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Abstract

Non-random sampling is a source of bias in empirical research. It is common for the
outcomes of interest (e.g. wage distribution) to be skew in the source population. Some-
times the outcomes are further subjected to sample selection, which is a type of missing
data, resulting in partial observability. Thus, methods based on complete cases for skew
data are inadequate for the analysis of such data and a general sample selection model
is required. Heckman proposed a full maximum likelihood estimation method under the
normality assumption for sample selection problems, and parametric and non-parametric
extensions have been proposed. We generalize Heckman (1976, 1979) to allow for under-
lying skew-normal distributions. Finite sample performance of the maximum likelihood
estimator of the model is studied via simulation. Applications illustrate the strength of
the model in capturing spurious skewness in bounded scores, and in modelling data where
logarithm transformation could not mitigate the effect of inherent skewness in the outcome
variable.

Key words: non-random sample, generalized skew-normal distribution, missing data, sample
selection.

1 Introduction

Sample selection arises when the outcome of interest can only be observed in a subset of the
population under study. The realised data are missing not at random (MNAR) because the
observed data do not represent a random sample from the population, even after controlling
for covariates. The use of linear regression models with normal errors on non-random samples
may yield estimates that are biased and inconsistent, and misleading conclusions. Suppose we
are interested in the effect of factors, which we assume are always observed, on the wages of all
women who might work in some population. Observations on wages can only be provided by
women who are working, but we wish to generalise the effects to all women in the population.
The difference in the distribution of characteristics among workers and non-workers determines
whether the problem of selection bias arises. If the decision to work is related to a factor,
perhaps age, and also affects wages, a linear regression of the observed wages on the covariates
is likely to give biased and inconsistent estimates.

*Correspondence to: Dr. E.O. Ogundimu, CSM, The University of Oxford, OXFORD, OX3 7LD, UK. em-
manuel.ogundimu@csm.ox.ac.uk
TStatistics, University of Warwick, Coventry, CV4 7AL, UK
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In order to overcome such problems, Heckman (1976) introduced a model to describe
selection of women into the labor force; he proposed full information maximum likelihood
estimation (FIML) under an assumption of bivariate normality. An alternative method called
the two-step estimator (TS) was later developed, where sample selection was treated as a model
misspecification problem due to an omitted variable (Heckman, 1979). The TS method, which
is not as efficient as the FIML method, was meant for exploratory work, and to provide good
starting values for FIML estimation. It can be readily derived as the conditional expectation of
the observed data and, like the MLE, it is sensitive to collinearity among covariates (Puhani,
2000; Leung & Yu, 2000). To avoid this problem, the so-called exclusion restriction, which
requires at least one effective prediction variable in the selection equation to be excluded from
the outcome equation, is imposed. Some merits of the TS method, which contribute to its
popularity, are given in Leung & Yu (2000).

Sample selection models can reduce bias when the model is correctly specified (Leung
& Yu, 1996). Model misspecification includes the omission of important variables and in-
teraction effects in the missingness process (Enders, 2010, p296), multicollinearity (Puhani,
2000) and the use of incorrect distributional assumptions for the residuals (Marchenko & Gen-
ton, 2012). Various generalizations have been proposed to mitigate the effect of distributional
misspecification. These include, in the parametric framework, the use of student-¢ distributions
(Marchenko & Genton, 2012) and a Bayesian extension of this model (Ding, 2014). In addition,
copula-based transformation approaches have been discussed (Lee, 1983). Semi-parametric ap-
proaches to sample selection can be found in Ahn & Powell (1993). For non-parametric sample
selection models, we refer the reader to Das et al. (2003). Vella (1998) provides an earlier re-
view of sample selection models.

The ability of a parametric sample selection model to identify the outcome model intercept
is an important advantage over semi-parametric and non-parametric alternatives, especially
when prediction is the goal of the analysis. Availability of the model intercept, in our earlier
example on determinants of wage distribution for women, allows the prediction of the wage
of a woman who is not in paid work. Parametric and semi-parametric estimation of the inter-
cept parameter have been proposed for both the semi-parametric and non-parametric sample
selection models: see Andrews & Schafgans (1998) and references therein. Although the es-
timator may be consistent, its asymptotic distribution is unknown, which may adversely affect
inference. Other proposals that involve semi-parametric and non-parametric first stage estima-
tion (Newey, 2009; Ahn & Powell, 1993) in the TS method allow an intercept to be estimated,
but they are not superior to parametric models in terms of efficiency in high dimensional data.
In addition, parameters in parametric sample selection models have clear interpretations and
roles: the theoretical mean in the unselected population can be estimated for covariate values
of interest.

Problems in real data that can lead to deviation from normality include outliers, multi-
modality, mixtures, heavier tails than the normal distribution and skewness. In dealing with
heavy tails in sample selection, Marchenko & Genton (2012) derived a model using links be-
tween hidden truncation and sample selection with an underlying bivariate-¢ error distribution.
They demonstrate, in a simulation study, that their model is robust against outliers arising from
normal mixtures. Other robust estimators have been proposed in the presence of outliers from
various sources, including outliers in the design space (see, for example, Zhelonkin et. al.,
2012). Transformations have been used to mitigate the effects of skewness, but parametric
sample selection models for skew outcomes which retain the original scale are not available in
the literature. Hence, we propose a model which is more efficient than approaches based on
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semi-parametric and non-parametric methods within a class of deviations from normality due
to skewness.

The distribution of outcomes such as women’s wages are likely to be skew in the source
population, before selection. This consideration prompted Marchenko & Genton (2012) to log-
transform the outcome variable (expenditure) used in their example to reduce the burden of
skewness before applying their model. In general, the appropriate transformation to use is not
always clear, and transformations are not always appropriate in modeling data resulting from
selectively reported samples because interest is in inference for the unselected population. An
additional disadvantage is not working on the original scale familiar to the applied researchers.
On the other hand, distributional assumptions in a sample selection framework are generally
untestable for the same reasons as the uncertainty in choice of transformations. The usual
recommendation is to use a range of plausible parametric representations, especially those hav-
ing the normal distribution as a special case. This is the path taken in Marchenko & Genton
(2012). We follow a similar path and propose the use of the Azzalini skew-normal distribution
(Azzalini, 1985) for modeling asymmetry in a sample selection framework.

The article is organized as follows. In section 2, we describe the conventional sample se-
lection model and relate it to the general hidden truncation model formulation of Arnold &
Beaver (2002). In section 3, a new model is derived using the general formulation of skew dis-
tributions arising from selection and linked with a hidden truncation formulation of the model.
Two types of skewness in sample selection models are distinguished in this section. Section 4
reports a study of the finite sample properties of the proposed model. The model is applied to
two data sets in section 5 and conclusions given in section 6.

2 Classical sample selection model

In this section, we review the classical selection normal model (SNM) and establish a link with
the hidden truncation formulation given by Arnold & Beaver (2002).

2.1 Selection normal model (SNM)

Let Y;* be the outcome variable of interest, assumed to be linearly related to covariates x;
through a multiple regression model

Y;*:ﬁl.fi—FO'&fli, Zzl,,N7
which is supplemented by a selection (missingness) equation
SZ(:’}/wi—i_gZia izl?"'7N7

where (3, and o are unknown parameters; x; and w;, which can overlap, are fixed observed
characteristics not subject to missingness; and (ey;, £9;) are random errors with means zero,
variances one and correlation p. If we observe S; = I(S7 > 0) and Y; = Y;*S; forn = S~ | S,
of N individuals, the sample Y;,7 = 1, ..., nisaselection from the /V individuals. The variance
of S7 is fixed at 1, because we only observe the sign of S*, which is insufficient information to
estimate its variance. Thus an observation has, using Bayes’ rule, the conditional density

N S, 5" >0z, w)  f(ylz)P(S* > Oy, w)
Fyle, 57> 0) = P(S*>0lw)  P(S*>0w) M

3
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Equation (1) is the basis of the unification of selection problems as skew distributions given
by Arellano-Valle et al. (2006). The quantity f(y|z) is a proper probability density function
(PDF), with a skewing function P(S* > 0Oly,w), and a normalizing function P(S* > 0O|w).
Under the additional assumption of bivariate normal errors,

(&) =216)-G D

it is straightforward to show that the PDF is

g

floke. 5 =1:0) = Lo (T

>/®7w 2)

where © = (3, 0,7, p). The parameter p € (-1,1) determines the correlation between Y;* and
S¥, and hence the nature and severity of the selection process. Model (2) includes three missing
data mechanisms (see Copas & Li, 1997 for details). The complete density of classical sample
selection model has a continuous component, with conditional density given by (2), and a
discrete component given by P(S = 1|w). The marginal distribution of the selection equation
determines the model for the discrete process. In Copas & Li (1997) and Heckman (1976), a
probit model P(S = s) = {®(y'w)}*{1 — ®(y'w)}'~* was used. The log-likelihood function
is therefore

_iSZ-(lnf(yi\xi,S,-— >—|—ZS (In @ (v'w;)) —I—Z (1 —5;) In®(—~"w;).
i=1

The TS estimator is derived from the conditional expectation of the observed data, which
is given by
E(Y|z,S* > 0) = f'z + opA(y'w), (3)

where A(-) = ¢(-)/®(-) is the inverse Mills ratio. To use (3) in practice, a standard probit
model for S provides an estimate of 4. The quantity A(%'w) is then taken as an additional
covariate in equation (3), and the least squares coefficient of A(7'w) gives an estimate of op.
When p = 0 in (3), the selection component of the model (o pA(y'w)) vanishes and the model
for Y simplifies to linear regression with normal errors. As expected from Arellano-Valle et
al. (2006), equation 2 defines the density of a distribution which belongs to the extended skew-
normal (ESN) distribution family. To see this, we let u = 'z, A\g = Yw/+/1 — p?> € R and
A = p/+y/1—p? € Rin (2); we then have the PDF written in the four-parameter ESN form
given by

Jesn (Y 1,02, X, A) = %Gﬁ(%)@(/\o + )\(y ; M))/®(\/%)? 4)

where )y & A are shift and shape parameters respectively (Azzalini, 1985).

The ESN distribution (2) & (4) is not identifiable when p, and hence A are 0, but the model
becomes identifiable in the sample selection framework due to the additional information from
the selection process which is introduced through a probit model. The price to pay for the
identifiability is the possibility of model misspecification. Although sensitivity analysis on
the model parameters is justifiable, the use of a range of plausible parametric representations,
particularly those having the normal distribution as a special case, is preferred.
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Further, the attribution of non-normality of errors to the presence of selection bias is com-
mon in tests for selection in classical sample selection models. The model we present in the next
section can produce correct tests for selection in the presence of non-normality due to skew-
ness, just as the selection-¢t model of Marchenko & Genton (2012) produced adequate tests for
selection when non-normality is due to heavy tails. It has been noted that with the assumption
of normal residuals in the outcome equation, information about the selection process comes
from the skewness in the observed residuals. However, if the population distribution of the
residuals is skewed, but due to selection the observed residuals are symmetric, then the classi-
cal sample selection model will lead to the inference that there is no selection bias (Fitzmaurice
comment, Copas & Li, 1997, p83). We introduce in the next section a sample selection model
using a bivariate skew-normal distribution. The properties of the closed skew-normal (CSN)
distribution (Gonzélez-Farias et. al., 2004, p23) are used to develop the model.

3 Selection Skew-normal model (SSNM)

In this section, we assume that the errors follow a bivariate skew-normal distribution. We show
that the resulting model has a link with models arising from hidden truncation. This link is used
to derive a Heckman-type two-step estimation method under the skew-normal distribution. We
also distinguish between population residual skewness and skewness due to selection.

3.1 Derivation of the SSNM model

The skew-normal distribution arising from selection defined in section 2.1 was derived using
the conditional distribution properties of a bivariate normal distribution. We now relax the
assumption to a bivariate skew-normal distribution for the errors:

(&) =206 D)-())

where A\, and )\, are the skewness parameters for Y, and S} respectively. The joint distribu-
tion of the outcomes and the selection process can be written as a closed skew-normal (CSN)
distribution (Gonzalez-Farias et. al., 2004, p23):

Y* , , 2
(s*> NCSNm{u: Bz, w),S = <;’U pf) D =(\/o,No),v=0,A = 1}.

Using the conditional distribution and marginalization properties of CSN, the relevant selection
equation is

f(y|$)FE'SN{’Y/w + p(y_fl1’> ) O, 1— p27 \/_%7 _()\1 + )\2) (y—f';r) }

flyle, S =1E) =

Loy ——Q2+Aip) ’
Fon (7 w; m)
&)
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where F5 and F'rgn are the cummulative distribution functions (CDFs) of the SN and the ESN
distributions respectively, and = = (3, 7,7, p, A1, A2) is the parameter vector of a distribution
with density given by (5).

If \; and ), are set equal to zero in (5), the Copas & Li (1997) model, given by (2), is recovered.
The model in (5) is identifiable in the sense that for any pair of model parameters =; # =,
f(y|=1) # f(y|=2). Further, the observed information matrix is non-singular with probability
1 (see Appendix for the elements of observed information matrix of the reduced model).

We now restrict attention to a special case of the model given in (5). If A, is set equal to
zero, 1.e. the selection random variable is normal, we get a simpler model:

2 (y=Bz A (y—p'z) V’w+p(y‘§“))
2oz o (Mo (T =

)
-
F /w. 1p
SN | YW; /—1+)\%*/\%p2

where Q2 = (f3,0,7, p, A\1). This situation arises when the underlying mechanism governing
selection is not skewed. Equation (6) describes another class of skew-normal distribution. A
substitution similar to that made in section 2.1 is used: we put u = 'z, \g = Y'w//1 — p? €

Rand A = p/+/1 — p? € R in (6), to obtain

fyle, S =1;Q) =

(6)

2o(2)@ (220 (h +A(532))

2

; Aoy A1, A) =
f(yauyo-y 0y N1, ) r ( N A )
SN VIEA2T | [1423 422

(7)

This model is the hidden truncation equivalent of model (6). If Ay = 0 in (7), then,

Fsn <0; $> =7t cos’l( —AuA )

VARV DY VIH AV N

Thus, the density defined by equation (7) extends the model proposed in Jamalizadeh et. al.
(2008). Indeed, when p = 0 and ¢ = 1 in equation (7), it can be regarded as an extended two-
parameter generalized skew-normal distribution, denoted as GSN (g, A1, A), since it extends
the two parameter generalized skew-normal distribution of Jamalizadeh et. al. (2008) with an
extra parameter, \.

3.2 Inherent skewness and skewness due to selection

As mentioned, wage distribution may be skewed in the population. The samples observed can
be a biased selection of the target population, if the decisions to work are related to the process
that determines wages. We refer to the former as the population or inherent skewness. The
latter is the induced skewness due to selection into the labour force. To capture the two types
of skewness in real data, a population model with skew residuals, as described in section 3.1,
is essential.

The link between equation (6) and its hidden truncation counterpart, equation (7), shows
that there is a relationship between skewness and selection. Parameter )\, is the inherent skew-
ness, p determines A, the skewness arising from selection and )y, which is a function of the

6
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selection parameter, is a shift parameter. The shift parameter has the additional role of regulat-
ing kurtosis (Arellano-Valle & Genton, 2010). Note that p retains its role in characterizing the
missing data mechanism. When p = 0, and A = 0, the distribution simplifies to the Azzalini
(1985) model.

We emphasize that the type of tail behavior of the asymmetric distribution, as characterized
by Jones (2014), will not affect the interpretation of both the inherent skewness and skewness
due to selection. Briefly, asymmetric distributions with the same tail behavior in each direc-
tion (e.g. the family of two-piece distributions) exhibit main-body-skewness while asymmetric
distributions with different tail behavior in each direction show tail-skewness (e.g. skew distri-
butions arising from hidden truncation). The Azzalini (1985) skew-normal distribution exhibits
tail-skewness and is a natural model in contexts where data is generated by hidden truncation.
We present next moment and maximum likelihood estimators of the SSNM model.

3.3 Moments and Maximum Likelihood Estimators of the Selection skew-
normal model

The conditional expectation of the random variable defined by the density (6) can readily be
derived using its hidden truncation equivalent, model (7). Let Z, », » ~ GSN (X, A1, A) have
density function

fZ<Z> = k()\Oa )\1; A)Qb(Z)(I)(AlZ)q)(AO -+ )\Z)’ 2 € ]R7 (8)
where (o, hu V)™ = 5w (i ).

Theorem 1 The moment generating function of Zy, x, » ~ GSN (Ao, A1, A) is

M(t;Ao,Al,M=k<Ao,A1,A>et2/2<1>2( A Aok M. A ) ©)

VI VI T4+ 02/1+ A2

where k(Ao, A1, A) is as given in (8) and ®y(., ., p) denotes the CDF of N5(0,0,1,1, p). The
derivation of equation (9) can be found in the Appendix. If we use an affine transformation and
the regression parametrization of section 3.1, the conditional mean of Y can be derived from
(9) as

E(Y|z,5*>0)=0'z+o0

o ()

. -
(FSNW“” )/ Wer VT VI =/

—Y'wA1p
+p¢>(7’w)<1>( ) } :
V 1+ A — \2p2
(10)
When A\; = 0 in equation (10), we have the Heckman two-step model given in equation (3).
To visualize the impact of using a selection-normal model when the correct model for the

conditional mean is given by equation (10), we plot the second component of the expectation,

7
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i.e. the correction E(Y |z, S* > 0)- 'z, as a function of 7w, the mean of the selection variable.
We take p = 0.5 and 0.9 for values of \; =0, 1, 2 and 5, where A; = 0 corresponds to the inverse
Mills ratio correction in (3). The standard deviation, o, simply scales the correction factor and
p is the correlation between the outcome and the selection process.

p=05 p=0.9

25

4
|

> > > >

W

aN RO

2.0

E(Y[x, S>0)-Bx
15
E(Y[x, S>0)-Bx

1.0

0.5
1

(a) (b)

Figure 1: Correction factor for different values of skewness parameter with A = 0 corresponding to the
normal case: (a) p = 0.5; (b) p = 0.9.

Figure 1 shows that for positive values of the selection linear predictor v'w, the conditional
expectation will be underestimated under the usual selection-normal model. This underestima-
tion increases as the skewness increases. However, for negative values of 7w, the underes-
timation of the conditional expectation by the selection-normal model compared to selection
skew-normal model decreases and the difference dies out as 7'w becomes more negative and
missingness increases. This observation is also true for other values of p (results not shown).

The complete density of the skew-normal selection model, like the selection normal model,
has a continuous component given by (6) and a discrete component for P(S|w). As stated ear-
lier, the marginal distribution of the selection process determines the nature of the distribution
of the binary variable, which in this case has probability

P(S = s|w) = {Fsn(v'w; M) }{1 = Fon (yw; X)}' 7,

where \* = —\;p/+/1+ A2 — \2p2. This is a binary regression model with a skew-normal
link. The log-likelihood function is therefore

1(Q) = En: S (1n f(ili, S: = 1)) + zn: $i (n Fyx(y'wi; 1))

i=1 =1

+ Z(l — Si) In Fsn(—~"w;; —\%).
i=1
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4 Simulation Studies

4.1 Finite-sample properties of the SSNM estimator

In this section we study the finite-sample properties of the selection skew-normal model (SSNM).
We compare its performance with the selection normal model (Heckman, 1976), and Heck-
man’s two-step method (Heckman, 1979). We first consider simulation settings where the out-
come model is skew but the selection model is normal. This setting is similar to that with wage
determinants, described in the introduction. The outcome equation is Y;* = 0.5 + 1.5z; + €y;,
where z; YN (0,1)and i = 1,..., N = 1000. Two selection equations are considered: with
an exclusion restriction, S = 1 + z; + 1.5w; + €9;, w; YN (0,1), and without an exclusion
restriction, S = 1 + x; + £9;. Hence, 5 = (0.5,1.5), and 7 = (1,1,1.5) and (1, 1) for se-
lection with and without the exclusion restriction, respectively. The covariates z; and w; are
independent and are also independent of the error terms €, = (eq;,£9;). The error terms are

generated from bivariate skew-normal distributions with \; = 0, 0.5, 1, and 2. The covariance
2

matrix is X = (ZU P 10 ), where 0 = 1 and the correlation p = 0.5. The A\; = 0 case corre-

sponds to an underlying bivariate normal process. We only observe values of Y, when S} > 0.
About 30% of values are not observed with this exclusion restriction, and about 20% without it.
Similar settings have been used for the evaluation of robustness of the ¢ distribution in a sample
selection framework (Marchenko & Genton, 2012). As z; increases, P(S; > 0) increases, so
Y; is more likely to be observed and larger values of z will be over-represented. For p near
one (-1), larger errors, ¢;, increase (decrease) the chance that Y; is observed. A pilot simulation
showed that the choice of the parameters used for the simulation have no effect on the results.
Simulation results are based on 1000 replications. For brevity, we summarize the results only
for \;y = 0and \; = 1 in Tables 1 and 2, as the pattern is similar for the other skewness values.

The results with the exclusion restriction show that SSNM is generally less biased for
A1 = 1 (Table 1). The bias in SNM and TS generally increases with \;. Even under the
normality assumption, A\; = 0, the performance of SSNM is comparable to SNM and TS.
Although SNM and TS have slightly less biased estimates for the intercept of the outcome
model, the intercept of the selection equation is less biased for SSNM than SNM and TS. In
terms of variance, SNM and TS are generally more efficient. Other parameters are comparable
across the three models. Hence, SNM and TS do not show great advantages overall even with
underlying normal assumptions.

In the absence of an exclusion restriction, with a normal underlying process, the SSNM
intercept has a lower bias than SNM but higher than TS (Table 2). For the regression parameters
of interest, the three models are comparable, so again the SSNM model appears useful even
when the underlying process is normal. When \; increases, the bias and variance of SSNM
decrease. The variances of the outcome and selection models intercepts are consistently larger
for the SSNM model. The loss of efficiency is perhaps due to estimation of the extra skewness
parameter.

The SSNM estimates are generally better than the SNM and TS models for o and p when
A1 > 1 both in the presence and absence of the exclusion restriction (Tables 1 and 2). Since
the variance o describes the variability of the outcomes Y;, correct prediction intervals for
new observations will be obtained under SSNM model. Further, in applied settings (e.g. the
MINT Trial, section 5.1), interest may be in patients who do not return their questionnaire.
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This requires a correct model for the selection process. The SSNM gave consistently smaller
bias compared to SNM and TS models for the selection equation when A; > 1, even under
normality assumptions, with or without the exclusion restriction. The results with varying
underlying correlation, in the presence of exclusion restriction, for \; = 1 and 2 are similar to
those for p = 0.5.

If the correlation between the outcome and selection equations is negative, as —S* has
correlation —p with Y*, and —S* > 0 is equivalent to S* < 0, a simple transformation recovers
the original model. The TS expression in equation (3) is replaced by E(Y|z,5* < 0) =
p'z — opA(—~'w). The equivalent substitution in equation (10) can be used to impute the
missing values in the data.

Table 1: Simulation results for estimators in the presence of exclusion restriction.

Bias Variance

SSNM SNM TS SSNM SNM TS

5o 0.002 -0.000 0.000 0.011 0.002 0.003

A =0.0 [ -0.000 -0.000 -0.001 0.002 0.002 0.002
Y%  0.006 0.007 0.007 0.007 0.005 0.005

v 0.004 0.005 0.006 0.006 0.006 0.006

v 0.008 0.010 0.011 0.009 0.009 0.009

o 0.003 -0.001 -0.001 0.002 0.000 0.001

p -0.001 -0.001 -0.002 0.008 0.008 0.011

A1 -0.003 - - 0.018 - -

Go  0.045 0562 0562 0.034 0.002 0.002

A =10 p; 0000 0.001 0.001 0.001 0.001 0.001
Y  0.040 0.352 0.353 0.027 0.008 0.009

v 0011 0.053 0.055 0.007 0.007 0.007

v 0.020 0.084 0.086 0.013 0.012 0.013

c -0.011 -0.170 -0.170 0.007 0.000 0.000

p -0.072 -0.064 -0.066 0.013 0.012 0.014

A1 -0.050 - - 0.145 - -

SSNM - Selection skew normal model; SNM - Selection normal model;
TS - Two step estimators.

Classical sample selection models may attribute the presence of skewness in the distribu-
tion of residuals to selection bias. A case study for this scenario will be discussed in section
5.1.1, where the SNM model attributed the presence of (spurious) skewness to selection bias.
To study this effect, we examine the influence of skewness on the standard tests for selection
bias, p = 0, using 95% coverage properties of p. The effect of skewness on the power of the
selection bias test is also examined when data are generated with p = 0.1, 0.3 and 0.5. We
study the effects with A\; = 0, 0.5, 1 and 2. For the parameter combination p = 0 and \; = 0,
the SSNM model experienced numerical instability, with about 30% of runs not converging.
This is because the model is essentially the Azzalini (1985) model when p = (0. Similar nu-
merical instability has been noted with direct parametrization of the Azzalini (1985) model.
To make the methods (SSNM and classical estimators) directly comparable, we replaced the
SSNM estimator with the SNM estimator for the non-converging models.

Table 3 shows the coverage and power of the test of selection bias (p = 0), using Wald
confidence intervals (CIs) for the estimators. For p = 0, the table shows that the coverage of the

10
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Table 2: Simulation results in the absence of exclusion restriction.
Bias Variance

SSNM  SNM TS SSNM SNM TS

Go 0.014 0.015 0.005 0.061 0.008 0.012

A =00 f -0.012 -0.012 0.004 0.006 0.006 0.009
Y% -0.000 0.007 0.007 0.017 0.004 0.004

v 0.003 0.010 0.010 0.006 0.005 0.005

o 0.023 -0.002 0.006 0.006 0.001 0.002

p  -0.036 -0.043 -0.024 0.046 0.043 0.065

A1 0.002 - - 0114 - -

Bo 0.064 0.558 0.560 0.034 0.004 0.005

A =10 p; -0.008 0.005 0.003 0.004 0.004 0.004
% 0.076 0.526 0.534 0.047 0.007 0.007

v 0.009 0.043 0.049 0.007 0.007 0.006

o -0.014 -0.164 -0.163 0.007 0.001 0.001

p -0.067 -0.060 -0.073 0.072 0.051 0.067

A1 -0.076 - - 0.145 - -

SSNM - Selection skew normal model; SNM - Selection normal model;
TS - Two step estimators.

test, the proportion of simulations in which the Wald intervals include p = 0, is always slightly
less than 0.95. Coverage generally increases as \; increases. Results are similar for the three
methods. The power for p = 0.1 is low, but increases rapidly with p, for given \;. For fixed p
the power decreases as the skewness (A1) increases. As \; and p are not orthogonal, and the
probability that S* > 0 decreases with both p and A\, power is lost because fewer outcomes are
observed. In addition, the ratio of the model based standard errors and the empirical standard
errors are close to 1 for all the models for the values of skewness (\{) considered.

4.2 Impact of first stage skewed error

In many econometric applications of sample selection models, a probit model is used to de-
scribe the first stage selection process. We study the impact of skewness in the first stage using
the SSNM and classical sample selection estimators. Data were generated for the exclusion
restriction case as in section 4.1, but with skewness only in the selection equation. We fix p at
0.5 and consider \,, the skewness in the selection equation, for 0.5 and 1. The case with Ay = 0
is omitted as it is equivalent to the result in Table 1 with normal errors. Figures 2 and 3 are used
to summarize the results for the parameters in the models. The TS estimator results (omitted)
are similar to the SNM results. Both the SSNM and the SNM estimators for the intercepts in
the outcome and selection models (3, & ;) are biased, with marginal gains with the use of
the SSNM estimator. The estimators of the coefficient of the covariate in the outcome model
(1) is unaffected but the covariates in the selection process (7; & ») are biased. Both ¢ and
the correlation between selection and outcome residuals (p) are under-estimated. As skewness
increases, the under-estimation of o and p increases.

11
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Figure 2: Box plot of model parameters (SSNM - white and SNM - gray) from data generated with

skew selection model, Ao = 0.5.
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Table 3: 95% Confidence interval coverage and power
(a) Test for selection bias

A | SSNM SNM TS
0 93.0 934 934
p=0.0 05| 93.8 935 94.0
1.0 939 944 944
20| 942 943 948
(b) Power to detect p # 0
Al | SSNM SNM TS
0 170 19.7 16.0
p=0.1 05| 155 154 14.8
1.0 | 13.2 12.7 122
20| 103 9.3 8.8
0 76.1 762 74.8
p=03 05| 73.1 724 69.5
1.0 | 60.8 603 58.1
20| 484 472 454
0 99.6 996 994
p=05 05| 985 983 98.1
1.0 96.6 962 948
20| 89.8 88.7 86.0
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Figure 3: Box plot of model parameters (SSNM - white and SNM - gray) from data generated with
skew selection model, Ay = 1.

5 Empirical Studies

We present two examples that illustrate the performance of the SSNM model. The first example
illustrates the ability of the SSNM model to capture (spurious) skewness in bounded scores. In
the second example, we consider the merits of the model in a data set where log- transformation
could not mitigate the effect of non-normality resulting from inherent skewness.

5.1 Application to MINT Trials

We examine data from a multi-center randomized controlled trial of treatments for Whiplash
Associated Disorder, the Managing Injuries of the Neck Trial (MINT), in which two treat-
ment regimes were compared: physiotherapy versus reinforcement of advice for patients with
continuing symptoms three weeks after their initial visit to the Emergency Department (ED)
(Lamb et. al., 2007). As with many patient-reported outcome or quality of life studies, data
were collected using questionnaires at regular intervals, 4, 8 and 12 months, after patients’ ED
attendance.

The primary outcome of interest is return to normal function after the whiplash injury, and
is measured using the Neck Disability Index (NDI). The NDI is a self-completed questionnaire
which assesses pain-related activity restrictions in 10 areas including personal care, lifting,
sleeping, driving, concentration, reading and work, leading to a score between O and 50. The
NDI has been shown to be reliable and valid (Vernon & Mior, 1991), hence its use as a standard
instrument for measuring self-rated disability due to neck pain. The fact that the responses were

13
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derived from the use of a 10-item questionnaire posed several challenges. These include the
discreteness (Likert-scale type) of the scores, item and unit non-response and dropout with
time, which might be responsible for the skewness present in the observed data.

There are 599 patients with a total of 1934 measurements, and 372 (62%) patients have
complete observations (i.e. scores at all measurement occasions). The age range is 18 to
78 years. Vernon recommended that patients with only 2 missed items should be considered
complete, with mean imputation used for adjustment. We follow this recommendation and any
patient with more than 2 missing items is considered as unit missing. In effect, we have only
unit non-response left in the data-set and we consider monotone dropout. We first identify
predictors of dropout at each measurement occasion using probit regression. At month 8, age
and sex of the patients are good predictors of missingness. We restricted attention to this
measurement occasion to illustrate the new model.

5.1.1 Application of selection skew-normal model to the NDI scores

A preliminary fit of the SSNM, SNM and TS models to the NDI scores showed that sex did not
have a significant effect on NDI, so it was removed from the outcome equation. This provided
an exclusion restriction. The covariates in the selection equation are w = (1, age, sex), while
the outcome equation contains = = (1, age, previous, physiotherapy), where previous is the
score at 4 weeks.

Table 4: Fit of selection skew-normal model, selection-normal model, and Heckman two-step
model to the NDI scores at 8 months.

Selection skew-normal Selection-normal Two-step
Estimate 95% P1 Estimate 95% P1 Estimate 95% CI

Selection Equation

(Intercept) 0.208  (-0.05,1.34)  0.835  (0.64,1.03) 0.818  (0.59,1.04)

age 0.021 (0.01,0.04) 0.024  (0.01,0.04) 0.025  (0.01,0.04)

sex(female) 0.309 (0.08,0.65) 0.335  (0.09,0.59)  0.383  (0.09,0.68)
Outcome Equation

(Intercept) 3769 (-529-1.53) 0799  (-0.432.01) 1.030  (-2.43,4.49)
age 0074  (-0.00,0.12)  0.086  (0.04,0.13)  0.068  (-0.02,0.16)
previous 0678  (0.61,0.75)  0.687  (0.62,0.75) 0.708  (0.64,0.78)
physiotherapy ~ 0.766  (-0.27,1.81)  0.887  (-0.17,1.95) 1.007  (-0.07,2.08)
o 7723 (651,8.84)  6.166  (5.60,6.76) 5703  (1.71,9.69)
P 0758  (-077,091)  0.794  (0.52,090) 0474  (-0.78,1.73)
A 1537  (0.54,2.45) . . ; -
log-likelihood -1452.672 -1455.033 -

PI - profile likelihood interval; CI: Wald confidence interval.

Profile likelihood ratio intervals (PI) are used in Table 4 to quantify uncertainties in the
parameters of the SSNM and the SNM models to allow for asymmetry, and Wald confidence
intervals are used for the TS method. The SSNM skewness parameter (A\; = 1.54) is statisti-
cally significant. Both the Wald test and the PI under the SNM suggest that there is selection
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bias (i.e. p # 0). However, the TS method and the SSNM imply p = 0. This behavior is typical
of the SNM where non-normality of the errors are attributed to the presence of selection bias
(Marchenko & Genton, 2012). The SSNM model has a better fit to the NDI data than the SNM
model (likelihood ratio test statistic 4.72, p< 0.03).

The introduction of extra parameters gives a more flexible model, but can lead to difficulties
in model identifiability. The profile log-likelihood for the shape parameter of a univariate skew-
normal distribution always has a stationary point at A\; = 0. This problem is also visible in the
SSNM model since it has the Azzalini’s skew-normal distribution as its basis. To illustrate
this, we examine the profile log-likelihood for the parameters A\; and p for the NDI scores. At
A1 = 0 in Figure 4a, the profile log-likelihood has a stationary point. The profile log-likelihood
for p under the SSNM (see Figure 4b) is flat in the neighborhood of zero, but less flat for SNM
(see Figure 4c).
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Figure 4: Normalized profile log-likelihoods of skewness and correlation parameters (NDI scores): (a)
SSNM (A1); (b) SSNM(p); () SNM(p).

The results under the SSNM model are consistent with p = 0, i.e. MAR, with the skewness
in the response variable being intrinsic to the measured outcome, and not due to selection.
Similarly, the TS model (with bootstrap standard errors) also supports the MAR assumption.
However, the SNM model suggests the data are MNAR; if the outcome variable is normal in
the population, informative missingness is required to explain the observed result.

5.1.2 Application of SSNM model to transformed NDI scores

Although the hypothesis of normality was rejected for a test of size 5% for the NDI scores using
likelihood ratio test, it cannot be rejected at 1%. This is perhaps due to (spurious) skewness
in the data as a result of the ceiling and floor effects of the bounds. In addition, the scores
are clustered at one end of the scale making the distribution J-shaped. We examine the impact

of transformation on the NDI scores using a logistic transformation, which is commonly used

NDI
50-NDI

the values of NDI were 50 or 0. The parameter estimates of the three models are very similar
and the skewness parameter is not significantly different from zero; the logistic transformation
captures the skewness of the bounded scores (Table 5). All three models show no selection for
the transformed scores. Treatment effects are borderline significant for the transformed scores,
but not significant for the untransformed scores. The interpretations of model parameters are

for bounded scores. We transformed the NDI scores to Z = log< ) because none of
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different. For untransformed scores, the parameter estimates give estimates of the theoretical
mean for the covariates in the unselected population (Arnold et al., 1993, p483). In Table 5
however, the interpretation is more complex as the SSNM and SNM models are based on the
logit-skew normal and logit-normal distributions respectively.

Table 5: Fit of selection skew-normal model, Selection-normal model, and Heckman two-step
model to the transformed NDI scores at 8 months.

Selection skew-normal Selection-normal Two-step
Estimate 95% PI Estimate 95% PI1 Estimate 95% CI

Selection Equation

(Intercept) 0.815 (0.54,1.59) 0.816 (0.60,1.04) 0.818 (0.60,1.04)

age 0.025 (0.01,0.04) 0.025 (0.01,0.04) 0.025 (0.01,0.04)

sex(female) 0.387 (0.09,0.68) 0.386 (0.10,0.67) 0.383 (0.10,0.67)
Outcome Equation

(Intercept) 2618  (-3.08,-126) -2.613 (-2.80,2.17) -2.680  (-3.02,-2.34)
age 0.007  (-0.01,0.02) 0.007 (-0.01,001) 0.009  (-0.00,0.02)
previous 0.083  (0.08,0.10) 0.083  (0.08,0.09) 0.083  (0.08,0.09)
physiotherapy ~ 0.138  (-0.00,0.45)  0.138  (-0.00,0.28)  0.138  (-0.00,0.28)
o 0727  (0.68,1.34)  0.727  (0.68,0.79)  0.748  (0.26,1.24)
p 0.102  (-0.91,090) 0.102  (-0.90,0.51) 0.414  (-0.96,1.79)
A 0.009  (-1.15,1.12) ; ; ; ;
loglike -639.537 -639.538 -

5.2 Wage offer function of married women

We re-analyze the data reported in Mroz (1987) on married women’s labour force participa-
tion, from the University of Michigan Panel Study of Income Dynamics for the year 1975
(interview year was 1976). We estimate a simple female wage model which takes into ac-
count the labour force participation. This model specification was used to illustrate the R
package sampleSelection (see Henningsen & Toomet, 2014). The outcome of interest, fe-
male wage, is missing for 325 (43%) of the 753 women in the sample. Logarithm of wage
depends on education status and city, i.e. z = (1, educ, city). The selection equation uses
husband’s wage, number of children 5 years old or younger, marginal tax rate of the wife
and the wife’s father’s educational attainment as well as education status and city. That is,
w = (z, huswage, kid5, mtr, fatheduc, educ, city). Other model specifications for this ex-
ample have been considered in the literature (see various model specifications in Henningsen
& Toomet, 2014).

The results of fitting a SSNM model and its competitors underscore the benefits of the
model even when the outcome is transformed to near normality (Table 6). Although the statis-
tical significance of covariates in the models are similar, the skewness parameter is significant
at a 1% level. In addition, the SSNM provides improved fit over the SNM as it captured inher-
ent skewness () in the outcome. The profile likelihoods are well behaved due to the logarithm
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transformation of the outcome variable.

Table 6: Fit of Selection skew-normal model, Selection-normal model, and Heckman two-step
model to labor wage data.

©CoO~NOUTA,WNPE

Selection skew-normal Selection-normal Two-step
10 Estimate 95% PI1 Estimate 95% PI1 Estimate 95% CI

13 Selection Equation

15 (Intercept)  2.916 (1.59,4.41) 3.802 (2.33,5.33) 3.374 (1.69,5.06)

16 huswage -0.094 (-0.13,-0.07) -0.103 (-0.14,-0.07) -0.117  (-0.15,-0.08)
18 kids5 -0.384  (-0.57,-0.23) -0.415 (-0.59,-0.25) -0.550 (-0.74,-0.36)
19 mtr -5.134  (-6.80,-3.66) -5.782  (-7.48,-4.15) -5.329 (-7.20,-3.46)
20 fatheduc -0.016  (-0.04,0.01) -0.020 (-0.05,0.01)  -0.005 (-0.04,0.03)
21 educ 0.095 (0.05,0.14) 0.112 (0.07,0.16) 0.122 (0.07,0.17)

23 city -0.043 (-0.22,0.13)  -0.040  (-0.24,0.16) -0.031 (-0.24,0.18)
24 Outcome Equation

26 (Intercept)  1.102 (0.63,1.56) 0.669 (0.25,1.10) 0.642 (0.07,1.21)

educ 0.075 (0.04,0.11) 0.066 (0.03,0.10) 0.067 (0.03,0.10)

29 city 0.120 (-0.02,0.26) 0.107 (-0.04,0.26) 0.100  (-0.05,0.25)
30 o 0.964 (0.86,1.08) 0.800 (0.73,0.88) 0.797 (0.65,0.94)

31 p -0.792  (-0.88,-0.55)  -0.780  (-0.86,-0.65) -0.758  (-1.06,-0.45)
A1 -1.588  (-2.16,-1.05) - - - -

34 loglike -874.608 -881.802 -

38 Figure 5 shows the residual plots for the SSNM and the SNM models using equations
39 (10) and (3) respectively for the labour wage data. The SSNM model residuals are centred on
zero, but the SNM model residuals are positively biased. That is, the skewness is not correctly
modelled by the SNM model and as such, the residuals have a mean other than zero (E(X) #
43 ). In this case, the model will under predict new outcomes if the model is used for prediction.
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Figure 5: Residual plots for the SSNM and the SNM models using the labour wage data.

6 Concluding Remarks

We introduced a sample selection model with underlying bivariate skew-normal distribution
which we called a selection skew-normal model (SSNM). This model is more flexible than
the conventional sample selection model since it has an extra parameter that regulates skew-
ness, with the conventional sample selection model as a special case. Its moment estimator
was derived using the link between skew models arising from selection and hidden truncation
formulations of skew models. The moment estimator was shown to extend Heckman’s two-
step method. Simulation was used to compare maximum likelihood estimator of the model
with conventional sample selection models under moderate correlation (p = 0.5) and skewness
varying from O to 2. We also considered the effect of varying the correlation p with \; fixed at
1 and 2, and an exclusion restriction criteria (results not shown here). The SSNM model out-
performed the conventional sample selection models for the skewness parameters considered.
The conventional sample selection model has a negligible advantage when A; = 0 with smaller
bias in the intercept of outcome equation.

In addition, we studied the impact of non-normality, due to skewness, in the first stage
of sample selection estimators. Our results indicated that the proposed model has marginal
improvements over classical methods in terms of unbiasedness. If there are practical reasons to
suspect skewness in the selection process, then the model given by equation (5) can be analysed
as the parameters in the model have interpretable roles. Alternatively, A\; and A5 corresponding
to the skewness parameters in the outcome and selection processes can be constrained as \; =
Ay = A. The submodel of (5) analysed here was based on the constraint A\ = 0. This has
practical justification. The distribution of income or wages, for example, is expected to be
skewed 1n the source population. However, the decision to work so as to earn wages may not
carry sufficient information about shape parameters. We also indicated that negative correlation
between the outcome and the selection variables is equivalent to reversing the indicator for
selection. The expression for the conditional mean can be used in an imputation model to
assess the sensitivity of conclusions when data are suspected to be missing not at random.

We illustrated the strength of the SSNM model in two examples. For the NDI scores, where
responses exhibited skewness, which might be due to the effect of bounds on the scores, our
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model successfully discriminates between selection effects and skewness. The SSNM detected
the absence of skewness after a logistic transformation of the scores. However, the transfor-
mation requires specification of the bounds, so if estimation of the final recovery level is of
interest, then this transformation cannot be used. The labor force participation data illustrated
the merits of the SSNM model when a standard transformation could not adjust for extreme
non-normality due to inherent skewness in the outcome variable. The SSNM model will be
more efficient than semi-parametric and non-parametric approaches within a class of devia-
tions from normality due to skewness. The ability of the model to identify intercepts allows
evaluation of model fit using residual analysis. The model can easily be used for predictive
purposes using its moment based expression.

The model presented here is very simple to use and the likelihood function can be easily
coded in R software. Starting values can be obtained using the two-step method (TS). The op-
timization routine used was BFGS in R software but other numerical maximization algorithms
can be used as well, although we do not recommend the use of Nelder-Mead optimization
method which appears not to work well with the CDF of Azzalini’s skew-normal distribution.
We recommend the use of profile likelihood ratio interval for inference on the model parameters
as the likelihood function is usually asymmetrical.

It is straightforward to extend these results to model skewness and heavy tails simultane-
ously. If we assume a bivariate skew-t distribution for the outcome and selection equations, but
restrict the skewness parameter to zero in the selection equation, we can develop a new class of
sample selection model. The continuous component of this model is a form of the univariate
extended skew-t distribution, EST (see Arellano-Valle & Genton, 2010), but with an additional
skewness parameter. Arellano-Valle & Genton (2010) gave analytic proof that the EST distri-
bution, unlike the ESN, does not have a stationary point at A\; = 0. We expect the additional
skewness parameter in the EST distribution not to induce stationarity at A; = 0 in the model,
and thus produce a more stable parameter estimates than the SSNM model. In addition, the
selection equation is a binary regression with the skew-t link.

To apply this model in practice, we recommend that the model is fitted in conjunction with
the conventional sample selection model, to assess the degree of departure from symmetry.
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7 Appendix

Details of derivation of the SSNM model

As the joint distribution of the outcomes and the selection process can be written in a closed
skew-normal (CSN) distribution form as

Y* , , 2
(S*> NCSN2,1{M= (8w, A w), £ = (Za ”f) (D= (M/o,ha), v =0,A = 1},

the distribution of S|Y’, using the conditional distribution property of CSN, is

o

SV ~ C’SNl,l{v’w n p(y - ﬁlm), 1— 02 Agy —(\1 + Az)(y _05/“”), 1},

and P(S* > 0]y, x) is an ESN lower tail probability written as

Fos{yw+ oL 00—t 2 e ()L a

_P2 o

To determine the expression P(S* > 0|x) in equation (1) we need to extract its marginal
distribution from the bivariate process. Using the property of marginalization of CSN, we have

P(S* > 0lw) =FSN<v’w; &) o) ) (12)

V1+ A= Np2

where F'sy denotes the CDF of a skew-normal random variable. The ‘base’ PDF of the outcome
equation is

f(y|x>:ngs(y_ﬁ/x)@{Al(y_B'm)}. (13)

o o

Substituting (11), (12) and (13) into the general sample selection equation (1) gives equation

(5).
Derivation of Moment Generating function

E(e'?) =k(Xo, M1, ) /OO e p(2)P(N12)P(Ng + \2) dz

— 00

:k()\o, )\1, >\>€t2/2 /OO gb(z — t)‘b()qZ)(I)()\o + )\Z) dz
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Put x = z — ¢. Then,

8

E(e'?) =k(Xo, M, At /2 / O(2) DMz + M) P (Ao + Az + At) da

©CoO~NOUTA,WNPE

=k(Xo, A, N PE(®(MX + M) P(Ag + AX + At))
10 =k(Xo, A, N 2P(Y] — M X < Mit, Ya — AX < Ag + At)

At Ao+ At ALA
12 :k(Ao,Al,A)etQ/QCI)Q( 1 ’ o+ : 1 )
VI VIHAN T+ AT+ A2

where X, Y1, Y; are iid N(0, 1), and

Nt o+ M A
18 P(Y1—>\1X<)\1t,Y2—)\X<)\O+)\t)—<I>2( 1 0o+ AL ! )

VIHAN VIHA 1T+ MV + N2

Derivation of Gradients and Observed information matrix

The gradient of the selection skew-normal model log-likelihood can be derived as follows:

28 n

ol 1 A
29 | p
30 28 (Z{E 01T Kl} )

31 =1

1 —2)\1
;7’3/2 1(p’yw +2)>+( )( ~ V27U 4)

n n

35 ol - n 1 A1 P
36 " _q. _ S 2 o
%0 SZ( E { . + UZZ . K3z 07’1/2Klz}>
42 ol —2p )
— =5 E Kzz | +(1—5; E —— K, |,
43 O\ ( — 3 ) ( ) (izl (1+ A2)V27u !

46 where, r = (1 — p?), z = (y — B'z;) /o, u = (1 + A} — A\}p?), and

48 y
49 oy <(yr6/rz‘>) ¢<7/wi>¢<w>
ywite i 14222252
o W= e ke K = 0(w)[0(), K = Vi
B N T V- R
52 FSN< ¥ w;;0,1, ,—1+)\%A%p2>

s RAVAEEYS
= C=n(B) & K= 0(0)/2(0), K= (o)

Fsn (—w’wuo,l,i*;” - 2)
58 L VARSYESE

Note that the derivative of Fgy (—7’ w;; 0,1 ¢> w.r.t. v follows the usual differenti-
» Yy L \/m

ation of CDF to get the PDF. However, the derivatives of p and -y in this expression are not a
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straightforward application of this principle. The approach we followed is to re-write the CDF

above as a standard bivariate normal integral (2(1)2 (—7’ w;i, 05 —=A1p/+/1+ A%)) We make
use of the fact that, if ®o(.,.;p) and ¢o(.,.; p) are standard bivariate normal CDF and PDF
respectively, then %‘p";m = Pa(., . p).

The elements of the observed information matrix are:

2

—0% ~(1 N
5 =5 (Zl{; + o3[k + k3] + Lk + K }ﬁ)

1=

il =S, il{wK —i—Kz}x? +(1-25) i— 27'w; Ky — 2>\1pK —4K2 a2
672 7 . r 1 1 7 ) 74\ 2 m 4 2 i

=1 =1

—0% - n 3 1
=S, (Z{—; + =22 — = [QCKg — Ky — ¢2K§]

Jo? , 02"
=1

P P 2 P 272
_—0-27-1/2 |:22iK1 — mzi WKl — mzi K1:| })

/

—0°1 - 3P / 7 W 1 / 2 1 / 2 2

203 2X3p(1 + A1) (v/w;)? 4N
+(1-5; K, — =2 1 - K+—1K2}>
( )(;{\/27ru3 ! V2mub T ome

Pl _o (v 2\ (S 2w 2dp(1 = )
aA%_’(Z:{CK3+K3}Z’)+<1 SZ)<Z{(1+A%)\/WK4 1+ XVome

i:l{ or
(;58‘922 - (Z:{%Z " %@K?’ - %Kg * %CK?% + ap_;ZiWKl - SE K+ Jp—;zin}xi)
i =S (o o s ) o e =)
a_@gill - (Z{éf‘% - K - ch%,’}xZ)
s (S L L)
{

—9% 1 p 1 2

" 4N q’w“/1+A%) 20 (1+ A%, } )
( )< 1{\/27TU¢( ul/? 2 2mus (Ywi) K g
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ol a 4p (’y’w“/l +)\%> 2p } )
OvOM ( )<Z{ (1+XM)v 27Tu¢ ut/? ? V2mud (o)l

=1

—°l - 1 P / P / 2
10 Dodp =5; (;{WKL% - m(P’Y w; + Zi>WKlzi - ﬁ(P’Y w; + Zi>Klzi

13 —021 1 1, 1.,
14 00N, =5; (Z{;K?)Zi - ;C K3z — ECK?’Zl})

=1

©CoO~NOUTA,WNPE

16 —9 - 2 22 p? AMip
17 =(1-25; — K, — ——(Yw;)*K +—1K2}).
18 8p8)\1 ( ) (Z{ vV 2mrud 4 2l ('7 ) 4 27TU(1 + )\%) 4

=1

22 The arguments of the functions K;,7 = 1,2, 3, 4 are suppressed.
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