
Universal structure of dark matter haloes over a mass
range of 20 orders of magnitude

Wang, J.1,5∗, Bose, S.2, Frenk, C. S.3†Gao, L.1,5, Jenkins, A.3, Springel, V.4 & White, S. D. M.4‡

1Key Laboratory for Computational Astrophysics,National Astronomical Observatories, Chinese
Academy of Sciences, 20A Datun Road, Beijing 100101, China
2Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138,
USA
3Institute for Computational Cosmology, Department of Physics, Durham University, South Road,
Durham, DH1 3LE, UK
4Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany
5School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing
100039, China

Cosmological models in which the dark matter consists of cold elementary particles predict
that the halo population should extend to masses many orders of magnitude below those
where galaxies can form 1–3. Using a multi-zoom technique, we report a consistent cosmo-
logical simulation of the formation of present-day haloes over the full mass range populated
when dark matter is assumed to be a Weakly Interacting Massive Particle (WIMP) of mass
∼100 GeV. The simulation has a dynamic range of 30 orders of magnitude in mass and re-
solves the internal structure of hundreds of Earth-mass haloes in as much detail as that
of hundreds of rich galaxy clusters. We find that halo density profiles are universal over
the entire mass range and are well described by simple two-parameter fitting formulae 4, 5.
Halo mass and concentration are tightly related in a way that depends on cosmology and
on the nature of the dark matter. At fixed mass, concentration is independent of local envi-
ronment for haloes less massive than those of typical galaxies. Haloes over the mass range
(10−3−1011)M� contribute about equally (per logarithmic interval) to the dark matter anni-
hilation luminosity, which we find to be smaller than all previous estimates by factors ranging
up to one thousand3.
Figure 1 illustrates our simulation scheme. The top left panel shows the present-day distribution
of dark matter in a slab cut from a large cosmological simulation (L0) identical to the 2005 Mil-
lennium Simulation6, except that cosmological parameters are updated to reflect recent analyses of
CMB data from the Planck satellite. The total mass in this simulation is about 1019 M�. The circle
outlines a spherical region chosen to avoid any of the more massive structures. The material in this
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region was traced back to the initial time and used to define a Lagrangian volume within which
the particle count was increased by a factor of about 2000, the particle mass was decreased by
the same factor, and the representation of the linear cosmological fluctuation field was extended to
∼ 10 times smaller scale while retaining all structure present in the original simulation. The mass
outside this “zoomed” region was consolidated into a smaller number of particles whose individ-
ual mass increases with distance from its centre. These new initial conditions were then integrated
down to the present day. The top middle panel of Fig. 1 shows a projection of the mass within the
largest sphere enclosed in the high-resolution region. It has resolution 2000 times better in mass
and ∼ 10 times better in length than the first panel, but contains a comparable number of well
resolved haloes (i.e made up of 104 or more simulation particles).

The small circle in this panel outlines a spherical subregion of this first level zoom (L1) which
avoids any larger structures. It was again traced back to the initial conditions, refined by another
factor of 500 in mass, and resimulated to give a second level zoom (L2) for which the final struc-
ture within the high-resolution region is shown in the top right panel of Fig. 1. This whole process
was repeated eight times, each revealing ever smaller structures, to give a final simulation (L8c)
with eight levels of refinement and a high-resolution particle mass of ∼ 10−11 M�, hence a dy-
namic range of 30 orders of magnitude. The final mass distributions in the high resolution regions
at each stage are shown in the remaining panels of Fig. 1. Their initial conditions were set using
second-order Lagrangian perturbation theory with an initial power spectrum with Planck parame-
ters together with a free-streaming cutoff at small spatial scales corresponding to a thermal WIMP,
which, for illustrative purposes, we assume to have mass 100 GeV. One of the zooms (L7c) was
repeated without this cutoff (giving L7) in order to understand its effects on halo structure (see the
methods section for further details).

Considerable effort was needed to ensure that the initial conditions procedure, the force calcu-
lation accuracy and the time integration scheme of the simulation code were adequate to give
reliable results over such a large dynamic range. In the methods section we describe some of these
improvements, and we present convergence tests that demonstrate that they were successful. The
more massive haloes in the high resolution region at each level can all be individually identified in
the parent level, making it possible to check that the masses agree in the two cases. For the most
massive haloes, the resolution of the parent level is sufficient to test that their radial density profiles
also agree. The plots in the methods section show that both these tests are passed for all adjacent
level pairs, giving us confidence that our results for the internal structure of dark matter haloes are
reliable for 10−6 < Mhalo/M� < 1015, the entire halo mass range that should be populated if the
dark matter is a 100 GeV WIMP.

Figure 2 shows the first major result of this article. At each level of our simulation we identify
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a sample of a few tens of well resolved, quasi-equilibrium haloes of similar mass. For these,
we construct a mean, spherically averaged mass density profile which we compare with two well
known two-parameter fitting formulae, the NFW profile7,

ρ(r) = ρsr
3
s/r(r + rs)

2, (1)

where ρs and rs are the characteristic density and scale radius respectively, and the Einasto
profile5, 8,

ρ(r) = ρ−2 exp[−2α−1((r/r−2)α − 1)], (2)

where r−2 is the radius at which the logarithmic slope is −2, and α is a shape parameter which we
fix to α = 0.16. These formulae were fit to the mean profiles at each level over the radial range
where these are numerically robust. Fig. 2 shows differences between the measured profiles and
these best fits in two different ways. The upper panel gives the logarithmic slope of the profiles as a
function of r/r−2, where r−2 is the characteristic radius of the best Einasto fit. In such a plot, each
fitting formula predicts a universal curve, a Z-shaped transition between values of −1 and −3 in
the NFW case, and a smoother, more gradual change of slope in the Einasto case. Over 20 orders
of magnitude in mass, the mean profiles of the simulated haloes are all very similar and are closer
to the latter case than to the former. The only clear exception is that the curve for L0, representing
haloes of moderately rich galaxy clusters, is noticeably steeper than the others. Larger values of
α have previously been shown to give a better fit to such objects, but the trend in α does not
continue to the much lower masses we have now simulated. The lower panels show that over the
factor of about 104 in density for which these profiles are robustly measured, NFW fits are almost
everywhere accurate to better than about 10% and Einasto fits to a few percent. This universality
over 20 orders of magnitude in halo mass is remarkable, not least because reliable simulation data
at z = 0 have not previously been available for most of this range.

The mass of a dark matter halo is conventionally taken as that within the virial radius, defined
here as r200, the radius enclosing a mean density 200 times the critical value. Mass and concentra-
tion, c = r200/rch, can then be used as alternative parameters for the above fitting functions, with
rch = rs and r−2, respectively, for the NFW and Einasto cases. Fig. 3 shows the mass-concentration
relation in our simulation, considering only haloes with enough particles for a reliable concentra-
tion measurement (> 104 at the higher levels, somewhat fewer in L0, L1 and L2). Each coloured
band gives the [10%, 90%] range for haloes at a given level, with a white line indicating the me-
dian concentration at each mass. Over the mass range 1015 > M200/M� > 1010 relevant for galaxy
clusters and for all but the very faintest galaxies, concentration rises quite rapidly with decreas-
ing mass. The relation becomes shallower for lower mass haloes, however, and eventually turns
down as the free-streaming mass is approached. This turn-down is most clearly seen by comparing
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results for L7c and L8c, where the initial conditions included a free-streaming cutoff, with those
for L7, where they did not. In the methods section we compare matched objects in L7 and L7c,
showing that the cutoff reduces the concentration of individual haloes by an increasing amount as
the free-streaming mass (about Earth mass for a 100 GeV WIMP) is approached. Like all N-body
simulations of structure formation with a free-streaming cutoff, both L7c and L8c form spurious
small-scale clumps. As discussed in the Methods section, this does not affect the results of this
article.

Other points of interest in Fig. 3 are that the scatter in concentration depends very little on halo
mass, being about 0.15 dex over the full halo mass range plotted, and that previously published
mass concentration relations, while agreeing roughly for galaxy- and cluster-mass haloes, give
wildly divergent results when extrapolated down to the halo masses which are simulated here for
the first time. Only one model 9, 10 represents our results relatively well, both with and without
a free-streaming cutoff. In the methods section we give a simpler fitting formula which fits our
numerical data even better and follows their approach to predict the effects of varying the free-
streaming scale.

The concentration-mass relation is of critical importance for predicting WIMP annihilation radia-
tion signals. Previous work implied that these should be dominated by haloes with mass relatively
close to the free-streaming limit, but this changes substantially for the reduced concentrations we
find (see the methods section for details). Structures down to very small scales should also be
present in the outer regions of much more massive haloes, resulting in a substantial boost in the
total amount (and a flattening of the radial profile) of their annihilation luminosity. Our simulation
cannot address these issues directly, but it can be used to inform the further modelling required 11.

The high resolution region of L8c is only about 300 pc across at the final time and contains a total
mass which is only about 1% that of the Sun, implying a mean density about 0.3% that of L0.
This low value is a consequence of repeatedly choosing to refine regions that avoid any massive
nonlinear structure. It is still somewhat larger than the median z = 0 density of a universe with
Planck cosmology dominated by a 100 GeV WIMP12. One may nevertheless question whether
the haloes we have simulated can be considered representative of the general population of sim-
ilar mass objects. In the methods section we test this by investigating how the concentration of
our haloes depends on the density of their immediate environment, measured in a spherical shell
between 5 and 10 r200. Remarkably, despite the low mean density of the higher refinement levels,
the distribution of this environment density is centred just below the cosmic mean for all haloes
less massive than about 1010 M�, with a spread of at least an order of magnitude. In addition, such
haloes show no systematic trend of concentration with local density. This encourages us to believe
that the concentration-mass relation of Fig. 3 should be representative of the full halo population.
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Previous attempts13–16 to simulate the structure of very low-mass haloes have failed precisely be-
cause they did not take account of the low-density larger scale environment in which such haloes
live at z = 0.

A final related issue is that our simulation follows dark matter only, neglecting the effects of the
16% of cosmic matter which is baryonic. Both relative velocity and pressure effects17 are expected
to prevent the gas from following the dark matter on the very small scales we have simulated.
While accurate treatment of these effects is beyond present capabilities, given the dynamic range
we are considering, we may expect that at the higher refinement levels they would increase the
mean density (because on average the baryons will be less underdense than the dark matter) but
reduce the growth rate of haloes (because this is driven by the dark matter density only, rather than
by the total density). Given that halo concentration depends weakly on halo mass and not at all on
local environment density, we expect these effects to shift our results by at most small factors, but
this will require further work for confirmation.

The universal halo structure we have demonstrated across 20 orders of magnitude in halo mass
and the associated mass-concentration relation differ substantially from previously proposed ex-
trapolations. This affects predictions not only for annihilation signals, which depend strongly on
the concentration of the lowest mass haloes, but also for perturbations of image structure in strong
gravitational lenses and for structure in stellar streams in the Galaxy’s halo, both of which aim to
constrain the nature of dark matter using haloes of mass 106 to 109M�.

5



References

1. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and
large-scale structure with cold dark matter. Nature 311, 517–525 (1984).

2. White, S. D. M. & Frenk, C. S. Galaxy Formation through Hierarchical Clustering. Astrophys.
J. 379, 52 (1991).

3. Bertone, G., Hooper, D. & Silk, J. Particle dark matter: evidence, candidates and constraints.
Phys. Rep. 405, 279–390 (2005).

4. Navarro, J. F., Frenk, C. S. & White, S. D. M. A Universal Density Profile from Hierarchical
Clustering. Astrophys. J. 490, 493 (1997).

5. Navarro, J. F. et al. The inner structure of ΛCDM haloes - III. Universality and asymptotic
slopes. Mon. Not. R. Astron. Soc. 349, 1039–1051 (2004).

6. Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and
quasars. Nature 435, 629–636 (2005).

7. Navarro, J. F., Frenk, C. S. & White, S. D. M. The Structure of Cold Dark Matter Halos.
Astrophys. J. 462, 563 (1996).

8. Einasto, J. On the Construction of a Composite Model for the Galaxy and on the Determination
of the System of Galactic Parameters. Trudy Astrofizicheskogo Instituta Alma-Ata 5, 87–100
(1965).

9. Ludlow, A. D. et al. The mass-concentration-redshift relation of cold dark matter haloes. Mon.
Not. R. Astron. Soc. 441, 378–388 (2014).

10. Ludlow, A. D. et al. The mass-concentration-redshift relation of cold and warm dark matter
haloes. Mon. Not. R. Astron. Soc. 460, 1214–1232 (2016).

11. Springel, V. et al. The aquarius project: the subhaloes of galactic haloes. MNRAS 391, 1685–
1711 (2008).
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Figure 1 Projected dark matter density maps at each simulation level. Images of the dark
matter distribution in a slice 30 Mpc thick through the base level of our simulation (L0) and in
spheres almost entirely contained within the higher resolution region of each of the eight successive
levels of zoom (L1 to L8c). The zoom sequence is indicated by arrows between the panels, and a
circle in each of the first eight panels indicates the zoom region shown in the next panel. Bars give
a length scale for each plot. In the first panel the largest haloes have a mass similar to that of a rich
galaxy cluster, whereas in the last panel the smallest clearly visible haloes have a mass comparable
to that of the Earth.
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Figure 2 Density profiles for haloes with mass between that of the Earth and that of a rich
galaxy cluster. As described in detail in the methods section, results for all well-resolved equi-
librium haloes in a narrow mass bin at each level are averaged together. Panel a: the logarithmic
slope d log(ρ)/d log(r) is shown as a function of radius normalised by r−2. The result for each
level is represented by a different colour, as indicated in the legend. A thicker line is used over the
most reliable range between the convergence radius rconv and r200. The number of haloes in each
stack is listed in Extended Data Table 1. Predictions for NFW and Einasto profiles are shown as
dotted and dashed black curves, respectively. Panel b: the ratio of each stacked profile to the best
fit NFW profile is shown as a function of r/r−2. Panel c: the same but for the Einasto profile (with
α fixed at 0.16).
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Figure 3 Halo concentration as a function of mass over a mass range of 20 orders of mag-
nitude. The median values of the concentration, cEinasto = r200/r−2 (from the best-fitting Einasto
profile), in each mass bin are shown as white curves, with coloured regions showing the rms scatter.
As before, each zoom level is shown with a different colour, and we give results both for L7c, which
has a free-streaming cutoff, and for the otherwise identical L7, which does not. Mass-concentration
relations from five published models 10, 18–21 are shown as smooth dashed lines in different colours.
Solid black lines show the fitting formulae given in the Methods section. The pairs of solid and
dashed black lines give predictions for the cases with and without a free-streaming cutoff. The
vertical dotted lines indicate the limits below which spurious haloes are expected to affect L7c and
L8c (see Methods).
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Methods

Simulations. The hierarchical resimulation strategy that allows us to follow the evolution of
haloes over 20 orders of magnitude in mass was described in the main body of this article. The base
level (Level 0 or L0) is a cube of length 738 Mpc and particle mass 1.55× 109 M�. At subsequent
levels (L1-L8c) the mass resolution increases by factors between a few hundred and 2000 and the
volume decreases by similar factors until the particle mass reaches 1.6×10−11 M� in L8c. At each
level, well-resolved haloes (i.e. with > 104 particles within the virial radius) span 2-3 orders of
magnitude in mass, ranging from M200 = 1015 M� in L0 to M200 = 10−6 M� (the Earth’s mass)
in L8c. Here M200 is defined as the mass within a sphere enclosing a mean density 200 times the
critical value. The parameters of the various levels of our simulation are listed in Extended Data
Table 1. The simulation assumes a ΛCDM cosmology with Planck 2014 parameters22. Specifically,
the mean matter density, mean baryon density and cosmological constant, in units of the critical
density, have values Ωm = 0.307, Ωb = 0.048 and ΩΛ = 0.693; the present-day Hubble parameter
is H0 = 67.77km s−1 Mpc−1; the power-law index of the power spectrum of primordial adiabatic
perturbations is ns = 0.961; and the normalization of the linear power spectrum is σ8 = 0.829.

Linear Power spectrum. To create the displacement field for the initial conditions a linear power
spectrum is required which covers more than nine orders of magnitude from the fundamental
modes of the L0 volume to the Nyquist cutoff of the L8c simulation. For relatively large scales we
use the same linear power spectrum as the EAGLE project23. This was computed using the CAMB
code24 assuming Cold Dark Matter with the values of the cosmological parameters given previ-
ously. Since we are only modelling the dominant dark matter component, we use the BBKS fitting
formula (Eqn G3) to extrapolate the power spectrum to very small scales.25 We adopt a similar ap-
proach to previous work11, 26, creating a composite matter power spectrum that smoothly transitions
from the EAGLE matter power spectrum to the BBKS form over wavenumbers 7− 70 Mpc−1. We
determined by inspection that setting the parameter Γ = 0.1673 in the BBKS transfer function and
adopting an effective normalisation, σ8 = 0.8811, matches the BBKS power spectrum accurately
to the EAGLE power spectrum over the transition wavenumber range; we interpolate linearly in
log wavenumber over this range to produce a smooth power spectrum for pure CDM.

We then used the formulae of Green et al.27 to represent the free-streaming cut-off expected for a
100GeV WIMP. This corresponds to a specific particle physics model, but the corresponding mass
scale is close to the peak of the posterior probability for CMSSM space28 and can still be considered
representative in view of more recent constraints.29 We show below how to adapt our results to
alternative particle physics models that would predict a free-streaming cut-off on a different scale.
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Making the initial conditions. While the setting up and running of zoom simulations has become
commonplace in the field of numerical cosmology, the initial conditions required for the present
project are much more extreme in terms of the range of mass and length scales modelled than in
any previously published simulation. These exceptional demands have driven developments that
go beyond the techniques described in previous work11, 30, 31.

The initial conditions for levels L1 to L8c were created and evolved sequentially in order of in-
creasing mass resolution. After each level was completed, a region avoiding any massive halo
was selected from its high resolution region and this then became the next level (see Fig. 1). The
amplitude and phase of the initial fluctuations present in the initial conditions of all lower levels
were retained, but the amplitude and phase of all higher frequency fluctuations added at the new
level were set independently and at random according to the power spectrum. In principle, we
could make initial conditions at the resolution of L8c for any Lagrangian region within L0 without
running any intermediate levels, but in the great majority of cases this would result in all of the
mass being incorporated into a single halo of mass larger than that of the entire high-resolution
region of L8c.

The specific features that emerge at any redshift, for example, the positions, masses and orienta-
tions of individual haloes or filaments, are a consequence of our particular realisation of the linear
initial conditions, i.e. of our adopted power spectrum together with the specific phases and ampli-
tudes chosen for each wave in a Fourier space representation of the initial Gaussian random field.
Our phase information was taken from the Panphasia white noise field31, 32, an extremely large
single realisation of a Gaussian white noise field with a hierarchical octree structure. Because the
Panphasia field is completely specified ahead of time, all of the structure uncovered at all resolu-
tions is essentially predetermined, as is the similar structure that would be uncovered by a different
hierarchical zoom into any other region of the L0 cube.

The creation of initial conditions at each zoom level can be divided into three stages: Stage 1 is
to specify the region of interest; Stage 2 is to build a particle load focussing most of the particles,
and therefore most of the computational effort, in the small region of interest, while aggregating
particles for lower levels so that the computational time for these regions is reduced while main-
taining accurate tidal forces in the high-resolution region; Stage 3 is to generate and apply the
displacement field to the particle load, and assign velocities to each particle.

For Stage 1 we start by selecting a spherical region of interest at redshift zero from a previously
completed simulation of the lower level. For L1, this is the cosmological simulation L0, but for
all higher levels it is itself a zoom simulation. The region was selected by eye using projections
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of the density field to avoid large haloes that were previously simulated with good resolution and
would be prohibitive to simulate at much higher resolution. At the same time we avoided regions
that were more underdense than necessary, as these would yield few new haloes. The region size
was dictated by the cost of resimulating at the resolution desired for the next level, given that we
could afford simulations with a few billion high-resolution particles. Having selected a sphere, we
then use its particles to determine the location and shape of the corresponding Lagrangian region
by binning their high-redshift positions onto a 403 cubic grid just large enough to enclose them all.
Within this cube, we define a simply connected region by selecting grid cells that either contain a
particle or are adjacent to one that does.

For constructing the particle load in Stage 2, we use a set of cubes with a variety of sizes that
tesselate the entire simulation volume. In each cube we place one or more particles of identical
mass in an arrangement that ensures that the centre of mass of the particles within every cube is at
the cell centre, and we choose the total particle mass in each cell so that it has precisely the mean
density of the universe. We also place the particles as evenly as possible within each cube in the
sense that if that cube were tesselated over all space, the gravitational forces on each particle due
to all other particles would be essentially zero. For the region outside the high resolution cube we
lay down a set of ‘tidal’ particles arranged within a series of concentric cubic shells centred on
the high resolution cube. For the initial conditions of the highest level, L8c, more than 47 million
tidal cells, each containing a single particle, are used to represent the mass distribution in the lower
levels.

The particles within the high-resolution region are the ones that form the structures analysed at
each level. In L8c, for example, we place a preprepared set of about 50000 particles with a glass-
like structure in each of the retained cells from our 403 mesh. This glass-like arrangement is
created in a small periodic cube and results in the net gravitational force on every particle being
extremely small. We also enforce the condition that the centre of mass of the glass be exactly at
the cell centre. Because the glass is generated using periodic boundary conditions, it is simple to
tile the entire high-resolution region with multiple replicas. The number of particles in the glass
determines the mass resolution in the high resolution region.

In Stage 3, we generate and apply the displacement field following exactly the method described in
previous work31. The displacement field is computed using Fourier methods for a series of concen-
tric meshes centred on the high-resolution cube. The top level mesh covers the entire domain and
the smallest mesh just covers the high-resolution cube. Each successive mesh is exactly half the
linear size of the one above, and adds additional independent information taken from the Panphasia
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field so as to be able to double the linear resolution of the displacement field. The L8c simulation
required 23 levels in total with the smallest mesh being approximately 180 pc on a side.

We have used second order Lagrangian perturbation theory (2lpt) to create the displacement and
velocity fields for most of the initial conditions. In practice, however, we have found that using
first-order (Zeldovich) initial conditions instead of 2lpt makes no significant difference to the re-
sults provided the starting redshift is high enough. In particular, for our chosen starting redshift of
127 for levels 0-2, and 255 for levels 3-8, there was no significant difference in the halo density pro-
file or its concentration between runs using the Zeldovich and 2lpt initial conditions. Nonetheless,
we used the 2lpt initial conditions for all but levels 4 and 6.

Simulation code. The simulations were run with GADGET-4, a new version of the well-tested
GADGET33 cosmological N-body code. A number of improvements were implemented in this
code to allow the extreme zooms considered here to be executed with the required accuracy. The
most relevant is an extension of the hierarchical multipole force computation algorithm to higher
expansion order, yielding better force accuracy for given computational cost. A further efficiency
gain comes from replacing the one-sided Barnes & Hut tree algorithm34 with a Fast Multipole
Method35 (FMM), where the multipole expansion is carried out symmetrically both at the source
and the sink side of two interacting particle groups.

The extreme dynamic range of our zooms revealed two problems that had not shown up in more
conventional cosmological simulations with uniform mass resolution. Because the magnitude of
the peculiar acceleration vector, a, of particles in the small structures targeted here is typically
dominated by matter perturbations on much larger scales, the local timestep criterion most com-
monly employed in cosmological N-body cold dark matter simulations, ∆t ∝ (ε/|a|)1/2, where ε is
the gravitational softening length, often fails to provide a reasonable proxy for the local dynamical
time in our smallest dark matter halos. Rather, it tends to become unrealistically small because
|a| remains at the large values characteristic of the resolved cosmic large scale structures in our
738 Mpc periodic box, whereas ε shrinks to the tiny scales resolved in our calculations. We ad-
dress this problem by applying a hierarchical time integration algorithm36 in which the Hamiltonian
describing the system is recursively split into parts that evolve sufficiently slowly to be treated with
a relatively long timestep, and faster parts that require shorter timesteps. This procedure effectively
decouples the small-scale dynamics from the large-scale forces. The above canonical timestep cri-
terion then yields a reasonable timestep for the smallest forming structures once it is applied (some
steps down the hierarchy) only to the partial accelerations created by the high-resolution region
itself.
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A more subtle issue that becomes apparent with our very high dynamic range arises from the fact
that force errors in our hierarchical multipole algorithm are spatially correlated. As a result, neigh-
bouring particles normally have very similar node interaction lists. Formally, this creates force
discontinuities across boundaries of the hierarchically nested cubes of the global octree geometry
because the interaction lists and the field expansions (in the case of FMM) change there. Small
haloes, for which internal peculiar accelerations are small compared to that induced by large-
scale structure, can be significantly affected by such errors if they are cut by an octree boundary
corresponding to a geometrically large node. In such cases, the force error discontinuity can be
appreciable relative to the peculiar acceleration. At high redshift this error can build up over many
timesteps if the halo is nearly at rest relative to the octree pattern. To alleviate such effects, we
decorrelate these errors in time by translating the whole particle set by a random vector (drawn
uniformly from the cubic volume) after every timestep. Physically, this does not change anything
as the periodic system is translationally invariant. Numerically, it causes the above errors to aver-
age out in time, thereby preventing the build-up of sizeable momentum errors over many steps.

Convergence. A critical test of our numerical techniques is convergence in the properties of our
simulations. We first examine maps of the mass distribution in common regions of adjacent zoom
levels. As an example, in Extended Data Fig. 1 we compare projected density distributions in L1,
L3 and L8c with the corresponding distributions in the same region of the parent level. It is clear
that large-scale structure in the simulations is converged.

We next check the convergence properties of the halo mass function, again by comparing results
for common regions of adjacent levels. Mass functions of haloes in spherical volumes of radius
approximately 90% that of the radius of the entire high-resolution region are shown as solid curves
in Extended Data Fig. 2, with different levels indicated by different colours. The mass functions
of haloes in the same region in the parent simulations are shown as dotted curves.

The convergence of the halo mass functions in adjacent zoom levels is remarkable. Small differ-
ences appear at low masses when comparing simulations which resolve the free-streaming cutoff
(L7c and L8c). These stem from the presence of spurious haloes that form due to discreteness
effects when a cutoff in the power spectrum is resolved37. The two vertical dotted lines indicate
the masses below which the abundance of these spurious haloes becomes important in the high-
resolution regions of levels L7c and L8c.37 For these cases, convergence can be tested only to the
right of the dotted lines and, as the figure shows, in this regime convergence is very good. In this
article we have only considered halos in L7c and L8c with mass above these limits.

A convergence test of the internal structure of halos is shown in Extended Data Fig. 3. Here we
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compare the density profile of one of the most massive haloes in a given level (solid lines) with the
same halo in its parent level (dashed lines). The profiles of haloes from the parent simulation are
plotted as thick solid lines in the radial range between the “convergence radius” 38 and r200. The
ratio of the density profiles of the matched pairs is plotted in the bottom panel of the figure. At
radii larger than the convergence radius, the profiles agree to within a few percent.

In summary, Extended Data Figs. 1, 2 and 3 show that in the regime where convergence can be
tested, the spatial distribution, the abundance and the density profiles of haloes converge remark-
ably well over a factor of several hundred in mass resolution for all adjacent pairs of levels in our
simulation.

Global properties of our simulation levels Extended Data Table 1 lists a number of properties
of the high resolution regions at each level of our simulation: np is the number of high-resolution
particles and mp is the mass of each one, so that Mtot = npmp is the total mass of the high-
resolution region. The rms linear fluctuation (extrapolated to z = 0) expected in a spherical region
which on average contains this mass is given as σ(Mtot, z = 0). For levels 2 and higher this
number exceeds unity, reaching 17.6 in L8c. As a result, the actual z = 0 densities of the high
resolution regions, given as 〈ρ〉/ρmean, are small, typically a few percent. This is expected since
most of the mass of the universe is contained in “high mass” haloes that have, by construction,
been excluded from the higher simulation levels.12 The fact that typical present-day haloes of very
low mass (e.g. Earth mass) form from Lagrangian regions with atypically low (linear) overdensity
on larger scales (e.g. 1 − 106 M�) explains why previous work has been unable to follow their
evolution to low redshift.16

Density profiles. We selected only “relaxed” or “equilibrium” haloes defined as those which sat-
isfy the following two criteria18: (i) the mass fraction in subhaloes within the virial radius is less
than 0.1, and (ii) the offset between the centre of mass and the minimum of the potential is less
than 0.07r200. As listed in Extended Data Table 1, more than 90% of our well-resolved haloes
satisfy these conditions at all levels (more than 95% at the highest levels). This can be understood
as a result of the relatively high typical formation redshifts of the haloes (also listed in the Table)
although these are considerably lower than found in earlier work which was unable to follow such
low-mass haloes to low redshift. Interestingly, we find the lowest mass haloes to have lower typical
formation redshifts than slightly more massive objects, consistent with the lower concentrations we
find below. We note also that we found no higher mass particle within 0.95 of the radius of the
high-resolution region at any level, and that extremely few well-resolved haloes were contaminated
by such particles. We excluded from our analysis any halo with such a particle within twice its

17



virial radius, r200.

To make mean mass density profiles, we averaged binned mass densities in the radial range
(0.001 − 10) r200 for haloes lying between 0.8 and 1.2 times the central mass values listed in
Extended Data Table 1. We then fitted NFW7 and Einasto5, 8 formulae (Eqns. 1 and 2) to the
stacked profiles using the bins between the “convergence” radius38 and r200 by minimizing the
expression18:

Ψ2 =
1

Nbin

Nbin∑
i=1

[ln ρsim,i − ln ρfit,i]
2, (3)

where ρsim,i and ρfit,i are the simulation data and the fitted density profile in radial bin, i. For the
Einasto fits the shape parameter, α, was set to 0.1639 so that only two parameters are varied in both
the NFW and Einasto fits.

The logarithmic slopes of the stacked radial density profiles of haloes are plotted in Fig. 2 out to
large radii, 10 r200. The ratios of the stacked profiles to the best-fit NFW and Einasto formulae
are plotted in the lower panels of this figure and show that the NFW fits are almost everywhere
accurate to better than 10% and the Einasto fits to a few percent.

As may be seen in Fig. 2, while Einasto profiles with α = 0.16 fit the data well overall, for haloes
with M200 > 1012M� the fits have relatively large residuals. We therefore carried out Einasto fits
to individual haloes with all three parameters free. The resulting median dependence of α on halo
mass is well described by:

α = 0.16 + 0.0238× (M200/M∗)
1
3 (4)

where M∗ is defined by σ(M∗) = 1.68, where σ(M) is the rms linear fluctuation within a sphere
which on average contains mass M . This extends previously published formulae39 to much lower
halo mass. For the Planck cosmology we use here, M∗ = 1.14 × 1014 M�. We now refit all halos
using for each an α value given by equation 4 and adjusting only the two remaining parameters.
In this way, we obtain a robust estimate of the concentration-mass relation over the full halo mass
range accessed by our simulation.

The resulting relation between M200 and cEinasto = r200/r−2 is shown in Fig 3. Simple extrapola-
tions of empirical formulae derived for halos of mass M ≥ 1010 M� overestimate the concentra-
tions of low-mass halos (M200 < 106 M�) by large factors. On the other hand, formulae derived
from halo mass accretion histories9, 10 match our data better over the entire halo mass range, both
with and without a free-streaming cutoff. We fit a simple parametrized form used previously19, 40

to the median concentration-mass relation for levels L0 to L7 (i.e. with no free-streaming cutoff)
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namely:

cEinasto(M200) =
5∑
i=0

ci

[
ln

M200

h−1M�

]i
(5)

When the free-streaming cutoff is significant (i.e. for L7c and L8c), the concentration drops expo-
nentially at the low-mass end and the relation is well fit by:

cEinasto(M200) = exp

[
c6 ×

(
Mfs

M200

) 1
3

]
×

5∑
i=0

ci

[
ln

M200

h−1M�

]i
. (6)

In these relations the ci are dimensionless constants and the free-streaming mass scale is given by
Mfs = 4π

3
× ( 2π

kfs
)3× ρmean, where kfs is the free-streaming wave-number defined by Equation 3 of

Green et al.27. For a thermal WIMP of mass 100 GeV, Mfs = 7.3× 10−6 M� and kfs = 1.77pc−1.
We find the following best-fit values for the other parameters: ci = [27.112,−0.381,−1.853 ×
10−3,−4.141× 10−4,−4.334× 10−6, 3.208× 10−7,−0.529] for i ∈ {0, . . . , 6}.

Environmental dependence. Our strategy for simulating haloes over the entire mass range ex-
pected in a ΛCDM universe relies on successive resimulation of low-density regions. An important
question is then whether the structure of these haloes is typical of the overall population. We can
address this by examining how the concentration of haloes of a given mass varies with environ-
ment. We characterize the local environment of each halo by the mean density, 〈ρ〉, averaged over
a surrounding shell with inner and outer radii 5 and 10 times the halo’s virial radius, r200.

In Extended Data Fig. 4 we plot halo concentration as a function of 〈ρ〉 /ρcrit for haloes averaged
over mass bins in the range (0.5 − 2)Mchar, where Mchar, listed in Table 1, is the typical mass
of equilibrium haloes at each level. The white curves show median values and the surrounding
shaded regions the rms scatter. Even though we focus on underdense regions, the density around
haloes of mass below 1010M� is centred just below the mean density and that around more massive
haloes is centred just above the mean density. Furthermore, the value of the environment density
spans at least an order of magnitude, two orders of magnitude in the case of smaller mass haloes.
Concentrations show no monotonic trend over this range, suggesting that the concentration-mass
relation of Fig 3 is representative of the halo population as a whole.

Impact of the free-streaming cutoff on halo structure. We can assess the effect of the free-
streaming cutoff on the internal structure of individual haloes by comparing levels 7 and 7c. We
do this in Extended Data Fig. 5, which shows density profiles for matched halo pairs in the two
simulations. The haloes are matched by mass (mass difference less than 10 percent) and separation
(offset less than 10 percent of the radius of the high resolution region). Matched pairs were stacked
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in four different bins of L7 mass: m200 = 5× 10−5; 10−4; 5× 10−4 and 10−3 M�. The numbers of
halo pairs in these bins are 152, 132, 40 and 24, respectively.

The effect of the free-streaming cutoff is to reduce the inner density (with a corresponding slight
increase in the outer density) by an amount that grows as the free-streaming mass is approached.
The net result is a progressive reduction in the concentration of haloes with decreasing mass, as
may also be seen by comparing concentrations for haloes in levels L7 and L7c in Fig. 3. This effect
reflects the later formation of haloes in L7c relative to their counterparts in L7.

Impact of the concentration-mass relation on annihilation luminosities. The annihilation lu-
minosity from a dark matter halo scales as the square of the local dark matter density integrated
over its volume. For smooth profiles of the kind we fit to our simulation, almost all the luminosity
comes from well inside the characteristic radius (rs or r−2) and scales with the characteristic pa-
rameters of the halo as V 4

max/rmax where Vmax and rmax are the maximum circular velocity of the
halo and the radius at which this is attained. The luminosity per unit mass of a halo thus scales as
V 4

max/(rmaxM200) which, at given redshift, depends only on halo concentration, c = r−2/r200, for
Einasto halos with constant α (= 0.16 in our case).

For the well resolved haloes at each level of our simulation, we can measure Vmax and rmax di-
rectly and so estimate their light-to mass ratios. Averaging over all haloes of given mass and
multiplying by their contribution to the mass density of the universe according to some halo mass
function (for illustration we here use the analytic Sheth-Tormen function41) we can construct Ex-
tended Data Fig. 6 which shows how the total annihilation luminosity of the present universe is
distributed over halo mass. Remarkably, we find the contribution per unit logarithmic halo mass
interval to be almost constant over the range −3 ≤ lnM200/M� ≤ 11. This is considerably less
weighted towards low-mass haloes than estimates based on previously published extrapolations of
the concentration-mass relation, and the total luminosity density is lower by factors ranging up to
103. Thus, the significance of very small structures for annihilation luminosities has been over-
estimated in the past, often by substantial factors. Note that this observation is likely to apply to
substructure within haloes as well as to emission from the main (smooth) halo, even though we
have not considered such subhalo contributions here.
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Extended Data Fig. 1 Projected density maps for different zoom levels. L1, L3 and L8c (left)
are compared with maps of the same regions in their parent levels L0, L2, and L7c, respectively
(right). The regions shown are the largest spheres that fit almost entirely within the high resolution
region of the higher level. Only high resolution particles are used to make the images.

23



10-10 10-5 100 105 1010 1015

 M 200  [ M sun ]

100

101

102

103

104

105

106

107

 N
  (

  >
  M

 2
00

 )
 

L0
L1
L2
L3
L4
L5
L6
L7c
L8c

Extended Data Fig. 2 The cumulative halo number as a function of mass, M200, in the
high-resolution region of each zoom level compared to that in the same region of the parent
level. Different colours denote different levels as indicated in the legend. Results from the parent
levels are shown as dotted curves. The two vertical black dotted lines indicate the upper mass
limit for spurious haloes in L7c and L8c, calculated as described Wang et al.37. Note the excellent
agreement between the solid and dotted curves above the resolution limit of the latter (and above
the L7c mass limit for spurious haloes in the case of L7c versus L8c).
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Extended Data Fig. 3 Comparison of the density profile of a massive halo at each level
with that of its counterpart in the parent level. Panel a: the density profile of one of the most
massive haloes in the high-resolution region of each zoom level is compared to that of the same
halo at the parent level. Results from different levels are shown with different colours, as indicated
by the legend, which also gives the masses of the haloes concerned. Higher resolution profiles are
shown as dashed curves, while those from the parent levels are shown as solid curves. The range
between the convergence radius and r200 is plotted as a thick line in the lower resolution case.
Panel b: the ratio of the density profiles of each pair in the upper panel. Again, results in the range
between the convergence radius in the lower resolution case and r200 are shown as thick lines. Note
the excellent convergence between simulation pairs over this radial range, which typically differ in
mass resolution by a factor of several hundred.
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Extended Data Fig. 4 Dependence of halo concentration on local environment in the high-
resolution region at each zoom level. Results are shown for haloes in the mass range [0.5, 2]Mchar;
the legend gives the characteristic mass, Mchar, for each level and also defines the colour key. Each
white curve gives the median concentration for the best-fit Einasto profile, while the surrounding
coloured region gives the rms scatter. Local environment density is defined here as the mean in a
thick spherical shell, 5 < r/r200 < 10, surrounding each halo, and is given in units of the critical
density. All haloes are used for this plot. A vertical line shows the cosmic mean density. Note
that although concentration depends significantly on mass, any dependence on local environment
density is weak.
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Extended Data Fig. 5 Stacked density profiles of matched haloes in the L7 (solid) and
L7c (dashed) simulations. The densities are multipled by r2 to increase the dynamical range of
the figure. Different colours correspond to different mass bins with central values quoted in the
legend. The profiles are shown as thick lines over the range where they are most reliable, between
the convergence radius, rconv, and r200. The vertical dotted line indicates the softening length in
the high-resolution region at this level. The effect of the free-streaming cutoff is to reduce the
density in the inner parts, and therefore the concentration, by an increasing amount as the halo
mass approaches the free-streaming mass.
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Extended Data Fig. 6 The mean luminosity density produced by dark matter annihilation
in today’s universe as a function of halo mass. Solid coloured lines indicate estimates obtained
by multiplying the mean 〈L/M〉 obtained from well resolved, simulated haloes by the halo
number density predicted for each bin by the Sheth-Tormen halo mass function.41 Shaded
regions indicate the estimated 1σ uncertainty. Dashed curves indicate results found if we
instead use 〈L/M〉 values predicted by previously published mass-concentration relations.
Corresponding predictions for the total integrated luminosity density are given in the legend
by values preceding each model’s name. Note that the units of annihilation luminosity are
arbitrary, so only ratios of values are significant.
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Extended Data Table 1: Parameters of the simulation levels. Column 1: name of the level; Column 2:

Rhigh, the radius of the high-resolution region; Column 3: np, the total number of high-resolution particles;

Column 4: ε, the softening length of the high-resolution particles; Column 5: mp, the mass of the high-

resolution particles; Column 6: σ(Mtot, z = 0), the rms linear overdensity, extrapolated to z = 0, within

spheres that on average contain mass Mtot = npmp. Column 7: 〈ρ〉 /ρmean, the mean mass density at

z = 0 in the high resolution region in units of the cosmic mean; Column 8: Mchar, the typical mass of the

equilibrium haloes for which profiles were stacked in Fig. 2. Column 9: Nchar, the number of haloes in

the mass bin [0.8Mchar, 1.2Mchar] used in the stacks. Column 10: zform, the median formation redshift of

equilibrium haloes of the characteristic mass. Column 11: fvir, the fraction of haloes with more than 3000

particles that are in equilibrium according to the criteria given in the text.

level Rhigh [Mpc] np ε [kpc] mp [M�] σ(Mtot, z = 0) 〈ρ〉 /ρmean Mchar [M�] Nchar zform fvir

L0 738 1.0× 1010 7.4 1.5× 109 1.0 1014 127 0.94 0.92

L1 52 1.0× 1010 4.4× 10−1 7.4× 105 0.34 0.39 1012 59 1.66 0.91

L2 8.8 5.4× 109 5.6× 10−2 1.5× 103 1.66 0.082 109 29 1.91 0.93

L3 1.0 1.8× 109 8.3× 10−3 2.8 4.22 0.036 106 27 2.61 0.94

L4 0.27 2.0× 109 1.0× 10−3 5.5× 10−3 6.96 0.026 103 59 4.44 0.94

L5 0.035 1.5× 109 2.2× 10−4 5.8× 10−5 9.36 0.024 10 30 4.68 0.94

L6 0.0066 1.7× 109 3.8× 10−5 2.6× 10−7 12.12 0.014 10−1 35 4.84 0.94

L7 0.0011 2.5× 109 5.3× 10−6 8.6× 10−10 15.06 0.016 10−4 201 5.21 0.96

L7c 0.0011 2.5× 109 5.3× 10−6 8.6× 10−10 15.06 0.016 10−4 202 4.83 0.97

L8c 0.00024 1.5× 109 1.4× 10−6 1.6× 10−11 17.60 0.028 10−6 24 1.96 0.94
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