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Abstract
To reduce strategic misreporting on sensitive topics, survey researchers increasingly use list experiments

rather than direct questions. However, the complexity of list experiments may increase nonstrategic mis-

reporting. We provide the first empirical assessment of this trade-off between strategic and nonstrategic

misreporting. We field list experiments on election turnout in two different countries, collecting measures

of respondents’ true turnout. We detail and apply a partition validation method which uses true scores to

distinguish true and false positives andnegatives for list experiments, thus allowingdetectionof nonstrategic

reporting errors. For both list experiments, partition validation reveals nonstrategic misreporting that is:

undetected by standard diagnostics or validation; greater than assumed in extant simulation studies; and

severe enough that direct turnout questions subject to strategic misreporting exhibit lower overall reporting

error.We discuss howour results can inform the choice between list experiment anddirect question for other

topics and survey contexts.

Keywords: survey experiments, survey design, list experiments, sensitive questions, measurement error,

misreporting, satisficing

1 Introduction
How should political scientists elicit sensitive information from survey respondents as towhether

they hold attitudes or behave in ways that defy a social norm or formal rule? Direct questions on

such topics raise sensitivity concerns among respondentswho truly defy the normor rule (“norm-

defiers”), leading them to falsely claim compliance. This direct question strategic misreporting

(Ahlquist 2018) results in measures of norm-defiance that suffer from false negatives, i.e., defiers

wrongly measured as compliers.1 For example, false negatives arise in turnout studies when

respondentswho failed to vote in a recent election—and thereby defied the civic normof electoral

participation (Blais and Achen 2019, 476)—claim to have voted—i.e., to have complied with the

norm—when asked directly about their turnout (Presser 1990; Belli, Traugott, and Beckmann

2001).

To avoid direct question strategic misreporting, political scientists increasingly use list exper-

iments to ask survey respondents about sensitive topics. By masking individual answers to a

sensitive question, list experiments are held to reduce sensitivity concerns among norm-defiers,

thereby reducing strategic misreporting and consequent false negative measurements. Recent

research, however, suggests the extra cognitive effort demanded by list experiment questions

may induce nonstrategic misreporting (Ahlquist 2018; Kramon and Weghorst 2019; Riambau and

Ostwald 2020): facing a longer, more complex question, respondents may bemore likely to either

1 Our terminology is premised on the goal being to detect norm-defiance, so that a norm-defier is a “positive” case and a
norm-complier is a “negative” case.
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satisfice or make mistakes. Crucially, unlike strategic misreporting—which only affects norm-

defiers—nonstrategic misreporting plausibly induces reporting errors for both norm-defiers and

compliers, causing false negatives among the former and false positives among the latter.

How severe is list experiment nonstrategic misreporting in practice? And once we account

for realistic levels of such misreporting, does a list experiment on a sensitive topic still reduce

overall reporting error compared to a direct question? These questions are critical for researchers

deciding between measuring a sensitive variable via direct question or list experiment. Exist-

ing research, however, does not answer them directly. Studies of nonstrategic misreporting in

list experiments provide circumstantial evidence of its existence via placebo tests (Kramon and

Weghorst 2019; Riambau and Ostwald 2020) or assume its degree and precise nature in simula-

tions (Ahlquist 2018; Blair, Chou, and Imai 2019), but do not compare list experiment to direct

question reporting error. Existing empirical validation studies that do compare list experiment

and direct question performance rely on comparison of aggregate prevalence estimates to each

other (“comparative prevalence validation”) or to a true population benchmark (“population

prevalence validation”), neither of which distinguishes true and false positive measurements

on the sensitive variable. They may therefore yield similar results whether a list experiment is

correcting strategicmisreporting amongnorm-defiers—thereby increasing the true positive rate—

or inducing additional nonstrategicmisreporting among norm-compliers—thereby increasing the

false positive rate (Höglinger and Jann 2018).

In this paper, we provide the first empirical validation of list experiments that distinguishes

the increases in true positives (due to reduced strategic misreporting) from the increases in

false positives (due to increased nonstrategic misreporting) that they may generate compared

to a direct question. We present two new validation studies of list experiments on nonvoting in

elections. These were fielded to samples from relatively educated populations in two different

contexts: New Zealand and London following their respective 2017 General Elections. Crucially, in

both studies, we collectmeasures of individual respondents’ true scores on the sensitive variable,

i.e., whether they voted in the election or not, based on official records.

To exploit these true scores in a way that distinguishes true and false positives and negatives,

we detail and apply a partition validation approach for list experiments. Similar to the approach

developed by Höglinger and Jann (2018) for the randomized response technique, it involves

partitioning the sample by true score and calculating standard list experiment prevalence esti-

mates within each resulting subsample. We show how the numbers of true positives and false

negatives are identified based on the list prevalence estimate among actual norm-defiers, while

the numbers of true negatives and false positives are identified based on the list prevalence

estimate among actual norm-compliers. By applying this partition validationmethod, we provide

the first empirical assessment of each type of reporting error in list experiments versus direct

questions.

We find that, in both the New Zealand and London cases, standard diagnostics and standard

validation approaches suggest list experiment measures of nonvoting are unproblematic and

probably better than directmeasures. However, partition validation based on true scores changes

this conclusion. It shows that, while direct questions in both surveys do induce strategic misre-

porting and consequent false negatives among actual norm-defiers (i.e., nonvoters), neither list

experiment successfully reduces false negatives among these respondents. Moreover, both list

experiments appear to increase the rate of false positives among actual norm-compliers (i.e.,

voters), consistent with them inducing additional nonstrategic misreporting compared to the

direct question. These false positives are common enough that they imply a rate of list experiment

nonstrategic misreporting that is, even under conservative assumptions, double that assumed

in extant simulation studies. Taking false positives and negatives together, both list experiments

perform significantly worse than direct questions in terms of overall reporting error. In additional
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analysis, we provide evidence from the London survey that satisficing is an important driver of list

experiment nonstrategic misreporting.

Our empirical analysis contributes to the literature on list experiments byproviding the clearest

evidence todate that list experiments do induce anadditional andnontrivial amount of nonstrate-

gic misreporting error in practice, even in relatively educated samples previously thought to be

least prone to such behavior (Kramon and Weghorst 2019). This in turn informs applied survey

research on sensitive topics by highlighting the need for researchers deciding between a direct

question and a list experiment to consider not just the well-known trade-off between strategic

misreporting under the direct question and the statistical inefficiency of the list experiment (Blair,

Coppock, and Moor 2020), but also the misreporting trade-off between direct question strategic

misreporting and list experiment nonstrategic misreporting.

To help researchers think through this misreporting trade-off, we develop a simple parame-

terization of it in the Discussion section. We use our validation results to locate our two studies

within the parameter space, then consider the ways in which list experiments in other contexts

may plausibly depart from ours and with what consequences for the misreporting trade-off. For

the topic of nonvoting or similarly sensitive topics fielded in survey settings like the oneswe study,

our results suggest that any advantage of list experiment over direct question in terms of reduced

strategicmisreporting is outweighed in practice by disadvantages in terms of increased nonstrate-

gic misreporting. To be clear, this does not mean that direct questions always outperform list

experiments: in other scenarios, where the topic of interest is of sufficiently enhanced sensitivity

compared to nonvoting (increasing probability of direct question strategic misreporting among

norm-defiers), orwherenorm-defier prevalence is sufficiently greater than inour cases (increasing

thenumberof respondents “at risk”of direct question strategicmisreporting), list experimentswill

outperform direct questions in terms of expected overall reporting error, provided the amount

of list experiment nonstrategic misreporting is similar to that apparent in our surveys. However,

we also suggest that researchers surveying respondents in medium- or low-education settings

may reasonably expect list experiment nonstrategic misreporting to be more common than we

find in the comparatively well-educated setting of New Zealand and London. In such cases, topic

sensitivity and norm-defier prevalence will need to be even higher again before list experiments

can be expected to outperform direct questions on overall reporting error.

A final contribution of this article is to demonstrate how researchers validating list experiments

can use partition validation to fully exploit contextswhere true scores on the sensitive variable are

available. This is valuable because our results highlight how standard list experiment diagnostics

and validation approaches are insufficient to detect list experimentmisreporting errors that occur

in practice. In particular, standard prevalence validation applied to each of our list experiments

suggests unproblematic or superior performance, because the list prevalence estimate of nonvot-

ing is higher than the direct question estimate. Yet partition validation shows how these higher

list prevalence estimates are in fact the result of an increase in false positive errors (consistent

with an increase nonstrategic misreporting), rather than a reduction in false negative errors (due

to reduced strategic misreporting).

2 Misreporting in Direct Questions and List Experiments
To clarify the consequences of direct question strategic misreporting and list experiment non-

strategic misreporting for different types of reporting error, we begin by formally characteriz-

ing both processes. Let X ∗
i
be an indicator capturing the true status of survey respondent i =

{1, . . . ,N } on the sensitive variable.X ∗
i
= 0when i complies with the social norm or formal rule of

interest, and X ∗
i
= 1 when i defies it. The true prevalence of norm-defiers is thus π = Pr(X ∗

i
= 1).

LetXi be an indicator capturing respondent i’s self-reported status on the sensitive variable, with

Xi = 0 andXi = 1 indicating reported norm-compliance and -defiance, respectively.
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2.1 Direct Questions and Strategic Misreporting
Direct questions concerning a sensitive topic generally elicit truthful responses from norm-

compliers (i.e., Xi = X ∗
i
= 0). However, due to sensitivity concerns (e.g., social desirability bias

or fears of the repercussions should a truthful answer be disclosed to third parties), norm-defiers

o�en misreport their true status as Xi = 0, thereby generating false negative measurements

(TourangeauandYan2007, 863). This is referred toas strategicmisreporting (Ahlquist 2018). Letting

θ = Pr(Xi = 0|X ∗
i
= 1) denote the probability with which norm-defiers strategically misreport for

a direct question, the expected proportion of false negatives in the sample is θπ.

The direct question estimator of norm-defier prevalence is π̂Direct = 1
N

∑N
i=1Xi . Under the above

assumptions, Å(π̂Direct) = (1− θ)π. Thus, as θ increases, Å(π̂Direct) decreases, inducing downward

bias in the norm-defiance prevalence estimator.

2.2 List Experiments and Non-Strategic Misreporting
A list experiment is conventionally assumed to reduce strategic misreporting by asking about

the sensitive item indirectly and thereby reducing sensitivity concerns among norm-defiers. A

standard design randomly allocates respondents to either a list of J control items (treatment

statusTi = 0) or a treatment list (treatment statusTi = 1) containing the J control items plus the

sensitive item. In either case, respondents are asked only to report how many of the listed items

they affirm, not which items they affirm. Let Zi j (T ) be an indicator denoting whether respondent

i affirms control item j = {1, . . . , J } under treatment status T = {0,1}. DefineYi (0) =
∑J

j=1 Zi j (0)

andYi (1)=
∑J

j=1 Zi j (1)+Xi as respondent i’s potential reported itemcounts under the control and

treatment conditions, respectively, andYi =Yi (Ti ) as their realized reported itemcount. Under this

design, individual respondents’ answers to the sensitive item are masked from the researcher, or

anyone else. Yet under the assumption of “no design effects” (i.e.,
∑J

j=1 Zi j (0) =
∑J

j=1 Zi j (1)) and

“no liars” (i.e., Xi (1) = X ∗
i
), the researcher can still obtain an unbiased estimate of norm-defier

prevalence by taking the difference in means (DiM) of reported item counts for the treatment and

control lists, π̂List = 1
N1

∑N
i=1TiYi −

1
N0

∑N
i=1(1−Ti )Yi , whereN1 =

∑N
i=1Ti is the size of the treatment

group and N0 = N −N1 is the size of the control group (Blair and Imai 2012).

Even if list experiment masking eliminates strategic misreporting among norm-defiers, recent

research proposes that the added complexity of the list question—which asks respondents to

consider multiple items and to sum affirmed items before responding—may lead to increased

nonstrategic misreporting (Ahlquist 2018; Kramon and Weghorst 2019; Riambau and Ostwald

2020). This occurs when respondents do not properly engage with the list question or make

mistakeswhenanswering it. For example, respondents aremore likely to satisficewhenanswering

more complex survey questions and do so by devoting less than optimal effort, performing some

necessary cognitive steps roughly or skipping them altogether (Krosnick 1991).

Formally, let the indicator S ∗
i
capture whether respondent i is a list experiment nonstrategic

misreporter. S ∗
i
= 0 when respondent i answers the list question via the process conventionally

assumed, with potential responses that satisfy the no design effects and no liars assumptions.

S ∗
i
=1when respondent i answers the list questionviaanalternativeprocessprone tononstrategic

misreporting errors. Let λ = Pr(S ∗
i
= 1) denote the probability that a given respondent is a list

experiment nonstrategic misreporter. We assume that the expected DiM among nonstrategic

misreporters, which we define as Å(π̂List
S∗=1

) = Å(Yi (1)|S
∗
i
= 1)−Å(Yi (0)|S

∗
i
= 1), is not driven by the

true rate of norm-defiance among such respondents. Rather, it depends on the decision rule that

nonstrategic misreporters use to pick their reported item count, and how the resulting reported

itemcount varies as a functionofwhether they are askedabout the longer treatment list or shorter

control list.

Unlike strategic misreporting—which only leads to false negatives—a crucial feature of list

experiment nonstrategic misreporting is that it plausibly leads to both false negatives among
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norm-defiers and false positives among norm-compliers. To see this, consider the example “uni-

form” nonstrategic misreporting scenario hypothesized in Ahlquist (2018) and argued to be plau-

sible in Blair et al. (2019). In this scenario, nonstrategic misreporters give an item count that

is a random uniform draw from the response options available. This implies expected item

counts of Å(Yi (0)|S
∗
i
= 1) = J

2
for the control list and Å(Yi (1)|S

∗
i
= 1) = J+1

2
for the treatment list,

and an expected DiM among nonstrategic misreporters of Å(π̂List
S∗=1

) = 0.5. Among nonstrategic

misreporters who are actual norm-defiers, this expected DiM is lower than the true norm-defier

prevalenceofone, leading to falsenegatives in expectation. Amongnonstrategicmisreporterswho

are actual norm-compliers, this expected DiM is higher than the true norm-defier prevalence of

zero, leading to false positives in expectation.

This uniform process is just one possible example of a nonstrategicmisreporting process. More

generally, any such process that generates Å(π̂List
S∗=1

) < 1 implies false negatives among norm-

defiers (as would strategic misreporting), and any nonstrategic misreporting process generating

Å(π̂List
S∗=1

) > 0 implies false positives among norm-compliers (unlike strategic misreporting). Thus,

one need not assume a uniform nonstrategic misreporting process to be concerned that a list

experiment may generate both false negatives and false positives: a range of nonstrategic misre-

porting processes can generate both types of error. As will be argued in the following section, this

feature of nonstrategic misreporting means that existing list experiment validation approaches

canmislead because they do not distinguish false from true positives and negatives.

Before proceeding, we note that list experiment nonstrategicmisreporting generally biases the

list prevalence estimate, the quantity of interest in much applied research. Ahlquist (2018) and

Blair et al. (2019) demonstrate the bias in DiM prevalence estimate for two specific types of non-

strategicmisreportingprocess. Importantly, unlikewithdirectquestion strategicmisreporting, the

bias inducedby list experimentnonstrategicmisreportingcanbeeithernegativeorpositive. To see

this, take the case where S ∗
i
is independent of X ∗

i
, so that the expected DiM among respondents

forwhom S ∗
i
= 0 isÅ(π̂List

S∗=0
)= π. Then,Å(π̂List)= (1−λ)π+λÅ(π̂List

S∗=1
), whichmakes clear that for all

λ > 0, the list prevalence estimator will be biased in expectation except in the special case where

Å(π̂List
S∗=1

) = π. The bias will be positive when Å(π̂List
S∗=1

) > π and negative when Å(π̂List
S∗=1

) < π. Since

bothλ andÅ(π̂List
S∗=1

)will usuallybeunobserved, both themagnitudeandsizeofbiaswill bedifficult

to gauge in practical applications.

3 Existing Evidence
We argue that existing evidence leaves open important questions about the practical trade-

off between nonstrategic misreporting in list experiments and strategic misreporting in direct

questions. We first discuss studies of nonstrategicmisreporting in list experiments, before turning

to more general list experiment validation studies.

3.1 Existing Evidence on Nonstrategic Misreporting in List Experiments
Two recent studies use placebo tests to examine nonstrategic misreporting in list experiments.

Riambau and Ostwald (2020) run list experiments where the additional item on the treatment list

has a known true sample prevalence of zero, butwhich yieldDiMs that are positive and significant,

consistent with nonstrategic misreporting where some respondents condition reported item

count on list length. Kramon and Weghorst (2019) compare respondents’ item counts for a list of

manifestly nonsensitive topics to the counts implied by the same respondents’ answers to direct

questions on the same topics. The counts should not differ as there should be no direct question

strategic misreporting for the list question to ameliorate. But they do differ in 60% of cases (and

more so among respondents with lower numeracy and literacy) suggesting that list experiment

measures may differ from direct question ones not just by reducing strategic misreporting, but

also because their “complexity and difficulty” (p. 4) induces more reporting errors.
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Despite this evidence of list experiment nonstrategic misreporting, key questions remain for

applied researchers choosing between list experiments and direct questions. First, Riambau and

Ostwald (2020) benchmark list prevalence estimates against true scores only, so cannot gauge

the relative magnitude of list versus direct question misreporting error. Second, Kramon and

Weghorst (2019) compare list and direct question responses only, so cannot gauge themagnitude

of misreporting errors for either relative to the truth. Third, neither study examinesmeasurement

of a sensitive topic, which is essential to assess whether any increase in nonstrategicmisreporting

inducedby using a list experiment rather thandirect question outweighs the reduction in strategic

misreporting. The evidence we present below does all of these three things.

Alvarez et al. (2019) identify likely survey satisficer respondents via screening questions and

show that they respond differently to both direct questions and list experiments than do other

respondents. However, in the absence of true scores on the sensitive item, they cannot establish

whether these differences arise because satisficers misreport more or because the their true

prevalence rate differs, nor whether list experiments inducemore or lessmisreporting than direct

questions in each group.

Others examine how problematic nonstrategic misreporting is for list experiment estimators.

Building on Ahlquist (2018), Blair et al. (2019) suggest a diagnostic test for list experiment mea-

surement error (whether strategic or nonstrategic) that compares maximum likelihood (ML) and

nonlinear least squares (NLS) estimates. They show that nonstrategic misreporting does bias

list prevalence estimates, but find in simulation studies that the DiM prevalence estimator and

NLS estimator are more robust to nonstrategic misreporting than are ML estimators, and that

all estimators exhibit only mild biases for the scenarios they consider. They also develop new

regression estimators that explicitly model a uniform nonstrategic misreporting process and a

“top-biased” process (where nonstrategic misreporters always select the maximum item count

available), although they recommend that, due to its “simplicity and robustness” (p. 473), basic

DiM should still be used to estimate prevalence alone. These studies offer valuable guidance,

but do not speak explicitly to the misreporting trade-off between list experiment and direct

question.Moreover, the simulationsusedmustmakeassumptionsabout thenatureand frequency

of nonstrategicmisreporting. The validation evidence we present below offersmore direct empir-

ical evidence concerning the severity of nonstrategic misreporting error in list experiments in

practice.

In sum, existing research suggests that nonstrategic misreporting does occur in practice in list

experiments. However, for applied researchers consideringwhether the use of a list experiment in

their survey will reduce overall misreporting on a sensitive topic, further evidence is required on

the relative severity of list experiment nonstrategicmisreporting anddirect questionmisreporting

in practice.2

3.2 Existing Validation Approaches
Themost common approach to list experiment validation in existing studies involves simple com-

parisonof list anddirect questionprevalence estimates. This approach,whichwe call comparative

prevalencevalidation, invokesa “more isbetter” assumption (TourangeauandYan2007;Höglinger

and Diekmann 2017): the list experiment is judged to improve on the direct question when

it estimates greater norm-defier prevalence. By this criterion, the list experiment significantly

outperforms a direct question in 63% of 48 comparative validation studies covering a range of

sensitive topics (Holbrook and Krosnick 2010).

2 Blair et al. (2020) doexamine list experiment versusdirect questionperformance. They focus, however, on a list experiment
assumed to eliminatemisreporting but which is inefficient versus a direct questionwhich is subject to strategicmisreport-
ing butmore efficient. We focus onwhether a list experiment outperforms a direct question on reporting error even before
considering efficiency.
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Population prevalence validation additionally compares direct and list experiment prevalence

estimates against an observed true populationbenchmark andmakes a “closer is better” assump-

tion: if its prevalence estimate is closer to the population prevalence, the list experiment offers a

bettermeasure. For example, Rosenfeld, Imai, andShapiro (2016) benchmark list anddirect preva-

lence estimates of anti-abortion attitudes against actual population support for anti-abortion

measures in a public referendum, and others benchmark election turnout estimates against

official population turnout (e.g., Holbrook and Krosnick 2010; Kuhn and Vivyan 2018).

However, both comparative and population prevalence validation approaches may mislead in

the presence of nonstrategic misreporting (Höglinger and Diekmann 2017; Höglinger and Jann

2018). Comparative prevalence validation assumes that list experiments only generate higher

norm-defier prevalence estimates than direct questions due to reduced strategic misreporting

causing reductions in false negative measurements. However, list experiment prevalence esti-

mates may be higher than direct question estimates not because the list question reduces false

negatives among norm-defiers, but because nonstrategic misreporting for the list question yields

additional false positives amongnorm-compliers. A similar problemariseswith population preva-

lence validation: compared to a direct question which underestimates population prevalence

due to strategic misreporting, a list experiment subject to nonstrategic misreporting may move

the norm-defier prevalence estimate closer to the population benchmark by increasing false

positives amongnorm-compliers (Höglinger andDiekmann 2017).3 Toproperly assesswhether list

experiments reduce misreporting compared to direct questions, we need validation approaches

that distinguish false from true negative and false from true positive responses (Höglinger and

Jann 2018).

4 Validating List Experiments Using True Scores
We add to the above body of evidence by (1) fielding list experiments where we are able to

obtain respondents’ true scores on the sensitive variable and (2) exploiting these true scores to

distinguish true and false positives and negative measurements. This section sets out how we

accomplish (2) given (1).

In a setting where one observes true scores on the sensitive variable, one straightforward

extension to the validation approaches discussed above is sample prevalence validation. Given

respondents’ true scores, we know the true sample prevalence of norm-defiers and can compare

list experiment DiM and direct prevalence estimates against this benchmark. Unlike with pop-

ulation prevalence validation, differences in true sample and population prevalence no longer

confound the comparison of list and direct estimate performance. However, there remains the

problem that, compared to a direct question subject to strategic misreporting, a list experiment

subject to nonstrategic misreporting may yield a prevalence estimate closer to the true sample

prevalence due to an increase in false positives rather than a reduction in false negatives.

How, then, canweuse true scores on the sensitive variable to distinguish false and true positive

and negative measurements and thereby properly assess list versus direct question reporting

errors? For a direct question, it is straightforward to distinguish reporting errors given access

to true scores X ∗
i
and observed direct question responses: X Direct

i
< X ∗

i
is a false negative and

X Direct
i

> X ∗
i
is a false positive. Yet distinguishing false and true positives and negatives for a

list experiment measure is more challenging. Precisely, because of its masking properties, a list

experiment does not yield individual-level measures of the sensitive variable, so these cannot be

compared to individuals’ true scores.

3 True population prevalencemay also differ from the true sample prevalence due to sampling or nonresponse biases, such
that aprevalenceestimateexactlymatching true sampleprevalencemaymisleadingly appear inferiorwhen judgedagainst
population prevalence.

Patrick M. Kuhn and Nick Vivyan ` Political Analysis 7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
0.

19
4.

23
8.

39
, o

n 
20

 M
ay

 2
02

1 
at

 1
4:

11
:2

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
1.

10

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2021.10


However, as Höglinger and Jann (2018) point out in the context of the randomized response

technique (which also masks individual responses), one can separately identify the rate of true

and false positives and negatives through a processwe label partition validation. This involves: (a)

partitioning the sample based on observed true scores X ∗
i
; and (b) calculating a DiM prevalence

estimate separately for true norm-defier and norm-complier respondents. How does this distin-

guish error types? First note that, among true norm-defiers, the true prevalence of norm-defiers

is, by definition, πX ∗=1 = 1, such that only true positives or false negatives are possible. The list

DiM prevalence estimate among true norm-defiers, π̂List
X ∗=1

, thus gives the rate of true positives

in this subsample, while 1− π̂List
X ∗=1

gives the rate of false negatives. Second, among true norm-

compliers, the true prevalence of norm-defiers is, by definition, πX ∗=0 = 0, and only true negatives

or false positives are possible. Thus, the list DiM prevalence estimate among true norm-compliers,

π̂List
X ∗=0

, gives the false positive rate in this subsample, and 1 − π̂List
X ∗=0

gives the true negative

rate.

Putting this together, and letting NX ∗=0 and NX ∗=1 denote the number of true norm-compliers

and -defiers in the sample, respectively, the total implied number of true positives (denoted tp),

false positives (f p), true negatives (tn), and false negatives (f n) for the list experimentmeasure can

be computed as follows:

tp = NX ∗=1π̂
List
X ∗=1, (1)

f p = NX ∗=0π̂
List
X ∗=0, (2)

tn = NX ∗=0

(

1− π̂ListX ∗=0

)

, (3)

f n = NX ∗=1

(

1− π̂ListX ∗=1

)

. (4)

Based on these quantities, we can compute a confusion matrix—a contingency table

of true scores against reported scores (Manning, Raghavan, and Schütze 2009, 307–308)—

for the list experiment. Comparing the confusion matrix of the list experiment to that of

the direct question can tell us about error mechanisms. If the direct question suffers from

strategic misreporting, the direct question should generate a nontrivial rate of false negatives

among norm-defiers but few false positives among norm-compliers. If the list experiment

corrects strategic misreporting and does not induce nonstrategic misreporting, it should

generate fewer false negatives than the direct question and no more false positives. If the list

experiment fails to correct strategic misreporting, it will generate a nontrivial number of false

negatives among norm-defiers, like the direct question. If the list experiment induces additional

nonstrategic misreporting compared to the direct question, this will generate either or both

false negatives among norm-defiers and false positives among norm-compliers, with the mix

of false positives and false negatives determined by the precise (unobserved) nonstrategic

misreporting process that pertains. Thus, while a nontrivial level of false negatives for the list

experiment is an indicator of either strategic or nonstrategic misreporting, a nontrivial level

of false positives for the list experiment is a clear indication of some form of nonstrategic

misreporting.

We can also summarize and compare the overall rate of reporting errors in the list experiment

anddirect question in termsofaccuracy, the fractionof all survey respondents correctlymeasured

on the sensitive variable (Manning et al. 2009, 155–156). Höglinger and Jann (2018) focus on this

statistic (which they label the “correct classification rate”)when validating a randomized response

technique.
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5 Data
We apply partition validation to two list experiments on election turnout. We fielded these in New

Zealand and in London (UK) and collected measures of respondents’ true score on the sensitive

variable through inspectionof official electoral records.4 Here,wedescribe the survey instruments

and data collection.

5.1 Survey Instruments
We embedded the New Zealand list experiment in the 2017 New Zealand Election Study (NZES).

The NZES collected responses from 3,455 respondents, sampled from the national electoral rolls.

Respondents were contacted by mail beginning 4 days a�er the general election of September

23. Fieldwork continued until early March 2018, although approximately 97% of responses were

received within two months of commencement. The London list experiment was fielded via an

online YouGov surveyof a sampleof 3,189Greater Londoners following the June8, 2017UKgeneral

election (fieldwork began on June 23 and ended on July 24, 2017). We surveyed Londoners, rather

than Britons generally, to make collection of true turnout measures economically feasible (the

official records necessary for this must be accessed physically at each local authority office).

Further details on sampling and fieldwork for each survey are provided in online Appendix A.

Table 1 presents the list experiment and direct questions used to measure turnout in each

survey. In both surveys, all respondents were randomized to either the control or treatment list

(the latter being the list question in Table 1 with the item in parentheses included). List response

options ranged from zero to four (control group) or five (treatment group), and a “don’t know”

response was available.

In designing the list experiments, we follow recent practice. Several design choices in particular

merit discussion. First, in both the New Zealand and London designs, we include control activities

which we expect most respondents to have undertaken (“Discussed the election with. . .”) and

which we expect few respondents to have undertaken (“Worked or volunteered for one of the

party campaigns” or “Put up a poster for a political party in my window or garden”). This follows

Blair and Imai (2012) design advice and is intended to minimize ceiling and floor effects—where

respondents affirm or negate all control items, so that their sensitive item response is no longer

masked—whichmay undermine the ability of the list experiment to reduce strategicmisreporting.

Second, we included only election-related control items in both list experiments. On the one

hand, there is a risk that including election-related control items may prime respondents to

become concerned about their general level of political engagement, increasing sensitivity of

the turnout item and counteracting any sensitivity-reducing effect of list experiment masking.

On the other hand, including control items on a different topic to the sensitive item may draw

respondents’ attention to that item and enhance its sensitivity (Lax, Phillips, and Stollwerk 2016).

Furthermore, the inclusion of low-cost, high-prevalence, election-related activities among list

control items may reduce the sensitivity of the turnout item by allowing respondents to indicate

that they did at least partake in some election activities, even if they did not vote. On balance, our

expectation is that this design choice should reduce the sensitivity of the turnout itemand thereby

enhance the ability of each list experiment to reduce strategic turnout misreporting compared to

the direct question. It should also discourage nonstrategic misreporting for the list experiments,

since coherent grouping of question topics reduces cognitive processing costs for respondents,

making satisficing or mistakes less likely (Krosnick and Presser 2010).

Third, while the New Zealand control items consist exclusively of “norm-compliant” election-

related behaviors, we include two “norm-defiant” behaviors (“avoided watching the leaders

debate” and “criticised a politician on social media”) among the four London control items.

4 Replication data and code for this study are available at Kuhn and Vivyan (2020a) and Kuhn and Vivyan (2020b).
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Table 1. List experiment and direct questions for New Zealand and London surveys.

New Zealand London

List
experiment

Here is a list of things
that some people did, and
some people did not do,
during the election
campaign or on election
day. How many of these
things did you do? You
don’t need to tell us which
ones you did, justhow many.

• Discussed the election

with family, friends,

or workmates

• Saw a news story about

the election campaign

• Worked or volunteered

for one of the party

campaigns

• (Voted in the

election)

• Watched the election

results coming in on

election night

How many of these things
did you do?

The next question deals
with the recent general
election on 8th June. Here
is a list of four (five)
things that some people did
and some people did not do
during the election
campaign or on Election
Day. Please say how many of
these things you did. Here
are the four (five) things:

• Discussed the election

with family and

friends

• (Voted in the

election)

• Criticised a

politician on social

media

• Avoided watching the

leaders debates

• Put up a poster for a

political party in my

window or garden

How many of these things
did you do?

Direct
question

Looking at the election
results, we can see that a
lot of people didn’t manage
to vote. Did you vote in
the election on September
23, did you not manage to
vote, or did you choose not
to vote?

• Cast a vote

• Chose not to vote

• Didn’t manage to vote

Talking with people about
the recent general election
on 8th June, we have found
that a lot of people didn’t
manage to vote. How about
you, did you manage to vote
in the general election?

• Yes

• No

• Don’t know

Norm-defiant control items were included in a list experiment on turnout with promising pop-

ulation prevalence validation results by Kuhn and Vivyan (2018). They reason that norm-defiant

control items signal to respondents that it is recognized that some people do not like or engage

with politics, thereby further reducing the potential discomfort of admitting nonvoting. To the

extent that this holds, the London list experiment should bemore effective than the New Zealand

one at reducing strategic turnoutmisreporting amongnonvoters. On the other hand, the inclusion

of norm-compliant and -defiant items on a list may confuse respondents, which may result in

greater list experiment nonstrategic misreporting in London compared to New Zealand.

Both surveys also include a standard direct turnout question (Table 1, bottom row). In the New

Zealand survey, the direct question was asked of all respondents at least 41 questions a�er the

list experiment (itself the second item on the survey). In case exposure to the turnout item in the

list question primed list treatment group respondents in any way (Blair and Imai 2012), we subset
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to direct question responses from list control group respondents in the main validation analysis

below.5

In the London survey, we have two separate direct measures of turnout based on the same

question wording: a baseline (pretreatment) measure from a direct question that YouGov asked

of panelists in the days immediately following the election and a measure from a direct question

included in our survey for list control group respondents (asked immediately a�er the list ques-

tion). For ourmain validation analysis below, we rely on the lattermeasure.6 The “baseline” direct

measure of turnout will be used later when testing for the effects of satisficing on list experiment

misreporting error.

5.2 True Turnout Measures
Each survey respondents’ true turnout in the relevant general election was measured via manual

inspection ofmarked electoral rolls. For New Zealand, true turnoutmeasurements were collected

by the NZES team. Of the 3,455 2017 NZES respondents, definitive measures of true turnout

were obtained for 3,451 (99.9%): these respondents were successfully located and their turnout

status clearly observed on the marked election rolls. Remaining respondents with nondefinitive

true turnout measures are treated as missing. For London, we collected definitive true turnout

measures for 2,595 respondents (82.4%). The rateofdefinitive true turnoutmeasurements is lower

than for the NZES, because, unlike the NZES, YouGov do not sample directly from the electoral

register. The resulting samplemay therefore contain respondents (a)whoarenot on the register or

(b) whose name and address details recorded with YouGov contain errors preventingmatching to

the official register. The lower rate of definitive true turnoutmeasurements in London is a concern

for list experiment validation if respondentswhodo anddonot have definitive true turnout scores

differ systematically in how they answer list and direct turnout questions. We see little reason for

this to be the case, and are reassured by the similarity between the London and New Zealand

results below, given the latter sample contains almost no respondents with missing true turnout

scores. Online Appendix A gives further details on true turnout measurement.

6 Results
This section examines list experiment versus direct turnout question performance in the New

Zealand and London studies. We first summarize results of standard list experiment diagnostics,

before presenting the standard information validation results researchers would observe in the

absenceof sensitive variable true scores.We thenpresent results of partition validation, exploiting

the true score measures available in our two studies.

6.1 Standard Diagnostics
For each list experiment,we carriedout keydiagnostics recommended in the literature (full results

reported in online Appendix C). We find no clear indication that either experiment violates key

assumptions or yields problematic measures of the sensitive variable.

First, there is no strongevidenceof associationbetween treatment assignment and respondent

characteristics in either setting. Second, both experiments pass diagnostics for violations of the

“no design effects” assumption: we find no negative estimated proportions of “respondent types”

(Blair et al. 2019, 468–469, 473) and fail to reject the null hypothesis of no design effects in formal

significance tests (Blair and Imai 2012, 63–65). Third, following Blair and Imai (2012), we check for

potential “ceiling” or “floor” effects, where substantial numbers of respondents either negate or

affirm all control items and are therefore incentivized to strategically misreport on the sensitive

5 Online Appendix F shows that substantive results hold when using the full sample direct turnout measure.
6 Online Appendix F shows that substantive results holdwhenusing thebaseline direct question insteadof the control group
direct question.
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List experiment

Direct

0.0 0.1 0.2 0.3 0.4

(a) Prevalence estimates: New Zealand

Difference
(list − direct)

−0.05 0.00 0.05 0.10 0.15 0.20

(c) Difference in estimates: New Zealand

List experiment

Direct

0.0 0.1 0.2 0.3 0.4

(b) Prevalence estimates: London

Difference
(list − direct)

−0.05 0.00 0.05 0.10 0.15 0.20

(d) Difference in estimates: London

Figure 1. Estimated prevalence versus true population prevalence. Notes: Plots (a) and (b) show direct and
list estimates of nonvoting rates for the New Zealand and London surveys, respectively. Dashed vertical
lines denote actual population nonvoting rates. Plots (c) and (d) show differences between direct and list
estimates. Open and filled circles denote raw and population-weighted estimates, respectively. Horizontal
bars indicate 95% confidence intervals.

item in the treatment condition (thus violating the “no liars” assumption) for fear their answer

on it could be inferred. Analysis of observed control group item counts suggests little potential

for floor effects in New Zealand and ceiling effects in London. Although there is mild potential for

ceiling effects in New Zealand—where 6% of the control group affirm all items—and floor effects

in London—where 9% of the control group negate all items—this is less severe than in existing

published list experiments (e.g., Blair, Imai, and Lyall 2014; Corstange 2018; Kuhn andVivyan 2018).

Fourth, exploiting respondents’ answers to list and direct turnout questions, we run the Aronow

et al. (2015) placebo test. This simultaneously tests the no design effect, no liars assumptions,

plus two additional assumptions: a “monotonicity” assumption that no false positives occur for

the direct question; and a “treatment independence” assumption that list experiment treatment

assignment is uncorrelatedwith direct question response. In both studies, at the 0.05 significance

level, we fail to reject the null hypothesis that all four assumptions hold. Finally, the model mis-

specification test developed in Blair et al. (2019, 460) to detect list experiment measurement

error—due either to nonstrategic misreporting or to other error processes—yields no significant

evidence of such error.

6.2 Standard Information Validation
We now assess list and direct question performance using standard information validation

approaches: comparative and population prevalence validation. Figure 1 compares direct and

list prevalence estimates of nonvoting—the sensitive behavior of interest—against each other

and against true population prevalence (i.e., true nonvoting prevalence among the eligible

electorate in the New Zealand and Greater London populations, according to official records).

For comparisons against a population benchmark, we show both raw and population-weighted

direct and list prevalence estimates.7

In New Zealand and London, both the direct question and list experiment underestimate

nonvotingcompared to truepopulationprevalence. Yet, consistentwithbetterperformanceunder

themore- and closer-is-better assumptions, the list estimate is substantially higher than thedirect

question estimate and closer to population prevalence. In New Zealand, the raw direct question

underestimates nonvotingby 15.8points,while the raw list experiment only does soby 10.2 points,

roughly a one-third reduction in error. A similar reduction in error occurs in London,where the raw

direct question underestimates nonvoting by 16.3 points and the raw list experiment only does so

7 New Zealand, estimates are weighted to the distribution of age, gender, region (Auckland versus non-Auckland), and elec-
tor type (general electoral roll versus Māori electoral roll). London, estimates are weighted to the population distribution
of age, gender, and educational qualifications using regression adjustment (Rosenfeld et al. 2016).
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Table 2. Confusion matrices.

(a) New Zealand: direct question

Measured

Actual Voter Nonvoter N

Voter 0.998 0.002 1,617

[0.996, 1] [0, 0.004]

Nonvoter 0.29 0.71 100

[0.199, 0.378] [0.622, 0.801]

(b)New Zealand: list experiment

Measured

Actual Voter Nonvoter N

Voter 0.925 0.075 3,219

[0.872, 0.977] [0.023, 0.128]

Nonvoter 0.393 0.607 186

[0.06, 0.726] [0.274, 0.94]

(c) London: direct question

Measured

Actual Voter Nonvoter N

Voter 0.985 0.015 1,111

[0.978, 0.992] [0.008, 0.022]

Nonvoter 0.268 0.732 164

[0.199, 0.335] [0.665, 0.801]

(d) London: list experiment

Measured

Actual Voter Nonvoter N

Voter 0.921 0.079 2,218

[0.843, 0.998] [0.002, 0.157]

Nonvoter 0.429 0.571 336

[0.204, 0.652] [0.348, 0.796]

Notes: Rows in each table define actual turnout status: voter (“negative”) or nonvoter (“positive”). Columns
define measured turnout status. Cells contain row proportions with bootstrap 95% confidence intervals in
brackets. Rightmost column gives raw N of actual voters and nonvoters in estimation sample. Respondents
with nondefinitive true turnout measurements are omitted.

by 10.7 points. InNewZealand, the differencebetween the rawdirect and list prevalence estimates

is statistically distinguishable from zero with 95% confidence, but the difference between the

weighted estimates is not. In London, the difference between the raw prevalence estimates is not

distinguishable from zero, but the difference between the weighted estimates is. Thus, in both

surveys, standard information validation indicates that list experiment performs as well as—and

probably better than—direct question.

6.3 Partition Validation
Table 2 presents the confusion matrices that result from applying partition validation, exploiting

ourmeasureof truescores (i.e., of respondentnonvotingverifiedusingofficial records).8 Thedirect

question confusionmatrices show that, in bothNewZealand (Table 2a) and London (Table 2c), the

direct question does appear to suffer from strategic misreporting. Actual voters (norm-compliers)

are extremely unlikely to falsely report being a nonvoter—less than 1% and 2% do so in New

Zealand and London, respectively. In contrast, actual nonvoters (norm-defiers) falsely report

voting muchmore frequently—29% and 26.8% do so in New Zealand and London, respectively.9

Given that the direct turnout questions do indeed suffer from strategicmisreporting, do the list

experiments reduce overall reporting error? Table 2b and 2d suggests not. First, consider actual

nonvoters, who frequently misreport and generate false negatives for the direct question. Rather

than reducing false negatives among this group, there is no statistically distinguishable difference

between the rate of false negatives recovered by the list experiment and direct question in either

New Zealand or London. Point estimates for the difference are actually positive—10.3 points (95%

CI: [−24.8, 45.6]) in New Zealand and 16 points (95% CI: [−7.6, 39.6]) in London—indicating more

false negatives for the list experiment, if anything. There is thus little evidence that either list

experiment alleviates symptoms of direct question strategic misreporting.

8 Confidence intervals for partition validation are computed via nonparametric bootstrap. All quantities of interest are
computed for each given resample.

9 Consistent with this, online Appendix B shows that in follow-up questions in the London survey actual nonvoters report
being less comfortable about directly revealing their turnout than do actual voters.
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Second, consider actual voters, of whom the direct question correctly classified all but a tiny

proportion in both New Zealand and London. Table 2b and 2d shows an increase in the rate of

false positives (the rate of measured nonvoting) among this groupwhen using the list experiment

rather than the direct turnout measure. For New Zealand, the estimated increase is 7.3 points

and distinguishable from zero (95% CI: [2.1, 12.5]). For London, it is 6.4 points, though not distin-

guishable from zero (95% CI: [−1.4, 14.2]). The increases in false positives among norm-compliers

induced by the list experiments are particularly consequential for overall reporting error, because

norm-compliers make up 94% and 86% of the vote-validated New Zealand and London samples,

respectively. The increases are also what we would expect to see if list experiments induce

nonstrategic misreporting not present for the direct questions.

What do our results imply about the proportion of nonstrategicmisreporters for each list exper-

iment? While partition validation alone does not identify this quantity, we compute two implied

proportions based on different sets of assumptions. First, we take a conservative approach,

assuming that only false positives can be confidently attributed to nonstrategic misreporting

(discounting false negatives among norm-defiers as potentially driven by strategic misreporting),

and that the response process of nonstrategic misreporters contributes positive measurements

only. Under these assumptions, the implied proportion of list experiment nonstrategic misre-

porters is simply the frequencyof falsepositivesamongnorm-compliers expressedasaproportion

of all responses: 0.07 for both New Zealand and London. Second, we take a less conservative

approach. This still makes the cautious assumption that only false positives can be confidently

attributed to nonstrategic misreporting, but now assumes that these misreporters contribute

positive measurements and negative measurements at equal rates (the expected outcome of

a uniform response process). Under these assumptions, the implied proportion of nonstrategic

misreporters is double the observed proportion of false positives in the sample (in expectation,

whatever proportion of cases are false positives, there will be an equivalent proportion where

nonstrategic misreporters contribute true negatives). This less conservative approach implies

that the proportion of nonstrategic misreporters is 0.14 for both New Zealand and London.

All of these implied proportions are substantially higher than the proportion of respondents

assumed to be nonstrategic misreporters (0.03) in existing simulation studies (Ahlquist 2018;

Blair et al. 2019).

Figure 2 summarizes overall direct question and list experiment classification performance

as measured by accuracy. Unsurprisingly, given that the point estimate of the rate of false posi-

tives among actual voters and of false negatives among actual nonvoters was higher for the list

experiment than the direct question in both surveys, the list experiment performs worse than the

direct question in terms of overall classification accuracy for both New Zealand and London. The

difference in theaccuracyof the twomeasures is 7points inNewZealand (95%CI: [2.06, 12.66]) and

8 points in London (95% CI: [0.23, 15.23]). In online Appendix E, we show that the list experiment

also tends tounderperformthedirectquestionaccording toalternative classificationperformance

measures, including recall of voting and recall of nonvoting. In online Appendix F, we show that

both list experiments continue to underperform direct questions in terms of reporting accuracy

when we use alternative direct question measures and alternative list estimators.

We emphasize the following key findings from this partition validation. First, the partition

validation results are consistent with the notion that list experiments induce nonstrategic mis-

reporting that is largely absent for a direct question. Second, even conservative estimates of

the proportion of list experiment nonstrategic misreporters in our data are twice as large as the

proportion assumed in existing simulation analyses of list experiment nonstrategic. Third, despite

the promising results of standard information validation and standard information diagnostics,

once we use true scores to improve validation, both list experiment measures are shown to

generate more misreporting error overall than corresponding direct question measures.
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Direct

List experiment

0.7 0.8 0.9 1.0

(a) Accuracy: New Zealand

Direct

List experiment

0.7 0.8 0.9 1.0

(c) Accuracy: London

−0.20 −0.15 −0.10 −0.05 0.00

(b) Difference (list − direct): New Zealand

−0.20 −0.15 −0.10 −0.05 0.00

(d) Difference (list − direct): London

Figure 2. Measurement accuracy of direct and list experiment turnout measures. Notes: Plots (a) and (c)
display, for New Zealand and London, respectively, direct and list accuracy. Dashed vertical lines indicate a
perfect score.Plots (b) and (d)displaydifferences in list anddirectquestionaccuracy.Horizontal lines indicate
bootstrapped 95% confidence intervals.

6.4 Evidence of Nonstrategic Misreporting Due to Satisficing
We now provide evidence that satisficing behavior may be an important driver of list experiment

nonstrategic misreporting. Recall that satisficing involves respondents answering more complex

list experiment questions differently to direct questions because of the shortcuts they adopt to

limit timeandeffort spent on the former. To examinewhether suchbehavior drives list experiment

underperformance, we focus on the London survey, where we have the measures necessary to

identify respondents who exhibit satisficing-consistent behavior when answering the list experi-

ment.

We identify probable satisficers based on two pieces of information: recall of the listed items

and time taken to answer the list experiment question. To measure recall, we rely on a follow-

up question which asked respondents to recall the first and last items on the list they had seen

two questions earlier. Respondents were presented with open text boxes to record their answers,

or could tick “don’t know.” Responses were coded as offering correct recall if they were judged

to describe the correct activity using any form of words. We classify a respondent as a probable

satisficer if theywere unable to correctly recall either the first or last itemon the list and if they are

also in thebottomquartile in termsof time taken toanswer the list experimentquestion.Measured

in this way, the proportion of probable list experiment satisficers in the London sample is 0.12,

slightly lower than the implied proportion that we computed under the less conservative set of

assumptions in the previous subsection.10

In Figure 3, we subset the London sample into probable satisficers and nonsatisficers and,

for each subgroup, use partition validation to calculate the accuracy of the list measure and

of the direct measure based on the “baseline” direct turnout question asked by YouGov of all

respondents following the 2017 General Election. Figure 3a shows that the list measure of turnout

is clearly less accurate among probable satisficers (right panel) than among probable nonsatisfi-

cers (le� panel). This would be expected if nonstrategic misreporting due to satisficing drives list

experiment inaccuracy.

Figure 3b also shows that the list measure of turnout obtained from probable satisficers is

significantly less accurate than the direct measure obtained for the same respondents. Among

probable nonsatisficers, the list experiment still does not outperform the direct question in terms

of accuracy, but the difference between the two measures is substantially smaller and indistin-

guishable from zero with 95% confidence. These patterns are consistent with the list question

10 The proportion of respondents who failed to correctly recall either the first or last list itemwas 0.39 (0.45 for the first item
only; 0.56 for the last item only). In online Appendix G, we show that our findings regarding satisficing and accuracy are
robust to different measurement strategies for identifying satisficers.
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Probable Non−Satisficers Probable Satisficers

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

List experiment

Direct

(a) Accuracy levels

Probable Non−Satisficers Probable Satisficers

−0.75 −0.50 −0.25 0.00 0.25 −0.75 −0.50 −0.25 0.00 0.25

Difference
(list − direct)

(b) Differences in accuracy

Figure 3. Measurement accuracy by probable list experiment satisficing, London sample. Notes: Plot (a)
shows direct and list accuracy among probable nonsatisficers (le� panel) and satisficers (right panel) in
the London sample. Plot (b) shows differences in list and direct question accuracy. Horizontal lines indicate
bootstrapped 95% confidence intervals.

inducing satisficing and nonstrategicmisreporting that respondents do not engage inwhen asked

a direct question.

6.5 Sample Prevalence Validation
Would the relative underperformance of the list experiments have been detected if we had simply

used the true scores to conduct sample prevalence validation (comparing prevalence estimates to

overall true sample prevalence), rather than partition validation? To check this, we perform sam-

ple prevalence validation in online Appendix D. For New Zealand, sample prevalence validation

results partially concur with our partition validation finding of list experiment underperformance:

the list prevalence estimate is further than the direct prevalence estimate from the true sample

prevalence, although the 95% confidence interval for the difference between the two marginally

overlaps with zero.11 For London, whereas partition validation revealed the list experiment to per-

form substantially worse than the direct question in terms of reporting error, sample prevalence

validation shows the list experiment performing no worse—and probably better—than the direct

question. Thekey reason for this discrepancy is that the falsenegatives and falsepositivespartially

cancel out, and therefore go unnoticed, when assessing overall prevalence estimates.

7 Discussion
The relative magnitude of list experiment nonstrategic misreporting error and direct question

strategic misreporting will depend on a number of factors that are likely to vary by context. What,

then, are the implications of our validation results for researchers considering list experiments for

other topics or in other settings?

To address this question, we begin with a simple parameterization of the general trade-off

between direct question strategic misreporting and list experiment nonstrategic misreporting.

We do so based on the models developed in Section 2, making the simplifying assumption

that nonstrategic misreporter status is independent of norm-complier/defier status and that the

expected list DiM among nonstrategic misreporters is 0.5. Based on this, online Appendix H

derives an indifference function which, for a given level of true norm-defier prevalence (π) and

proportion of list experiment nonstrategic misreporters (λ), gives the proportion of norm-defiers

that must strategically misreport for the direct question (θ) such that expected list and direct

question accuracy are equalized. Figure 4plots resulting indifference curves for three levels of true

11 This result demonstrates how list experiment nonstrategic misreporting can generate overall list prevalence estimates
worse than those from a direct question subject to strategic misreporting.
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Figure 4. The direct question versus list experiment accuracy trade-off. Notes: Indifference curves showing,
for varying proportions of list experiment nonstrategicmisreporter (x-axis), what proportion of norm-defiers
must strategically misreport for the direct question (y-axis), such that expected direct question and list
experiment accuracy are equalized. The area above (below) a curve indicates superior list experiment (direct
question) accuracy. Each curve assumes a different level of true norm-defier prevalence (π). All curves
assume nonstrategic misreporter status is independent of norm-defier status and expected list DiM of 0.5
among nonstrategic misreporters.

norm-defier prevalence. The area above (below) a curve indicates superior expected list experi-

ment (direct question) accuracy.

To decide whether a list experiment can be expected to improve on a direct question in terms

of reporting error, a researcher planning a study will need to make assumptions about where

their case is located in the parameter space depicted in Figure 4. Our validation studies provide

an initial benchmark location that can help inform this judgement. Regarding the x-axis, the

implied proportion of nonstrategic misreporters in our list experiments was 0.07 under conser-

vative assumptions and 0.14 under less conservative assumptions, higher than the proportions

previously assumed in simulation studies. Regarding the y-axis, the observed proportion of norm-

defiers who misreported for a direct turnout question was 0.29 in the New Zealand survey and

0.27 in the London survey. Consider the indifference curve for π = 0.09, which corresponds to

the true proportion of norm-defiers pooling our surveys. In Figure 4, any combination of the

aforementioned x and y values falls below the indifference curve. Thus, if we set parameter values

basedonourvalidation results concerning the topicofnonvotingamongNewZealandandLondon

survey respondents, we arrive at a region of the parameter space where expected list experiment

accuracy is inferior to expected direct question accuracy (consistent with the actual differences in

overall accuracy observed in Section 6).

In what ways would we expect studies of other topics in other survey settings to depart from

this region of the parameter space, and with what consequences for relative list experiment

performance? First, we might plausibly expect a shi� upward along the y-axis in Figure 4 for

some cases of interest. While our evidence clearly indicated direct question strategicmisreporting

among nonvoters, failing to vote merely violates a social norm in the countries studied. Other

researchers may be interested in sensitive attitudes or behaviors that invite serious legal or

physical consequences if admitted to. For these topics, such as support for U.S.-led security forces

among Afghans (Blair et al. 2014) or acceptance of clientelistic payoffs among voters (Corstange

2018), strategic misreporting under the direct question is plausibly higher than we found for

nonvoting. In addition, whereas we studied self-complete surveys, direct question strategic mis-

reporting may increase in interviewer-administered surveys, where social desirability concerns

Patrick M. Kuhn and Nick Vivyan ` Political Analysis 17

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
0.

19
4.

23
8.

39
, o

n 
20

 M
ay

 2
02

1 
at

 1
4:

11
:2

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
1.

10

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2021.10


may be more acute (Tourangeau and Yan 2007). Whether due to changes in topic or mode of

administration, how much higher would direct question strategic misreporting need to be for

the list experiment to outperform the direct question in expectation? Given the assumptions of

Figure 4, if π were 0.09 and if the proportion of nonstrategic misreporters was similar to that

implied by our data under conservative assumptions (i.e., 0.07), then a researcher would need

to believe that the proportion of norm-defiers who strategically misreport for the direct question

is above 0.39 to reasonably expect the list experiment to outperform the direct question in terms

of accuracy. If the proportion of nonstrategic misreporters was similar to that implied by our data

under less conservative assumptions (i.e., 0.14), the researcher would want to be confident that

the proportion of norm-defiers strategically misreporting for a direct question is more than 0.78.

Second, comparison across indifference curves in Figure 4 makes clear that the misreporting

trade-off between list experiment and direct question depends on the true prevalence of norm-

defiers for the sensitive topic of interest. For a fixed amount of direct question strategic misre-

porting and list experiment nonstrategicmisreporting, the relative accuracy of the list experiment

increases as true norm-defier prevalence increases. Themarginal cost of additional list nonstrate-

gic misreporting (in terms of relative accuracy) is also lower when true norm-defier prevalence

is higher (indicated by the slopes of the indifference curves). This is because increases in norm-

defier prevalence mean more norm-defier survey respondents and a greater proportion of the

overall sample susceptible to strategic misreporting incentives if asked a direct question. In the

cases we study, norm-defier prevalence among survey respondents is low (0.09 pooling across

both surveys), which advantages the direct question over the list experiment. In a case where

the level of direct question strategic misreporting and list experiment nonstrategic misreporting

were equivalent to those apparent in our studies, but where norm-defier prevalence rose to 0.3,

the list experiment would be expected to outperform the direct question in terms of accuracy.

Researchers in other settings will therefore need to carefully develop priors about the likely

prevalence of norm-defiers among the respondents they expect to survey. For example, studying

the sensitive topic of vote-buying, Corstange (2018, 81) cites local observers as estimating that at

least half of Lebanese electors have their votes “bought,” suggesting amuchhigher norm-defiance

prevalence than in our case, and therefore more favorable conditions for a list experiment on this

dimension.

Turning to the third parameter that varies in Figure 4, the proportion of list experiment non-

strategicmisreporters,we contend that the caseswe studyare relatively favorable to the list exper-

iment on this dimension. On the one hand, high-cost face-to-face surveys may encourage better

engagement and therefore less nonstrategic misreporting than our self-complete surveys. On the

other hand, our New Zealand list experiment was embedded in a reputable national election

study, where respondentswill plausibly have felt a greater sense of duty to engagewith the survey

than usual, and the experiment was also only the second question on the survey, minimizing

disengagement due to tiring. Moreover, existing placebo studies suggest that reporting error in list

experiments is greater among less educated respondents, who are less well equipped to process

and answer a more complex list-style survey question (Kramon and Weghorst 2019; Riambau and

Ostwald 2020). From this perspective, the rate of nonstrategicmisreporting in the list experiments

we have studied should be comparatively low, since the New Zealand and London populations

from which we sample exhibit high levels of literacy, numeracy, and general education, from a

comparative perspective. Even in these cases, our evidence is consistent with 7%—or even 14%,

depending on assumptions—of respondents being list experiment nonstrategic misreporters.

Researchers planning surveys on sensitive topics in developing countries where education levels

are lower—and where list experiments are increasingly used (Kramon and Weghorst 2019)—

thus have reason to expect higher levels of list nonstrategic misreporting than we have found,

an effective shi� rightward in Figure 4. In such cases, the amount of direct question strategic
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misreporting and/or norm-defier prevalence would need to be considerably higher than in our

case for expected list experiment accuracy to reach expected direct question accuracy.

In sum, compared to the caseswehave validated, othersmaypresentmore favorable scenarios

for the list experiment in terms of the misreporting trade-off, since they may feature higher

rates of direct question strategic misreporting among norm-defiers and higher prevalence of

norm-defiers. However, we also suggest that for other cases, the proportion of list experiment

nonstrategic misreporters is likely to be similar to or greater than the nontrivial proportions

implied in our data. Where this is higher, all else equal, relative list experiment accuracy will be

lower than in the cases we study.

The misreporting trade-off is not the only one between direct questions and list experiments.

Blair et al. (2020) examine a different and better known trade-off between direct question preva-

lence estimate bias (due to strategic misreporting) and list prevalence estimate inefficiency (due

to masking via aggregation of sensitive and control items). They characterize this bias-variance

trade-off in terms of prevalence estimate root-mean-square error (RMSE) and, for varying sample

sizes, show at what level of direct question strategic misreporting the list experiment RMSE is as

good as the direct question RMSE. Does our analysis of the misreporting trade-off—as informed

by our empirical validation results—have any implications for the choice between direct question

and list experiment beyond those that emerge from consideration of the bias-variance trade-off?

A simple example suggests it does. Take the same three norm-defier prevalence levels consid-

ered in Figure 4 and assume the proportion of list experiment nonstrategic misreporters is 0.07.

Adopting the Blair et al. (2020) parameterization of the bias-variance trade-off and assuming a

healthy sample size of 5,000 in each case, for the list prevalence estimate to achieve an RMSE as

goodas thedirectquestion, theproportionofnorm-defiers strategicallymisreporting for thedirect

questionmust reach0.27 (whenπ = 0.09), 0.12 (whenπ = 0.2), and0.08 (whenπ = 0.3). All three of

these threshold rates of direct question strategicmisreporting amongnorm-defiers are lower than

those found when the same scenarios are considered in terms of the misreporting trade-off as in

Figure 4 (0.39, 0.18, and 0.12, respectively). In other words, in all three scenarios, the level of direct

question strategic misreporting required for the list experiment to match the direct question on

the bias-variance trade-off is lower than that required for the list experiment to match the direct

question on themisreporting trade-off.12 This example shows that, when one takes reporting error

as an evaluation criterion and considers levels of nonstrategic misreporting that are conservative

given our evidence, the range of settings in which list experiments outperform direct questions is

narrower thanpreviously thought. Therefore, researchers choosingbetweena list experiment and

adirect question on any sensitive topic should consider not just thewell-known trade-offbetween

bias under the direct question and inefficiency under the list experiment, but also the trade-off

between strategic misreporting error for the direct question and nonstrategic misreporting error

for the list experiment.

8 Conclusion
This paper has provided the first empirical validation of list experiments that distinguishes

between true and false negative and positive measurements on the sensitive variable. In doing

so, it provided new evidence of the problem of list experiment nonstrategic misreporting in

practice. We examined nonvoting in elections across two different countries with relatively

educated populations, exploiting measures of true respondent turnout behavior to perform

partition validation in both settings. We found that list experiments induced respondents to

nonstrategicallymisreportmore thandirectquestionsandathigher rates thanassumed inexisting

12 Thiswill not always be true: for example, when sample size is small, the direct questionwill outperform the list experiment
on prevalence estimate RMSE even for very high levels of strategic misreporting.
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simulation studies. This nonstrategic misreporting was not detected by standard diagnostics or

validation approaches, but was still severe enough that both list experiments underperformed

simpledirectquestions (which themselves suffered fromstrategicmisreporting) in termsofoverall

reporting accuracy.

Our findings highlight the importance of the trade-off between direct question strategic misre-

porting and list experiment nonstrategic misreporting. We showed how, given a simple parame-

terization for this general trade-off, our empirical findings can help researchers gauge what level

of direct question strategic misreporting and norm-defier prevalence would need to pertain for a

list experiment to be accuracy-improving.

Our findings also underline the importance of future research into the reduction of list experi-

ment nonstrategic misreporting. One approach to this involves embedding attention check ques-

tions to identify respondentsmore likely to nonstrategicallymisreport (Oppenheimer,Meyvis, and

Davidenko2009;Eady2017;Alvarezetal.2019).However, Alvarezetal. (2019)pointout thatdealing

with identified inattentives is not straightforward, since dropping such respondents could lead to

selection bias in inferences.

Another recent suggestion is to include a placebo statement (i.e., a statement no respondent

can truthfully affirm) in the control list, such that the total available items is equalized in the con-

trol and treatment list (Riambau and Ostwald 2020). If list experiment nonstrategic misreporters

reported item counts are a function of list length, this would yield an expected DiM of zero among

nonstrategic misreporters. However, as shown formally in online Appendix I, this approach does

not eliminate errors due to list experiment nonstrategic misreporting, since nonstrategic misre-

porters who are actual norm-defiers still contribute false negatives. It does though, under certain

assumptions, at least allow researchers to sign the resulting prevalence estimate bias as negative.

If it is not possible to meaningfully reduce list experiment nonstrategic misreporting, might

one generally use list experiments alongside direct questions to estimate bounds for norm-defier

prevalence? This may work if: (a) strategic misreporting downward biases the direct prevalence

estimator; (b) nonstrategic misreporting upward biases the list experiment estimator. While (a)

should hold generally, (b) is problematic, since Section 2 showed that nonstrategic misreporting

can up- or downward bias list prevalence estimates. If nonstrategic misreporter and actual norm-

defier status are orthogonal, we at least know that list prevalence estimates are upward biased

when the expected DiM among nonstrategic misreporters exceeds true norm-defier prevalence.

Applied researchers will not be able to fully verify this condition but could check its plausibility

by estimating the DiM among probable nonstrategic misreporters (identified using either an

attention check or a mixture of list experiment recall questions and response time information).

We encourage further research into this potential approach.
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