 

Though it can be argued that a fixed effect model can be used (Clarke et al., 2015) to adjust for school-

by-intervention interaction, it is advisable to capture this as random effects in multilevel models 

because it does not compromise the simple interpretation of the mean difference and the resulting 

effect size. In a fixed effect model with interactions, it is problematic interpreting main effects when 

there are interactions (Andersson, Cuervo-Cazurra, & Nielsen, 2014). Further, modeling interaction 

terms in a fixed effect framework does not benefit from shrinkage as in the random effects model 

framework (Bell, Fairbrother, & Jones, 2019). Since the primary aim of randomised controlled trials 
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in education is to investigate whether an intervention is beneficial or not, on average, the school-by-

intervention interaction is therefore a nuisance parameter. A previous study (Moerbeek et al., 2003) 

conducted in clinical settings also shows that an intervention effect and especially its standard error 

in multisite studies are generally incorrectly estimated by the traditional OLS or fixed effect methods 

and should not to be used as an alternative to multilevel models. However, a further argument is 

whether to use a random effect for schools only or to include school-by-intervention interactions as 

well in the same model. Results from this study clearly shows that ignoring variation in intervention 

across schools can affect estimation of the effect size and its confidence intervals. 

This study also shows that using unadjusted variance or unconditional variance consistently resulted 

in narrower confidence intervals for the effect size even though the point estimates in most cases 

are similar. It is perhaps a debatable view that using unconditional variance is like hedging one’s bets 

about both the internal and external validity of a trial. However, randomised controlled trials (RCTs) 

must be internally valid first (i.e., the design and conduct must eliminate the possibility of bias). 

Moreover, claims regarding the external validity of the results derived from a randomised control 

trial are difficult to justify (Cartwright, 2007) even though they are routinely overgeneralized. 

External validity depends on the representativeness of the trial participants to the intended 

population (Lesko et al., 2017), which is often a challenging task to interpret. In balancing internal 

and external validity, it makes the most sense to first attend to internal validity and then external 

validity. If a study lacks internal validity, there is no point in generalizing this result to rest of the 

population (Smelser & Baltes, 2001). Using conditional variance will not provide evidence of the 

impact of the intervention to another population, but can show how beneficial the intervention was 

for the study participants. This is an important consideration when interpreting the findings of a trial 

for both policy and practice audiences. 
 

Lastly, treating variance as a constant in calculating confidence intervals for an effect size appeared 

to make very little difference from treating the variance as a random variable and approximating its 

distribution by a noncentral t-distribution. However, the total variance in a multisite trial data must 

be correctly estimated. The difference in the impact of an intervention across schools has important 
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consequences for research design and can influence the statistical precision of parameter estimates 

from a multisite study, and thus should be taken into account (Weiss et al., 2017). Using total variance 

from the multilevel model with only school as random effects resulted consistently in narrower 

confidence intervals. Although it is more convenient to calculate effect size using the standardised 

confidence interval of the mean difference and constant variance, this study recommends using a 

distributional approach as derived in this paper. This approach is theoretically more appropriate 

(Hedges, 2007) and will be robust in a situation where the distribution of an effect size and the mean 

difference are not the same. Both the numerator and denominator of an effect size are measured 

with error, and thus, both sources of error should be taken into account in the variance calculations 

(Schochet & Chiang, 2011) for reliable estimation of the effect size and its confidence intervals. 

Distributional approaches have been extensively studied in the context of simple or cluster 

randomised trial effect size estimates and power analysis (Hedges, 2007) and they are reasonably 

accurate unless sample sizes are quite small (Fan, 2001). This approach will also protect against the 

potential risk of false positive findings, though the risk of this happening is very low given the 

empirical findings reported in this paper. Future research will investigate with an extensive 

simulation study to better understand the risk of treating effect size as a constant value instead of an 

unknown parameter with its own distribution. The methods proposed in this study have been 

implemented in a statistical package “eefAnalytics” in R, which has been developed to support 

statisticians and researchers to perform sensitivity analysis for educational trials using different 

analytical approaches.  This package is available in the Comprehensive R archive network (CRAN) 

(Uwimpuhwe et al., 2020).   

This study provides a theoretical derivation of confidence intervals for an effect size in a multisite 

trial using noncentral t-distribution. However, confidence intervals for any statistical parameter can 

be estimated alternatively using bootstrapping (Wood, 2005; Kelley, 2005). Bootstrap methods do 
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not assume that the data are drawn from a parametric distribution, or that the shape of the 

distribution is known. There are also bootstrapping procedures to calculate an effect size and its 

confidence intervals when the distribution of the data is known. However, bootstrapping in 

education trials requires further research to fully understand the implication of bootstrapping at the 

level of school or pupils in cluster or multisite randomised trials (Gehlbach et al., 2016; Huang, 2018).  

It can be argued that the effect size estimation is affected by several other factors not just the 

selection of appropriate variance based on study design. Recently, Cheung and Slavin (2016) stated 

that the effect size can be affected by methodological characteristics such as researcher-made 

measures, sample size, randomized versus quasi-experimental designs, and published/unpublished 

reports, and Simpson (2017) highlighted some other reasons such as researcher’s choice of the 

comparison group and restricted range of participants. However, Simpson (2017) supported 

reporting the effect size for individual studies to support future power calculation and replication. 

Some of these discrepancies mentioned earlier can be addressed by selecting studies with similar 

study design, outcomes, and covariates (Xiao, Kasim & Higgins 2016) to facilitate comparison of the 

effect size between trials. In this study, an effect size was estimated for multisite trials only (similar 

study design) using the same set of covariates to enable comparison of the effect size between trials.  

Overall, this study provides an appropriate theoretical and empirical model to precisely estimate the 

effect size and its confidence intervals in multisite trials. This will facilitate accurate measurement of 

uncertainty in the effect size estimation for multisite educational trials and support programmatic 

decisions by setting realistic expectations about the potential magnitude of intervention effect in 

multisite trials.  
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Table  1  
Descriptive statistics for multisite educational trials used in this study.   

 
 Full project title outcome   n.sch   n.t   n.c  n   pp.corr  Report 
maths 
Creative Futures: 
Act, Sing, Play  

aspm   19   542   274  816   0.72  (Haywood et al., 2015) 

Catch up Numeracy  catchn   54   108   108  216   0.59  (Rutt, Easton, & Stacey, 
2014) 

Parent Academy paicm   16   509   803  1312   0.65  (Husain et al., 2016) 

Parent Academy   pauicm   16   611   803   1414   0.65  (Husain et al., 2016) 

ReflectEd   rflEdm   28   800   707  1507   0.67  (Motteram, Choudry, 
Kalambouka, 
Hutcheson, & Barton, 
2016) 

Texting Parents   textpm   29   5613   5977  11590   0.78  (Miller et al., 2017) 

reading 
Fresh Start   fs   10   215   204  419   0.72  (Gorard, Siddiqui, & See, 

2016) 
GraphoGame Rime   graphorime   14   185   177   362   0.57 Worth, Nelson, Harland, 

Bernardinelli, & Styles, 
2018) 

Parent Academy   paicr   16   497   793  1290   0.65  (Husain et al., 2016) 

Parent Academy   pauicr   16   605   793   1398   0.65  (Husain et al., 2016) 

Paired Reading 
(Year 7)  

 pr7   10   627   682  1309   0.81  (Lloyd et al., 2015) 

Paired Reading 
(Year 9)  

 pr9   10   620   656   1276   0.78  (Lloyd et al., 2015) 

ReflectEd   rflEdr   28   719   622  1341  0.63 (Motteram et al., 2016) 

Switch-on Reading   sor   19   155   153   308   0.65  (Gorard, See, & Siddiqui, 
2014) 

Vocabulary 
Enrichment 
Intervention 
Programme  

 ve   12   282   288   570   0.68  (Styles, Stevens, Bradshaw, 
& 
Clarkson, 2014) 

Notes: n is the sample size, n.t and n.c are sample sizes for intervention and control groups, n.sch is the number of schools 
for each study, pp.corr denotes pre-test and post-test scores correlations. 
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Table 2 

Decomposition of the total variance in each multisite educational trial obtained from the 
multilevel model for each outcome with school and school-by-intervention as random effects.  

outcome 
𝜎'% 

(school 
variance) 

𝜎(% 
(school 

intervention 
interaction 
variance) 

𝜎&%  
(residual 
variance) 

P.𝜎'% 
(Proportion) 

P.	𝜎(% 
(Proportion) 

P.	𝜎&%  
(Proportion) 

maths       

aspm 11.55 0.15 41.15 21.85 0.28 77.86 

catchn 15.60 0.42 91.27 14.54 0.39 85.07 

paicm 13.19 0.86 176.09 6.94 0.45 92.61 

pauicm 12.01 0.47 165.94 6.73 0.26 93.01 

rflEdm 129.21 59.88 166.69 36.32 16.83 46.85 

textpm 0.03 0.04 0.34 7.32 9.76 82.93 

reading       

fs 0.00 63.37 1558.71 0.00 3.91 96.09 

graphorim
e 

0.00 3.25 39.20 0.00 7.66 92.34 

paicr 5.18 0.12 128.10 3.88 0.09 96.03 

pauicr 5.37 0.32 118.34 4.33 0.26 95.41 

pr7 21.23 18.79 995.74 2.05 1.81 96.14 

pr9 117.07 0.15 1349.22 7.98 0.01 92.01 

rflEdr 82.05 51.53 97.86 35.45 22.26 42.28 

sor 0.47 7.83 47.80 0.84 13.96 85.20 

ve 1.56 4.00 25.18 5.07 13.01 81.91 

Notes: σB2 is variance for school only, σE2 is school and intervention interaction variance, σW2 is residual 
variance and P.σB2 , P.σE2 , P.σW2 shows proportion of variance. Multilevel models with school and school-
by-intervention as random effects as mentioned in the equation 1 was used to obtain these estimates. 
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Table 3 

Adjusted mean difference between intervention and comparison groups from ordinary least 
square model (OLS), multilevel model with only school as random effects (MLM_Sch) and multilevel 
model with school and school-by-intervention as random effects (MLM_Sch_Int). Note that all 
models include the pre-intervention scores and intervention groups as predictors. 

outcome OLS MLM_Sch MLM_Sch_Int 

maths    

aspm -0.11 (-1.14,0.93) -0.07 (-1.01,0.86) -0.10 (-1.05,0.85) 

catchn 2.86 (0.06,5.66) 2.92 (0.35,5.50) 2.92 (0.35,5.50) 

paicm 0.10 (-1.43,1.63) -0.07 (-1.57,1.43) -0.05 (-1.62,1.52) 

pauicm -0.56 (-1.96,0.84) -0.50 (-1.88,0.87) -0.58 (-2.00,0.83) 

rflEdm -0.13 (-1.72,1.46) -0.17 (-1.54,1.21) -0.22 (-3.39,2.96) 

textpm 0.07 (0.04,0.09) 0.07 (0.04,0.09) 0.07 (-0.01,0.14) 

reading    

fs 3.05 (-4.71,10.80) 2.96 (-4.65,10.57) 2.42 (-6.98,11.81) 

graphorime -0.25 (-1.56,1.07) -0.30 (-1.59,0.99) -0.49 (-2.17,1.19) 

paicr -0.28 (-1.57,1.01) -0.20 (-1.48,1.09) -0.22 (-1.52,1.08) 

pauicr 0.00 (-1.17,1.18) 0.08 (-1.09,1.24) 0.06 (-1.14,1.26) 

pr7 -1.73 (-5.18,1.73) -1.56 (-5.01,1.88) -1.44 (-5.89,3.01) 

pr9 -3.73 (-7.88,0.41) -4.34 (-8.40,-0.29) -4.42 (-8.48,-0.36) 

rflEdr -1.24 (-2.52,0.04) -1.45 (-2.60,-0.31) -1.54 (-4.45,1.37) 

sor 1.91 (0.33,3.49) 1.91 (0.33,3.49) 2.18 (0.17, 4.19) 

ve 0.43 (-0.42,1.27) 0.42 (-0.42,1.26) 0.37 (-1.05,1.80) 
Notes: 95 percent confidence interval is reported in the parentheses. 

 
  



MULTISITE TRIALS 33 

 

Table 4 

Effect size estimation using unconditional and conditional variance from a multilevel model with 
school and school-by-intervention as random effects. Note that only pre-intervention scores and 
intervention groups are included in the conditional variance model. 

outcome Unconditional Variance Conditional Variance 

maths   

aspm -0.01 (-0.10,0.08) -0.01 (-0.15,0.12) 

catchn 0.22 (0.03,0.42) 0.28 (0.03,0.53) 

paicm 0.00 (-0.09,0.08) 0.00 (-0.12,0.11) 

pauicm -0.03 (-0.11,0.05) -0.04 (-0.15,0.06) 

rflEdm -0.01 (-0.16,0.14) -0.01 (-0.21,0.19) 

textpm 0.07 (-0.01,0.15) 0.11 (-0.02,0.23) 

reading   

fs 0.04 (-0.12,0.20) 0.06 (-0.18,0.30) 

graphorime -0.06 (-0.28,0.15) -0.08 (-0.34,0.19) 

paicr -0.01 (-0.10,0.07) -0.02 (-0.13,0.09) 

pauicr 0.00 (-0.08,0.09) 0.01 (-0.10,0.11) 

pr7 -0.03 (-0.11,0.05) -0.05 (-0.18,0.09) 

pr9 -0.07 (-0.14,-0.01) -0.12 (-0.22,-0.01) 

rflEdr -0.10 (-0.28,0.09) -0.13 (-0.37,0.11) 

sor 0.23 (0.02,0.45) 0.31 (0.02,0.59) 

ve 0.05 (-0.15,0.26) 0.07 (-0.20,0.35) 
Notes: Estimates in the unconditional and conditional variance columns show effect sizes with 95 percent 
confidence interval reported in the parentheses. 
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Figure 1.  
Comparison of the effect size and its confidence intervals for maths outcome using different 
models specifications.  
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Figure 2.  
Comparison of the effect size and its confidence intervals for reading outcomes using different 
model specifications. 
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Appendix 

Theorem: Let 𝑌 ∼ 𝑁(𝜇, ?0
%

LM
) and 𝑆% be a quadratic form in normal variables that is independent 

of Y so that 𝐸(𝑆%) = 𝑏𝜎% and 𝑉𝑎𝑟(𝑆%) = 2𝑐𝜎3, where a, b and c are constants. Then  

 𝐷 = '√/
)

 

is a consistent estimate of effect size 𝛿 = /
6
 with approximate variance  

 𝑎 + 1
2/%

(𝐸𝑆)2 

An approximately unbiased estimate of 𝛿 is given by 𝐷𝐽(𝑏%/𝑐) where  

 𝐽(𝑥) = 1 − N
CO(:. 

Proof. Given the assumptions that  

 𝑌 ∼ 𝑁(𝜇, ?0
%

LM
), 

 
 𝐸(𝑆%) = 𝑏𝜎%, 𝑉𝑎𝑟(𝑆%) = 2𝑐𝜎3, 

we have that 
'(P

-:(
%

&?

 is a standard normal random variable, and 
)%

/0%
 is distributed approximately as 

Q%(B)
B

 where ℎ = /%

1
. Therefore  

 

 𝑇 =
'- &?

:(%

- @%

A(%

=
('(P6P)- &?

:(%

- @%

A(%

=
('(P)- &?

:(%6P-
&?
:(%

- @%

A(%

 

 

becomes a noncentral t-distribution with degree of freedom G
"

H
 and noncentrality parameter  

  

𝜃 = 𝜇o
𝑁p
𝑎𝜎%

= 𝜇
𝜎
o𝑁
p
𝑎
= 𝛿o

𝑁p
𝑎

 

 

Note that the equation for 𝑇 can be simplified as 𝑇 = 5
0
qIJG

E
. The expectation and variance of 𝑇 can 

be derived via using the formulas above as  

 𝐸(𝑇) = 𝛿KL
M
?
𝑓(ℎ) 

 

 𝑉𝑎𝑟(𝑇) = B(:6R%)
B(2

− 𝜃2𝑓2(ℎ) 
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 = B
B(2

(1 + 𝛿2 L
M
?
) − 𝛿2 L

M
?
𝑓2(ℎ) 

Consequently, 𝐷 = 𝑇K?
LM
= '√/

)
 with the expectation being 𝐸(𝐷) = 𝛿𝑓(ℎ)  and variance being   

𝑉𝑎𝑟(𝐷) = B
B(2

(?
LM
+ 𝛿2) − 𝛿2𝑓2(ℎ), is a consistent estimate of the effect size 𝛿 since  

 𝐸(𝐷) = 𝛿𝑓(ℎ) ≈ S
T(B) → 𝛿			𝑎𝑠				ℎ → ∞ 

 

 𝑉𝑎𝑟(𝐷) → ?
LM		𝑎𝑠				ℎ → ∞ 

 
 → 0				𝑎𝑠				𝑁p → ∞ 

If we use the large sample normal approximation to the noncentral t-distribution for 𝑇, 𝑉𝑎𝑟(𝐷) can 
be approximated by  

  
𝑎
𝑁p
(1 +

𝜃%

2ℎ)
= 𝑎
𝑁p
+
𝑐𝛿%

2𝑏%
 

 
Finally, an unbiased estimator for the effect size can be constructed as  

  
𝐷
𝑓(ℎ) ≈

𝐷𝐽(ℎ) = 𝐷𝐽(
𝑏%

𝑐
) 

 
Moreover, the variance of the unbiased estimator is always smaller than that of D since  

  
𝑉𝑎𝑟(𝐷𝐽(ℎ)) = 𝐽%(ℎ)𝑉𝑎𝑟(𝐷) < 𝑉𝑎𝑟(𝐷) 

 
The consistency argument and the construction of the unbiased estimator follow closely from Hedges 
(2007) in which the Hedges’s g was proposed. 
 


