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Abstract. Consider two critical Liouville quantum gravity surfaces (i.e., γ -LQG for γ = 2), each with the topology of H and with
infinite boundary length. We prove that there a.s. exists a conformal welding of the two surfaces, when the boundaries are identified
according to quantum boundary length. This results in a critical LQG surface decorated by an independent SLE4. Combined with the
proof of uniqueness for such a welding, recently established by McEnteggart, Miller, and Qian (2018), this shows that the welding
operation is well-defined. Our result is a critical analogue of Sheffield’s quantum gravity zipper theorem (2016), which shows that a
similar conformal welding for subcritical LQG (i.e., γ -LQG for γ ∈ (0,2)) is well-defined.

Résumé. Considérons deux surfaces de gravité quantique de Liouville critiques (c’est-à-dire des surfaces γ -LQG avec γ = 2), chacune
ayant la topologie de H et avec une longueur de bord infinie. Nous montrons qu’il existe p.s. une soudure conforme des deux surfaces
quand les bords sont identifiés selon leur longueur de bord quantique. Ceci résulte en une surface critique LQG décorée d’un SLE4
indépendant. En combinant ceci avec le résultat d’unicité d’une telle soudure, démontré récemment par McEnteggart, Miller, et Qian
(2018), nous montrons que l’opération de soudure est bien définie. Notre résultat est un analogue dans le cas critique du théorème de
la « fermeture éclair quantique » de Sheffield (2016), qui démontre le résultat similaire que l’opération de soudure conforme pour la
LQG sous-critique (c’est-à-dire avec γ ∈ (0,2)) est bien définie.
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1. Introduction

Let D1 and D2 be two copies of the unit disk D, and suppose that φ : ∂D1 → ∂D2 is a homeomorphism. Then φ provides
a way to identify the boundaries of D1 and D2, and hence produce a topological sphere. The classical conformal welding
problem is to endow this topological sphere with a natural conformal structure. When the sphere is uniformised (i.e.,
when it is conformally mapped to S2) we get a simple loop η on S2, which is the image of the unit circle. Equivalently,
the conformal welding problem consists of finding a triple {η,ψ1,ψ2}, where η is a simple loop on S2, and ψ1 and ψ2
are conformal transformations taking D1 and D2, respectively, to the two components of S2 \ η, such that φ = ψ−1

2 ◦ ψ1.
If such a triple exists and is uniquely determined by φ (up to Möbius transformations of the sphere) then one says that the
conformal welding (associated to φ) is well-defined.

The extension of this problem to the setting of random homeomorphisms has received much attention in recent years;
in particular, when the random curves and homeomorphisms are related to natural conformally invariant objects such as
Schramm–Loewner evolutions (SLE) and Liouville quantum gravity (LQG). This will be the focus of the present paper.
In particular, we consider the case of critical (γ = 2) LQG, which is associated with SLE4.

Roughly speaking, LQG is a theory of random fractal surfaces obtained by distorting the Euclidean metric by the
exponential of a real parameter γ times a Gaussian free field (GFF). Such random surfaces give rise to random conformal
welding problems, for instance, when the homeomorphism φ corresponds to gluing the boundaries of two discs accord-
ing to their LQG-boundary lengths. Weldings of this type have been studied in several recent works [3,4,11,20,28]. In
particular, for a class of homeomorphisms defined in terms subcritical LQG measures (γ -LQG for γ ∈ (0,2)) existence
and uniqueness of the conformal welding was established by Sheffield [28], and the interface η was proven to have the
law of an SLEκ with κ = γ 2 ∈ (0,4). Uniqueness of a random conformal welding where the interface η has the law of an
SLE4 was recently established by McEnteggart, Miller, and Qian [20].
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Let us now make the set-up more precise. Given a parameter γ ∈ (0,2], a simply connected domain D ⊂ C, and
an instance h of (some variant of) a GFF on D, one would heuristically like to define the γ -LQG “surface” associated
with (D,h) to be the 2d Riemannian manifold with metric tensor eγh(dx2 + dy2) on D. This definition does not make
rigorous sense since h is a distribution and not a function, but one can prove by regularising the field ([7,14,17,25]) that
h induces a so-called “γ -LQG area measure” μ

γ

h in D (with formal definition eγ h(z) dx dy) and a “γ -LQG boundary
length measure” ν

γ

h along ∂D (with formal definition e(γ /2)h(x) ds). The case γ = 2 is known as critical, because the
regularisation procedure used when γ ∈ (0,2) breaks down at this point, and defining the critical measure requires a
different strategy.

Given two pairs (D1, h1) and (D2, h2), such that 0 < ν
γ

h1
(∂D1) = ν

γ

h2
(∂D2) < ∞ one may define the homeomorphism

φ that identifies ∂D1 and ∂D2 according to these boundary lengths. That is, φ : ∂D1 → ∂D2 is such that for all A ⊂ ∂D1,
ν

γ

h1
(A) = ν

γ

h2
(φ(A)). One can then ask if the conformal welding associated to φ, as described above, is well-defined.

In fact, it is more convenient to consider this problem in the setting where (Di,hi) for i = 1,2 have infinite boundary
length. To explain the interpretation of the conformal welding problem in this framework, and to state our main theorem,
we need the following definition. For a simply connected domain D ⊆ C let H−1

loc (D) denote the space of generalised
functions h on D such that for any open set U with U � D, the distribution h|U is in the Sobolev space H−1(U).

Definition 1.1. Let γ ∈ (0,2]. A γ -Liouville quantum gravity (LQG) surface is an equivalence class of pairs (D,h),
where D ⊆ C is a simply connected domain and h ∈ H−1

loc (D) is a distribution (or generalised function) on D. Two pairs
(D1, h1) and (D2, h2) are defined to be equivalent if there is a conformal map ψ : D2 → D1 such that

h2 = h1 ◦ ψ + Qγ log
∣∣ψ ′∣∣, (1.1)

where Qγ = 2/γ + γ /2.1

It follows from the regularisation procedure used to define the LQG measures that if h1 and h2 are related as in (1.1),
then the push-forward of μ

γ

h2
(resp., ν

γ

h2
) by ψ is equal to μ

γ

h1
(resp., ν

γ

h1
).

In this paper the distribution h will always be a Gaussian free field or a related kind of distribution. We think of
two equivalent pairs (D1, h1) and (D2, h2) as two different parametrisations of the same γ -LQG surface; indeed, the
previous paragraph implies that they describe equivalent LQG measures. We will often abuse notation and refer to (D,h)

as a γ -LQG surface, i.e., we identify (D,h) with its equivalence class. If we introduce a γ -LQG surface S by writing
S = (D,h) we mean that S is a γ -LQG surface (i.e., an equivalence class) while (D,h) is a particular parametrisation of
this surface. Recall that by the Riemann mapping theorem, a quantum surface comes equipped with a well-defined notion
of topology: either that of H (equivalently, some other bounded simply connected domain), C, or S2.

We also consider marked quantum surfaces; these are tuples (D,h, z1, . . . , zk) for k ∈ N and z1, . . . , zk ∈ D ∪ ∂D.
In order for two marked quantum surfaces (D1, h1, z1, . . . , zk) and (D2, h2,w1, . . . ,wk) to be equivalent we require that
there exists a ψ as in Definition 1.1, which also satisfies z1 = ψ(w1), . . . , zk = ψ(wk).

Let us now come back to conformal welding: we will consider the following alternative version of the problem.
Suppose that H1, H2 are two copies of the upper half-plane and φ is a homeomorphism from R+ to R−. The problem is
to find a triple {η,ψ1,ψ2}, where η is a simple curve in H from 0 to ∞ and ψ1, ψ2 are conformal transformations taking
H1 and H2 to the two components of H \ η, such that φ = ψ−1

2 ◦ ψ1. If such a triple exists and is unique then we say that
the conformal welding associated to φ is well-defined.

Given two doubly-marked γ -quantum surfaces with the topology of H, parametrised by (h1,H,0,∞) and
(h2,H,0,∞), and such that ν

γ

h1
(R+) = ∞, ν

γ

h2
(R−) = ∞, but ν

γ

h1
, ν

γ

h2
give finite and positive mass to bounded in-

tervals of positive length, we can define the homeomorphism φ that identifies R+ and R− according to ν
γ

h1
, ν

γ

h2
boundary

length. That is, ν
γ

h1
([0, a]) = ν

γ

h2
([φ(a),0]) for all a ∈ [0,∞). The main result of this paper is that for certain critical

(γ = 2) quantum surfaces known as quantum wedges (see Section 2.2), this conformal welding problem has a solution.
See Figure 1 for an illustration.

Theorem 1.2. Let S = (H, h,0,∞) be a (2,1)-quantum wedge, and let η be an SLE4 from 0 to ∞ which is independent
of h. Let DL ⊂ H (resp., DR ⊂ H) be the points of H lying strictly to the left (resp., right) of η, and define the 2-LQG
surfaces SL = (DL, h|DL ,0,∞) and SR = (DR, h|DR ,0,∞).

Then SL and SR are independent 2-LQG surfaces, and each surface has the law of a (2,2)-quantum wedge. Further-
more, the quantum boundary lengths along η as defined by SL and SR agree.

1Note that this equivalence relation depends on γ . Also note that h1 ∈ H−1
loc (D1) if and only if h2 ∈ H−1

loc (D2).
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Fig. 1. Illustration of the conformal welding problem. We get a topological half-plane by welding together the two surfaces SL and SR. By Corol-
lary 1.4, if SL and SR are independent (2,2)-quantum wedges and the welding is defined in terms of 2-LQG boundary length, then the resulting surface
(a (2,1)-quantum wedge) has an a.s. uniquely defined conformal structure, and the interface η has the law of an SLE4.

We remark that independence of the 2-LQG surfaces SL and SR in Theorem 1.2 does not mean that the fields h|DL and
h|DR are independent; these two fields are dependent e.g. since they induce the same quantum length measure along η.
Instead, we have independence of the two surfaces viewed as equivalence classes. This means that if we embed the
two surfaces in some standard form then the fields in this embedding are independent. Explicitly, if (H, h̃L,0,∞) is an
embedding of SL such that (say) the unit half-circle has unit mass, and (H, h̃R,0,∞) is defined similarly for SR, then the
fields h̃L and h̃R are independent.

By Theorem 1.2 we have a quantum length measure along η which is defined by considering the LQG boundary
measure of the surfaces SL and SR. We remark that this length measure along η can be defined equivalently in a more
intrinsic way by considering ehdm, where m is the measure supported on η given by its 3/2-dimensional Minkowski
content. This equivalence was proved for the subcritical zipper in [5] and the critical case follows by the same argument.

The following uniqueness result concerning the conformal welding problem of Theorem 1.2 was recently established
in [20, Theorem 2].

Theorem 1.3 (McEnteggart-Miller-Qian ’18). Let η be an SLE4 in H from 0 to ∞. Suppose that ϕ : H → H is a
homeomorphism which is conformal in H \ η and such that ϕ(η) has the same law as η. Then ϕ is a.s. a conformal
automorphism of H.

Hence, if {η,ψ1,ψ2} and {η′,ψ ′
1,ψ

′
2} are two solutions to the conformal welding problem associated with the same

homeomorphism φ, and η, η′ both have the law of SLE4, then applying the above theorem to the map ϕ which is set
equal to ψ ′

2 ◦ ψ−1
2 on the left of η and ψ ′

1 ◦ ψ−1
1 on the right, it follows that ϕ must be a conformal automorphism of H.

Theorems 1.2 and 1.3 together therefore imply that the conformal welding operation for critical LQG is well-defined.

Corollary 1.4. Consider two (2,2)-quantum wedges SL = (H, hL,0,∞) and SR = (H, hR,0,∞), and identify the
boundary arc [0,∞) of SL and the boundary arc (−∞,0] of SR according to 2-LQG boundary length. This a.s. gives a
uniquely defined conformal welding of the two 2-LQG surfaces such that the interface η between the surfaces has the law
of a chordal SLE4.

Observe that the conformal welding in this corollary is not proven to be the unique conformal welding among all
possible conformal weldings; since it is assumed in Theorem 1.3 that the curves ϕ(η) and η both have the law of SLE4
curves, we only obtain uniqueness among the weldings for which the interface has this law. The uniqueness result can
be strengthened to curves a.s. satisfying certain deterministic geometric properties by using the stronger variant of Theo-
rem 1.3 found in [20, Theorem 2].

We also obtain a dynamic version of the critical conformal welding, analogous to Sheffield’s quantum gravity zipper
[28, Theorem 1.8] in the case γ ∈ (0,2). See Figure 2 for an illustration.

Theorem 1.5. Let (H, h0,0,∞) be the equivalence class representative of a (2,1)-quantum wedge with the last exit
parametrization (see Definition 2.2).2 Let η0 be an SLE4 from 0 to ∞ in H which is independent of h0. Then for every
t > 0 there exists a conformal map ft defined on H, which is measurable with respect to h0, such that:

• (ht , ηt ) has the same law as (h0, η0), where3 ht = h0 ◦f −1
t +2 log |(f −1

t )′| and ηt is the union of ft (η0)) and H\ft (H);
• if (X(s))0≤s≤t and (Y (s))0≤s≤t are such that νh0([0,X(s)]) = νh0([Y(s),0]) = s for every s ∈ [0, t], then ft maps

[0,X(t)] and [Y(t),0] to the right- and left-hand sides of ηt \ ft (η0), respectively, and for every s ≤ t , X(s) and Y(s)

are mapped to the same point on ηt \ ft (η0).

2The theorem is still true if we let (H, h0,0,∞) be some other equivalence class representative of a (2,1)-quantum wedge, provided the field h0 is
measurable with respect to the LQG surface, i.e., the equivalence class representative is chosen in a measurable way relative to the surface.
3It can be shown that ht ∈ H−1(H) is well-defined independently of its definition on ηt \ ft (η0).
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Fig. 2. Consider a (2,1)-quantum wedge (H, h,0,∞) decorated by an independent SLE4 η. The quantum zipper identifies segments [0,X(t)] and
[Y (t),0], each of quantum length t > 0. This gives a new surface/curve pair (ht , ηt ) with the same law as before. By Theorem 1.5, the processes of
zipping up and zipping down are measurable with respect to (h, η).

This gives rise to a bi-infinite process (ht , ηt )t∈R, such that:

• (ht , ηt )t∈R is measurable with respect to (ht0 , ηt0) for any t0 ∈R; and
• (ht , ηt )t∈R is stationary, i.e., for any t0 ∈R the two processes (ht0 , ηt0)t∈R and (ht0+t , ηt0+t )t∈R are equal in law.

As described in [28] we can think of the operation (h0, η0) �→ (ht , ηt ) for t > 0 as zipping up the surfaces h0|DL , h0|DR

to the left and right of η0 by t units of quantum boundary length. Similarly, we think of the operation (h0, η0) �→ (ht , ηt )

for t < 0 as zipping down.

1.1. Related works

Conformal weldings related to LQG were first studied in [3,4], where it was proven that the conformal welding of a
subcritical LQG surface to a Euclidean disk according to boundary length is a.s. well-defined (see [29] for the case of
critical LQG). In Sheffield’s breakthrough work [28] it is shown that the conformal welding of two subcritical LQG
surfaces is a.s. well-defined, and that the interface is given by an SLEκ curve. More precisely, the following is proved.

Theorem 1.6 (Sheffield ’16). Consider two (γ, γ )-quantum wedges SL = (H, hL,0,∞) and SR = (H, hR,0,∞), with
γ ∈ (0,2), and identify the boundary arc [0,∞) of SL to the boundary arc (−∞,0] of SR according to γ -LQG boundary
length. This a.s. gives a uniquely defined conformal welding of the two γ -LQG surfaces. In this conformal welding, the
interface η between the surfaces has the law of a chordal SLEγ 2 , and the combined surface4 has the law of a (γ, γ −2/γ )-
quantum wedge that is independent of η.

The existence part of Theorem 1.6 is established by studying a certain coupling between a GFF and a reverse SLEκ ,
where the law of the GFF is invariant under zipping up and down the SLEκ . The uniqueness part follows from [16], where
Jones and Smirnov proved that the boundaries of Hölder domains are conformally removable, and [26], where Rohde and
Schramm proved that the complement of an SLEκ for κ ∈ (0,4) is a.s. a Hölder domain. For an overview of the proof,
we recommend the notes [6].

Remark 1.7. The analogue of Theorem 1.5 is also proved in [28, Theorem 1.8] in the case γ ∈ (0,2). That is, starting
with the curve and combined surface described at the end of Theorem 1.6 (let us call them (h0, η0)) we get a bi-infinite
stationary process (ht , ηt )t∈R that is measurable with respect to (h0, η0).

Duplantier, Miller, and Sheffield [11] have also studied problems closely related to conformal welding. In particular,
they proved that if one considers an SLEκ η on an independent γ -LQG surface S , where κγ 2 = 16, then η is measurable
with respect to a pair of so-called forested wedges. These wedges are the restrictions of S to the components of the
complement of η – one consisting of components traced anti-clockwise by η, and the other consisting of components
traced clockwise – along with topological information (encoded by a pair of Lévy processes) about how these components
are glued together. A number of other measurability results concerning welding of general LQG surfaces are established
in the same paper. We note however that these measurability results are of a weaker kind than, for example, the result in
[28]. For instance, uniqueness of the “gluing” of forested wedges described above is only proved under the assumption
that the resulting field h and curve η have a particular joint law.

4That is, the surface parametrised by (H, h,0,∞) where h is set equal to the image (after welding) of hL on the left of η and of hR on the right of η.

The field h is a well-defined element of H−1(H) regardless of how h is defined on η itself.
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As already mentioned, McEnteggart, Miller, and Qian in the recent paper [20], have also proved uniqueness of confor-
mal weldings in certain settings. More precisely, they prove that if η is a curve in H and ψ : H →H is a homeomorphism
which is conformal on H \ η, then ψ is in fact conformal as soon as η and ψ(η) satisfy certain geometric regularity
conditions. These conditions are in particular satisfied a.s. if η and ψ(η) both have the law of an SLEκ for κ ∈ (0,8).
Their result is new for κ ∈ [4,8), while it follows from conformal removability for κ ∈ (0,4).

1.2. Outline

The rest of the article is structured as follows. We begin in Section 2 by collecting relevant definitions: of the Gaussian
free field and its variants; LQG surfaces and their parametrisations; and the specific quantum surfaces known as quantum
wedges that will be particularly important in this paper. Here we also describe the construction of boundary LQG mea-
sures, and discuss some properties of these measures that are needed in what follows. In particular we will make use of
a connection between subcritical and critical measures, that is a consequence of [2]. We conclude the preliminaries by
briefly introducing Schramm–Loewner evolutions, and proving some basic convergence results that will be useful later
on.

Sections 3 and 4 provide the key ingredients (Propositions 3.1 and 4.4, respectively) for the proofs of Theorems 1.2
and 1.5. In Section 3 it is shown that if one observes a 2-LQG surface in a small neighbourhood of a critical LQG-measure
typical boundary point, then it closely resembles a (2,2)-quantum wedge. This gives the critical LQG analogue of [28,
Proposition 1.6], justifies why the (2,2)-quantum wedge is a natural quantum surface (to our knowledge this is the first
time that this surface is defined in the literature), and is important to identify the laws and establish independence of the
quantum surfaces SL and SR in the proof of Theorem 1.2.

In Section 4 we prove that Sheffield’s subcritical quantum gravity zipper (defined for γ ∈ (0,2)), has a limit in a strong
sense as γ ↑ 2. This is shown by proving and combining various convergence results concerning reverse SLEκ=γ 2 and
γ -LQG measures as γ ↑ 2. The proof requires a careful study of quantum wedges and their associated measures in a
neighbourhood of the origin, and analysis of the Loewner equation for points on the real line. As a consequence of this
section, we obtain Theorem 1.5. Finally, in Section 5 we show how the main results of the previous sections allow us to
deduce Theorem 1.2.

It is also worth taking a moment now to discuss why the proof in [28] does not generalise straightforwardly to the
critical case. At a very high level, the key difficulties are: (a) lack of first moments for critical LQG-measures; and (b)
non-Gaussian conditioning for the law of the field around “quantum typical points”. To explain this in more detail, we
first need to describe the general strategy of [28] (for a more complete overview, the reader should consult [28] or [6]).
As in the present paper, the fundamental object to construct is the quantum gravity zipper: a dynamic coupling between
a (γ, γ − 2/γ )-quantum wedge and an SLEκ=γ 2 analogous to the coupling described in Theorem 1.5. From this, the
analogue of Theorem 1.2 follows fairly easily.

In order to construct the subcritical quantum gravity zipper, Sheffield first describes a different dynamic coupling, this
time between an SLEκ and a Neumann GFF plus a log singularity, that he calls the “capacity zipper”. The existence of this
coupling is straightforward to prove using a martingale argument. From here, roughly speaking, the “quantum zipper” can
be obtained by “zooming in” at the origin of the capacity zipper. One key tool that is made use of (see, for example, [28,
Proposition 1.6]) is a nice description of the field plus a γ -quantum typical point, when the field is weighted by γ -LQG
boundary length. The difficulty with this in the critical case is that, in contrast to the subcritical setting, critical LQG
measures assign mass with infinite expectation to finite intervals. Although this issue is actually possible to circumvent
for many purposes – we will do exactly this using a truncation argument in Section 3 – it causes significant problems if
we want to say anything precise about the joint law of the curve and the surface in the critical analogue of the capacity
zipper, at a time when a critical quantum typical point is “zipped up” to the origin. An additional technical difficulty
is created by the fact that critical measures need to be defined using a different approximation procedure to subcritical
measures (see Section 2.3). This means that the law of the field around a quantum-typical point is no longer described in
terms of its original law via a simple Girsanov shift, and makes it difficult to describe how the law of the curve changes
in the context mentioned above. For example, it is unclear if it will simply add a drift to the reverse SLE driving function,
as is the case when γ ∈ (0,2).

Although it may be possible to obtain the results of this paper by adapting the method of [28] in some way, for the
sake of avoiding significant additional technicalities we have chosen the approximation approach.
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2. Preliminaries

2.1. Gaussian free field

Let D ⊂ C be a domain with harmonically non-trivial boundary, i.e., such that a Brownian motion started at some point
in D hits ∂D a.s. Let C∞

0 (D) denote the space of infinitely differentiable functions on D with compact support. For
f,g ∈ C∞

0 (D) define the Dirichlet inner product of f and g by

〈f,g〉∇ =
∫

D

∇f · ∇g dx dy.

Let H0(D) denote the Hilbert space closure (with respect to this inner product) of the subspace of functions f ∈ C∞
0 (D)

with ‖f ‖∇ := 〈f,f 〉∇ < ∞.5 Let f1, f2, . . . be a 〈·, ·〉∇ -orthonormal basis for H0(D). The zero boundary Gaussian free
field (GFF) h is then defined by setting

h =
∞∑

j=1

αjfj , where α1, α2, · · · ∼N (0,1) are independent. (2.1)

The convergence of (2.1) does not hold in H0(D) itself, but rather in a space of generalised functions. More precisely, let
H−1(D) be the dual space of H0(D), equipped with the norm

‖k‖H−1(D) = sup
g∈H0(D):‖g‖∇=1

(k, g) (2.2)

where we use the notation (k, ·) for the action of k ∈ H−1(D) on H 1(D). Note that an element of H−1(D) defines
a distribution on D with action f �→ (k, f ), since C∞

0 (D) ⊂ H 1(D). We further define the space H−1
loc (D) to be the

subspace of generalised functions h on D such that for any open set U with Ū � D, the restriction of h to U is in the
space H−1(U). We say that hn → h in H−1

loc (D) if and only if hn|U → h|U in H−1(D) for any such U .
Then the series (2.1) converges a.s. in H−1

loc (D) and the Gaussian free field h is defined as an element of this space a.s.
In particular, h is a.s. a random distribution; as above, we write (h,f ) for the action of h on f ∈ C∞

0 (D). We note that
when D is bounded, the series actually converges a.s. in H−1(D) and so h is a.s. an element of this space.

Finally, we mention that for f ∈ C∞
0 (D),

var
(
(h,f )

) = 〈
�−1f,�−1f

〉
∇ = (

f,�−1f
)

(2.3)

and so (h,f ) actually makes sense (as an a.s. limit) for any f such that (f − fn,�
−1(f − fn)) → 0 for some sequence

fn ∈ C∞
0 (D). When is D is bounded, for instance, this is exactly the set of functions f in H−1(D).

For any given bounded and measurable ρ : ∂D → R the GFF with Dirichlet boundary condition ρ is defined to be a
random distribution with the law of h + ρ, where ρ is the harmonic extension of ρ to the interior of D.

To define a mixed boundary condition GFF, assume that ∂D is divided into two boundary arcs ∂D and ∂F, and that a
function ρ : ∂D → R satisfying ρ|∂F = 0 is given. Write ρ for the harmonic extension of ρ to D and let H∂D,∂F(D) be the
Hilbert space closure of the subspace of functions f ∈ C∞(D) with ‖f ‖∇ < ∞ and f |∂D = 0. The mixed boundary GFF
with Dirichlet boundary data ρ on ∂D, is then defined to be a random distribution with the law of h + ρ, where h is now
defined by (2.1) with f1, f2, . . . an orthonormal basis for H∂D,∂F(D).

To define the free boundary GFF (equivalently, the Neumann GFF), consider the subspace of functions f ∈ C∞(D)

with ‖f ‖∇ < ∞. Notice that 〈·, ·〉∇ is degenerate on this subspace of functions, in the sense that 〈fC,g〉∇ = 0 for any g

if fC ≡ C ∈ R. However, 〈·, ·〉∇ defines a positive definite inner product as soon as we quotient the space by identifying
functions that differ by an additive constant. Write H(D) for the Hilbert space closure of this quotient space with respect
to the inner product 〈·, ·〉∇ . The free boundary GFF h is then defined by (2.1), where f1, f2, . . . is now an orthonormal
basis for H(D). Again the convergence of the defining sum does not take place in H(D) itself, but in the quotient space
of H−1

loc (D) under the equivalence relation that identifies elements differing by an additive constant. We therefore define
the free boundary GFF as an element of H−1

loc (D), modulo an additive constant, i.e., h and h + C are identified for any

5Note that H0(D) is the Sobolev space which is often denoted by H 1
0 (D) or W

1,2
0 (D) in the literature. Similarly, the space H(D) defined below is the

Sobolev space H 1(D) = W1,2(D).
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C ∈R. One may fix the additive constant in various ways, for example by requiring that the average of h over some fixed
set is 0.

When D =H, by [11, Lemma 4.2], H(H) = H1(H)⊕ H2(H) is an orthogonal decomposition of H(H), where H1(H)

is the subspace of functions f ∈ H(H) that are radially symmetric about the origin (considered modulo an additive
constant), and H2(H) is the subspace of functions f ∈ H(H) that have average zero on all semi-circles centred at the
origin. This induces a decomposition of H−1

loc (H): any h ∈ H−1
loc (H) can be uniquely written as h = hrad + hcirc, where

〈hrad, f 〉∇ = 0 for any f ∈ H2(H) and 〈hcirc, f 〉∇ = 0 for any f ∈ H1(H). In the following we will often make a slight
abuse of notation and talk about the “projection” of an element of H−1

loc (H) onto H1(H) or H2(H): by this we mean the
corresponding projection in H−1

loc (H).

Remark 2.1. To reiterate; in the spaces {H−1(D),H−1
loc (D),H∂D,∂F(D),H0(D),H2(H)} functions that differ by an ad-

ditive constant are not identified, while in {H(D),H1(H)} they are identified.

Finally, we mention that if f ∈ H(D) and h is a Neumann GFF in D, then the law of h + f is absolutely continuous
with respect to the law of h. Indeed by standard theory of Gaussian processes, the Radon–Nikodym derivative of the
former with respect to the latter is proportional to e〈h,f 〉∇ , where 〈h,f 〉∇ := limn→∞〈∑n

j=1 αjfj , f 〉∇ .

2.2. Quantum wedges

Recall the definition of a γ -LQG surface from the introduction (Definition 1.1).
Quantum wedges are a particular family of doubly-marked LQG surfaces which were originally introduced in [28]

(see also [11]). We will parametrise these surfaces by (H, h,0,∞) throughout most of the paper, but also sometimes by
the strip S =R× [0,π] with marked points at ±∞. These will be related by the conformal map φ : S → H defined by

φ(z) = exp(−z), (2.4)

which sends ∞ (resp., −∞) to 0 (resp., ∞). When we discuss quantum wedges, there will be two parameters of interest.
The first parameter γ specifies how we are defining equivalence classes of quantum surfaces (i.e., it plays the role of the
parameter γ in Definition 1.1) and the second parameter α specifies the weight of a logarithmic singularity that we are
placing at the origin. We refer to the surface as a (γ,α)-quantum wedge. In this paper we will actually only consider
(γ, γ − 2/γ )-quantum wedges and (γ, γ )-quantum wedges for γ ∈ (0,2]. The case γ = 2 has not been considered in
earlier papers, but the definition from [11,28] extends in a natural way to this case. Before we state the formal definition
of the (γ,α)-quantum wedge we need to introduce some notation.

Since a doubly-marked quantum surface actually refers to an equivalence class, and since for any a > 0 the map
z �→ az defines a conformal map from (H,0,∞) to (H,0,∞), there are several different fields h that describe the same
quantum surface (H, h,0,∞). It is therefore convenient to decide on a canonical way to choose h from the set of possible
fields, or a “canonical parametrisation”. We will consider the last exit parametrisation in most of this paper, since this
parametrisation leads to the cleanest definition of (2,2)-quantum wedges. Note that this is different from the unit circle
parametrisation considered in [11].

Definition 2.2. The last exit (resp., unit circle) parametrisation of a doubly-marked γ -quantum surface S with the topol-
ogy of H, is defined to be the representative (H, h,0,∞) of S such that if hrad(r) is the average of h on the semi-circle of
radius r around 0 (i.e., hrad is the projection of h onto H1(H)), then s �→ hrad(e

−s) − Qγ s hits 0 for the last (resp., first)
time at s = 0.

If the last exit parametrisation of a surface exists (i.e., if hrad(r) + Qγ log r �= 0 for all r > 0 small enough) it can
easily be seen to be unique, by mapping the surface to the strip S with the map φ from (2.4). Let hcirc = h − hrad be the
projection of h onto H2(H), and write hGFF

circ for the law of this field when h is a Neumann GFF on H. Observe that this
describes the law of a well-defined element of H−1

loc (H) (i.e., not only an element up to an additive constant).

Definition 2.3. Let γ ∈ (0,2] and α < Qγ . Then the (γ,α)-quantum wedge is the doubly-marked γ -quantum surface
whose last exit parametrisation (H, h,0,∞) can be described as follows:

• (hrad(e
−s)))s≥0 has the law of (B2s + αs)s≥0 conditioned to stay below (Qγ s)s≥0 for all time, where B is a standard

Brownian motion with B0 = 0.
• (hrad(e

−s))s≤0 has the law of (B̂−2s + αs)s≤0, where B̂ is a standard Brownian motion with B̂0 = 0.
• hcirc is equal in law to hGFF

circ .
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• hcirc, (hrad(e
−s))s≥0, and (hrad(e

−s))s<0 are independent.

Remark 2.4. In [11,28] the (γ,α)-quantum wedge is defined to be the γ -quantum surface whose unit circle parametri-
sation is given by (H, h,0,∞), where: h = hcirc + hrad; hcirc is as in Definition 2.3; hcirc and hrad are independent; and
hrad(e−s) is equal to B2s + αs for s ≥ 0, and to B̂−2s + αs conditioned to stay above s �→ Qγ s for s < 0.

We show in Lemma 2.8 below that this definition is equivalent to Definition 2.3

In Definition 2.3 we require α to be strictly smaller than Qγ , and one can check that this is satisfied for α = γ when
γ ∈ (0,2). However, we are also interested in the case γ = 2, where we have Qγ = 2 = γ . Thus, we need to give a
definition of the following surface, which arises as a limit of a (γ, γ )-quantum wedge when γ ↑ 2.6

Definition 2.5. We define the (2,2)-quantum wedge to be the doubly-marked 2-quantum surface whose last exit
parametrisation (H, h,0,∞) can be described as follows:

• (hrad(e
−s))s≥0 has the law of (−B2s + 2s)s≥0, where B is a 3-dimensional Bessel process started from 0.

• (hrad(e
−s))s≤0 has the law of (B̂−2s + 2s)s≥0, where B̂ is a Brownian motion started from 0.

• hcirc is equal in law to hGFF
circ .

• hcirc, (hrad(e
−s))s≥0, and (hrad(e

−s))s<0) are independent.

The (γ, γ )-quantum wedges are of particular interest since they may be obtained by sampling a point from the bound-
ary γ -LQG measure and then “zooming in” near this point. This was established in [28] for γ ∈ (0,2), and Proposition 3.1
below is a variant of this result for γ = 2.

Remark 2.6. The last exit parametrization is more convenient than the unit circle parametrization for the (2,2)-quantum
wedge since with the unit circle parametrization any neighborhood of zero has infinite mass a.s. This can be seen by using
that with the unit circle parametrization, the field (hrad(e

−s))s≥0 has the law of (B2s + 2s)s≥0 for B a standard Brownian
motion started from 0.

In some of our proofs it will be convenient to parametrise the quantum wedges by the strip S instead of the up-
per half-plane H. Recall that H(S) denotes the Hilbert space closure of the subspace of functions f ∈ C∞(S) with
‖f ‖∇ := (f,f )∇ < ∞, defined modulo additive constant. By [11, Lemma 4.2], H(S) = H1(S) ⊕ H2(S) is an orthogo-
nal decomposition of H(S), where H1(S) is the subspace of functions f ∈ H(S) that are constant on all line segments
{x} × [0,π] for x ∈ R (considered modulo an additive constant), and H2(S) is the subspace of functions f ∈ H(S) that
have mean zero on all such line segments. Let h

GFF,S
circ denote a field with the law of a Neumann GFF on S projected

onto H2(S) (as in the case of H, this is a well-defined element of H−1
loc (S)). The strip is convenient to work with since

the term Qγ log |φ′| in the coordinate change formula (1.1) is equal to zero for conformal transformations of the kind
z �→ z + a for a ∈ R (these are precisely the conformal maps from S to itself that map +∞ to +∞ and −∞ to −∞, and
correspond after conformal mapping to dilations of H). Furthermore, as the following remark illustrates for the case of
the (2,2)-quantum wedge, the quantum wedges defined above have a somewhat nicer description when parametrised by
the strip.

Remark 2.7. The surface (S, h,∞,−∞) with h
d= h

GFF,S
circ + hrad has the law of a (2,2)-quantum wedge, if hrad ∈ H1(S)

(viewed as a distribution modulo an additive constant) and the following hold:

• (hrad(s))s≥0 has the law of −B2s where B is a 3-dimensional Bessel process starting from 0.
• (hrad(s))s≤0 has the law of B−2s , where B is a standard Brownian motion starting from 0.
• h

GFF,S
circ , (hrad)s≥0, and (hrad(s))s≤0) are independent.

Lemma 2.8. For γ ∈ (0,2) the definition of a (γ,α)-quantum wedge in Definition 2.3 is equivalent to the definition given
in [11, Definition 4.5] (see Remark 2.4).

Proof. Let (H, hu,−∞,∞) be the [11] definition of a quantum wedge, as in Remark 2.4. Let (H, h�,−∞,∞) be a
(γ,α)-quantum wedge with the last exit parametrization as in Definition 2.3. Also let φ : S → H be defined by (2.4), and
observe that {0} × [0,π] is mapped to the unit semi-circle under this map.

6More precisely, if h is the field of a (2,2)-quantum wedge in the last exit parametrisation, and for γ ∈ (0,2), hγ is the field of a (γ, γ )-quantum wedge
in the last exit parametrisation, then hγ → h in law as γ ↑ 2. To see this, it is easiest to map the surfaces to the strip S with marked points at ±∞.
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Define ĥu = hu ◦ φ + Qγ log |φ′| and ĥ� = h� ◦ φ + Qγ log |φ′|, and let ĥu = ĥu,rad + ĥu,circ and ĥ� = ĥ�,rad + ĥ�,circ

be the orthogonal decompositions of these fields. Then ĥu,circ and h�,circ are both equal in distribution to h
GFF,S
circ . For B a

standard Brownian motion, (̂h�,rad(s))s≥0 has the law of (B2s + (α − Q)s)s≥0 conditioned to be negative for s > 0, and
(̂h�,rad(s))s≤0 has the law of (B−2s + (α −Q)s)s≤0. Furthermore, (̂hu,rad(s))s≥0 has the law of (B2s + (α −Q)s)s≥0, and
(̂hu,rad(s))s≤0 has the law of (B−2s + (α −Q)s)s≤0 conditioned to be positive for s < 0. Let a = inf{t ≤ 0 : ĥ�,rad(t) < 0}.
We conclude by observing that if we apply the change of coordinates z �→ z− a to the field ĥ�, we get a field with the law
of ĥu; this can e.g. be deduced from the last assertion of [24, Lemma 3.4] and [24, Remark 3.5], which refers to [30]. �

2.3. Gaussian multiplicative chaos and the Liouville measures

In this section, we give a proper definition of the boundary Liouville quantum gravity measures described in the intro-
duction. For a much more complete survey, including the case of bulk LQG measures, we refer the reader to [7,14,25] for
the subcritical case and to [12,13,22,23] for the critical case.

In the following, when we refer to the topology of local weak convergence for measures on R, we mean the topology
such that μn → μ iff μn|[−R,R] → μ|[−R,R] weakly as measures on [−R,R] for every R > 0.

The following statement comes from [14] when γ ∈ (0,2), and from [22] when γ = 2 (with a trivial adaptation of the
argument from the bulk to the boundary measure).

Lemma 2.9. Suppose that γ ∈ (0,2] and let h be a Neumann GFF in H with some fixed choice of additive constant, or a
GFF with mixed boundary conditions on D+ =D∩H (free on ∂D+ ∩R, and Dirichlet with some ρ on ∂D+ \R). Let hε

denote the ε semi-circle average field of h on R,7 let dz denote Lebesgue measure on R, and set

ν
γ

h,ε(dz) = exp

(
γ

2
hε(z)

)
εγ 2/4 dz γ ∈ (0,2), (2.5)

νh,ε(dz) =
(

−hε

2
+ log(1/ε)

)
exp

(
hε(z)

)
ε dz γ = 2. (2.6)

Then ν
γ

h,ε converges in probability to a limiting measure ν
γ

h (resp., νh,ε converges in probability to a limiting measure νh

when γ = 2) as ε → 0. These convergences are with respect to the topology of local weak convergence of measures on R.

Lemma 2.10. The result of Lemma 2.9 also holds when h is the field of a (γ ′, α)-quantum wedge in the last exit parametri-
sation, with 2 ≥ γ ′ ≥ γ and α < Qγ ′ ≤ Qγ .

Note that we do not require γ ′ = γ here. We need to work in this set-up in, for example, Lemma 2.13.

Proof. For notational simplicity we work in the case γ ∈ (0,2), but the argument when γ = 2 is the same. Without loss of
generality, it suffices to show that ν

γ

h,ε converges in probability, as a measure on [−1,1], as ε → 0. To show this, we will
explain how to obtain h|D from a field h′ that is absolutely continuous with respect to a Neumann GFF (by re-centring
around a να-typical point). The result then follows from Lemma 2.9.

More precisely, we consider the following construction. Let P denote the law of a Neumann GFF on H, with additive
constant fixed so that its average on the unit semi-circle is equal to 0, and write (h′, z) for a pair with joint law

1{z∈[−1,1]}να
h′(dz)

EP[να
h′([−1,1])] P

(
dh′).

Let h̃ be the field h′ after re-centring around the point z, i.e., h̃ = h′(· + z).
Then it follows from [14, §6.3] that if h̃rad is the projection of h̃ onto H1(H) (and h̃rad(s) denotes its common value on

the semi-circle of radius e−s around 0) then (̃hrad(s) − h̃rad(0))s≥0 has the law of (B2s + αs)s≥0, where B is a standard
Brownian motion. Moreover, by scale invariance of hGFF

circ , the projection h̃circ of h̃ onto H2(H) is equal in law to hGFF
circ .

Now, let M = sups≥0 h̃rad(s) − Qγ s, and let T be the time at which this maximum is achieved (these are both finite
a.s. since α < Qγ by assumption). Then by scale invariance of hGFF

circ , if ψT : H → H is the map z �→ e−T z, the field
ĥ := h̃ ◦ ψT − M restricted to D+ has the same law as h restricted to D+.

7That is, hε(z) = (h,ρz
ε ) where ρz

ε is uniform measure on the semi-circle (contained in H) of radius ε around z.
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From here we can conclude, by observing that the law of h′ is absolutely continuous with respect to that of a Neumann
GFF in H. Therefore, since all that is done to get from h′ to ĥ is to re-centre around a random point, rescale by a random
amount, and subtract a random constant, Lemma 2.9 implies that ν

γ

ĥ,ε
converges in probability as a measure on [−1,1].

By the previous paragraph, the same thing then holds for h. �

Remark 2.11. The measures ν
γ

h , νh defined in Lemmas 2.9 and 2.10 are a.s. atomless and give strictly positive mass to
every interval of strictly positive length a.s. (see, for example, [12,14]).

Remark 2.12. The measures ν
γ

h′ (resp., νh′ ) can be defined using the same regularisation procedure whenever h′ =
h◦φ +Qγ log |φ′| (resp., h′ = h◦φ +2 log |φ′|) for h as in Lemma 2.9 or 2.10 and some conformal map φ. Equivalently,
ν

γ

h′ (resp., νh′ ) can be defined as the push-forward of ν
γ

h (resp., νh) by φ−1.

The following lemma will be important when we construct the critical quantum zipper by taking a limit of subcritical
quantum zippers.

Lemma 2.13. Let γn ↑ 2 as n → ∞, and h be a (2,1)-quantum wedge in the last exit parametrisation. Then

ν
γn

h

2 − γn

→ 2νh

in probability as n → ∞, with respect to the topology of local weak convergence of measures on R.

Proof. This was shown in [2, §4.1.1–2] when h is either one of the fields in the statement of Lemma 2.9. It extends to
the case when h is a (2,1)-quantum wedge by the same proof as for Lemma 2.9 (using that it holds for the Neumann
boundary condition GFF and then re-centring the field around a ν1

h-typical point). �

2.4. Schramm–Loewner evolutions

We assume the reader is familiar with the basic theory of Schramm–Loewner evolutions (SLE): for an introduction, see
e.g. [18,19]. In this section we simply fix some notation and discuss a few points that will be relevant later on.

In this article, we will consider chordal SLEκ with κ ∈ (0,4]. SLEκ in H from 0 to ∞ is defined to be the Loewner
evolution in H with random driving function (Wt)t≥0 = (

√
κBt )t≥0, where B is a standard Brownian motion. When

κ ∈ (0,4] an SLEκ is a.s. a simple curve that does not touch the real line. We usually parametrise an SLEκ curve η by
half-plane capacity; that is, we choose the parametrisation of η such that for every t > 0, the unique conformal map
g̃t : H \ η([0, t]) → H with g̃t (z) = z + at/z + O(|z|−2) as |z| → ∞ for some at > 0, satisfies at = 2t . We use the
notation gt for the centred Loewner map gt = g̃t − Wt , that sends η(t) to 0.

A curve η between boundary points a and b in a domain D is said to be an SLEκ from a to b if it is the image of an
SLEκ in H from 0 to ∞, under a conformal map from H to D mapping 0 to a and ∞ to b.

Definition 2.14 (Reverse SLEκ ). A reverse Loewner evolution with continuous driving function Wt : [0,∞) → R is a
solution f̃ (t, z) = f̃t (z) to the following differential equation for every z ∈ H:

∂t f̃t (z) = −2

f̃t (z) − Wt

; f̃0(z) = z.

In fact for every z ∈H (see e.g. [18, Lemma 4.9]), a solution exists for all t ≥ 0, so that each f̃t defines a map H �→ f̃t (H).
A reverse SLEκ flow is the reverse Loewner evolution (f̃t )t≥0 driven by Wt = √

κ dBt , where B is a standard Brownian
motion. One can also consider the centred reverse SLEκ flow, defined by ft (z) = f̃t (z + Wt) for all z, t . Then (ft )t≥0
satisfies the following SDE for all z ∈H:

dft (z) = −2

ft (z)
dt − dWt f0(z) = z. (2.7)

Moreover, there a.s. exists a continuous curve η such that for each t we have H \ ft (H) = η([0, t]).

Due to the time-reversal property of Brownian motion, if (ft )t≥0 is a centred reverse SLEκ and (gt )t≥0 is a centred
forward SLEκ , both parametrised by half-plane capacity, then for any fixed t ≥ 0, f −1

t is equal in law to gt . In other
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words, if t > 0 is fixed, η([0, t]) is a forward SLEκ run until it has half-plane capacity t and η′([0, t]) is a reverse SLEκ

run until it has half-plane capacity t , then η([0, t]) is equal in law to η′([0, t]).
Let us now provide a notion of convergence for Loewner evolutions; this will be particularly important in our construc-

tion of the critical conformal welding. Note that when considering sequences (fn)n∈N or (gn)n∈N of Loewner evolutions,
we move the time parameter t into a superscript.

Definition 2.15. Suppose that (f t
n)t≥0 for n ∈ N and (f t )t≥0 are centred, reverse Loewner evolutions in H from 0 to ∞,

parametrised by half-plane capacity. Let σn : R → [0,∞) be defined by setting σn(x) = inf{t ≥ 0 : f t
n(x) = 0} for each

x ∈ R, n ∈ N, and define σ in the corresponding way for f . Then we say that fn → f in the Carathéodory+ topology if

• for every T < ∞ and ε > 0, fn converges to f uniformly on [0, T ] × {H+ iε}; and
• σn → σ uniformly on compacts of R.

Remark 2.16. Note that this is stronger than the usual notion of Carathéodory convergence for Loewner evolutions. For
forward Loewner evolutions, Carathéodory convergence is characterised by the requirement that, if gn, g are the flows
in question, we have g−1

n → g−1 uniformly on [0, T ] × {H + iε} for every T , ε > 0 (see [19, §4.7]). The motivation
for working with this stronger topology should be clear from the nature of the conformal welding problem that we are
considering.

In the sequel we make the following slight abuse of notation. Suppose we have (ηn)n∈N and η, a collection of simple,
continuous, transient curves starting from 0 in H. Then we will say that ηn → η in the Carathéodory topology, if the
corresponding forward (half-plane capacity parametrised) Loewner evolutions converge in the Carathéodory sense.

The convergence results that will be important in this article are the following.

Lemma 2.17. Suppose that κn ↑ 4 as n → ∞, that ηn has the law of an SLEκn curve in H from 0 to ∞ for each n ∈ N,
and that η has the law of an SLE4 in H from 0 to ∞. Then ηn → η in distribution as n → ∞, with respect to the
Carathéodory topology.

Proof. See [18, Lemma 6.2] �

Lemma 2.18. Suppose that κn ↑ 4 as n → ∞, and that fn is a centred, reverse SLEκn in H from 0 to ∞ for each n. Let f

be a centred, reverse SLE4 in H from 0 to ∞. Then fn converges to f in distribution, with respect to the Carathéodory+
topology.

Proof. For the proof we couple together ((fn)n∈N, f ), by setting their driving functions equal to ((
√

κnB)n∈N,2B),
where B is a single standard Brownian motion. Then by [18, Proposition 6.1] we have that fn → f uniformly a.s. on
[0, T ] × {H+ iε}, for any T , ε > 0.

To show the convergence of σn (as in Definition 2.15), we define (ht
n(x))t≥0 := ((

√
κn

2 )−1f t
n(

√
κn

2 x))t≥0 for each n and
x ∈ R so that

dht
n(x) = −2( 4

κn
)

ht
n(x)

dt − 2dWt for all t ≤ σ ∗
n (x); h0

n(x) = x,

dft (x) = −2

ft (x)
dt − 2dWt for all t ≤ σ(x); f0(x) = x,

(2.8)

where σ ∗
n (x) := σn(

√
κn

2 x).
We will first show that σ ∗

n → σ uniformly a.s. on compacts of time. Observe that the coupled equations (2.8) imply
that for any fixed x ∈ R, σ ∗

n (x) is a.s. increasing in n and bounded above by σ(x), so has some a.s. limit σ ∗(x) ≤ σ(x). In
fact, it holds that σ ∗(x) = σ(x) a.s. To see this, without loss of generality assume that x ≥ 0 and suppose for contradiction
that σ(x) > σ ∗(x). This means that for some ε > 0 we have f t (x) ≥ ε for all t ≤ σ ∗(x). Define σε

n (x) to be the first time
that ht

n(x) ≤ ε/2 for each n, so that:

• σε
n (x) ≤ σ ∗

n (x) ≤ σ ∗(x) for all n; and
• ht

n(x), f t (x) ≥ ε/2 for all t ≤ σε
n (x) and all n.
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Then (2.8), plus Grönwall’s inequality applied to the function ht
n − f t , implies that |hσε

n (x)
n (x) − f σε

n (x)(x)| → 0 as
n → ∞. This is a contradiction, since the first term in the difference is equal to ε/2 by definition, and the second should
always be greater than ε.

For any K > 0, this argument then gives the existence of a probability one event �0, on which we have σ ∗
n (q) → σ(q)

for all q ∈ Q ∩ [0,K + 1]. Since σ and (σn)n∈N are defined from reverse SLEκ curves, we may also assume that σ

and (σn)n∈N are continuous on �0. So now, suppose we are working on �0, and take any x ∈ [0,K]. Let q−
k ↑ x and

q+
k ↓ x with q±

k ∈ Q ∩ [0,K + 1] for every k, so that σ ∗
n (q−

k ) ≤ σ ∗
n (x) ≤ σ ∗

n (q+
k ) for every n, and σ ∗

n (q−
k ) ↑ σ(q−

k ),
σ ∗

n (q+
k ) ↑ σ(q+

k ) as n → ∞ for every k. This means that σ ∗
n (x) is a bounded sequence, and any converging subsequence

has limit lying between σ(q−
k ) and σ(q+

k ) for every k. Since σ is continuous, this implies that any such subsequential limit
must be equal to σ(x), and so in fact, it must be that σ ∗

n (x) → σ(x). To summarise, on this event �0 of probability one,
we have that: σ ∗

n → σ pointwise on [0,K]; σ ∗
n (x) is increasing in n for every x ∈ [0,K]; and the functions σ and (σ ∗

n )n∈N
are continuous. These are exactly the conditions of Dini’s theorem, and so we may deduce that σ ∗

n → σ uniformly on
[0,K] a.s.

To finish the proof, it is enough to show that for K ′ arbitrary, the quantity supx∈[0,K ′] |σn(x) − σ(x)| converges to 0
a.s. as n → ∞. Suppose without loss of generality that κn ≥ 2 for all n. Then setting K = 2K ′ in the previous paragraph,
one deduces the existence of a probability one event �1, on which supy∈[0,2K ′] |σ ∗

n (y) − σ(y)| → 0 as n → ∞ and σ is
continuous. Then we have

sup
x∈[0,K ′]

∣∣σn(x) − σ(x)
∣∣ = sup

x∈[0,K ′]

∣∣σ ∗
n

(
(2/

√
κn)x

) − σ(x)
∣∣

≤ sup
x∈[0,K ′]

∣∣σ ∗
n

(
(2/

√
κn)x

) − σ
(
(2/

√
κn)x

)∣∣ + ∣∣σ (
(2/

√
κn)x

) − σ(x)
∣∣

≤ sup
y∈[0,2K ′]

∣∣σ ∗
n (y) − σ(y)

∣∣ + sup
x∈[0,K ′]

∣∣σ (
(2/

√
κn)x

) − σ(x)
∣∣,

and on �1, the final expression goes to 0. This completes the proof. �

3. The (2,2)-wedge via “zooming in” at quantum-typical point

The main goal of this section is to prove Proposition 3.1 below. This proposition illustrates why the (2,2)-quantum
wedge is a particularly natural quantum surface, and will also be important in our proof of Theorem 1.2. Before we state
this proposition, we briefly define the relevant notion of convergence for γ -LQG surfaces. Let Sn for n ∈ N and S be
doubly-marked γ -quantum surfaces with the topology of H. We say that Sn converges to S in the sense of doubly-marked
γ -quantum surfaces if we can find parametrisations (D,hn, a, b) and (D,h, a, b) of Sn and S , respectively, with D �C

and a, b ∈ D, such that for any open and bounded U ⊂ D, hn|U converges to h|U in H−1(U).8

Proposition 3.1. Let D ⊂ H be a simply connected domain such that ∂D ∩ R contains an interval of positive length.
Furthermore, assume there exists a conformal map φ : D → H such that the derivative φ′ extends continuously to ∂D ∩R

and is non-zero on D ∪ {∂D ∩ R}. Let h be an instance of the GFF with continuous Dirichlet boundary conditions on
∂D \ R and free boundary conditions on ∂D ∩ R. Let I = (a, b) ⊂ ∂D ∩ R be a bounded interval, and let z0 be an
arbitrary fixed point of ∂D \ I . Finally, sample z uniformly from νh restricted to I (renormalised to be a probability
measure).

Then as C → ∞, conditioned on the location of z and on νh([a, z]), νh([z, b]), the random quantum surface (D,h +
C,z, z0) converges in law with probability one with respect to z, νh([a, z]), νh([z, b])? (in the sense of doubly-marked
2-quantum surfaces) to a (2,2)-quantum wedge.

Remark 3.2. Note that the above is a statement about the law of a quantum surface conditionally on several quantities.
The same statement holds unconditionally, but we need the stronger statement for the proof of Theorem 1.2. Let us now
briefly explain why.

8We remark that convergence of quantum surfaces is defined somewhat differently in [28] and [11] than in the current paper. In [28] one embeds the
surfaces such that the field hn gives unit mass to the unit half-disk for all n, and the surfaces are said to converge if, restricted to any bounded subset of
H, the area measures μ

γ
hn

associated with the hn converge weakly to the area measure μ
γ
h

associated with h. In [11] one embeds the surfaces with the
unit circle embedding and requires that the fields hn converge as distributions to h. However, the exact notion of convergence considered does not play
an important role in this paper, and the convergence results we prove also hold for the alternative notions of convergence considered in [28] and [11].
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Theorem 1.2 says that when we cut a (2,1)-quantum wedge with an independent SLE4, the surfaces on either side are
independent (2,2)-quantum wedges. For the proof the idea is to make use of the stationary critical zipper, Theorem 1.5.
This can be used (by “zipping down” the SLE4 some amount of quantum length) to say that the law of two surfaces in
question are the same as the law as the surfaces limC→∞(H, h + C,X ,∞) and limC→∞(H, h + C,Y,∞) where X , Y
are two quantum-typical points at equal quantum distance to the right and left of 0. See Proposition 5.1 and the proof
of Theorem 1.2 below. In particular X and Y depend on one another via the quantum boundary length measure. It is
therefore important to know that the local convergence to a quantum wedge described in Proposition 3.1 holds even given
this information.

We first prove a lemma that says, roughly speaking, that convergence of the type considered in Proposition 3.1 only
depends on the local behaviour of the field h around the point z. This will be useful several places in what follows.

Lemma 3.3. Consider the setting of Proposition 3.1, but now with arbitrary h ∈ H−1
loc (D̂), where D̂ ⊂ H is a simply

connected domain containing D. Assume further that the boundary measure νh is well-defined on I (as in Lemma 2.9),
and a.s. assigns positive and finite mass to every subinterval of I with strictly positive length. Finally, let ẑ0 be an arbitrary
fixed point on ∂D̂ \ I . Then the following statements are equivalent:

(i) conditioned on the location of z, and on νh([a, z]), νh([z, b]), the random quantum surface (D,h|D + C,z, z0)

converges in law to a (2,2)-quantum wedge as C → ∞;
(ii) conditioned on the location of z, and on νh([a, z]), νh([z, b]), the random quantum surface (D̂, h + C,z, ẑ0) con-

verges in law to a (2,2)-quantum wedge as C → ∞.

Proof. We may assume without loss of generality that h ∈ H−1(D̂) (rather than h ∈ H−1
loc (D̂)) since the field of a (2,2)-

quantum wedge restricted to any bounded set is in H−1(D̂), so the considered fields must be in H−1(U) for some
neighbourhood U around z in order for the assumed convergence to hold. We may also assume without loss of generality
that D̂ = H and ẑ0 = ∞. Consider a conformal map φ : H → D sending 0 �→ z and ∞ �→ z0. Without loss of generality,
upon replacing φ by φ(c·) for an appropriate c > 0, we may assume that φ′(0) = 1. We only prove that (ii) implies (i),
since the other direction can be verified by a similar argument.

Suppose that (ii) holds, and write h̃ for a random element of H−1(H), with the law of h(· + z) conditionally on
(z, νh([a, z]), νh([z, b])). Then for every C > 1 there exists a random conformal map ψC : H → H of the form w �→
rCw for rC > 0, such that h̃ ◦ ψC + 2 log |ψ ′

C | + C converges in law in H−1(H) as C → ∞, to the field described in
Definition 2.5. Note that rC → 0 as C → ∞ since when C → ∞ the measure assigned to any fixed boundary segment by
h̃ ◦ ψC + 2 log |ψ ′

C | + C goes to infinity, while the measure assigned to (say) [−1,1] by the field in Definition 2.5 is of
order 1.

By the definition of convergence for doubly-marked 2-LQG surfaces, in order to prove (i) it is sufficient to show
convergence of the following quantum surface to a (2,2)-quantum wedge:(

H, h̃ ◦ φ + 2 log
∣∣φ′∣∣ + C,0,∞)

,

where we note that the field depends only on the restriction of h to D). Equivalently, letting hwedge denote the field in
Definition 2.5, it is sufficient to show the existence of maps ψ̃C : H →H of the same form as ψC such that the convergence
in law

h̃ ◦ φ ◦ ψ̃C + 2 log
∣∣φ′ ◦ ψ̃C

∣∣ + 2 log
∣∣ψ̃ ′

C

∣∣ + C ⇒ hwedge. (3.1)

holds in H−1(H) as C → ∞. We will show that this in fact holds with ψ̃C = ψC .
To do this, we set h̃C := h̃ ◦ ψC + 2 log |ψ ′

C | + C and rewrite the left-hand side of (3.1) as

h̃C ◦ ψ−1
C ◦ φ ◦ ψC + 2 log

∣∣φ′ ◦ ψC

∣∣,
where we can immediately note (since φ′(0) = 1, φ′ is continuous, and rC → 0) that the second term converges to 0 in
distribution as C → ∞. Furthermore, h̃C is equal in distribution to hwedge + gC where gC ⇒ 0 in H−1(H) as C → ∞.
Defining φ̃C = ψ−1

C ◦ φ ◦ ψC , in order to conclude the proof it is therefore sufficient to show that

(i) hwedge ◦ φ̃C ⇒ hwedge, (ii) gC ◦ φ̃C ⇒ 0,

as C → ∞, whenever (hwedge, φ̃C) and (gC, φ̃C) are coupled such that the marginal laws of hwedge, gC and φ̃C are as
in the discussion above. Observe that φ̃C − z and its first derivatives converge to 0 in probability, uniformly on compact
subsets of H∪R as C → ∞.
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Let F := {f ∈ H0(H) : ‖f ‖∇ = 1} and recall that for an arbitrary g ∈ H−1(H), its H−1(H) norm is defined by

‖g‖H−1(H) = sup
{
(g, f ) : f ∈ F

}
.

To prove (ii), first note that

∥∥f ◦ φ̃−1
C

∥∥∇ =
∫ [

∂x

(
f ◦ φ̃−1

C

)]2 + [
∂y

(
f ◦ φ̃−1

C

)]2 =
∫

[∂xf ]2(1 + ξ1) + [∂yf ]2(1 + ξ2),

for some functions ξ1, ξ2 converging to 0 in probability, uniformly on compact sets as C → ∞. Therefore the inequal-
ity ‖f ◦ φ̃−1

C ‖∇ ≤ 2‖f ‖∇ holds with probability converging to 1 as C → ∞, uniformly on F . We now get (ii), since
‖gC‖H−1(H) ⇒ 0 as C → ∞, and

sup
F

〈gC ◦ φ̃C, f 〉∇ = sup
F

〈
gC,f ◦ φ̃−1

C

〉
∇ ≤ sup

F
‖gC‖H−1(H) · ∥∥f ◦ φ̃−1

C

∥∥∇ ≤ 2‖gC‖H−1(H)

with probability converging to 1 as C → ∞.
We also have that for some functions ξ1, ξ2 converging uniformly to zero in probability as C → ∞,

∥∥f ◦ φ̃−1
C − f

∥∥∇ =
∫

[∂xf ]2ξ1 + [∂yf ]2ξ2,

and this therefore converges to 0 in probability as C → ∞, uniformly in f ∈ F . From this (i) follows since, uniformly in
f ∈ F and as C → ∞,

〈hwedge ◦ φ̃C − hwedge, f 〉∇ = 〈
hwedge, f ◦ φ̃−1

C − f
〉
∇ ≤ ‖hwedge‖H−1(H) · ∥∥f ◦ φ̃−1

C − f
∥∥∇ ⇒ 0. �

For z ∈ I and ε > 0, define the semi-disk B̂(z, ε) and εz ∈ (0,1] by

B̂(z, ε) := B(z, ε) ∩H, εz = sup
{
ε ∈ (0,1] : B̂(z, ε) ⊂ D

}
.

Unless otherwise stated we assume throughout the section that I is bounded away from H \ D and, to simplify notation
slightly, that

inf{εz : z ∈ I } > 1. (3.2)

Let h be a random generalised function with the law described in Proposition 3.1; in the sequel, we denote the law of
h by P. For ε ∈ (0, εz) let hε(z) denote the average of h on the semi-circle ∂B̂(z, ε) ∩ H, and for β > 1 and ε ∈ (0,1],
define the measure d

β
h,ε on I by

d
β
h,ε(dz) =

(
−hε(z)

2
+ log(1/ε) + β

)
ehε(z) ε1{ hδ(z)

2 <log(1/δ)+β∀δ∈[ε,1]}1z∈I dz. (3.3)

These measures played an important role in [12,13,22], and they are closely related to the derivative martingale for the
branching random walk ([9]). The key point is that d

β
h,ε is a good approximation to the measure νh,ε from Lemma 2.9

when β is large. It is however more convenient to work with, since its total mass is uniformly integrable in ε (which is
not the case for νh,ε). More precisely, we have the following.

Lemma 3.4. For any A ⊂ I the family (d
β
h,ε(A))ε∈(0,1] is uniformly integrable (under P).

Lemma 3.5. Denote by Cβ the event {supz∈I
hδ(z)

2 < log(1/δ) + β; ∀δ ∈ [0,1]}. Then P(Cβ) → 1 as β → ∞.

The version of Lemma 3.4 when the measures d
β
h,ε are defined in the bulk comes from [22], and the proof goes through

in exactly the same way for the boundary measures (3.3). Lemma 3.5 is a consequence of [1].

Remark 3.6. On the event Cβ it holds that d
β
h,ε(dz) = νh,ε(dz) + βε ehε(z) dz. Moreover, (see [25]) the measure

ε ehε(z) dz converges to 0 a.s. as ε → 0.

By uniform integrability of d
β
h,ε(I ), we have the following.
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Lemma 3.7. Let β be fixed. Then the sequence (h, d
β
h,ε) is tight in ε, with respect to the product topology formed from

the topology of H−1
loc (D) in the first coordinate and the weak topology for measures on D in the second coordinate.

Let us take a subsequence of ε along which

(
h,d

β
h,ε

) ⇒ (
h,dβ

)
,

and denote by P∞ the law of the limiting pair. Note that the P∞ marginal law of h must be equal to its P law (as
in Proposition 3.1). Also write d

β
h for the P∞ conditional law of dβ given h, which is a measurable function of h by

definition (although we will not need it, the proof of Lemma 3.10 below actually shows that this function does not depend
on the chosen subsequence). In fact, it should be the case that under P∞, dβ is measurable with respect to h (and so dβ

and d
β
h are equal a.s.). However, for us it suffices to simply work with d

β
h .

Remark 3.8. Observe that by Remark 3.6, on the event Cβ the convergence d
β
h,ε → νh holds in probability as ε → 0 (i.e.,

along any subsequence). Thus dβ = d
β
h = νh on this event.

The following elementary lemma will be used in the proof of Proposition 3.1. It is straightforward to verify using
Girsanov’s theorem, the Markov property of Brownian motion, the reflection principle, and the fact that a 3-dimensional
Bessel process started from a positive value is equal in law to a 1-dimensional Brownian motion started from that value
and conditioned to stay positive. See, for example, [21, Example 3].

Lemma 3.9. Let (Bt )t≥0 be a Brownian motion started from a possibly random position B0 and let α := Var(B1 − B0)

(so the Brownian motion has speed
√

α). Let β,γ > 0. Assume P[B0 < β] > 0 and E[|B0|eγB0 ] < ∞. Then the following
process (Mt)t≥0 is a martingale (with respect to the natural filtration of B):

Mt := (−Bt + γ αt + β)1{−Bu+γαu+β>0∀u∈[0,t]}eγBt− γ 2

2 αt .

For t ≥ 0 let Pt denote the probability measure for which the Radon–Nikodym derivative relative to P is proportional to
Mt . Define Xu := −Bu + γ αu + β for u ≥ 0. Under Pt , the process (Xu)u≤t has the following law.

• X0 has the law of −B0 + β reweighted by M0 = (−B0 + β)1{−B0+β>0}eγB0 .
• Conditioned on X0, (Xu)u∈[0,t] has the law of (Bαs)u∈[0,t], where B is a 3-dimensional Bessel process started from X0.
• Conditioned on (Xu)u∈[0,t], the process (Xu+t − Xt)u≥0 has the law of (Bu − B0)u≥0.

Lemma 3.10. Let h and β be as in Lemma 3.7. Let Q denote the law of h reweighted by d
β
h (I ), and define g(z) :=

Q[(−h1(z) + β) eh1(z) 1{h1(z)<β}]. Note that under Q, d
β
h (I ) is a.s. strictly positive. Then (i) and (ii) below give two

equivalent procedures to sample a pair

(̂h, z) with z ∈ I and ĥ ∈ H−1(B̂(z,1)
)
. (3.4)

(i) Sample h according to Q, then sample z from d
β
h (normalised to be a probability measure), and set ĥ = h|B̂(z,1).

(ii) Sample z from I with density proportional to g relative to Lebesgue measure, and then set ĥ = ĥcirc + ĥrad, where
ĥcirc and ĥrad are independent, ĥcirc has the law of the projection of h onto H2(B̂(z,1)), and ĥrad(x) = A− log |x−z|
for a process (As)s≥0 such that:

– A0 has the law of h1(z), reweighted by (−h1(z) + β)eh1(z)1{h1(z)≤β};
– conditioned on A0, (As)s≥0 is equal in distribution to (−B2s + 2s + β)s≥0 for (Bs)s≥0 a 3-dimensional Bessel

process started from −A0 + β .

The proof of Lemma 3.10 goes via an argument in the style of [27].

Proof. Let Qε be the law of h reweighted by d
β
h,ε(I ). By Lemma 3.9 and the definition of d

β
h,ε , (i′) and (ii′) below give

two equivalent procedures to sample a pair (̂h, z) as in (3.4).
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(i′) Sample h according to Qε , then sample z from d
β
h,ε (normalised to be a probability measure), and set ĥ = h|B̂(z,1).

(ii′) Sample z from I with density proportional to g relative to Lebesgue measure, and then set ĥ = ĥcirc + ĥrad, where
ĥcirc and ĥrad are independent, ĥcirc has the law of the projection of h onto H2(B̂(z,1)), and ĥrad(x) = A− log |x−z|
for a process (As)s≥0 such that:

– A0 has the law of h1(z), reweighted by (−h1(z) + β)eh1(z)1{h1(z)≤β};
– conditioned on A0, (As)s∈[0,log ε−1] is equal in distribution to (−B2s + 2s + β)s∈[0,log ε−1] for (Bs)s≥0 a 3-

dimensional Bessel process started from −A0 + β;
– conditioned on (As)s∈[0,log ε−1], (As)s∈[log ε−1,∞) is equal in distribution to (B2(s−log ε−1) + Alog ε−1)s∈[log ε−1,∞)

for (Bs)s≥0 a standard Brownian motion started from 0.

It is clear that the law in (ii′) converges to the law in (ii) as ε → 0. Now we will argue that, along the subsequence
that was used to define d

β
h , the law in (i′) also converges to the law in (i). Let F be a continuous bounded functional on

H−1
loc (H) and let A ⊂ I be a Borel set. By uniform integrability of d

β
h,ε , along the considered subsequence,

P(d
β
h,ε(A)F (h))

P(d
β
h,ε(I ))

→ P∞(dβ(A)F (h))

P∞(dβ(I ))
= P(d

β
h (A)F (h))

P(d
β
h (I ))

,

where we slightly abuse notation and also use P, P∞ to denote expectation relative to the probability measures P, P∞.
Since the left-hand side is equal to the expectation of F(h)1{z∈A} for (h, z) sampled as in (i′) and the right-hand side is
equal to the same expectation for (h, z) sampled as in (i), we can conclude that the law in (i′) converges to the law in (i).
Clearly the equivalence of (i′) and (ii′) for every ε, together with the convergence (i′) ⇒ (i) and (ii′) ⇒ (ii) implies the
equivalence of (i) and (ii). �

Lemma 3.11. Let (̂h, z) have the law described in (i) of Lemma 3.10. Then as C → ∞ and conditioned on z, the surface
(B̂(z,1), ĥ + C,z, z + i) converges in law to a (2,2)-quantum wedge.

Proof. One can check that the proof of Lemma 3.3 works identically if we condition only on z in (i) and (ii) rather than
on (z, νh([a, z]), νh([z, b]). By this variant of Lemma 3.3, proving Lemma 3.11 is equivalent to showing that conditioned
on z, the quantum surface (H, ĥ + C,z,∞), with ĥ viewed as a distribution on H, (i.e., we set ĥ equal to 0 outside of
B̂(z,1)) converges in law to a (2,2)-quantum wedge. Write B̂ = B̂(z,1) to simplify notation. Decompose ĥ = ĥcirc + ĥrad,
where ĥcirc ∈ H2(B̂) and ĥrad ∈ H1(B̂). By the Markov property, both the mixed GFF in D and the Neumann GFF in
H, when restricted to B̂ , can be written as the sum of a mixed GFF in B̂ (with free boundary conditions on ∂B̂ ∩R and
zero boundary conditions on ∂B̂ \R) plus a harmonic function that extends continuously to ∂B̂ ∩R. Therefore ĥcirc and
hGFF

circ |B̂ can be coupled together so they differ by a random function which extends continuously to B̂ ∩R. In particular,
ĥcirc and hGFF

circ |B̂ can be coupled so that ĥcirc(c·)−hGFF
circ |B̂ (c·) converges a.s. to a random constant as c → 0. It is therefore

sufficient to show that if hGFF
circ is independent of ĥrad then (H, hGFF

circ + ĥrad +C,z,∞) converges in law to a (2,2)-quantum
wedge as C → ∞.

By Lemma 3.10, ĥrad can be coupled together with A in (ii) of that lemma such that ĥrad(x) = A− log |x−z|. Recall that A

can be coupled together with a 3-dimensional Bessel process (Bs)s≥0 started from −A0 +β such that As = −B2s +2s+β .
For C > 1 define

T 1
C = inf{s ≥ 0 : B2s = C + β}, T 3

C = sup{s ≥ 0 : B2s = C + β},
T 2

C = argmin
s∈

[
T 1

C,T 3
C

]B2s , θ = inf
{
B2s : s ∈ [

T 1
C,T 3

C

]} = B2T s
C
.

Note that (Bt+2T 1
C
)t≥0 has the law of a Bessel process started from C + β . By [30, Theorem 3.5], θ has the law of a

uniform random variable on [0,C + β], and, conditioned on θ ,

(i) the process (Bs+2T 3
C

− (C + β))s≥0 has the law of a Bessel process started from 0, and
(ii) (B−s+2T 3

C
)s∈[0,2T 3

C−2T 2
C ] has the law of a Brownian motion started from C+β and stopped at the first time it reaches θ .

It follows that as C → ∞ the process (Bs+2T 3
C

− (C + β))s∈R converges in law to the negative of the process consid-
ered in Remark 2.7 on any compact interval. Therefore (−Bs+2T 3

C
+ (C + β) + 2s)s∈R converges in law to the process

(hrad(e
−s))s∈R in Definition 2.3, which concludes the proof. �
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Lemma 3.12. Assume the same set-up as in Lemma 3.11, except now without the assumption that I is bounded away from
H \D and the assumption (3.2). Then as C → ∞ and conditioned on (z, d

β
h ([a, z]), dβ

h ([z, b])), the surface (B̂(z,1), ĥ+
C,z, z + i) converges in law to a (2,2)-quantum wedge (where ĥ is identically equal to 0 on B̂(z,1) \ D).

Proof. First we will argue that d
β
h is atomless a.s. Notice that d

β
h,ε(dz) ≤ νh,ε(dz) + βε ehε(z) dz (with equality on the

event Cβ ; see Remark 3.6). Since βε ehε(z) converges a.s. to 0 and νh,ε(dz) converges a.s. to the non-atomic measure νh

as ε → 0, this implies that d
β
h is atomless a.s.

Now observe that the proof of Lemma 3.11 above carries through just as before if we replace the 1 on the right side
of (3.2) with some other constant r ∈ (0,1). Then we see that Lemma 3.11 also holds if I is not bounded away from
H \ D, since any interval contained in ∂D ∩ R can be approximated arbitrarily well by an interval satisfying (3.2) for
some r ∈ (0,1). This implies, since d

β
h is atomless, that the point z in the former case converges in total variation distance

to the point z in the latter case when r → 0.
From Lemma 3.11 (without the assumption that I is bounded away from H \ D), and by proceeding exactly as in the

proof of [28, Proposition 5.5], we get that Lemma 3.11 also holds if we condition on d
β
h ([a, z]) and d

β
h ([z, b]). �

Lemma 3.13. Let (Xn,Yn) for n ∈ N and (X,Y ) be random variables such that the vectors (Xn,Yn) converge in total
variation distance to (X,Y ) as n → ∞. Assume Yn, Y are vectors in RN for some N ∈ N, while Xn, X take values in
some Borel space (S,S). Then there exists a set A ⊂RN such that P[Y ∈A] = 1, and such that for any a ∈ A the law of
Xn given Yn = a converges to the law of X given Y = a.9

Proof. Let ε > 0. It is clearly sufficient to prove the lemma under the weaker requirement that A satisfies P[Y ∈ A] ≥
1 − (2 · 12N + 1)ε. For this, it suffices to show that for an arbitrary function F : S → {0,1}, any a ∈A, and all sufficiently
large n,∣∣P[

F(X) = 1|Y = a
] − P

[
F(Xn) = 1|Yn = a

]∣∣ ≤ 3ε. (3.5)

Choose n sufficiently large such that the total variation distance between (Xn,Yn) and (X,Y ) is smaller than ε2. We will
work with such a fixed choice of n in the remainder of the proof, and will prove that (3.5) is satisfied.

Choose δ > 0 sufficiently small such that for all a in a set A0 ⊂ RN satisfying P[Y ∈ A0] > 1 − ε/2 the following
hold: ∣∣P[

F(X) = 1|Y = a
] − P

[
F(X) = 1|‖Y − a‖∞ < δ

]∣∣ < ε;∣∣P[
F(Xn) = 1|Yn = a

] − P
[
F(Xn) = 1|‖Yn − a‖∞ < δ

]∣∣ < ε.
(3.6)

Let K ⊂A0 be a compact set such that P[Y ∈ K] > 1 − ε. For any a ∈ RN define N (a) = {z ∈ RN : ‖z − a‖∞ ≤ δ}. Say
that a point a ∈ K is bad if P[Y ∈ N (a)] = 0, P[Yn ∈ N (a)] = 0, or the total variation distance between (Xn,Yn) and
(X,Y ) conditioned on Yn ∈ N (a) and Y ∈ N (a), respectively, is at least ε. A point in K which is not bad is good. Let
B ⊂ K denote the set of bad points. We will prove that

P[Y ∈ B] ≤ 2 · 12Nε. (3.7)

Taking A= K \B and applying (3.6) then completes the proof.
Choose points a1, . . . , aM ∈ B for some M ∈ N using the following rule. Given a1, . . . , am let am+1 ∈ B be chosen

such that N (am+1) is disjoint from N (a1), . . . , N (am), and such that P[Y ∈ N (am+1)] is maximized. Let M be the
smallest m such that there is no possible way to choose am+1 (i.e., all points in B have ‖ · ‖∞ distance less than δ from
N (a1) ∪ · · · ∪N (am)). Define m = P[Y ∈N (a1)] + · · · + P[Y ∈N (aM)].

The idea for the proof of (3.7) is that m has to be small because the total variation distance between (Xn,Yn) and
(X,Y ) is assumed to be small, and that by the definition of the {N (ai)}i , P(Y ∈ B) is of order O(m).

Proceeding with the details, since N (a1), . . . ,N (aM) are disjoint, we can bound the total variation distance between
(Xn,Yn) and (X,Y ) from below by summing the contribution from each set N (am). More precisely, for arbitrary Borel
(not necessarily probability) measures σ1, σ2 defined on RN , define

dtv(σ1, σ2) = sup
A⊂RN

∣∣σ1(A) − σ2(A)
∣∣,

9The conditional law of X (resp. Xn) given Y = a (resp. Yn = a) exists for almost all a sampled from the law of Y (resp. Yn) by e.g. [15, Section 5.1.3].
Proceeding as in e.g. [10, Exercise 33.16] one can argue that P(X ∈ ·|Y = a) = limδ→0 P(X ∈ ·|‖Y −a‖∞ < δ) for almost all a, and the same statement
holds for Xn, Yn instead of X, Y .
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and note that this defines a metric on the set of Borel measures on RN . Let σn (resp. σ ) denote the law of (Xn,Yn)

(resp. (X,Y )), and let σm
n = σn|N (am) and σm = σ |N (am). For an arbitrary measure σ̂ let |̂σ | denote its total mass. By the

triangle inequality and since dtv(σ
m
n ,

|σm|
|σm

n |σ
m
n ) = ||σm

n | − |σm|| ≤ dtv(σ
m,σm

n ),

dtv

(
σm

|σm| ,
σm

n

|σm
n |

)
≤ 1

|σm|dtv
(
σm,σm

n

) + 1

|σm|dtv

(
σm

n ,
|σm|
|σm

n |σ
m
n

)
≤ 2

|σm|dtv
(
σm,σm

n

)
.

Using m = ∑M
m=1 |σm| we now get

1

2
mε ≤

M∑
m=1

1

2

∣∣σm
∣∣ · dtv

(
σm

|σm| ,
σm

n

|σm
n |

)
≤

M∑
m=1

dtv
(
σm,σm

n

) ≤ dtv(σ, σn) < ε2,

which gives m ≤ 2ε. Using this, we get (3.7) if we can prove the following

P[Y ∈ B] ≤ 12Nm. (3.8)

Let M(am) be the box of side length 6δ centred at am, minus the union of M(a1), . . .M(am−1). To prove (3.8) it is
sufficient to show that: (i) P[Y ∈ B ∩M(am)] ≤ 12NP[Y ∈ N (am)], and (ii) B ⊂ M(a1) ∪ · · · ∪M(aM), since then we
have

P[Y ∈ B] ≤
M∑

m=1

P
[
Y ∈ B ∩M(am)

] ≤
M∑

m=1

12NP
[
Y ∈N (am)

] = 12Nm.

Assertion (i) follows upon dividing the box of side length 6δ centred at am (which contains M(am)) into 12N boxes b of
side length δ/2, and using that, by the definition of am, if b ∩M(am)∩B �=∅ then P[Y ∈ b] ≤ P[Y ∈ N (am)]. Assertion
(ii) follows by using the definition of M and since (by the definition of M(a1), . . . ,M(aM)) points in the complement
of M(a1) ∪ · · · ∪ M(aM) have distance at least 2δ from N (a1) ∪ · · · ∪ N (aM). We conclude that (3.7) and (3.8) both
hold. �

Proof of Proposition 3.1. Consider the law on (z, h) that can be sampled from as follows. First sample h from P (i.e., as
in Proposition 3.1). Then, on the event d

β
h (I ) > 0 sample z from d

β
h normalised to be a probability measure, and otherwise

sample z from Lebesgue measure on I .
Write ĥ for h restricted to B̂(z,1). Observe that on the event {dβ

h (I ) > 0}, the conditional law of ĥ given

(z, d
β
h ([a, z]), dβ

h ([z, b])) is exactly the same as the conditional law of ĥ given (z, d
β
h ([a, z]), dβ

h ([z, b])) in Lemma 3.12.
This is because we have conditioned on the Radon–Nikodym derivative between the two different laws on h. Hence,
under the law on (z, h) just defined, on the event that d

β
h (I ) > 0 and conditionally on (z, d

β
h ([a, z]), dβ

h ([z, b])),(
B̂(z,1), ĥ + C,z, z + i

)
converges in law to a (2,2)-quantum wedge as C → ∞.

Finally, by Lemma 3.5, Remark 3.8, and Lemma 3.13, letting β → ∞, we can conclude that if we sample h from P,
then sample z from νh, and let ĥ be h restricted to B̂(z,1), then we have that conditionally on (z, νh([a, z]), νh([z, b])),
(B̂(z,1), ĥ + C,z, z + i) converges in law to a (2,2)-quantum wedge as C → ∞. Proposition 3.1 now follows upon
application of Lemma 3.3. �

4. The critical quantum zipper via subcritical approximation

The goal of this section is to prove Proposition 4.4 below. In this proposition it is shown that given a (2,1)-quantum
wedge (H, h,0,∞), one can conformally weld together the intervals to the left and right of the origin with quantum
boundary length one. Concretely, it provides the existence of a conformal map f (measurable with respect to h) from H

to H \ η̃, where η̃ is a section of a simple curve starting from 0, such that any two points to the left and right of 0 with
equal νh boundary length (less than one) are mapped to the same point on η̃. Moreover, if one also starts with a curve η

on (H, h,0,∞), that is independent of h and has the law of an SLE4 from 0 to ∞, then the new field/curve pair defined
by f (h) and η̃ ∪ f (η) has the same law as (h, η).

The strategy is to use the fact that such an operation exists [28] in the subcritical case γ ∈ (0,2), i.e., when the SLE4
is replaced by an SLEγ 2 , the (2,1)-quantum wedge is replaced by a (γ, γ − 2/γ )-quantum wedge, and critical boundary
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Fig. 3. Illustration of objects defined in Section 4. Our strategy is to construct the critical quantum zipper (lower row) by taking the n → ∞ limit of the
subcritical quantum zipper (upper row). The convergence in law indicated by the two vertical arrows is joint as n → ∞.

length is replaced by γ -LQG boundary length. See Figure 3 for an illustration. We will show that a number of limits can be
taken as γ ↑ 2, using, for example, the fact that critical LQG measures can be obtained as a limit of subcritical measures
(Lemma 2.13). Combining these convergence statements provides the existence of the welding operation. Making use of
Theorem 1.3, we can prove that the conformal map f is measurable with respect to η.

Let (γn)n∈N be a sequence in (0,2) with γn ↑ 2 as n → ∞, and set κn = γ 2
n . We will always denote by hn a random

element of H−1
loc (H) with the law of a (γn, γn − 2/γn)-quantum wedge, as in Definition 2.3. That is, (H, hn,0,∞) has the

distribution of the equivalence class representative of a (γn, γn − 2/γn)-quantum wedge in the last exit parameterisation.
Given such an hn we denote by νn = (4 − 2γn)

−1ν
γn

hn
, the associated (renormalised) γn-Liouville boundary measure on R

(as in Lemma 2.10). For q ∈Q := Q∩ [0,1], we denote

Xn(q) = inf
{
x ≥ 0 : νn

([0, x]) ≥ q
}; Yn(q) = − inf

{
y ≥ 0 : νn

([−y,0]) ≥ q
}; (4.1)

so that (Xn(q),Yn(q)) is a pair of points to the right and left, respectively, of 0, with νn([Yn(q),0]) = νn([0,Xn(q)]) = q .
Similarly, h will always denote an element of H−1

loc (H) with the law of a (2,1)-quantum wedge (in the last exit
parameterisation) and νh =: ν will be the critical boundary measure associated to h (as in Lemma 2.10). For q ∈ Q
we define (X(q),Y (q)) corresponding to ν as in (4.1), so that (X(q),Y (q)) ∈ [0,∞) × (−∞,0] and ν([0,X(q)]) =
ν([Y(q),0]) = q .

Lemma 4.1. There exists a coupling of ((hn)n∈N, h) such that a.s. as n → ∞,

(hn, νn) → (h, ν).

This is with respect to the topology of H−1
loc (H) in the first coordinate, and the local weak topology for measures on R in

the second.

Proof. By the Skorokhod representation theorem, it is sufficient to show that (hn, νn) converges in distribution to (h, ν)

as n → ∞. The idea is that away from 0 and the unit circle, hn is arbitrarily close to h in total variation distance for large
n, so we can essentially just apply Lemma 2.13 in these regions. We then deal with neighbourhoods of 0 and the unit
circle separately; showing that as the size of the neighbourhoods goes to 0 the behaviour of (hn, νn) restricted to these
neighbourhoods can be neglected (uniformly in n).

To carry out this idea, when x ∈ R and r > s > 0 we write

B̂(x, r) := {
w ∈H : |w − x| < r

}
and Â(x, r, s) := B̂(x, r) \ B̂(x, s).

First, we observe that for any (ri)
4
i=1 such that r4 > r3 > 1 > r2 > r1 > 0 there exists a sequence of couplings (hn,h),

such that P(hn = h on Â(0, r4, r3) ∪ Â(0, r2, r1)) tends to 1 as n → ∞. Indeed, since we can couple the fields to have the
same circular part, this just follows because setting:

• Ln to be the law of a double sided Brownian motion plus drift (2 − 2/γn), restricted to some interval [−M,M] and
conditioned to stay below the curve s �→ Qγns for all positive time; and
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• L to be the law of a double sided Brownian motion with drift 1, restricted to [−M,M] and conditioned to stay below
the curve s �→ 2s for all positive time,

then Ln → L with respect to total variation distance as n → ∞. Hence, by Lemma 2.13, it suffices to show that

ν
([−δ,+δ] ∪ [−1 + δ,−1 − δ] ∪ [1 + δ,1 − δ]) → 0;

‖h‖H−1(B̂(0,δ)) → 0; ‖h‖H−1(Â(0,1+δ,1−δ)) → 0
(4.2)

in probability (equivalently, in distribution) as δ → 0, and

P
(
νn

([−δ, δ] ∪ [−1 + δ,−1 − δ] ∪ [1 + δ,1 − δ]) > η
) → 0 (4.3)

P
(‖hn‖H−1(B̂(0,δ)) > η

) → 0; P
(‖hn‖H−1(Â(0,1+δ,1−δ)) > η

) → 0 (4.4)

for any η > 0, uniformly in n, as δ → 0.
The first statement of (4.2) holds because ν is a.s. atomless (Remark 2.11). Moreover, (4.4) and the last two statements

of (4.2) follow by decomposing h and (hn)n∈N into their projections onto H1(H) and H2(H). Indeed, the projections
onto H2(H) all have the same law – that of hGFF

circ – and it can be verified by a direct computation that the H−1(B̂(0, δ) ∪
Â(0,1 + δ,1 − δ)) norm of hGFF

circ goes to 0 in probability as δ → 0. The projections onto H1(H), when restricted to
B̂(0,1 + δ), can also all be stochastically dominated (for example) by the random function

1{z∈Â(0,1+δ,1)}B2 log |z| − 2 log
(|z|),

where B is a standard Brownian motion. One can easily check that this function has L2(B̂(0, δ) ∪ Â(0,1 + δ,1 − δ))

norm going to 0 in probability as δ → 0, which is more than we need.
For (4.3), first fix η > 0. We will deal with the neighbourhood [−δ, δ] of 0, and the intervals [±1 − δ,±1 + δ] around

±1, separately. To show that P(νn([−δ, δ] > η) → 0 uniformly in n as δ → 0, we observe (as in the proof of Lemma 2.10)
that if ĥ is a Neumann GFF with additive constant fixed so that its average on ∂B̂(0,1) is equal to 0, then for every n

there exists a random constant cn such that

c
−γ 2

n /2
n ν

γn

ĥ+(γn−2/γn) log |·|
([−cnδ, cnδ]

) d= (4 − 2γn)νn

([−δ, δ]).
Moreover, the probability that cn is greater than M goes to 0 uniformly in n as M → ∞, since, by the proof of Lemma 2.8,
cn has the law of the exponential of minus the last time that a Brownian motion with negative drift B2t − (Qγn − γn +
2/γn)t is greater than or equal to 0. Hence it suffices to show that

(4 − 2γn)
−1

∫ δ

−δ

|z|−(γ 2
n −4)ν

γn

ĥ
(dz) → 0 (4.5)

in probability (or, equivalently, in distribution) as n → ∞. However, it follows from [2, Lemmas 3.1 and 3.2] (with
straightforward adaptation to the boundary case) that the integral in (4.5) has (1 − γn/2)th moment converging to 0 with
δ, uniformly in n. Since (4 − 2γn)

(1−γn/2) → 1 as n → ∞, the result then follows by Markov’s inequality.
To show that P(νn([±1 − δ,±1 + δ] > η) → 0 uniformly in n as δ → 0, we first note that (by Lemma 2.13) this would

hold if the fields hn were all replaced by a Neumann GFF in H, with additive constant fixed so that its average on ∂B̂(0,1)

is 0. Then, since

• such a Neumann GFF can be written as the sum of hGFF
circ plus a random function whose supremum in B̂(±1,2δ) goes

to 0 as δ → 0, and
• hn can be written as the sum hGFF

circ +Fn where P(supB̂(±1,2δ) Fn ≥ a) → 0 as δ → 0 uniformly in n for any fixed a > 0,

the result follows. �

Lemma 4.2. There exists a coupling of ((hn, ηn)n∈N, h, η) such that:

• (hn, ηn) for each n has the marginal law of a (γn, γn − 2/γn)-quantum wedge and an independent SLEκn from 0 to ∞
in H (κn = γ 2

n );
• (h, η) has the marginal law of a (2,1)-quantum wedge and an independent SLE4 from 0 to ∞ in H;
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• (hn, ηn, (Xn(q))q∈Q, (Yn(q))q∈Q) converges to (h, η, (X(q))q∈Q, (Y (q))q∈Q) in probability as n → ∞, with respect

to H−1
loc (H) convergence in the first coordinate, Carathéodory convergence in the second coordinate, and the product

topology on RQ in the third and fourth coordinates.10

Proof. First, by Lemma 2.17, it is possible to couple a sequence of SLEκn curves and an SLE4 such that one has con-
vergence with respect to the Carathéodory topology in probability as n → ∞. Next, since the curves can be sampled
independently of everything else in the statement, it is enough to show that with the coupling of Lemma 4.1, we have
(Xn(q))q∈Q converging to (X(q))q∈Q and (Yn(q))q∈Q converging to (Y (q))q∈Q in probability as n → ∞ (with respect
to the product topology on RQ). We will show the statement for X; the corresponding statement for Y follows by the
same argument.

Let Fn : [0,∞) → [0,∞) and F : [0,∞) → [0,∞) describe the cumulative mass of the measures νn and ν, i.e.,
Fn(x) = νn([0, x]) and F(x) = ν([0, x]) for all x, and note that a.s. by Remark 2.11, both are continuous and strictly
increasing. This means that Fn converges pointwise to F a.s. as n → ∞, and hence also that the generalised inverses

F−1
n (s) = inf

{
x ∈ [0,∞) : Fn(x) ≥ s

}
(4.6)

converge pointwise to the generalised inverse F−1 (defined analogously) a.s. as k → ∞. In particular, this implies that
(Xn(q))q∈Q converges to (X(q))q∈Q a.s. as n → ∞, with respect to the product topology on RQ. �

For what follows, we need to recall the definition of Sheffield’s capacity quantum zipper [28] for γ ∈ (0,2).

Definition 4.3. Let γ ∈ (0,2) and (H, ĥ0,0,∞) be an equivalence class representative of a (γ, γ −2/γ )-quantum wedge.
Let κ = γ 2, and let η̂0 be an independent SLEκ in H from 0 to ∞. Then the capacity quantum zipper is a centered, reverse
Loewner flow (f̂t )t≥0 coupled with (̂h0, η̂0), such that:

• (f̂t )t≥0 is measurable with respect to ĥ0;
• the marginal law of (f̂t )t≥0 is a centered, reverse SLEκ flow parameterised by half-plane capacity;
• for any t and x ∈ η̂t \ f̂t (̂η0), denoting by ηL

x and ηR
x the left- and right-hand sides of η up to x, the ν

γ

ĥ0
length of the

intervals f̂ −1
t (ηL

x ) and f̂ −1
t (ηR

x ) agree.

This induces a dynamic

(̂ht , η̂t ) := (̂
h0 ◦ f̂ −1

t + Qγ log
∣∣(f̂ −1

t

)′∣∣, f̂t (̂η0)
)

on (̂h0, η̂0) which is stationary when observed at quantum typical times. More precisely, for any l ≥ 0, if

Xl = inf
{
x ≥ 0 : νγ

h0
(0, x) = l

}
and Tl = inf

{
t ≥ 0 : ft (Xl) = 0

}
,

then (̂hTl
, η̂Tl

) is equal in distribution, as a quantum surface, to (̂h0, η̂0).11

This flow thus represents a dynamic welding of [0,∞) to (−∞,0], according to the γ -LQG boundary length. It
is essentially the same as the dynamic defined in the (subcritical version of) Theorem 1.5, but with a different time
parameterisation.

Now, assume that ((hn, ηn)n∈N, h, η) are coupled together as in Lemma 4.2 and that (Xn(q),Yn(q))n∈N,q∈Q and
(X(q),Y (q))q∈Q are defined as in (4.1) with respect to (hn)n∈N and h, respectively. For each n ∈ N, let (f t

n)t≥0 be
the centered reverse flow in Definition 4.3, when (̂h0, η̂0) are replaced by (hn, ηn). For q ∈ Q we let τn(q) be the time
at which (Xn(q),Yn(q)) are mapped to 0 by fn. For t ≥ 0, let ht

n = f t
n(hn) := hn ◦ (f t

n)−1 + Qγn log |((f t
n)−1)′| and

ηt
n = f t

n(ηn). As in footnote 4, although ht
n is only defined on the slit domain H \ f t

n(ηn) we can view it as an element of
H−1

loc (H). Then by the properties described in Definition 4.3, it follows that for any q ∈ Q:

• η
τn(q)
n and h

τn(q)
n are independent;

• η
τn(q)
n has the law of an SLEκn from 0 to ∞; and

• h
τn(q)
n is (equivalent as a doubly-marked γn-quantum surface to) a (γn, γn − 2/γn)-quantum wedge.

10Here (Xn(q),Yn(q))n∈N,q∈Q , (X(q),Y (q))q∈Q are defined with respect to ((hn)n∈N, h) as in the introduction to this section.
11By this we mean that (H, ĥt ,0,∞), up to the equivalence described in Definition 1.1, is a (γ, γ − 2/γ )-quantum wedge, and η̂t is an SLEκ that is
independent of ĥt .
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We also define rn := f
τn
n (Xn(2)) for each n, where the definition of Xn(q) for q ∈ Q is extended in the obvious way to

Xn(2). Let ψn denote the scaling map z �→ rnz on H.
This next proposition provides, by approximation, the existence of a local conformal welding of [0,∞) to (−∞,0]

for a (2,1)-quantum wedge.

Proposition 4.4. Suppose that ((hn, ηn)n∈N, h, η) are coupled together as in Lemma 4.2, on some probability space
(�,F,P). Then there exists a conformal map f : H→ H and a pair (h′, η′) with

(
hn,ηn,ψ

−1
n ◦ f τn(1)

n , hτn(1)
n ◦ ψn + Qγn log |rn|,ψ−1

n

(
ητn(1)

n

)) P−→ (
h,η,f,h′, η′) (4.7)

as n → ∞ where the convergence is with respect to H−1
loc (H) in the first and fourth coordinates, with respect to

Carathéodory convergence in the second and fifth coordinates, and with respect to uniform convergence on {H + iε}
for every ε > 0 in the third coordinate. Furthermore, we have that:

(a) (H, h′,0,∞) (viewed as a doubly-marked 2-quantum surface) has the law of a (2,1)-quantum wedge, and
νh′([0,1]) = 1;

(b) η′ has the law of an SLE4 from 0 to ∞ in H;
(c) h′ and η′ are independent;
(d) η′ = f (η) and h′ = f (h) := h ◦ f −1 + 2 log |(f −1)′| a.s.
(e) f (X(1)) = f (Y (1)) = 0, and f (X(q)) = f (Y (q)) for every q ∈Q a.s. and finally
(f) (f,h′, η′) is measurable with respect to σ({h,η}).

The set-up for the proof is as follows. Consider the joint law of the tuple, for n ∈N:

(
hn,ηn,

(
Xn(q)

)
q∈Q,

(
Yn(q)

)
q∈Q,

(
f t

n

)
t≥0, τn(1), hτn(1)

n ◦ ψn + Qγn log |rn|,ψ−1
n

(
ητn(1)

n

)
, rn

)
. (4.8)

We consider the topology of H−1
loc (H) in the 1st and 7th coordinates, Carathéodory convergence in the 2nd and 8th coor-

dinates, pointwise convergence (i.e., with respect to product topology on RQ) in the 3rd and 4th coordinates, convergence
on R in the 6th and 9th coordinates, and Carathéodory+ convergence in the 5th coordinate.

Lemma 4.5. With respect to product topology above, the tuple (4.8) is tight. Furthermore, if (h, η,X,Y, (f t )t≥0, τ, h
′,

η′, r) denotes a subsequential limit, then (a) and (b) of Lemma 4.4 are satisfied and r ′ is a.s. strictly positive.

Proof. First observe that by Lemma 4.2 we have joint convergence in distribution of the first four coordinates. It remains
to prove tightness of the remaining five coordinates, and verify the asserted properties of the subsequential limit. The
sequence ((f t

n)t≥0)n∈N is tight, since by Lemma 2.18 we have convergence in distribution to a reverse SLE4 with respect

to the Carathéodory+ topology. It is also immediate that the sequence (η
τn(1)
n )n∈N is tight and that η′ satisfies (b), since

by stationarity of the subcritical quantum zipper, the law of η
τn(1)
n is that of an SLEκn curve from 0 to ∞ in H, and the

map ψn is independent of η
τn(1)
n .

To see that the sequence (τn(1))n∈N is tight, first observe that P(Xn(1) ≥ M) → 0 as M → ∞, uniformly in n (since
we already know that Xn(1) converges in probability). Therefore, we need only show that for fixed M , if σn

M is the first
time M hits 0 under a reverse SLEκn flow, then P(σn(M) > K) → 0 as K → ∞ uniformly in n. This follows directly
from the proof of Lemma 2.18.

Finally, by stationarity of the subcritical quantum zipper and definition of rn we know that for every n:

• (H, h
τn(1)
n ,0,∞) is equal in law to a (γn, γn − 2/γn)-quantum wedge (when viewed as a quantum surface); and

• (4 − 2γn)
−1ν

γn

h
τn(1)
n

([0, rn]) = 1.

It therefore follows from Lemma 4.1 that h
τn(1)
n ◦ ψn + Qn log |rn| converges in distribution to the equivalence class

representative of a (2,1)-quantum wedge in H, with marked points at 0 and ∞, that gives critical boundary length 1 to
the interval [0,1]. In particular, (a) holds and (h

τn(1)
n ◦ ψn + Qn log |rn|)n∈N is tight.

To prove tightness of (rn)n∈N, and the assertion about positivity of any subsequential limit, we will show that

P
(
rn /∈ [1/M,M]) → 0 as M → ∞,uniformly in n. (4.9)



Conformal welding for critical Liouville quantum gravity 1251

For this we use the fact [8, Proposition 4.11] that |Xn(2) − Xn(1)| ≤ rn, and if ξn is the driving function of fn, then
Xn(2) = |(f τn(1)

n )−1(rn)| ≥ rn − |ξτn(1)
n |. Then (4.9) follows because (Xn(1) − Xn(2)) converges in probability to some-

thing a.s. positive (by the same reasoning as in Lemma 4.2), τn(1) is tight (as explained above), and ξn is a Brownian
motion run at speed

√
κn. �

With Lemma 4.5 in hand, let us take a subsequence (nk)k∈N such that along this subsequence (4.8) converges in
distribution to a limit(

h,η,X,Y,
(
f t

)
t≥0, τ, h

′, η′, r
)
. (4.10)

Note that by Lemma 4.2, the joint law of this tuple must be such that [0,X(q)] and [Y(q),0] for q ∈ Q have critical
νh-boundary length equal to q . We further claim the following.

Lemma 4.6. The joint law of (4.10) is such that if ψr is the scaling map z �→ rz and f ′ := ψ−1
r ◦f τ , then (h, η,f,h′, η′)

satisfies conditions (a)–(e).

We first show how to conclude the proof of Proposition 4.4 using Lemma 4.6, and then turn to the proof of the lemma
itself.

Proof of Proposition 4.4. Letting (h, η,f,h′, η′) be as in Lemma 4.6, it follows from [20] that (f,h′, η′) must be
measurable with respect to h and η′. Indeed, if (h, η,f1, h

′
1, η

′
1, f2, h

′
2, η

′
2) is a coupling such that (h, η,fi, h

′
i , η

′
i ) satisfies

(a)-(e) for i = 1,2 then it follows from Theorem 1.3 that f1 ◦ f −1
2 is a conformal automorphism of H that fixes {0,∞},

and moreover by (a) and (d), that f1(h) and f2(h) give the same critical boundary length to the interval [0,1]. This implies
that f1 = f2 a.s. and so (fi, hi, ηi) = (fi, fi(h), fi(η)) are equal for i = 1,2 a.s. Since (hn, ηn) converges in probability
to (h, η) as n → ∞, and (ψ−1

n ◦f
τn(1)
n , h

τn(1)
n ◦ψn +Qγn log |rn|,ψ−1

n (η
τn(1)
n )) is also measurable with respect to (hn, ηn)

for each n, this implies that the convergence(
hn,ηn,ψ

−1
n ◦ f τn(1)

n , hτn(1)
n ◦ ψn + Qγn log |rn|,ψ−1

n

(
ητn(1)

n

)) → (
h,η,f,h′, η′)

along the subsequence (nk)k∈N is actually a limit in probability, and by uniqueness, that it holds along the whole sequence
n → ∞. �

Proof of Lemma 4.6. By Lemma 4.5, properties (a) and (b) are satisfied. Property (c) is satisfied because hτn(1) ◦ ψn +
Q log |rn| and ψ−1

n (ητn(1)) are independent for every n.
To show that property (d) is satisfied, let us via Skorokhod embedding assume that we have joint convergence of the

whole tuple a.s. along the subsequence (nk)k∈N. Then since a.s.

rnk
→ r ∈ (0,∞); τnk

(1) → τ < ∞; (
f t

nk

)
t≥0 → (

f t
)
t≥0 uniformly on compacts of time and space,

it follows that (ψ−1
nk

◦ f
τnk

(1)
nk

) converges to f uniformly on compacts of H a.s. From this, because

ηnk
→ η and ψ−1

nk

(
η

τnk
(1)

nk

) = (
ψ−1

nk
◦ f

τnk
(1)

nk

)
(ηnk

) → η′ a.s.,

we see that with probability one η′ = f (η).
To verify that h′ = f (h) (since η′ is independent of h′ and the Lebesgue measure of the ε-neighborhood of the η′

restricted to any compact set goes to zero as ε → 0) we only need to check that for any test function ρ with compact
support in H, we have(

h′ − 2 log
∣∣(f −1)′∣∣, ∣∣f ′∣∣−2(

ρ ◦ f −1)) = (h,ρ) a.s.,

where, by definition,

(h,ρ) = (
f (h) − 2 log

∣∣(f −1)′∣∣, ∣∣f ′∣∣−2(
ρ ◦ f −1)). (4.11)

However, since the support of ρ is compact and we have seen above that (ψ−1
nk

◦ f
τnk

(1)
nk

) → f uniformly on compacts of
H a.s., the sequence

(hnk
, ρ) = (

h
τnk

(1)
nk

◦ ψnk
− Qγnk

log
(|(ψ−1

nk
◦ f τnk (1)

)−1)′|), ∣∣(ψ−1
nk

◦ f
τnk

(1)
n

)′∣∣−2(
ρ ◦ (

ψ−1
nk

◦ f
τnk

(1)
n

)−1)
)
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converges to (h′ − 2 log |(f −1)′|, |f ′|−2ρ ◦ f −1) a.s. as k → ∞. On the other hand, because hnk
converges to h, we have

(hnk
, ρ) → (h,ρ) a.s. as k → ∞. This implies the result.

Finally, we need to show property (e). For this, recall the definitions of σn and σ from the definition of Carathéodory+
convergence, and note that σn(Xn(1)) = τn(1) for each n. Since (fnk

,Xnk
, Ynk

, τnk
(1)) ⇒ (f,X,Y, τ ) by assump-

tion, and since convergence in the first coordinate is with respect to the Carathéodory+ topology,12 we have that
(σnk

(Xnk
(1)), σnk

(Ynk
(1)), τnk

(1)) ⇒ (σ (X(1)), σ (Y (1)), τ ) as k → ∞. On the other hand, the left-hand side is actu-
ally equal to (τnk

(1), τnk
(1), τnk

(1)) for every k, and we clearly have (τnk
(1), τnk

(1), τnk
(1)) ⇒ (τ, τ, τ ). Hence it must

be the case that σ(X(1)) = τ = σ(Y (1)) with probability one, and since f σ(x)(x) = 0 for every x (by definition of σ ),
this implies that

f τ
(
X(1)

) = f τ
(
Y(1)

) = 0 a.s.

Since f = ψ−1
r ◦ f τ , the same holds a.s. if f τ is replaced with f .

For q < 1 we observe that the sequence τn(q) is also tight in n, and so we may pass to a further subsequence along
which the tuple formed by appending τn(q) to (4.8) converges in distribution to (h, η,X,Y, (f t )t≥0, τ, h

τ , ητ , r, τ ′). Then
repeating the same argument as above with 1 replaced by q , we see that f τ ′

(X(q)) = f τ ′
(Y (q)) = 0 a.s. Moreover, since

τn(q) ≤ τn(1) for every n we have τ ′ ≤ τ a.s.Ṫhese two facts together (and using that (f t )t≥0 is a centred, reverse Loewner
flow) imply that f τ (X(q)) = f τ (Y (q)) with probability one. Again, this still holds a.s. if f τ is replaced with f . �

Remark 4.7. Observe that if (h, η,f,h′, η′) are as in Proposition 4.4 then by applying a scaling that puts h′ in the last
exit parametrisation, we obtain the map from the statement of Theorem 1.5 with t = 1.

5. Proof of main results

In this section we conclude the proof of Theorems 1.2 and 1.5 by combining results of Sections 3 and 4.

Proof of Theorem 1.5. The theorem follows immediately from Remark 4.7, noting that everything generalises trivially
if the special value 1 in Section 4 is replaced with any other t > 0. �

Proposition 5.1. Let (h, η,X ,Y) be such that (H, h,0,∞) is a (2,1)-quantum wedge in the last exit parametrisation,
η is an independent chordal SLE4 in H from 0 to ∞, and X ,Y ∈ R are sampled by choosing X from the uniform
distribution on [0,1] and then letting Y < 0 be such that ν([Y,0]) = ν([0,X ]). Let DL ⊂ H (resp., DR ⊂ H) be the
domain which is to the left (resp., right) of η. Then the pair of doubly-marked 2-quantum surfaces (DL, h + C,Y,∞),
(DR, h + C,X ,∞) converge as C → ∞ to a pair of independent (2,2)-quantum wedges.

Proof. The R-unit circle embedding is defined just as the unit circle embedding (Definition 2.2), except that s �→
hrad(e

−s) − Q2s hits R (rather than 0) for the first time at s = 0. For a given R > 1 make a change of coordinates
z �→ rz via (1.1) (with r random and depending on R) such that the field h has the R-unit circle embedding. Let ν denote
the corresponding boundary length measure, and let X̂ = rX and Ŷ = rY be the images of X and Y respectively under
the change of coordinates. Since ν([−1,0]) and ν([0,1]) converge in law to ∞ as R → ∞, we see that with probability
converging to 1 as R → ∞, we have X̂ ∈ (0,1) and Ŷ ∈ (−1,0).

Notice that h restricted to the unit semi-disk D+ ⊂H has the law of a free boundary GFF in D+ plus z �→ − log |z|, with
additive constant chosen such that the field restricted to the unit semi-circle has average R. Let F denote the σ -algebra
generated by h restricted to the parts of the imaginary axis and the unit circle that are contained in H. Let UR (resp.,
UL) denote the unit disc restricted to the first (resp., second) quadrant. Then h|UR and h|UL are independent conditioned
on F , and h|UR (resp., h|UL ) has the law of a mixed boundary GFF with continuous Dirichlet boundary conditions on
∂UR ∩H (resp., ∂UL ∩H) and free boundary conditions on ∂UR ∩R (resp., ∂UL ∩R). The proposition now follows from
Proposition 3.1 and Lemma 3.3 applied with UL, UR, DL, and DR, when we condition on the σ -algebra generated by F
in addition to ν([−1,Y]), ν([Y,0]), ν([0,X ]), and ν([X ,1]). �

Proof of Theorem 1.2. Consider the “critical zipper” (ht , ηt )t∈R of Theorem 1.5 and let X and Y be as in Proposition 5.1
with respect to (h0, η0). Define s = ν([0,X ]) and “zip up” by time τ(s) = τ , i.e., consider (hτ , ητ ), and add a constant

12Recall that this topology requires uniform convergence of the functions σn .
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C to the field. By Lemma 5.1, as C → ∞ the surfaces to the left and to the right of ητ (both with marked points at 0
and ∞) converge to independent (2,2)-quantum wedges. Furthermore, the law of the pair (hτ , ητ ) is that of a (2,1)-
quantum wedge, which is invariant under adding any constant C to the field. Thus, taking a limit as C → ∞ proves the
first statement of the theorem. The statement concerning boundary lengths follows directly from Theorem 1.5. �

Acknowledgements

N. Holden acknowledges support from Dr. Max Rössler, the Walter Haefner Foundation, and the ETH Zürich Foundation.
E. Powell is supported by the SNF grant #175505. Both authors would like to express their thanks to Juhan Aru, for his
valuable input towards the initiation and strategy of this project, and for numerous helpful discussions. They also thank
an anonymous referee for his or her careful reading of the paper and for helpful comments.

References

[1] J. Acosta. Tightness of the recentered maximum of log-correlated Gaussian fields. Electron. J. Probab. 19 (2014) 1–25. MR3272323
https://doi.org/10.1214/EJP.v19-3170

[2] J. Aru, E. Powell and A. Sepúlveda. Critical Liouville measure as a limit of subcritical measures. Electron. Commun. Probab. 24 (2019) 18.
[3] K. Astala, P. Jones, A. Kupiainen and E. Saksman. Random curves by conformal welding. C. R. Math. Acad. Sci. Paris 348 (5–6) (2010) 257–262.

MR2600118 https://doi.org/10.1016/j.crma.2009.12.014
[4] K. Astala, P. Jones, A. Kupiainen and E. Saksman. Random conformal weldings. Acta Math. 207 (2) (2011) 203–254. MR2892610

https://doi.org/10.1007/s11511-012-0069-3
[5] S. Benoist. Natural parametrization of SLE: The Gaussian free field point of view. Electron. J. Probab. 23 (2018) 103. MR3870446

https://doi.org/10.1214/18-ejp232
[6] N. Berestycki. Introduction to the Gaussian free field and Liouville quantum gravity. Lecture Notes. Available on the webpage of the author, 2016.
[7] N. Berestycki. An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab. 22 (2017) 27. MR3652040

https://doi.org/10.1214/17-ECP58
[8] N. Berestycki and J. Norris. Lectures on Schramm–Loewner Evolution. Cambridge University, Cambridge, 2011.
[9] J. D. Biggins and A. E. Kyprianou. Measure change in multitype branching. Adv. in Appl. Probab. 36 (2) (2004) 544–581. MR2058149

https://doi.org/10.1239/aap/1086957585
[10] P. Billingsley. Probability and Measure, 3rd edition. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1995. A Wiley-

Interscience Publication. MR1324786
[11] B. Duplantier, J. Miller and S. Sheffield Liouville quantum gravity as a mating of trees. Preprint, 2018+. Available at arXiv:1409.7055.

MR2819163 https://doi.org/10.1007/s00222-010-0308-1
[12] B. Duplantier, R. Rhodes, S. Sheffield and V. Vargas. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann.

Probab. 42 (5) (2014) 1769–1808. MR3262492 https://doi.org/10.1214/13-AOP890
[13] B. Duplantier, R. Rhodes, S. Sheffield and V. Vargas. Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Comm. Math.

Phys. 330 (1) (2014) 283–330. MR3215583 https://doi.org/10.1007/s00220-014-2000-6
[14] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math. 185 (2) (2011) 333–393. MR2819163 https://doi.org/10.1007/

s00222-010-0308-1
[15] R. Durrett. Probability: Theory and Examples, 4th edition. Cambridge Series in Statistical and Probabilistic Mathematics 31. Cambridge Univer-

sity Press, Cambridge, 2010. MR2722836 https://doi.org/10.1017/CBO9780511779398
[16] P. Jones and S. Smirnov. Removability theorems for Sobolev functions and quasiconformal maps. Ark. Mat. 38 (2) (2000) 263–279. MR1785402

https://doi.org/10.1007/BF02384320
[17] J.-P. Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (2) (1985) 105–150. MR0829798
[18] A. Kemppainen. Schramm–Loewner Evolution. SpringerBriefs in Mathematical Physics 24. Springer, Cham, 2017. MR3751352 https://doi.org/10.

1007/978-3-319-65329-7
[19] G. F. Lawler. Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. American Mathematical Society,

Providence, RI, 2005. MR2129588 https://doi.org/10.1090/surv/114
[20] O. McEnteggart, J. Miller and W. Qian Uniqueness of the welding problem for SLE and Liouville quantum gravity. Preprint, 2018+. Available at

arXiv:1809.02092.
[21] R. G. Pinsky. On the convergence of diffusion processes conditioned to remain in a bounded region for large time to limiting positive recurrent

diffusion processes. Ann. Probab. 13 (2) (1985) 363–378. MR0781410
[22] E. Powell. Critical Gaussian chaos: Convergence and uniqueness in the derivative normalisation. Electron. J. Probab. 23 (2018) 31. MR3785401

https://doi.org/10.1214/18-EJP157
[23] R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: A review. Probab. Surv. 11 (2014) 315–392. MR3274356

https://doi.org/10.1214/13-PS218
[24] R. Rhodes and V. Vargas. The tail expansion of Gaussian multiplicative chaos and the Liouville reflection coefficient. Ann. Probab. 47 (5) (2019)

3082–3107. MR4021245 https://doi.org/10.1214/18-AOP1333
[25] R. Robert and V. Vargas. Gaussian multiplicative chaos revisited. Ann. Probab. 38 (2) (2010) 605–631. MR2642887 https://doi.org/10.1214/

09-AOP490
[26] S. Rohde and O. Schramm. Basic properties of SLE. Ann. of Math. (2) 161 (2) (2005) 883–924. MR2153402 https://doi.org/10.4007/annals.2005.

161.883
[27] A. Shamov. On Gaussian multiplicative chaos. J. Funct. Anal. 270 (9) (2016) 3224–3261. MR3475456 https://doi.org/10.1016/j.jfa.2016.03.001

http://www.ams.org/mathscinet-getitem?mr=3272323
https://doi.org/10.1214/EJP.v19-3170
http://www.ams.org/mathscinet-getitem?mr=2600118
https://doi.org/10.1016/j.crma.2009.12.014
http://www.ams.org/mathscinet-getitem?mr=2892610
https://doi.org/10.1007/s11511-012-0069-3
http://www.ams.org/mathscinet-getitem?mr=3870446
https://doi.org/10.1214/18-ejp232
http://www.ams.org/mathscinet-getitem?mr=3652040
https://doi.org/10.1214/17-ECP58
http://www.ams.org/mathscinet-getitem?mr=2058149
https://doi.org/10.1239/aap/1086957585
http://www.ams.org/mathscinet-getitem?mr=1324786
http://arxiv.org/abs/arXiv:1409.7055
http://www.ams.org/mathscinet-getitem?mr=2819163
https://doi.org/10.1007/s00222-010-0308-1
http://www.ams.org/mathscinet-getitem?mr=3262492
https://doi.org/10.1214/13-AOP890
http://www.ams.org/mathscinet-getitem?mr=3215583
https://doi.org/10.1007/s00220-014-2000-6
http://www.ams.org/mathscinet-getitem?mr=2819163
https://doi.org/10.1007/s00222-010-0308-1
http://www.ams.org/mathscinet-getitem?mr=2722836
https://doi.org/10.1017/CBO9780511779398
http://www.ams.org/mathscinet-getitem?mr=1785402
https://doi.org/10.1007/BF02384320
http://www.ams.org/mathscinet-getitem?mr=0829798
http://www.ams.org/mathscinet-getitem?mr=3751352
https://doi.org/10.1007/978-3-319-65329-7
http://www.ams.org/mathscinet-getitem?mr=2129588
https://doi.org/10.1090/surv/114
http://arxiv.org/abs/arXiv:1809.02092
http://www.ams.org/mathscinet-getitem?mr=0781410
http://www.ams.org/mathscinet-getitem?mr=3785401
https://doi.org/10.1214/18-EJP157
http://www.ams.org/mathscinet-getitem?mr=3274356
https://doi.org/10.1214/13-PS218
http://www.ams.org/mathscinet-getitem?mr=4021245
https://doi.org/10.1214/18-AOP1333
http://www.ams.org/mathscinet-getitem?mr=2642887
https://doi.org/10.1214/09-AOP490
http://www.ams.org/mathscinet-getitem?mr=2153402
https://doi.org/10.4007/annals.2005.161.883
http://www.ams.org/mathscinet-getitem?mr=3475456
https://doi.org/10.1016/j.jfa.2016.03.001
https://doi.org/10.1007/s00222-010-0308-1
https://doi.org/10.1007/978-3-319-65329-7
https://doi.org/10.1214/09-AOP490
https://doi.org/10.4007/annals.2005.161.883


1254 N. Holden and E. Powell

[28] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. 44 (5) (2016) 3474–3545. MR3551203
https://doi.org/10.1214/15-AOP1055

[29] N. Tecu Random Conformal Weldings at criticality. Preprint, 2018+. Available at arXiv:1205.3189.
[30] D. Williams. Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. Lond. Math. Soc. 3 (28) (1974) 738–768.

MR0350881 https://doi.org/10.1112/plms/s3-28.4.738

http://www.ams.org/mathscinet-getitem?mr=3551203
https://doi.org/10.1214/15-AOP1055
http://arxiv.org/abs/arXiv:1205.3189
http://www.ams.org/mathscinet-getitem?mr=0350881
https://doi.org/10.1112/plms/s3-28.4.738

	Introduction
	Related works
	Outline

	Preliminaries
	Gaussian free ﬁeld
	Quantum wedges
	Gaussian multiplicative chaos and the Liouville measures
	Schramm-Loewner evolutions

	The (2,2)-wedge via "zooming in" at quantum-typical point
	The critical quantum zipper via subcritical approximation
	Proof of main results
	Acknowledgements
	References

