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Abstract

Objectives: Cortisol is a glucocorticoid hormone produced through activation of the

hypothalamic pituitary adrenal axis. It is known as the “stress hormone” for its pri-

mary role in the body's stress response and has been the focus of much modern clini-

cal research. Within archaeology, only a few studies have analyzed cortisol in human

remains and these have been restricted to hair (Webb et al., 2010; Webb, White, van

Uum, & Longstaffe, 2015a; Webb, White, van Uum, & Longstaffe, 2015b). This study

examines the utility of dentine and enamel, which survive well archaeologically, as

possible reservoirs for detectable levels of cortisol.

Materials and methods: Then, 69 teeth from 65 individuals from five Roman and

Post-Roman sites in France were tested via competitive enzyme-linked immunosor-

bent assay (ELISA) to assess and quantify the cortisol concentrations present within

tooth dentine and enamel.

Results: In both tooth dentine and enamel, detectable concentrations of cortisol were

identified in multiple teeth. However, concentrations were low and not all teeth

yielded results that were measurable through cortisol ELISA. Differences in cortisol

values between dentine and enamel could suggest different uptake mechanisms or

timing.

Discussion: These results suggest that cortisol is incorporated within tooth structures

and merits further investigation in both modern and archaeological contexts. Analysis

of the results through liquid chromatographic–mass spectrometry would verify cur-

rent results and might yield values that could be better integrated with published cor-

tisol studies. Future studies of cortisol in tooth structures would greatly expand the

research potential of cortisol in the past and could have implications for studies of

human stress across deep time.
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1 | INTRODUCTION

The detrimental impact of “stress” on the body has been an important

focus of study within the clinical literature. In bioarchaeology, the sub-

ject of more generic “health stress” is also a primary concern, with a

considerable body of research directed toward nonspecific skeletal

indicators (see Klaus, 2014; Reitsema & McIlvaine, 2014; Temple &

Goodman, 2014). However, studies addressing stress experiences

within different societies and over time have been limited by method-

ological constraints. Cortisol has previously been identified and ana-

lyzed in human hair from archaeological contexts; however, hair

preserves only in exceptional circumstances (Webb et al., 2010;

Webb, White, van Uum, & Longstaffe, 2015a; Webb, White, van

Uum, & Longstaffe, 2015b). To gain a broader understanding of

“stress” in the past, this study aims to adapt and develop a new

method for analyzing cortisol hormone concentrations (indicative of

stress) from dental tissues (Nejad, Jeong, Shahsavarani, Sung, &

Lee, 2016). Given the high survival of teeth in archaeological contexts,

cortisol concentrations from teeth have the potential to provide an

important new avenue for research on stress in the past.

1.1 | Cortisol

Studies assessing stress and irregularities in stress response in con-

temporary human and animal populations routinely test cortisol con-

centrations. Cortisol, often referred to as the “stress hormone,” is the

primary adrenal chemical messenger produced by the hypothalamic

pituitary adrenal (HPA) axis in the presence of a stressor

(Charmandari, Tsigos, & Chrousos, 2005). Cortisol prepares the body

to respond to a threat, prioritizing processes serving immediate ener-

getic needs (cardiac output, glucose, and red blood cell production),

and diverting energy away from those biological processes that are

secondary to immediate survival (growth, digestion, reproduction)

(Panagiotakopoulos & Neigh, 2014; Sapolsky, Romero, &

Munck, 2000). As such, activation of the HPA axis and heightened

cortisol secretion are an adaptive and important part of the human

stress response, promoting survival (Beehner & Bergman, 2017).

However, when chronically activated by stressors, the HPA axis can

become dysregulated, resulting in abnormal cortisol secretion and

negative effects on the body. Cortisol inhibits inflammatory and aller-

gic reactions, has immunosuppressive effects (decreases antibody pro-

duction and the proliferation of immune B-cells, T-cells), can reduce

growth in children (inhibits growth hormone, modulation of osteo-

clast, osteoblast, and osteocyte function), cause osteoporosis in adults

(degradation of collagen, reduction of calcium), delay wound healing

by reducing fibroblast proliferation, and also impacts metabolic pro-

cesses through gluconeogenesis (releasing amino acids from proteins

in skeletal muscle and bone), glycogenolysis, and lipolysis (Can-

alis, 2005; Panagiotakopoulos & Neigh, 2014; Sapolsky et al., 2000).

Assessing cortisol concentrations in human tissues therefore can be

informative about relative “stress experience” (stressors an individual

or population encountered). This data can contribute toward a greater

understanding of human responses to differing social and environ-

mental stressors in the past.

In addition to the stress response, cortisol has important regula-

tory functions in cardiovascular, metabolic, and immunological sys-

tems (Charmandari et al., 2005). Without appropriate levels of

cortisol, humans cannot survive (Dallman & Hellhammer, 2011). Out-

side of the stress response, the HPA axis has a natural circadian

rhythm, secreting the highest levels of cortisol approximately 30–

45 min after waking and then decreasing throughout the day, reaching

the lowest levels during sleep (Dallman & Hellhammer, 2011). To syn-

thesize cortisol, the HPA axis must be activated, initiating a hormone

cascade beginning in the brain. The hypothalamus produces and trans-

fers corticotropin-releasing hormone to the anterior part of the pitui-

tary gland, stimulating the production of adrenocorticotropic hormone

(ACTH). The ACTH is then transported throughout the body via the

blood stream and detected by hormone-specific receptors in the adre-

nal gland, instigating the synthesis of glucocorticoid hormones, of

which, cortisol is the most abundant. Cortisol travels through the

bloodstream in both active (unbound) and inactive (bound to the pro-

tein transcortin or albumin) forms (Gow, Thomson, Rieder, van Uum,

& Koren, 2010). From the blood stream, unbound cortisol passes

through cell membranes to activate glucocorticoid receptors in the

cytoplasm, where the complex is translocated into the cell nucleus,

binding to glucocorticoid-response elements and modulating the tran-

scription of target genes (Gow et al., 2010; Greaves, Jevalikar, Hewitt,

& Zacharin, 2014). Although free or unbound cortisol makes up only a

small proportion of total cortisol, usually 10% or lower, it is the free

cortisol that acts upon and regulates systems within the body

(Dallman & Hellhammer, 2011). The production of cortisol is tightly

controlled through a negative feedback loop, where upon the arrival

of cortisol back in the pituitary gland, the hormone cascade is

suppressed (Dickerson & Kemeny, 2004; Sapolsky et al., 2000). The

diurnal rhythm of the HPA axis and, therefore, cortisol secretion, is

not uniform across the life course or between sexes, with the normal

rhythm achieved at around 3 months of age (Gunnar & Donz-

ella, 2002). Other major changes in cortisol production arise from

reaching developmental thresholds such as adrenarche, puberty, preg-

nancy, and menopause (Greaves et al., 2014).

1.2 | Cortisol in bioarchaeology

Because stressors and the stress response have a significant impact

on health and wellbeing, the study of stress is important in bio-

archaeological analyses of past populations. Bioarchaeological

methods are most often indirect and nonspecific measures of stress

(growth disruption, dental enamel hypoplasia, cribra orbitalia) that

require an unknown “threshold of stress” to be met for development

of the lesions in the skeleton (Goodman & Rose, 1990). The non-

specificity of these skeletal and dental responses is problematic for

interpretations of stress. Recent research has begun to explore corti-

sol and its role within the HPA axis in relation to skeletal stress

markers and bone growth in archaeological populations
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(Gowland, 2017; Klaus, 2014; Reitsema & McIlvaine, 2014; Rodney &

Mulligan, 2014; Scott, Choi, Mookherjee, Hoppa, & Larcombe, 2016;

Webb et al., 2010, 2015a, 2015b; Weston, 2011). Investigations of

cortisol in archaeological hair have yielded successful results, demon-

strating cortisol preservation over hundreds of years (Webb

et al., 2010, 2015a, 2015b). The cortisol concentrations found in

archaeological hair provide a measure of chronic “stress” that is direct,

quantifiable and comparable with modern stress studies, circumventing

some of the challenges in analyzing indirect stress indicators. Although

progressive and exciting, analyses of cortisol from archaeological hair

have several limitations. Some research has indicated that cortisol is

removed from hair when washed (even just with water) (Davenport,

Tiefenbacher, Lutz, Novak, & Meyer, 2006; Hamel et al., 2011; Meyer

& Novak, 2012). More problematic is that very few archaeological indi-

viduals have hair preserved for analysis thereby severely limiting the

application of this method. A recent study by Nejad et al. (2016) suc-

cessfully detected cortisol from modern tooth dentine, suggesting that

cortisol can be found in archaeological tooth structures. The ability to

assess cortisol from teeth would have important implications for future

research as teeth represent some of the best-preserved elements of the

body in bioarchaeological contexts. Additionally, tooth structures have a

much lower potential for contamination in the burial and post burial

environment than hair or other skeletal elements (Turner-Walker, 2008),

and are not subject to leaching in the same way as hair. Obtaining a

more direct measure of this stress hormone in the past has the potential

to provide a more nuanced understanding of the relationship between

skeletal stress indicators and allows more direct comparisons with clini-

cal measures in modern populations.

This study seeks to develop and test a new method for assessing

stress in archaeological human remains and has the following aims

and objectives:

1. To determine if cortisol concentrations can be obtained from

archaeological dentine or enamel through enzyme-linked immuno-

sorbent assay (ELISA).

2. To investigate possible correlations between cortisol concentra-

tions in dentine and enamel dental tissues.

3. To assess cortisol concentrations and variation based on biologi-

cal sex.

2 | MATERIALS AND METHODS

To conduct the cortisol analysis, 69 teeth were selected from 65 indi-

viduals from five Roman and Post-Roman sites in France (Table 1). Of

the 69 teeth, 29 were sampled twice, to test dentine and enamel con-

centrations within the same tooth, for a total of 96 samples. The skel-

etal collections are in the care of three laboratories: De la Préhistoire

à l'Actuel: Culture, Environnement et Anthropologie (PACEA), Bor-

deaux; the Centre de recherches archéologiques et historiques

anciennes et médiévales (CRAHAM), Caen; and the Centre de Conser-

vation et d'Etudes de Lorraine (CCEL), Metz. Teeth from both male

and female individuals were selected. T
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Individual teeth were chosen based on several criteria, with a

preference for permanent second molars wherever possible. The

teeth selected had to be:

• Permanent teeth that began development after 4 months of age to

exclude teeth that might have been affected by the period when

the HPA axis is still developing and has yet to reach adult rhythms

and values

• Free from pathological lesions or dental wear that might expose

the dentine to the oral environment during life or the burial envi-

ronment after death.

To test whether cortisol concentrations could be obtained from

archaeological tooth structures, a method that identified cortisol in

modern dentine (Nejad et al., 2016) was adapted and developed. Then,

65 individuals were tested for cortisol concentrations, with 38 enamel

samples and 60 dentine samples deriving from a total of 69 teeth. For

adolescents included in this analysis, age-at-death was determined by

the stage of dental development (AlQahtani, Hector, & Liversidge, 2010).

Adult age-at-death estimations were based on degenerative changes in

the auricular surface and pubic symphyses (Brooks & Suchey, 1990;

Lovejoy, Meindl, Pryzbeck, & Mensforth, 1985; Schmitt, Murail, Cunha,

& Rougé, 2002) and dental wear (Brothwell, 1981). Sex estimates were

based on sexually dimorphic features of the skull and pelvis

(Brothwell, 1981; Bruzek, 2002; Phenice, 1969).

2.1 | Tooth sample preparation

Before destructive sampling, each tooth was recorded and photo-

graphed on each of its five surfaces (occlusal, mesial, distal, lingual,

buccal) in accordance with ethical guidelines for the destructive analy-

sis of archaeological human skeletal remains (BABAO, 2019). To

assess cortisol concentrations, the teeth were cleaned and prepared

before subsequent ELISA analysis. These processes are a modified

version of the methods proposed by Nejad et al. (2016). Each tooth

was washed in isopropanol to remove any contaminants present on

the tooth surface and left to dry. Once dry, the tooth was bisected

from crown to root using a diamond-tipped saw to expose the den-

tine. Using a rosehead dental burr, 150 mg of dentine were drilled out

of the tooth in a fine powder, avoiding circumpulpal dentine to pre-

vent any possible pulp remnants. Enamel samples were abraded with

a dental burr to produce a chip of core enamel of 300 mg. The enamel

was then ground into a powder. To prevent contamination between

the samples, all tools were washed in ultrapure water, placed in an

ultrasonic bath for 5 min and then dried with acetone in between

sampling each tooth. Aliquots of dentine (150 mg) and enamel

(300 mg) were weighed into microcentrifuge tubes and 1 ml of metha-

nol was added to the samples. The tubes were then left to incubate

for 24 hr, with slow rotation at room temperature to elute the cortisol.

After incubation, the samples were transferred to clean microtubes

and dehydrated using a nitrogen stream. All samples were frozen until

the day the ELISA was performed.

2.2 | Enzyme-linked immunosorbent assay

A competitive ELISA salivary cortisol kit by Salimetrics was used to

assess and quantify the cortisol concentrations present in the tooth

dentine and enamel. Currently, there is no kit developed specifically

for the analysis of cortisol in any tooth or bone tissue; however, sali-

vary kits have been successfully used to analyze both modern dentine

(Nejad et al., 2016) and archaeological hair (Webb et al., 2010, 2015a,

2015b). This is a competitive ELISA immunoassay kit. On the day of

analysis, samples were re-constituted with 30 μl of phosphate buffer.

Cortisol conjugated to horseradish peroxidase for the antibody bind-

ing sites are coated on a microliter plate. After incubation, unbound

components are washed away. Bound cortisol enzyme conjugate is

measured by the reaction of the HRP enzyme to the substrate

tetramethylbenzidine, producing a blue color. Stopping the reaction

with an acidic solution yields a yellow product. The optical density is

read on a standard plate reader at 405–450 nm. The amount of corti-

sol enzyme conjugate detected is inversely proportional to the

amount of cortisol present in the sample. The ELISA kit was run

according to all specifications made by the manufacturer. A standard

curve was generated for each kit based on standards and controls,

and fourth-order polynomial curve fit regressions were produced to

define the cortisol concentrations within each sample. Student t tests

and Mann–Whitney U tests were used to analyze differences

between the sexes and tooth structures as appropriate.

3 | RESULTS

Teeth were selected from 25 females, 21 males, and 19 individuals of

indeterminate sex. Age estimations followed standard age categories

(18–25, 26–35, 36–45, and 45+ years) and are presented here by the

mean of their respective age range (18–25 = 21.5 years) for visual

clarity. Two individuals could only be aged as “adult” (18+ years) and

are placed at the far right of the plot (“adult”) (Figure 1).

Two ELISAs were performed, one for dentine and the other for

enamel. Concentration sensitivity of the Salimetrics salivary cortisol

kits were >0.007 μg/dl with an assay range of 0.012–3.000 μg/dl, as

determined by the kit manufacturer. Of the 96 tooth samples tested

for cortisol concentrations, 32 (16 dentine and 16 enamel samples)

yielded results detectable through ELISA (Figure 1), the remaining 64

samples produced values below the 0.007 μg/dl concentration sensi-

tivity threshold. In only 2 of the 29 teeth tested for both dentine and

enamel cortisol, did both tissues yield detectable concentrations. In

both cases, the dentine values were higher than enamel values (Fig-

ure 1). No other clear patterns were observed. Data variation was up

to 10%.

Comparisons between valid dentine and enamel concentrations

(32 samples) were performed using independent sample t test in SPSS

with significant results (p < .001) (Table 2). Differences in cortisol con-

centrations between males, females, and indeterminate individuals

were not significant in either dentine (p = .808) or enamel (p = .407)

(Mann–Whitney) (Table 2).
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4 | DISCUSSION

Results of this study suggest that cortisol can be detected in archaeo-

logical tooth material. Although this finding is encouraging, the results

are less straightforward than those obtained from either modern

tooth dentine (Nejad et al., 2016) or archaeological hair (Webb

et al., 2010, 2015a, 2015b). In common with other studies (Nejad

et al., 2016; Webb et al., 2010, 2015a, 2015b), these results have not

yet been validated with gas or liquid chromatographic mass spectrom-

etry (GC/LC/MS), but this is an important next step to identify any

cross reactivity within the assay between cortisol and other steroids

or metabolites (Fraser et al., 2010; Wheeler & Barnard, 2010). In the

absence of the possibility to perform this additional analysis, the

results are cautiously interpreted in terms of their potential for future

analyses. Although the observed cortisol concentrations were low,

some patterns in the data do emerge. Values were broadly consistent,

with only two individuals showing any marked difference from group

averages. This result indicates that despite the low concentrations

detected, differences between individuals and groups may be

observed, rendering the method useful in assessing stress, especially

with further development.

Clear differences were observed between dentine and enamel

concentration values (p < .001), indicating a potential divergence in

uptake mechanism or timing. As with hair, the mechanisms for incor-

porating cortisol in tooth structures are not yet understood, but are

based on studies that have used human hair and/or teeth to assess

exposure to drugs, toxins, and pollutants (Altshuller, Halak, Landing, &

Kehoe, 1962; Andra, Austin, & Arora, 2015; Chiesa et al., 2017). It is

hypothesized that free cortisol circulating in the bloodstream is taken

up into the structures during periods of growth or development

(Haustein, Thiele, & Stangel, 1994; Klima, Altenburger, Kempf,

Auwärter, & Neukamm, 2016; Klima, Huppertz, Altenburger,

Auwärter, & Neukamm, 2015; Meyer & Novak, 2012; Nejad

et al., 2016; Spinner et al., 2014; van Uum et al., 2008). As such, it is

suggested that cortisol concentrations in dentine and enamel would

reflect cortisol in the blood during development of the tooth struc-

tures. Dentine and enamel have different properties that would affect

the mechanisms and timing of cortisol incorporation in the different

tissues (Cippitelli et al., 2018; Klima et al., 2016), which could explain

observed differences in this study. Enamel is composed of 96% inor-

ganic materials and once mineralized is isolated from the blood supply

and does not remodel (Lee, Seo, Park, Bae, & Cha, 2017). As a result,

any chemical or analyte retrieved from the enamel is likely to derive

from the period of childhood when that part of the tooth was mineral-

ized (Rubin, 2018). Tooth specific patterns of enamel formation have

been correlated with biological age (AlQahtani et al., 2010; Moorrees,

Fanning, & Hunt Jr, 1963a; Moorrees, Fanning, & Hunt Jr, 1963b),

localizing the period during which exposure could have taken place,

but also revealing limitations in the amount of time chemical signals

could be incorporated into enamel (Rubin, 2018). Concentrations of

other biochemicals obtained from enamel have been low in compari-

son with dentine and other types of tissue potentially because of its

high mineral content and limited window of exposure (Klima

et al., 2016). Dentine is avascular with no blood supply and is com-

posed of approximately 70% inorganic, 20% organic materials (includ-

ing proteins and proteoglycans) and 10% water (Lee et al., 2017;

Orsini et al., 2009; Turner-Walker, 2008). Once formed (approxi-

mately 3–4 days), dentine undergoes very little remodeling (Beaumont

& Montgomery, 2016) and like enamel, should capture exposure to

biochemical concentrations during a discreet period of development

F IGURE 1 Tooth cortisol
concentration (μg/dl) per 300 mg tissue
sample, plotted against age-at-death
mean of range. Red symbols denote
enamel and blue symbols are dentine
values. Circles are female, triangles are
indeterminate sex, and squares are male
individuals. Brackets indicate
representative cortisol concentrations

from the same tooth

TABLE 2 Detectable cortisol
concentrations (mean) (μg/dl)

Female Indeterminate Male p-Value Total

Dentine 0.0388 0.0375 0.0404 .808 0.0393

Enamel 0.0201 0.0300 0.0188 .407 0.0240
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(Andra et al., 2015). Studies have found drugs in higher concentrations

in tooth dentine than in enamel, likely because of the less mineralized

nature of dentine (accepts molecules more easily) (Klima et al., 2015;

Klima et al., 2016; Näsström, 1996). This explanation does fit with the

data in the present study.

Alternatively, it is possible for exogenous substances to become

incorporated in tooth structures after mineralization. Some studies

have been able to detect drugs in dental hard tissues, when drug

usage was known to have occurred close to the time of testing/death

(Houari, Loiodice, Jedeon, Berdal, & Babajko, 2016; Klima et al., 2016).

Unless the highly mineralized structure of enamel has been degraded

in some way (ex. carious lesions), drug incorporation via oral fluids has

been reportedly quite low (although detectable) in drug users (Klima

et al., 2015, 2016). Dentine is a more complicated tissue to consider.

Despite its avascularity, dentine has a relationship with dental pulp

(and thereby the blood supply) through dentinal tubules. Dentinal

tubules could transmit chemicals or substances in the still living, ener-

vated pulp to the dentine (Ghazali, 2003; Spinner et al., 2014) and the

inverse from dentine to dental pulp and blood supply (Pashley, 1979).

Higher concentrations of drugs in tooth dentine (compared with

enamel) are purportedly the result of its relationship with dental pulp

through the dentinal tubules (Ghazali, 2003; Klima et al., 2015; Klima

et al., 2016; Näsström, 1996). That enamel cortisol levels identified in

this study were significantly lower would seem to suggest that as with

hair, free cortisol circulating in the blood gets trapped in enamel dur-

ing formation, and is largely unaffected thereafter (especially as dam-

aged or degraded teeth were excluded from analysis). However, it is

not entirely clear whether dentine cortisol levels reflect circumstances

during the development of the tooth or an amalgam of exposure

across a lifetime. Based on the results of this analysis, tooth dentine

and enamel generate different concentrations of cortisol, even from

within the same tooth. However, because only two teeth sampled for

both dentine and enamel generated detectable concentrations within

the assay, future research should explore this relationship in more

detail. It is worth noting that in both cases, the dentine values were

higher than enamel values.

4.1 | Sex-based differences

No differences in cortisol concentrations between the sexes were

observed in either of the dental tissues. This could be a result of the

small sample size or the overall low values obtained in this analysis.

Sex-based differences in HPA axis and cortisol concentrations are

thought to develop at puberty, but reported results are not consis-

tent (Kirschbaum, Wüst, & Hellhammer, 1992; Raven & Tay-

lor, 1996). Nejad et al. (2016) also did not find differences between

male and female cortisol concentrations in their analysis of modern

tooth dentine. If cortisol is being deposited within the dental tissues

during mineralization, the results are reflecting cortisol exposure

before puberty and might explain the lack of difference between

male and female cortisol concentrations in both this analysis and in

modern dentine.

4.2 | Low concentrations detected

The concentration values obtained in this study were low in compari-

son with modern dentine data (Nejad et al., 2016), archaeological hair

concentrations (Webb et al., 2015a), and modern standards from hair,

saliva, blood, and urine (Aardal & Holm, 1995; Deutschbein et al., 2011;

Gonzalez et al., 2019). Not all of the samples in this analysis met the

minimum detection threshold of the ELISA cortisol kits. Although this

finding is not exclusive to this study (Gow et al., 2010), it is not clear

why the values are low. Accordingly, there are several possible expla-

nations for these results with implications for future analyses. Cortisol

may not be as readily deposited within tooth structures as in other tis-

sue types. If metabolized too rapidly, biochemicals or compounds can-

not be incorporated into the growing structure (Greff et al., 2019),

and this includes hair as well as teeth. Circulating cortisol is thought

to have a half-life of 80 min in the body, which may not be long

enough for detectable volumes to become consistently incorporated

into dental structures (Greff et al., 2019; Isaac et al., 2017). However,

cortisol is constantly in circulation, relatively small in size (362 Da) and

lipophilic, characteristics that predispose and increase the likelihood

of deposition within tooth dentine and enamel (Greff et al., 2019;

Haustein et al., 1994; Klima et al., 2015, 2016; Spinner et al., 2014).

Because the mechanisms for incorporation are not yet understood, it

may be that the time window for potential exposure during

amelogenesis and odontogenesis is more limited than for hair or other

tissues. Cortisol concentrations from modern dentine suggest that

detectable quantities of cortisol can be present within the tissue,

seemingly refuting hypotheses that cortisol is too rapidly metabolized

to be incorporated into dental tissues (Nejad et al., 2016). Further,

there is evidence that enamel and dentine can be influenced by hor-

mones and exogenous chemicals (Ahlgren, 1968; Houari et al., 2016).

Ameloblasts (enamel forming cells) have been found to contain gluco-

corticoid hormonal receptors depending on their developmental stage

(Houari et al., 2016). It has even been suggested that amelogenesis is

regulated by endogenous steroid hormones, affecting the quality,

hardness and mineralization of the enamel (Houari et al., 2016;

Pawlicki, Knychalska-Karwin, Stankiewicz, Jakób-Dolezal, &

Karwan, 1992). Hydrocortisone (a synthetic variant) has been found

to retard dentine formation under experimental conditions

(Ahlgren, 1968). Studies of drug concentrations within dental hard tis-

sues (Cattaneo, Gigli, Lodi, & Grandi, 2003) have been criticized for

not adequately removing pulp tissues before processing, potentially

confounding reported results (Rubin, 2018; Spinner et al., 2014).

Although Nejad et al. (2016) reported multiple cleaning processes,

they do not specify whether the pulp chambers of sampled teeth were

cleaned. It is, therefore, possible that their reported values are in fact

reflecting cortisol concentrations from dental pulp, containing a blood

and nerve supply, in addition to tooth dentine.1 This could explain

why their reported values were higher than the values obtained purely

from tooth dentine or enamel in this study. Further analyses would be

necessary to explore this explanation of results.

Alternatively, tooth cortisol could have degraded during decom-

position, in either the burial or post-burial environments. Obtained
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cortisol concentrations from modern tooth structures

(7.92 ± 0.91 ng/mg) (Nejad et al., 2016) were markedly higher than

results in the present analysis. Although cortisol is a stable natural ste-

roid, long-term exposure to 37�C and above can lead to significant

degradation, and this is worth considering in the future (i.e., historic

climate factors, including temperature, humidity, and effects on bio-

logical markers) (Khonmee et al., 2020). It is possible that higher corti-

sol concentrations in modern analysis were a result of the inclusion of

dental pulp and blood supply, and lower environmental temperature

exposure. Again, further testing of cortisol degradation should clarify

these findings. However, excellent preservation of cortisol in archaeo-

logical hair from comparable time periods (1–1,000 AD) has been

reported (Webb et al., 2010, 2015a, 2015b). As hair is rarely pre-

served, it may be that burial conditions and post-burial treatment are

better for individuals with hair than individuals decomposed to only

skeletal material. For hair to be preserved archeologically, certain

burial conditions must be present and because of their rarity, skele-

tons or mummies with preserved hair are more likely to be handled

more delicately by fewer people than entirely skeletonized individuals.

In clinical analyses, however, cortisol can withstand multiple heating

and cooling cycles without appreciable decomposition until reaching a

heat of 220�C (Hamel et al., 2011). It is highly unlikely that the individ-

uals in this analysis, excavated and stored in laboratories, had ever

experienced such high heats, leaving no other trace. It is thought that

teeth undergo very little diagenetic change in post burial environ-

ments and can maintain chemicals substances, protecting them from

alteration or degradation within the hard tooth structures (Cippitelli

et al., 2018; Lee et al., 2017; Spinner et al., 2014). Although ideal for

preservation over long periods of time, the structure of both dentine

and enamel can make the extraction of organic chemicals challenging

(Lee et al., 2017). Perhaps the low values in this study are attributable

to challenges in separating out cortisol bound to hard dental tissues,

as has been found in drug analysis of hair (Spinner et al., 2014). Again,

future analyses should test for cortisol degradation and may be able

to identify or overcome some of these challenges.

As with hair, cortisol within tooth structures reflects chronic

stress levels, averaging out normal functioning cortisol and acute

stress events (Russell, Koren, Rieder, & van Uum, 2012). Cortisol or its

animal equivalent (corticosterone) is only produced by mammals, and

although external animal or human corticosterone/cortisol infused

fluids or fats could be present in burial environments, several cleaning

steps were undertaken to remove possible external contaminants

from the samples. Dentine and core enamel would only have been

exposed to the burial environment if the tooth was damaged or

degraded. Other related steroid hormones, and cortisone, a precursor

and metabolite of cortisol, could display cross-reactivity with anti-

bodies on the ELISA plate. GC/LC/MS techniques can identify these

different hormones, which would clarify this issue further. However,

the cortisol ELISA utilized in this study displays high sensitivity and

selectivity for human cortisol, with no detectable cross-reactivity

(<0.004%) to related steroids. Minor-cross reactivity is possible with

some synthetic steroids. This is not expected to be an issue within this

study, as the teeth date to Roman and Post-Roman periods and

precautions were taken to avoid modern pharmaceutical contamina-

tion. Although this study has generated promising results, several

steps need to be taken to further refine the method, for appreciable

conclusions to be drawn. The first step is to validate the result of

the assays using GC/LC/MS or other methods for controlling cross-

reactivity (Fraser et al., 2010; Wheeler & Barnard, 2010). Once vali-

dated, further experimentation on potential uptake mechanisms

and different methods of extraction have enormous potential to

advance the method and perhaps permit a reduction in the mini-

mum required sample (e.g., hair—10–15 mg; van Uum et al., 2008).

This method allows the identification of stress in skeletal individ-

uals in a different way, which has the potential to be more quantita-

tive and direct than current macroscopic methodologies. Future

studies will consider cortisol concentrations in relation to various

qualitative pathological indicators, including growth disruption and

dental enamel hypoplasia.

5 | CONCLUSION

In both tooth dentine and enamel, measurable concentrations of corti-

sol were identified in multiple teeth. However, concentrations were

very low (0.02–0.04 μg/dl) and not all teeth yielded results that were

detectable through cortisol ELISA methodologies. These results sug-

gest that cortisol is deposited within tooth structures and merits fur-

ther investigation in both modern and archaeological contexts. Future

testing for cortisol degradation and analysis of the results through

GC/LC–MS would verify results and may yield values that could be

better integrated with published cortisol studies. This study has acted

as a proof of concept, and these results expand the research potential

of cortisol in the past and could have implications for studies of

human stress across deep time.
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