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Abstract

It is traditionally assumed that the random effects in mixed models follow a mul-

tivariate normal distribution, making likelihood-based inferences more feasible theo-

retically and computationally. However, this assumption does not necessarily hold in

practice which may lead to biased and unreliable results. We introduce a novel diagnos-

tic test based on the so-called gradient function proposed by Verbeke and Molenberghs

(2013) to assess the random-effects distribution. We establish asymptotic properties of

our test and show that, under a correctly specified model, the proposed test statistic

converges to a weighted sum of independent chi-squared random variables each with

one degree of freedom. The weights, which are eigenvalues of a square matrix, can be

easily calculated. We also develop a parametric bootstrap algorithm for small samples.

Our strategy can be used to check the adequacy of any distribution for random ef-

fects in a wide class of mixed models, including linear mixed models, generalized linear

mixed models, and non-linear mixed models, with univariate as well as multivariate

random effects. Both asymptotic and bootstrap proposals are evaluated via simulations

and a real data analysis of a randomized multicenter study on toenail dermatophyte

onychomycosis.
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1. Introduction

Longitudinal and clustered studies produce correlated data with a complex structure.

Mixed models are frequently used to analyze such data by incorporating random effects

into the model to capture the heterogeneity among individuals or groups. Inferences are

then usually based on the likelihood function after integrating out the random effects

over their assumed distribution. To make likelihood-based inferences more feasible

theoretically as well as to enable the use of standard software packages for fitting

mixed models, it is common to assume a multivariate normal distribution for the

random effects. However, this assumption may be violated in practice, which can

result in misleading inferences.

In the literature there seems to be no general consensus about the impact of mis-

specifying the random-effects distribution in mixed models. The misspecification can

affect inferences regarding two parts of the model: fixed and random components. For

inferences about the fixed-effects parameters, some authors argued that the impact

is minimal and the asymptotic bias in regression parameters is often small (see, e.g.,

Neuhaus et al., 1992; Chen et al., 2002; McCulloch and Neuhaus, 2011a,b). In contrast,

some other authors have claimed a strong sensitivity to the normality assumption of

random effects; see, for example, Heagerty and Kurland (2001), Agresti et al. (2004),

Litière et al. (2008), and Alonso et al. (2010). They concluded that substantial bias

in the maximum likelihood estimates of regression parameters can result when the

random-effects distribution is misspecified. On the other hand, inferences about the
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random effects themselves are more likely to be affected by misspecification of the

random-effects distribution. For instance, the normality assumption often forces the

predictions of random effects to reflect normality, even when the correct random-effects

distribution is far from normal (Verbeke and Lesaffre, 1996).

Since random effects are latent, and hence unobservable quantities, it is concep-

tually difficult to evaluate their distributional assumptions. Some authors instead

suggested to build more flexible distributional assumptions for the random effects to

protect against misspecification. Examples include nonparametric maximum likelihood

(Aitkin, 1999), smooth nonparametric fits (Zhang and Davidian, 2001), and mixtures

of normal distributions (Verbeke and Lesaffre, 1996). However, such approaches of-

ten rely on complex optimization methods and their use in routine statistical practice

is very limited due to the lack of standard software. Moreover, it may not be pos-

sible to explicitly explore the characteristics of random effects in their own right, if

nonparametric or semiparametric methods are used (Huang, 2009).

Several diagnostic tools have been proposed so far for detecting misspecification

of the random-effects distribution. Lange and Ryan (1989) suggested a generalized

weighted normal plot to check the normality assumption in linear mixed models. Jiang

(2001) presented a goodness-of-fit test for checking distributional assumptions in lin-

ear mixed models based on a test statistic similar to Pearson’s goodness-of-fit statistic.

Ritz (2004) and Pan and Lin (2005) proposed to compare distributions of residuals

and/or predicted random effects with their expected distributions under the assumed

model. Tchetgen and Coull (2006) suggested to compare the marginal and conditional

maximum likelihood estimators of a subset of fixed-effects parameters to verify whether

the assumed random-effects distribution is valid. Waagepetersen (2006) constructed a

simulation-based test by generating random effects while conditioning on the observa-
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tions. Alonso et al. (2008) provided a toolbox of tests to detect misspecification of the

random-effects structure by comparing model-based and robust inferences. For linear

mixed models, Claeskens and Hart (2009) suggested several tests of the hypothesis that

the random effects and/or errors are normally distributed. Huang (2009) introduced

a series of parametric diagnostic tools that make use of both the observed data and a

reconstructed data set induced by the observed data. Apart from some advantages of

the aforementioned methods, they all are restricted to very specific mixed models (e.g.,

models with a specific type of response and/or link function), they require considerable

efforts for implementation, most of them were only developed to check the adequacy

of a normal distribution for random effects, and they test overall goodness-of-fit rather

than focus on the misspecification of the random-effects distribution.

More recently, Verbeke and Molenberghs (2013) proposed an exploratory diagnostic

tool based on the so-called gradient function to graphically check the appropriateness of

a specific parametric assumption about the random-effects distribution. Their method

is easy to implement; however, a graphical tool based on visual judgment is informal

and it is generally difficult to determine whether such a plot reveals misspecification or

just random variability. Efendi et al. (2014) developed a simple bootstrap test using the

gradient function, but their test was investigated via a simulation study. In this paper,

we utilize the theoretical properties of the gradient function to develop a powerful

test to assess the random-effects distribution. Using the Cramér-von Mises measure,

we construct a test statistic based on the gradient function and we derive asymptotic

properties of our proposal and also provide a parametric bootstrap algorithm for small

samples. Beneficially, our method can be used for a general class of mixed models,

with univariate as well as multivariate random effects.
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2. The general mixed model

Let Yi = (Yi1, ..., Yini)
′ denote the vector of ni repeated measurements for individual

or cluster i, i = 1, ..., N . Throughout this paper, the elements in Yi could be con-

tinuous, discrete, or a combination thereof. Observations on the same individual are

obviously correlated and there may be considerable heterogeneity among individuals.

Random effects can be considered to take into account such correlation and variability

in the analysis. It is assumed that, conditional on a q-dimensional vector bi of random

effects, the response vector Yi has a pre-specified density fi (yi|bi) depending on co-

variates and parametrized through a vector θ of unknown parameters, common to all

subjects. Hereafter, fi (yi|bi) will be referred to as the conditional distribution. The

random effects bi are also assumed to be sampled from a population of subject-specific

parameters with distribution function G, parametrized by a vector α of unknown pa-

rameters. Under these assumptions, the marginal likelihood function of the model is

given by

L (G) =
N∏
i=1

fi (yi|G) =
N∏
i=1

∫
Rq

fi (yi|b) dG (b), (1)

where we suppressed dependence on θ and α in the notation and instead emphasized

dependence of the likelihood on the random-effects distribution G. Note that fi (yi|G)

is the marginal density of Yi. The general mixed model considered here includes linear,

generalized linear, and non-linear mixed models, among other models with random

effects.

Let ψ = (θ′, α′)′ represent all unknown parameters in the model. Likelihood-based

inferences about ψ are then based on maximizing marginal likelihood (1) for the ob-

served data, and clearly the random-effects distribution G is crucial in the calculation

of the likelihood function. When random effects bi have a multivariate normal dis-
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tribution, Gaussian quadrature (implemented in standard software packages, such as

the SAS procedures NLMIXED and GLIMMIX and the SPlus/R function lme) are

generally used to maximize marginal likelihood (1). Both adaptive and non-adaptive

Gaussian quadrature methods are applicable; see Fitzmaurice et al. (2008) for a com-

plete discussion on mixed models with normal random effects. Computations are more

challenging in case of non-normal random effects. Nelson et al. (2006) and Liu and

Yu (2008) presented two different transformations to apply Gaussian quadrature for

mixed models with non-normal random effects.

3. A diagnostic test based on the gradient func-

tion

Herein we assume the conditional distribution fi (yi|bi) to be correctly specified, an as-

sumption made by Verbeke and Molenberghs (2013) to develop the idea of the gradient

function for assessing the distribution of random effects. This assumption is relaxed in

Section 9 by a quasi-likelihood approach. Note that, because of the intangible nature

of random effects as latent variables, the assumptions on random effects cannot be

verified from data alone. For instance, Alonso et al. (2010) have shown that the cor-

rect specification of the conditional distribution is a necessary condition for the proper

identifiability of the random-effects distribution.

We are interested in testing whether or not the assumed random-effects distribution

G is correctly specified. In fact, the null hypothesis H0 says G is correctly specified.

Assuming the conditional distribution is correctly specified, Verbeke and Molenberghs
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(2013) derived the so-called gradient function as

∆ (G, b) =
1

N

N∑
i=1

fi (yi|b)
fi (yi|G)

, b ∈ Rq.

For each point b, the gradient can be interpreted as an average of likelihood ratios,

each ratio measuring how much more likely Yi is to be observed for individual i if

the corresponding random effect bi equals b rather than it being sampled from G.

Based on the theoretical results of Lindsay (1983a,b) and Böhning (1989), Verbeke

and Molenberghs (2013) showed that if the random effects distribution G produces an

adequate fit to the data in terms of marginal likelihood, then ∆ (G, b) ≤ 1 for all b ∈ Rq

and additionally ∆ (G, b) = 1 for all b in the support of G. Alternatively, deviations of

the gradient function from 1 in the support points of G indicate that the model can be

improved by replacing G by some other random-effects distribution. They suggested to

plot the gradient function versus points b in the support of G. Despite the simplicity

of this approach, it is not clear how misspecification can generally be distinguished

from random variability by such a plot. Furthermore, investigation of the operating

characteristics of a diagnostic tool is impossible when merely using it as a graphical

tool.

To provide a formal diagnostic tool based on the gradient function, we define T (ψ) =∫
Rq (∆ (G, b)− 1)2 dG (b), which takes into account the deviation of the gradient from

1 for all possible b in the support of G. As discussed above, it is easy to show that

T (ψ) = 0 under H0, and hence the null hypothesis can be rejected for large values of

T (ψ). However, ψ is unknown and we must replace it with a suitable estimator. We

use the maximum likelihood (ML) estimator ψ̂ obtained under H0, and then we get

T (ψ̂) =

∫
Rq

(
∆̂(Ĝ, b)− 1

)2
dĜ (b), (2)
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where Ĝ is the estimated random-effects distribution and ∆̂ denotes the estimated

gradient function based on Ĝ obtained by replacing the unknown parameters θ in

fi (yi|b) and fi(yi|Ĝ) by their ML estimates θ̂.

We propose T (ψ̂) as an appropriate test statistic for testing the null hypothesis for

several reasons. First, T (ψ̂) evaluates the gradient function at all possible b in the

support of G. Second, the test statistic T (ψ̂) considers a weight for each deviation of

the gradient function from 1 for each point b. The weight is the estimated probability

mass in point b. Third, large values of T (ψ̂) indicate that G is not correctly specified

and this leads to the rejection of H0. We also note that T (ψ̂) is constructed based on

the Cramér-von Mises measure of distance between the gradient and 1.

To complete our diagnostic tool, we need the null distribution of the proposed test

statistic (2). Since finding the exact distribution of T (ψ̂) is difficult, we instead derive

its asymptotic distribution under H0. We further develop a parametric bootstrap pro-

cedure to approximate the finite-sample distribution of T (ψ̂) under the null hypothesis.

4. Asymptotic results

In this section, we investigate the asymptotic properties of T (ψ̂) under H0. Suppose

ψ0 = (ψ01, ..., ψ0L)′ is the true parameter vector.

Theorem 1. Under general regularity conditions and provided that the model is cor-

rectly specified, T (ψ̂) =
r∑
j=1

λjχ
2
j + op(1), where χ2

j (j = 1, ..., r) are independent χ2
1

random variables, and λ1 ≥ ... ≥ λr are the eigenvalues of A′Q(ψ0)A, in which A is

the square root of the inverse Fisher information matrix of the model parameters and
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Q(ψ0) is the L× L matrix with (l, l′)-th element

Qll′(ψ0) =

∫
Rq

{
lim
N→∞

1

N

N∑
i=1

E

[
∂

∂ψ0l

fi(Yi|b)
fi(Yi|G)

]}{
lim
N→∞

1

N

N∑
i=1

E

[
∂

∂ψ0l′

fi(Yi|b)
fi(Yi|G)

]}
dG(b).

(3)

For the detailed proof, see Web Appendix A. Note that the eigenvalues λj depend

on the true parameter vector ψ0, which is unknown. We can consistently estimate the

eigenvalues since, based on the proof of Theorem 1, a consistent estimator for (3) is

given by

Q̂ll′(ψ̂) =

∫
Rq

{
1

N

N∑
i=1

∂

∂ψl

fi(yi|b)
fi(yi|G)

∣∣∣ψl=ψ̂l

}{
1

N

N∑
i=1

∂

∂ψl′

fi(yi|b)
fi(yi|G)

∣∣∣ψl′=ψ̂l′

}
dĜ(b).

(4)

The exact distribution of a weighted sum of independent chi-squared random vari-

ables has been derived by Imhof (1961, p. 422) using the inversion formula. Thus,

critical values of the proposed test statistic can be computed analytically (see Web

Appendix B). As a simple approximation, the test statistic T (ψ̂) can be adjusted such

that the asymptotic distribution of the modified statistic is approximately χ2 with r

degrees of freedom. Similar to Rao and Scott (1981) and Rotnitzky and Jewell (1990)

we have the following result.

Corollary 1. Let T ∗ = T (ψ̂)/λ̄, where λ̄ is the mean of eigenvalues. Then, under the

conditions of Theorem 1, the adjusted test statistic T ∗ is asymptotically distributed (≈)

as χ2 with r degrees of freedom.
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5. A parametric bootstrap algorithm for small

samples

Asymptotic results may not always apply to small or moderate sample sizes. In those

cases, we propose a parametric bootstrap procedure to approximate the finite-sample

distribution of the test statistic T (ψ̂) under the null. Our parametric bootstrap test is

set up as follows:

1. Fit the model under H0 to the original data to get ψ̂ as the ML estimate of model

parameters. Note that ψ̂′ = (θ̂′, α̂′).

2. Calculate the test statistic (2) for the original data using the fitted model, and

denote it by Tobs.

3. For s = 1, ..., S, repeat the following steps:

(a) Generate random effects bsi , i = 1, ..., N , from Gα in which α is replaced by

α̂.

(b) Generate new observations ysi , i = 1, ..., N , from fθ(yi|bsi ) in which θ is re-

placed by θ̂.

(c) Fit the model under H0 to the new observations ysi , i = 1, ..., N , and calculate

the test statistic (2) for these observations using the corresponding fitted

model, and denote it by T s.

4. Compute the empirical p-value as the proportion of T s exceeding Tobs.

5. Given the significance level δ, reject H0 if δ is greater than the empirical p-value.
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6. Implementation: A quasi-Monte Carlo inte-

gration

We use the SAS procedures NLMIXED and IML to implement our methodology. In-

deed, calculation of the gradient function is straightforward since it only requires the

calculation of the marginal and conditional distributions of all N individuals. We cal-

culate the test statistic T (ψ̂) by using a quasi-Monte Carlo (QMC) integration method

as follows

T (ψ̂) =

∫
Rq

(
∆̂(Ĝ, b)− 1

)2
dĜ (b) =

1

K

K∑
k=1

(
∆̂(Ĝ, bk)− 1

)2
, (5)

where bk = Ĝ−1(ck), in which {ck : k = 1, ...,K} are the quasi-Monte Carlo integration

nodes over the unit cube Cq = [0, 1)q. The QMC nodes ck are deterministic and have

the smallest discrepancy over the unit cube with respect to the Kolmogorov-Smirnov

distance (see Fang and Wang, 1994). Interestingly, when q = 1, the QMC integration

nodes are easily derived as {ck = 2k−1
2K : k = 1, ...,K} with the discrepancy of 1/2K.

Because the QMC integration nodes are deterministic, no automatic random variation

appears in the QMC integration approach, and further since the nodes have the smallest

discrepancy over [0, 1)q, it would be sufficient to increase K as much as possible to get

a reliable approximation.

Using the QMC integration approach, we similarly approximate (4) as

Q̂ll′(ψ̂) =
1

KN2

K∑
k=1

N∑
i=1

N∑
i′=1

(
∂

∂ψl

fi(yi|bk)
fi(yi|G)

∣∣∣ψl=ψ̂l

)(
∂

∂ψl′

fi′(yi′ |bk)
fi′(yi′ |G)

∣∣∣ψl′=ψ̂l′

)
(6)

to calculate the eigenvalues λ1, ..., λr. Specifically, we write the derivative of the ratio
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of conditional and marginal distributions in (6) as

∂

∂ψl

fi(yi|bk)
fi(yi|G)

=

(
∂

∂ψl
log fi(yi|bk)−

∂

∂ψl
log fi(yi|G)

)
fi(yi|bk)
fi(yi|G)

,

which can be directly calculated using the SAS procedures NLMIXED and IML.

7. Simulation study

In this section, we evaluated the performance of the proposed diagnostic tests via

simulations. We first examined the asymptotic proposal for large samples and then

investigated the performance of the proposed bootstrap algorithm in small-sample sit-

uations. Because misspecifying the random-effects distribution is most problematic for

binary data, we considered here a logistic generalized linear mixed model. We also

compared our diagnostic tests with three recent tests proposed by Tchetgen and Coull

(2006), Alonso et al. (2008), and Efendi et al. (2014), respectively.

7.1. Evaluation of the asymptotic test

For each combination of N ∈ {100, 200, 300, 500, 1000} and n ∈ {10, 15}, we generated

1000 data sets from the logistic generalized linear mixed model

logit (P (Yij = 1|bi)) = β0 + β1xij + β2wij + bi, (7)

where Yij denotes the binary response for individual i at time point j, xij and wij

represent two covariates, and bi is a random effect with mean 0 and variance σ2b . We set

β0 = 2, β1 = −2, and β2 = 1. The covariates xij and wij were generated randomly from

Uniform(1, 5) and Uniform(1, 2), respectively. We also generated the random effect bi
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from four distinct distributions: Normal(0, 1), Chi-squared(2), Log-normal(3, 1), and

F(1, 7). All the generated bi’s were shifted and rescaled such that each bi has mean 0

and variance σ2b = 9.

[Table 1 appears here]

The logistic mixed model (7) was fitted to each of the generated data sets under a

normality assumption for the random effect bi (the null hypothesis), and 1000 QMC

integration nodes were used to calculate the test statistic T (ψ̂) as in (5) and the

eigenvalues λ1, ..., λr as in (6). Then, the p-value of our test was computed using

the asymptotic distribution as in Theorem 1. The adjusted test statistic T ∗ = T (ψ̂)/λ̄

was computed as well. For comparison, we calculated the test statistic of Tchetgen

and Coull (2006) as well as the determinant-trace test statistic of Alonso et al. (2008).

For each simulation setting, we determined the proportion of cases in which a

significant result was detected at the nominal level 0.05. When the true random-

effects distribution was a normal distribution, this proportion corresponds to the Type

I error rate, otherwise it represents the power of the test to detect misspecification.

The simulation results of our asymptotic test, say T , the test based on the adjusted

test statistic, say T ∗, the determinant-trace test of Alonso et al. (2008), say δdt, and

the test of Tchetgen and Coull (2006), say D, are presented in Table 1. The results

indicate that both T and T ∗ show a Type I error rate smaller than the nominal level

0.05, while Type I error rates of δdt and D are closer to the nominal level. Type I

error rates of our asymptotic test T and the adjusted test T ∗ get closer to the nominal

level when N increases. Therefore, our asymptotic test is conservative in terms of

Type I error when the sample size is not very large. From the results, it can be seen

that our asymptotic test T is more powerful than the two tests of Tchetgen and Coull

(2006) and Alonso et al. (2008). The power of our test is almost 1 for sample sizes
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of 500 or larger. Furthermore, the simulated power associated with the adjusted test

statistic T ∗ overestimates the power for sample sizes smaller than 300. Note also that

the four random-effects distributions in Table 1 are sorted according to their skewness.

The performance of the proposed test is better when skewness of the random-effects

distribution is larger.

Heagerty and Kurland (2001) demonstrated other forms of misspecification related

to the random-effects part, such as ignoring a random effect, group-specific variances,

and autoregressive random effects, that could impact inference on fixed-effects param-

eters. We conducted further simulations to examine the power of our test in detecting

such types of misspecification. The results, given in Web Appendix C, suggest that our

diagnostic test has a good power to detect misspecification regarding the ignorance of

some random effect from the model, however it is not powerful enough to detect au-

toregressive random effects. Both the test of Tchetgen and Coull (2006) and the test of

Alonso et al. (2008) did not perform well when assessing autoregressive random effects.

For more details, see Web Appendix C.

7.2. Evaluation of the bootstrap algorithm for small sam-

ples

To evaluate the behavior of our parametric bootstrap algorithm, we performed the same

simulation study as in Section 7.1, but with smaller sample sizes of N = 30, 50, 80, 100.

In each replication, 200 bootstrap samples were used to perform the bootstrap test

as described in Section 5. We also compared our bootstrap test, say T , with the

bootstrap test of Efendi et al. (2014), say E. The simulation results, displayed in

Table 2, show that our parametric bootstrap test T has the correct Type I error rate

with a considerable power. Our bootstrap test outperforms the bootstrap test of Efendi
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et al. (2014) because we have used a more powerful test statistic that not only considers

all deviations of the gradient function from 1 but also assigns an appropriate weight

to each deviation. More importantly, their bootstrap algorithm was developed based

on the normality of ML estimates which is a large sample property.

[Table 2 appears here]

Overall, the results of the simulations indicate that both the asymptotic and boot-

strap tests perform reasonably well to detect misspecification of the random-effects

distribution. As we expected, the power of our asymptotic test is not very large for

small to moderate sample sizes. The proposed bootstrap algorithm performs better in

small-sample situations and provides a powerful test. However, the bootstrap test is

time consuming when the sample size is very large.

8. Real data example

We apply our method to real data from a randomized multicenter longitudinal study

for the comparison of two oral treatments (coded as A and B) for toenail dermatophyte

onychomycosis (TDO), described in full detail by De Backer et al. (1996). In the study,

2× 189 patients were randomly distributed over 36 centers, and were followed during

12 weeks (3 months) of treatment and followed further up to a total of 48 weeks (12

months). Measurements were taken at baseline, every month during treatment, and

every 3 months afterward, resulting in a maximum of seven measurements per subject.

On the first occasion, the treating physician indicates one of the affected toenails as the

target nail, the nail which will be followed over time. One of the responses of interest

was the infection severity, coded as 0 (not severe) or 1 (severe). The main objectives

were to investigate whether the percentage of severe infections decreased over time,
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and to see whether the evolution was different for the two treatment groups. Similar

to De Backer et al. (1996), we restrict our analysis to only those patients for whom the

target nail was one of the two big toenails. This reduces the sample under consideration

to 146 and 148 subjects in group A and group B, respectively. Figure 1(a) shows the

observed percentage of severe infections at all time points, for both treatment groups

separately.

[Figure 1 appears here]

Let Yij be the binary outcome indicating the severity of the toenail infection for

patient i at occasion j. The mixed model we consider here is

Yij |bi ∼ Bernoulli(πij), logit(πij) = β0 + bi + β1Ti + β2tij + β3Titij , (8)

in which Ti is the treatment indicator for patient i, tij is the time point (in months) at

which the jth measurement was taken for the ith patient, and bi is a random subject-

specific intercept with mean 0 and variance σ2b . Assuming a normal distribution for

the random intercept bi (the null hypothesis), the ML estimates of parameters and as-

sociated standard errors are calculated and reported in Table 3. The gradient function

related to this model is shown in Figure 1(b), along with 95% pointwise confidence

bands that have been obtained according to Verbeke and Molenberghs (2013). The

gradient function plot reveals some departures from 1, suggesting that the random-

effects distribution might be misspecified. To formally test the null hypothesis, our

asymptotic test produces a test statistic of 0.0169, which results in a p-value of 0.094

using Web Appendix B. The asymptotic test does not provide evidence for misspecifi-

cation at the significance level 0.05. In contrast, the adjusted test statistic T ∗, which is

equal to 11.4651 (with T (ψ̂) = 0.016911 and λ̄ = 0.001475), yields a significant p-value
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of 0.042, indicating that the normality assumption is inadequate for the random inter-

cepts in this model. On the other hand, our bootstrap test declares severe violation

of the normality assumption since it gives a significant p-value of 0.001 based on 500

bootstrap samples. We conjecture that N = 294 in this dataset is not sufficiently large

for our asymptotic test to detect misspecification.

[Table 3 appears here]

As discussed by Verbeke and Molenberghs (2013), the shape of the gradient function

gives some indication of how the random-effects distribution can be adapted to provide

a better fit. In fact, a model with a gradient function exceeding 1 can be improved by

moving probability mass from areas where the gradient function is small to areas where

the gradient function is large. For the toenail data, the shape of the gradient function

in Figure 1(b) suggests that we can replace the normality assumption of the random

intercepts by a mixture of three normal distributions. Note also that since 163 patients

never experienced a severe infection during the study and 16 patients experienced a

severe infection at all visits, a 3-component mixture could capture the heterogeneity be-

tween the three different types of patient. We therefore refit model (8) by assuming the

random intercepts to be distributed as bi ∼ π1N(µ1, σ
2
b ) + π2N(µ2, σ

2
b ) + π3N(µ3, σ

2
b ),

with π1 + π2 + π3 = 1, where we also include the restriction π1µ1 + π2µ2 + π3µ3 = 0

to impose the assumption E(bi) = 0. As shown by Liu and Yu (2008), the model with

mixture of normals can still be fitted using the procedure NLMIXED in SAS. The

parameter estimates are also presented in Table 3. The gradient function plot, shown

in Figure 1(c), exhibits only small fluctuation around 1, suggesting that the mixture

of normals seems appropriate for the random effects. To investigate this formally, we

apply our asymptotic test which provides a test statistic of 0.0003, giving a p-value

of 0.995 using Web Appendix B. Our asymptotic test concludes that the mixture of
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normals is adequate for the random effects bi. This is confirmed by the adjusted test

statistic T ∗, which is equal to 0.3309 (with T (ψ̂) = 0.000277 and λ̄ = 0.000837),

providing a p-value of 0.999. Our bootstrap test, with a p-value of 0.667 based on

500 bootstrap samples, also confirms the adequacy of the mixture of normals as the

distribution of random effects.

Similar results are obtained using the determinant-trace test of Alonso et al. (2008).

Their diagnostic test, with a p-value smaller than 0.001, suggests there is significant

evidence against the normality assumption for the random intercepts in model (8),

while it advocates that the model with finite mixture of normals provides an adequate

fit to the data according to a non-significant p-value of 0.146.

9. Discussion

We presented a novel diagnostic test for assessing the random-effects distribution in

mixed models. The proposed test statistic has been constructed based on the gradient

function using the Cramér-von Mises measure. We established asymptotic properties

of our test statistic and provided an explicit formula to compute critical values of

our test using the asymptotic distribution. Moreover, as a simple approximation, the

test statistic has been adjusted such that the asymptotic distribution of the modified

statistic is approximately χ2 with r degrees of freedom, where r is the number of eigen-

values. We also explored the finite-sample properties of our test statistic by developing

a parametric bootstrap procedure.

The simulations showed that both the asymptotic and bootstrap tests perform

reasonably well to detect misspecification of the random-effects distribution. While the

bootstrap test has the correct Type I error rate, the asymptotic test is conservative in
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terms of Type I error when the sample size is not sufficiently large. As we expected, the

power of our asymptotic test is not very high for small or moderate samples, while the

proposed bootstrap algorithm performs much better in small-sample situations. Since

the bootstrap test is time consuming when the sample size is very large, we suggest

our asymptotic test for sufficiently large samples, and our bootstrap test for smaller

samples. We should point out that the required sample size for the asymptotic test

may depend on several aspects of the data (e.g., cluster sizes) as well as of the outcome

(e.g., binary versus continuous) and model used (e.g., presence of multiple random

effects). The simulations indicated that our asymptotic test outperforms two recent

tests proposed by Tchetgen and Coull (2006) and Alonso et al. (2008), respectively.

Also, for small samples our bootstrap test is much more powerful than the bootstrap

test of Efendi et al. (2014). Web Appendix C presents further simulations conducted

with the objective of evaluating the performance of our diagnostic test in detecting

some other forms of misspecification related to the random-effects part.

We employed a quasi-Monte Carlo integration method to facilitate calculations

regarding our test statistic and the eigenvalues of the asymptotic distribution. For

our work, we found that 1000 integration nodes are sufficient for a reliable integration

approximation. However, increasing the number of integration nodes in quasi-Monte

Carlo approach is not a major concern in the sense of computation time, even for high

dimensional integrals (see Pan and Thompson, 2007).

While most emphasis in the literature has been placed on checking the normality

assumption of random effects, our method can be used to verify the appropriateness of

any parametric distribution for random effects. As illustrated in Section 8, we applied

our method to check the adequacy of a finite mixture of normals as the distribution of

random effects.
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For the toenail data, one may argue that the model that assumes normally dis-

tributed random effects and the model that assumes a mixture of normal distributions

provide approximately the same estimated regression coefficients. This apparent ro-

bustness does not hold in general, and examples of the severe impact of model misspec-

ifications have been reported, e.g. by Litière et al. (2008), and can also be observed

here if we focus attention on the treatment effect after 1 year, i.e. on inference for

β1 + 12 ∗ β3. Point estimates (and associated standard errors) are −2.0498 (0.8853)

and −1.4269 (0.7378) for a normal and a mixture of normals, respectively. Under the

normal random-effects distribution, a significant treatment effect (p = 0.0213) is ob-

tained after 12 months, while under the mixture model, there is less evidence for such

a treatment effect (p = 0.0541). This shows that different inferences could be obtained

with different random-effects distributions.

Finally, in this paper we assumed the conditional distribution to be correctly speci-

fied. This assumption was made by Verbeke and Molenberghs (2013) to exploit the idea

of the gradient function in the context of mixed models. In an attempt to relax this

assumption, one can replace the marginal likelihood function with a quasi-likelihood

function. The quasi-likelihood approach only needs the first and second moments of

the conditional distribution to be specified. This is a subject of ongoing research.

10. Supplementary Materials

Web appendices referenced in Sections 4, 7, and 9 as well as the SAS code for the

analysis of toenail data are available with this paper at the Biometrics website on

Wiley Online Library.
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Table 1: Power and Type I error rate of our asymptotic diagnostic test, denoted by T, the test based

on the adjusted test statistic, denoted by T ∗, the determinant-trace test of Alonso et al. (2008),

denoted by δdt, and the test of Tchetgen and Coull (2006), denoted by D, to detect misspecification

of the random-effects distribution in the binary mixed model (7) at the nominal level 0.05. A normal

distribution was assumed for the random effect bi to fit the model, whereas the true random effect

was generated from Normal(0, 1), Chi-squared(2), Log-normal(3, 1), and F(1, 7). Note that all the

generated values of bi were shifted and rescaled such that each bi has mean 0 and variance σ2b = 9.

N = 100 N = 200 N = 300 N = 500 N = 1000

True RE distribution n = 10 n = 15 n = 10 n = 15 n = 10 n = 15 n = 10 n = 15 n = 10 n = 15

T 0.001 0.002 0.002 0.013 0.003 0.017 0.011 0.019 0.018 0.029
Normal(0, 1) T ∗ 0.003 0.010 0.005 0.014 0.006 0.024 0.014 0.021 0.027 0.036

δdt 0.080 0.050 0.053 0.033 0.040 0.050 0.056 0.040 0.047 0.055
D 0.091 0.078 0.059 0.082 0.066 0.061 0.050 0.063 0.054 0.051

T 0.018 0.106 0.413 0.735 0.853 0.983 0.996 1.000 1.000 1.000
Chi-squared(2) T ∗ 0.069 0.290 0.684 0.960 0.971 0.996 1.000 1.000 1.000 1.000

δdt 0.094 0.112 0.094 0.097 0.118 0.122 0.133 0.141 0.155 0.187
D 0.061 0.069 0.070 0.201 0.120 0.383 0.277 0.806 0.775 1.000

T 0.011 0.087 0.479 0.740 0.912 0.994 1.000 1.000 1.000 1.000
Log-normal(3, 1) T ∗ 0.075 0.330 0.846 0.991 0.996 1.000 1.000 1.000 1.000 1.000

δdt 0.148 0.122 0.243 0.246 0.261 0.267 0.338 0.350 0.405 0.550
D 0.064 0.090 0.139 0.475 0.328 0.783 0.663 0.992 0.974 1.000

T 0.015 0.086 0.387 0.731 0.888 0.997 1.000 1.000 1.000 1.000
F(1, 7) T ∗ 0.113 0.282 0.839 0.994 1.000 1.000 1.000 1.000 1.000 1.000

δdt 0.168 0.210 0.255 0.233 0.285 0.301 0.313 0.360 0.424 0.567
D 0.051 0.128 0.179 0.574 0.322 0.919 0.786 0.997 0.986 1.000
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Table 2: Power and Type I error rate of our parametric bootstrap test, denoted by T , and the

bootstrap test of Efendi et al. (2014), denoted by E, to detect misspecification of the random-effects

distribution in the binary mixed model (7) at the nominal level 0.05. A normal distribution was

assumed for the random effect bi to fit the model, whereas the true random effect was generated from

Normal(0, 1), Chi-squared(2), Log-normal(3, 1), and F(1, 7). Note that all the generated values of

bi were shifted and rescaled such that each bi has mean 0 and variance σ2b = 9.

N = 30 N = 50 N = 80 N = 100

True RE distribution n = 10 n = 15 n = 10 n = 15 n = 10 n = 15 n = 10 n = 15

Normal(0, 1) T 0.068 0.044 0.036 0.045 0.038 0.053 0.047 0.051
E 0.055 0.034 0.037 0.040 0.039 0.042 0.046 0.048

Chi-squared(2) T 0.281 0.415 0.404 0.552 0.616 0.809 0.772 0.834
E 0.198 0.286 0.295 0.384 0.372 0.453 0.515 0.661

Log-normal(3, 1) T 0.642 0.651 0.790 0.803 0.941 0.986 0.973 0.995
E 0.404 0.472 0.486 0.580 0.599 0.637 0.684 0.782

F(1, 7) T 0.663 0.817 0.869 0.922 0.935 0.990 0.994 1.000
E 0.429 0.537 0.570 0.631 0.624 0.703 0.718 0.813

Table 3: Toenail Data: the ML estimates of parameters and associated standard errors obtained

from fitting model (8), once assuming the random effect bi to be normal, once assuming the random

effect bi to follow a finite mixture of normals with 3 components.

Normal Mixture

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept β0 −1.6308 (0.4356) −1.5644 (0.5311)
Treat β1 −0.1146 (0.5855) 0.4642 (0.4316)
Time β2 −0.4043 (0.0460) −0.3970 (0.0468)
Treat×Time β3 −0.1614 (0.0719) −0.1573 (0.0756)
Variance of bi σ2b 16.1318 (3.0643) 0.6925 (0.3327)
Prob-1 π1 0.5759 (0.0435)
Prob-2 π2 0.3788 (0.0439)
Prob-3 π3 0.0453 (0.0129)
Mean-1 µ1 −2.5912 (0.5309)
Mean-2 µ2 2.8097 (0.3435)
Mean-3 µ3 9.4479 (1.3290)

−2 log-likelihood 1247.8 1219.3
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Figure 1: Toenail data: (a) Evolution of the percentage of severe toenail infections in the two
treatment groups separately. (b) Gradient function (solid) and 95% pointwise confidence bands
(dashed) for the logistic mixed model (8) with normal random effects. (c) Gradient function (solid)
and 95% pointwise confidence bands (dashed) for the logistic mixed model (8) with a finite mixture
of normals as the random-effects distribution. The confidence bands for the gradient function are
obtained according to Verbeke and Molenberghs (2013).
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