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1 Introduction

In this paper we are interested in the study of discrete higher form symmetries for quantum
field theories that arise by geometric engineering in M-theory. In full generality, p branes
wrapping non-compact k-cycles in the non-compact internal geometry V of geometric en-
gineering give rise to p− k+ 1 dimensional defects for the field theory. Similarly, p branes
wrapping compact k-cycles give rise to p−k+1 BPS degrees of freedom. Generalizing the ’t
Hooft screening argument along the lines of [1], for every p brane wrapping a non-compact
k-cycle we expect to find a corresponding defect group of discrete higher (p− k + 1)-form
symmetries,1

D :=
⊕
n

D(n) where D(n) :=
⊕

p branes and k cycles
such that p−k+1=n

Tor
(
Hk(V, ∂V)
Hk(V)

)
(1.1)

The operators that are measuring these charges are the flux operators in the string theory
we are adopting for the engineering that are sourced by the corresponding kind of p brane.
These operators are the charge operators for the D(p−k+1) factor of the defect group. We
stress that D is not the group of higher form symmetries of a quantum field theory yet,
rather it is the group of higher form symmetries acting on the geometric engineering Hilbert
space, which is the Hilbert space that the given string theory assigns to the given non-
compact geometry.

The geometric engineering formalism indeed has a deeper insight on the structure of
the resulting field theories: whenever the internal manifold has torsional cycles, we have
non-commuting fluxes (a fact that has been thoroughly discussed in the seminal papers by
Freed, Moore and Segal [6, 7] — see also [8]). Correspondingly, pairs of electromagnetically
dual branes in the geometric engineering give rise to mixed ’t Hooft anomalies among
different higher form symmetry factors of the defect group.

Examples including the computation of such mixed ’t Hooft anomalies in the context
of the 6d 2-form symmetry defect group appeared in [1, 8–10].2 The purpose of the present
paper is to extend this study in the context of models geometrically engineered within M-
theory. Our main aim is to explain how the discrete higher form symmetries arise in this
context and what is their relation with the M-theory defect group. It is well-known that
geometric engineering in string theory gives an alternative formulation of field theories that
often proves useful when studying models that cannot be realized perturbatively, which is
the case for all SCFTs in dimension higher than four [14, 15]. Among the most interesting
examples in this class therefore are 5d SCFTs, whose geometric engineering [16–20] has seen
a lot of recent developments (for an incomplete list of recent references see [21–68]). Among
the applications of our formalism, we determine the global structure and the discrete higher
form symmetries of 5d SCFTs. A more detailed summary of our results can be found in
section 1.2 below.

1See [2–4] for a definition of higher form symmetries. In this paper we adopt the Córdova-Dumitrescu-
Intriligator notation: G(m) denotes an m-form symmetry group G [5]. We stress that in principle one could
consider to include the non-torsional part of the groups in the definition (1.1). We choose not to include it to
avoid cluttering notation below. Moreover, there might be other global symmetries arising from isometries
which the defect group will not detect — we thank Kantaro Ohomori for this remark.

2See also [11–13] for some deep implications.
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1.1 Discrete higher form symmetries from M-theory: general philosophy

In this work we consider the SQFTs obtained from M-theory via geometric engineering on
backgrounds of the form

M11 =MD × Vd d+D = 11 (1.2)

where Vd is a local internal geometry for M-theory andMD is a D dimensional space time
manifold where the geometrically engineered D dimensional quantum field theory TVd

lives.
For simplicity, we assume:3

• Vd is a supersymmetric background, therefore TVd
∈ SQFTD; moreover

Vd = C(Yd−1) , (1.3)

meaning that Vd is a metric cone over a d− 1 dimensional manifold Yd−1;

• MD is a closed spin manifold without torsion.

Naively, this M-theory setup computes the partition function of the theory TVd
on the

manifoldMD,
ZTVd

(MD) ∈ C . (1.4)

The latter should be fully specified by the M-theory background, but in presence of mixed
’t Hooft anomalies for the factors in the defect group not all fluxes can be diagonalized
simultaneously, thus leading to several different choices. These choices are in one-to-one
correspondence with the possible global structures of the quantum field theory TVd

.
The main feature of the geometric engineering limit is that the internal manifold is

non-compact, and therefore the M-theory background has a boundary at infinity

∂M11 =MD × ∂Vd . (1.5)

If this is the case, we can consider a Hamiltonian quantization viewing the direction normal
to the boundary as time, and assign to this system a Hilbert space

HM (∂M11) . (1.6)

By analogy with the IIA and IIB superstrings, the Hilbert space HM (∂M11) should have
a grading in terms of the M-theory generalized cohomology theory group, which we denote
EM (∂M11). The group EM (∂M11) is expected to parametrize the flux sectors of M-theory.
Classically one would expect all such fluxes to commute, but this is not the case because
the group EM (∂M11) can contain a torsional part

Tor EM (∂M11) = {x ∈ EM (∂M11) : nx = 0 for some n ∈ Z} (1.7)
3Both assumptions can be dropped in principle, but we want to work in the simplest possible setup that

highlights the features we want to study.
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Under the assumptions above, there is a simple connection in between the defect group
and TorEM (∂M11):

TorEM (∂M11) =
⊕
j

Hj+1(MD)⊗ D(j) (1.8)

In presence of torsional fluxes we expect to have a grading of the geometric engineering
Hilbert space in terms of

HM =
⊕

α∈Eo
M (∂M11)

HM (α) with EoM (∂M11) ≡ EM (∂M11)
Tor EM (∂M11) (1.9)

where each factor HM (α) is in turn a representation of a Heisenberg algebra of torsional
fluxes of the form

ΨxΨy = s(x, y)ΨyΨx (1.10)

where
s : Tor EM (∂M11)× Tor EM (∂M11)→ U(1) (1.11)

is a perfect pairing. This pairing encodes the mixed ’t Hooft anomalies among the higher
form symmetries of the geometric engineering Hilbert space. Abusing language, in light
of (1.8) we will refer to these as the mixed ’t Hooft anomalies for the defect group. Since
the flux operators do not commute we cannot specify the asymptotic values for all fluxes
simultaneously: two steps are required

1. We need to choose a maximally isotropic subgroup L ⊂ Tor EM (∂M11) of fluxes that
can be simultaneously measured;

2. We need to choose a “zero flux” state, which corresponds to the unit eigenvalue

Ψx|0, L〉 = |0, L〉 ∀x ∈ L (1.12)

Then we obtain a basis for the geometric engineering Hilbert space parametrized by

|f, L〉 := Ψf |0, L〉 f ∈ FL := Tor EM (∂M11)
L

. (1.13)

A choice of background fluxes for the higher form symmetries of this theory corresponds
to fixing a state

|{af}〉 =
∑
f∈FL

af |f, L〉 (1.14)

whence the corresponding partition function is determined: the open manifold M11 can
be viewed as an element 〈M11| of HM (∂M11)∗ := Hom(HM (∂M11),C) so the partition
function is 〈M11|{af}〉 — see [8] for a more detailed version of this argument.

We stress that to fully specify a quantum field theory TVd
these two steps are required.

Indeed only in this case we end up with a partition function. Without specifying these
details, the geometric engineering Hilbert space knows only about the whole set of possible
theories that have the same local dynamics but different global structures. When we choose
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the theory corresponding to the state |0, L〉, the defects with charges in L are non-genuine,
while the ones with charges in FL are the genuine ones (see section 3.3 of [8]). When
we specify the state |0, L〉 this breaks the defect group D to the higher form symmetry
group of the genuine defects of the corresponding quantum field theory TVd

. The operators
Ψf generate background flux for the higher form symmetry associated to the genuine
operators. We can think of them as domain walls and of the states |f, L〉 as labeling
distinct superselection sectors.

To clarify this statement let’s consider the example of geometric engineering of 4d
N = 1 SYM with simple simply-laced Lie algebra gΓ where Γ ⊂ SU(2). The defect group
we obtain for this geometry is

D = Z(GΓ)(1)
M2 ⊕ Z(GΓ)(1)

M5 . (1.15)

We have an electric and a magnetic one form symmetry valued in the center of GΓ, the
universal cover group. These one-form symmetries of the geometric engineering Hilbert
space however have a mixed ’t Hooft anomaly: the corresponding charge operators do not
commute. More precisely, for fluxes labelled by ai = (ω ⊗ `)i ∈ H2(M4)⊗ Z(GΓ) we have

ΦM2,a1ΨM5,a2 = exp
(

2πi LΓ(`1, `2)
∫
M4

ω1 ∧ ω2

)
ΨM5,a2ΦM2,a1 (1.16)

where LΓ(`1, `2) is a perfect pairing in Z(GΓ) that is determined below — see table 1. Spec-
ifying a state now selects a surviving subgroup of D which become the 1-form symmetry for
the SYM quantum field theory. Consider for example the case Γ = ZN . For instance, we can
choose a maximal isotropic lattice LM2 generated by the M2 flux operators. Then the state
|0, LM2〉 corresponds to the theory PSU(N) = SU(N)/ZN and the wrappedM5 branes are
the genuine defects charged under the resulting magnetic 1-form symmetry. Conversely
choosing to set to zero all M5 fluxes we are selecting the state |0, LM5〉: we are preserving
the electric 1-form symmetry, thus leading to the theory with gauge group SU(N).

1.2 Summary of results and structure of this work

The structure of this work is as follows. As a simpler warm-up example, in section 2 we
discuss the case of 7d gauge theories with simple simply-laced lie groups G ∈ ADE; of
course, we find agreement with the global structure obtained by considering Wilson and
’t Hooft operators in the 7d side, and the global structure predicted by M-theory flux
non-commutativity. In section 3 we set the stage for our analysis of the global structure
of 5d SCFTs from M-theory on canonical CY singularities. In this work, for simplicity, we
consider geometries with some constraints on the cohomology which restrict the structure
of the models we analyze. As a result we obtain 5d defect groups of the form4

D =
(
Z(1)
M2 ⊕ Z(2)

M5

)
⊕
(
Z(−1)
M2 ⊕ Z(4)

M5

)
(1.17)

4In principle one could expect to obtain a further factor Z̃(2)
M2 ⊕ Z̃(1)

M5, for geometries with nontrivial
H1(V6) and H5(V6) that we assume to vanish for simplicity in chasing exact sequences.
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that often present very interesting global structures arising from the mechanism we have
outlined above. Here Z is an abelian discrete group given by the torsional part of the coker-
nel of the intersection matrix of the corresponding CY. Physically this intersection matrix
is associated to the Dirac pairing among the monopole strings and the BPS particles of the
SCFT in a Coulomb phase and Z measures the ’t Hooft charges of the defects. We begin
reviewing some field theory results, and then proceed determining the corresponding defect
groups from geometry first in general, and then focussing on the case of toric canonical
CY singularities, that are the main class of examples we use for this project. In section 4
the case of the 5d Yang-Mills theories with gauge algebra su(p) and Chern-Simons level
k is studied in detail, as a consistency check for our methods. In section 5 we discuss
applications of the higher form symmetries to the study of 5d dualities among different
gauge theory phases of 5d SCFTs. Exploiting consistency with dualities we extend (and
prove) a new purely graphical prescription to compute the defect groups for arbitrary toric
CY singularities. We proceed determining the defect groups for several examples of 5d
SCFTs with non-trivial flavor symmetries, corresponding to non-isolated singularities, that
we study in section 6. An interesting class of examples that we consider is given by the
higher rank generalizations of the E0 5d SCFT. We find that the corresponding geometry
gives a defect group

D = (Z2r+1)(1)
M2 ⊕ (Z2r+1)(2)

M5 (1.18)

with a nontrivial global structure with pairing 1/(2r + 1). From this result it follows that
there are as many inequivalent versions of the 5d E(r)

0 theories as there are inequivalent ver-
sions of su(2r+1) in 4d. These models enjoy different combinations of the electric/magnetic
1-form and 2-form symmetries in the defect group. In particular we have a purely electric
5d E

(r)
0 theory which has higher form symmetry Z(1)

2r+1 and a purely magnetic 5d E
(r)
0

theory that has higher form symmetry Z(2)
2r+1. These models have identical spectra of local

operators, but different properties which can be detected from the spectrum of nonlocal
operators. Using our results we show that the 5d trinions (the TN theories) have trivial
defect groups in agreement with a result by Tachikawa [69]. However, inspecting theories
that can be obtained by massive deformations of the TN theories it is easy to find models
that have much larger defect groups, for instance we find a family of models that have

D = (ZN2−3(N−1))
(1)
M2 ⊕ (ZN2−3(N−1))

(2)
M5 (1.19)

We conclude the discussion with some applications of 5d dualities and higher form symme-
tries to constrain the properties of the spectrum of operators of several strongly interacting
5d SCFTs that do not admit gauge theory phases. In section 7 we discuss some appetizer
about the case of 4d N = 1 theories arising from G2 spaces. We find that the defect group
of 4d N = 1 models from M-theory has the structure

D =
(
Z(1)
M2 ⊕ Z(1)

M5

)
⊕
(
Z̃(0)
M2 ⊕ Z̃(2)

M5

)
⊕
(
Z̃(−1)
M2 ⊕ Z̃(3)

M5

)
(1.20)

Exploiting this result we correctly reproduce the global structure of 4d N = 1 pure SYM
theories with gauge algebra g from geometry — these models have Z̃ = 0 and Z = Z(GΓ)
above. In general, however, 4d N = 1 theories admit a richer global structure consisting of
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two commuting Heisenberg algebras (Z 6= Z̃ above) we also discuss some of the implications
of this remark.

Note added. while this work was in preparation, we learned about [70] that overlaps
with some of our results. We thank the authors of that paper for agreeing to coordinate
the submission with us. Also, soon after this paper appeared in the arXiv the paper [71]
also appeared, where the global structure of 6d SCFTs coming from F-theory was studied.

2 Global structures of N = 1 seven-dimensional theories from M-theory

We start with the case of seven dimensional N = 1 theory with gauge algebra gΓ, with
Γ ⊂ SU(2) an ADE group.5 Such theories can be engineered by considering M-theory on
M11 =M7 × C2/Γ, with Γ a discrete subgroup of SU(2).6

From the field theory side, we expect to have a one-form symmetry measuring Wilson
lines, and a 7 − 3 = 4-form symmetry measuring ’t Hooft surfaces (which are operators
wrapping 4-surfaces in seven dimensions). Or slightly more generally, we have electric
charge operators of dimension 7− 1− 1 = 5, associated to elements of H2(M7), measuring
the flux that would be created by Wilson lines, and magnetic charge operators of dimension
7 − 4 − 1 = 2, associated to elements of H5(M7), measuring the flux created by ’t Hooft
surfaces. It is useful to make this distinction, since on manifolds of non-trivial topology it
is possible to introduce the fluxes without introducing the extended operators themselves.
These extended charge operators are valued on Z(GΓ), the centre of the universal cover of
any gauge group with algebra gΓ. For the ADE cases we have Z(GΓ) = Γab := [Γ,Γ], the
abelianization of Γ (see table 1 below).

Not all such higher form symmetries are present in any given theory simultaneously,
though: since the Wilson line operators are not mutually local with respect to the ’t Hooft
surfaces it is not possible to construct charge operators measuring all such charges at the
same time. What we can do instead is — as in [76, 77] — to choose a maximal set of
mutually local Wilson/’t Hooft operators, and declare that these are the genuine ones.

We refer to the choice of p-form charge operators present in the theory as a choice of
global form for the theory and an actual choice of flux for these operators as a background
for the p-form symmetry in that theory. If we sum over fluxes in H2(M7; Γab)m we would
have the GΓ/Γ theory (SU(N)/ZN , for instance, in this context the fluxes are often known
as the generalized Stiefel-Whitney classes of the bundle), with a 4-form symmetry, while
if we sum over H5(M7; Γab)e instead we have the GΓ theory (SU(N), for instance) with
a 1-form symmetry. We emphasize that in a purely perturbative presentation the notion
of “sum over fluxes in H5(M7; Γab)e” is somewhat formal, as there are no fields in the
Lagrangian that can detect these fluxes. Nevertheless this choice of language becomes very

5It is possible to consider non-simply-laced cases too in M-theory using frozen fluxes [72]. We assume
that no such fluxes are present, but it would be certainly be interesting to understand how the discussion
gets modified in this case.

6Recent results about the partition functions of seven-dimensional gauge theories on curved spaces [73–
75] should have an M-theory interpretation in terms of the M-theory Hilbert space HM (∂M11) associated
to this background.
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natural from the string theory point of view (and also for four dimensional theories with
electromagnetic duality, although we will not consider such examples in this paper), so we
will still adopt it.

Let us now discuss how to reproduce these results from the M-theory perspective, along
the lines of [8]. The key fact is that in the presence of torsion at infinity the boundary values
for the F4 and F7 fluxes do not commute [6–8]. The spaces in which we are engineering the
seven dimensional gΓ theory are non-compact, so strictly speaking they have no boundary,
but we will assume that whenever we have a space of the form M11 = Mp × C(N10−p),
with C(N10−p) asymptotically a cone over N10−p, then the right prescription for choosing
asymptotic values for the fields is to quantize the theory on Rt × M10, with M10 :=
Mp×N10−p, and to choose a state in the Hilbert space associated toM10. This prescription
has appeared previously in the context of AdS/CFT [78, 79], and it was shown in [8] to
lead to the right predictions in the context of six-dimensional SCFTs and N = 4 theories
in four dimensions.

We are (thankfully) only interested in the grading of the Hilbert space of M-theory by
topological class of the flux. In general, M-theory fluxes live on some cohomology theory
EM , which is known not to be ordinary (singular, say) cohomology. A rather dramatic effect
that can take us away from ordinary cohomology is that there is a shifted flux quantization
condition [80]: [

G4
2π

]
− p1(M11)

4 ∈ H4(M11;Z) (2.1)

with p1(M11) the first Pontryagin class of the tangent bundle of M11. Fortunately this
shifted quantization condition will not affect our discussion in any significant way, since
p1(Mp × C(N10−p)) = p1(Mp) + p1(C(N10−p)), which has legs either purely along Mp or
C(N10−p). The fluxes of interest to us, on the other hand, have legs along both components.
(An exception to this statement are fluxes associated with (−1)-form symmetries that we
will encounter below, but in this paper we will not try to understand these in any detail.)
Due to this fact we will use ordinary singular cohomology in our calculations below.7

The screening argument we discussed in the introduction gives the following defect
group for the geometric engineering Hilbert space of this theory

D = Z(GΓ)(1)
M2 × Z(GΓ)(4)

M5 (2.2)

Given flux operators ΦM2,a with a ∈ TorH4(M10) and ΨM5,b with b ∈ TorH7(M10)
(measuring torsional M2 and M5 charge, respectively) we have that [6, 7]

ΦM2,aΨM5,b = e2πiL(a,b)ΨM5,bΦM2,a (2.3)
7The shifted quantization condition (2.1) is not necessarily the only issue with using singular cohomology,

see for instance [81] for a discussion of further subtleties, and a proposal for a generalized cohomology
theory taking them into account. The good agreement between the results from singular cohomology
and field theory in the examples below encourages us to think that, at least in the simple backgrounds
that we consider, our assumption for EM is correct, but it would certainly be interesting to try and find
sufficiently complicated backgrounds where singular cohomology is not enough, and understand the field
theory implications of this fact.

– 7 –



J
H
E
P
1
2
(
2
0
2
0
)
2
0
3

where
L : TorH4(M10)× TorH7(M10)→ Q/Z (2.4)

is the linking pairing in M10. The space C2/Γ is a cone over S3/Γ, and Γ acts freely on
the S3, therefore in the case at hand M10 = M7 × (S3/Γ). Assuming that M7 has no
torsion we can apply the Künneth formula

Hn(M7 × (S3/Γ)) =
∑
i+j=n

H i(M7)⊗Hj(S3/Γ) . (2.5)

Since
H•(S3/Γ) = {Z, 0,Γab,Z} , (2.6)

this implies that
TorH4(M10) = H2(M7)⊗ Γab = H2(M7; Γab) (2.7)

and
TorH7(M10) = H5(M7)⊗ Γab = H5(M7; Γab) . (2.8)

Writing, accordingly, a = α ⊗ `a and b = β ⊗ `b, with α ∈ H2(M7), β ∈ H5(M7) and
`i ∈ H2(S3/Γ) = Γab, we have

L(a, b) = (α · β)LΓ(`1, `2) (2.9)

with LΓ the linking form in S3/Γ. The general form for LΓ is given in [82] — see table 1.
For instance consider the case Γ = ZN , corresponding to the su(N) theories in seven
dimensions. We have Γab = [ZN ,ZN ] = ZN , with a linking form

LΓ(1, 1) = 1
N

mod 1 . (2.10)

This implies that the flux operators in this theory will not commute, indicating the defect
group of this theory suffers from a mixed ’t Hooft anomaly. In particular, this entails that
some care is needed when choosing boundary conditions. Choose a basis of the Hilbert
space that diagonalizes Φa, for instance.8 Namely:

Φa |b〉 = e2πiL(a,b) |b〉 (2.11)

with b ∈ TorH7(M10). On the other hand, the states in this basis do not diagonalize Ψb

Ψb′ |b〉 =
∣∣b+ b′

〉
. (2.12)

There is analogously a basis of states |a〉, with a ∈ TorH4(M10) that diagonalizes the Ψb

operators. The two choices for the basis are related by a discrete Fourier transform:

|a〉 =
∑
b

e2πiL(a,b) |b〉 . (2.13)

8That is, choose a basis for the Hilbert space which is the unique representation, by the Stone-von
Neumanm theorem, of the Heisenberg group generated by the flux operators. We refer the reader to [83]
for further background material on this topic, and to [69] for a clear illustration is a related context.
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Γ GΓ Γab LΓ

ZN SU(N) ZN 1
N

Dic(4N−2) Spin(8N) Z2 ⊕ Z2

 0 1/2
1/2 0


Dic(4N−1) Spin(8N + 2) Z4

3
4

Dic(4N) Spin(8N + 4) Z2 ⊕ Z2

1/2 0
0 1/2


Dic(4N+1) Spin(8N + 6) Z4

1
4

2T E6 Z3
2
3

2O E7 Z2
1
2

2I E8 0 0

Table 1. Linking pairings for GΓ.

For instance, consider choosing a state |0, LM5〉 such that Ψb |0, LM5〉 = |0, LM5〉 for all
b ∈ H7(M10). This corresponds to setting all M5-brane fluxes to 0, so that the M2 branes
are genuine operators. In the seven dimensional theory we can interpret this choice as being
in the SU(N) theory, with no background fluxes for the 1-form symmetry of this theory
turned on, where the line operators coming from the wrapped M2 branes are genuine.

If, on the other hand, we choose our boundary conditions to be given by a state |0, LM2〉
such that Φa |0, LM2〉 = |0, LM2〉 for all a ∈ H4(M10), then our background will be in a
superposition of all possible background fluxes for the M5-brane charge, since due to the
properties of the Heisenberg algebra a change of basis from the electric to the magnetic
basis is a discrete Fourier transform:

|0, LM2〉 =
∑

a∈H4(M10)
|a, LM5〉 . (2.14)

In terms of the seven dimensional theory, this implies being on a superposition of all possible
values for the Stiefel-Whitney classes, or in other words choosing the SU(N)/ZN global
form for the theory, having gauged the one-form symmetry of the SU(N) theory. Notice
that, as a consequence of this gauging, the resulting theory has a magnetic Z(4)

N higher
symmetry.

3 Higher form symmetries and non-commutative fluxes for 5d SCFTs

The story is fairly similar for five dimensional theories engineered fromM-theory on singular
Calabi-Yau threefolds, but the possibilities in geometry and field theory are much richer.
For concreteness, we will focus on geometries of the kind M5 × V6, whereM5 is a closed
Spin manifold without torsion, and V6 a non-compact Calabi-Yau threefold, given by the
cone over some Sasaki-Einstein manifold Y5. In order to make further progress below we
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will assume some additional conditions on V6, namely that H2n+1(V6) = 0 for all n, and
that TorH2n(V6) = 0 for all n. Toric Calabi-Yau threefold varieties are an important class
of examples that satisfy these requirements, and we will focus mostly on these below (but
the ideas generalize straightforwardly to other cases, such as cones over higher del Pezzo
surfaces).

3.1 Field theory analysis

Let us first describe the expectations from field theory, in analogy with the seven-
dimensional discussion above. In the five dimensional theory we will have line and surface
operators, which we will call Wilson lines and ’t Hooft surfaces, following the standard
terminology in the cases with a Lagrangian description. The charge of these objects is
measured on three-dimensional and two-dimensional surfaces linking the respective objects
inM5. Equivalently, depending on the global structure that we choose for the theory, we
have 1-form symmetries with background fluxes valued on H2(M5; Z), 2-form symmetries
with background fluxes valued on H3(M5; Z), or combinations of both. Here Z is a group
that in the cases with a Lagrangian is given by the subgroup of the universal cover of the
gauge group that leaves all point operators invariant, as in [77]. For instance, if we have a
5d Yang-Mills theory with algebra su(N) and matter in the adjoint, we have that Z = ZN .

As in the seven dimensional case not all of these symmetries are simultaneously present
in any given theory, and one cannot independently introduce background fluxes for all of
them. Rather, we need to choose a maximal mutually local set of extended operators,
and introduce fluxes only for those. In the Lagrangian context, this choice is a choice
of the global form for the gauge group. For instance, if the algebra is su(N), a possible
choice of global form is given by SU(N)/ZN , where we sum over all background fluxes
in H2(M5;ZN ) — that is, we sum over Stiefel-Whitney classes. Alternatively we could
sum over bundles in H3(M5;Z2). (As remarked above, the sum is not visible in the usual
Lagrangian presentation.)

An interesting feature of five dimensional theories is that instanton configurations
behave very much like particles. In the presence of a Chern-Simons coupling (for group
theory reasons, this coupling is only available for su(N) with N > 2)

SCS = k

∫
ΩA (3.1)

where ΩA is the Chern-Simons form, these particles can potentially acquire a charge under
the center of the gauge group. If this happens, then the higher form symmetry of the
SU(N) theory can be (partially) broken, in the same way that ordinary matter in generic
representations breaks the symmetry. Our task below will be to compute the charge of these
particles under the center of the SU(N) gauge group, but the form of the coupling (3.1)
suggests that the right answer will be that in the presence of such a coupling instanton
particles acquire a charge k under the ZN center of the SU(N) theory. One heuristic
way to argue for this is that an instanton background becomes, in the point-like limit
Tr(F 2) = δ4(~x), with ~x the directions transverse to the instanton, so the Tr(A ∧ F 2) term
in ΩA becomes an integral of A over the worldline of the instanton particle, so the Chern-
Simons level k can be identified with the charge of the particle. We will give below a
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more careful argument that shows that this is indeed the right result in the theories that
we study. This implies that the center of a SU(N) theory at level k is broken down to
Zgcd(N,k) due to the charge of the instanton particles.9

The case of SU(2) is somewhat special: in this case ΩA vanishes identically, but we
can introduce a discrete θ-term, given by 0 or 1 multiplied by the mod-2 index (or equiva-
lently, the η invariant) of a fundamental fermion coupled to the SU(2) bundle that we are
introducing. This coupling has the same effect as above: whenever the coefficient of the
coupling is nonzero we find that the center of SU(2) is broken by the charge of instanton
particles. (We will again give a detailed argument for this fact below.) This observation
generalizes to the USp(2N) theories: in these cases there is a nontrivial bordism group
of Spin manifolds decorated with principal USp bundles, ΩSpin

5 (BUSp(2N)) = Z2 (see for
instance [84] for a simple derivation). The non-trivial element in this bordism group can
be detected by computing the η invariant of a fermion in the fundamental representation,
so one can couple a USp(2N) theory to the SPT defined by this bordism invariant to intro-
duce a discrete θ angle. Below we will only check explicitly that this coupling to a TQFT
induces a charge under the Z2 center for instanton particles for SU(2), but this is actually
enough to show that this must also happen for USp(2N) with N > 1, since in 5 dimensions
every USp(2N) bundle can be reduced to a USp(2) bundle,10 and the centers of USp(2N)
and any USp(2) subgroup can be identified canonically.

3.2 M-theory and higher form symmetries

We now want to understand the previous gauge theory discussion in terms of the M-
theory engineering of the relevant 5d theories. The line and surface operators of the five
dimensional operator will come from M2 and M5 branes wrapping suitable non-compact
cycles in the internal toric Calabi-Yau threefold. As in the seven dimensional case, we
classify which of these operators can be simultaneously taken to be genuine by looking to
a maximal choice of commuting fluxes on the boundary ∂M11 (which, recall, has topology
M5 × Y5 in our case, with Y5 a Sasaki-Einstein manifold). The non-trivial part of the flux
commutation relations will come from the pairing

L : TorH4(∂M11)× TorH7(∂M11)→ Q/Z . (3.2)

We will show momentarily that Y5 only has torsion in H1(Y5) = H4(Y5) (or equivalently,
by the universal coefficient theorem [86], in H3(Y5) = H2(Y5)). Together with the fact
that ∂M11 = M5 × Y5, with M5 torsion-free, this implies that we can use the Künneth

9Denote by p the order of the surviving group. By Lagrange’s theorem p divides N , so the subgroup is
generated by N/p. For this element to leave a particle of charge k invariant we need that kN/p ≡ 0 mod
N , or equivalently that p divides k.

10The obstruction for reducing USp(2N + 2) bundles to USp(2N) bundles in d dimensions lives in
πi(USp(2N + 2)/USp(2N)) for i < d (see [85] for a review of the relevant facts for physicists). But
USp(2N + 2)/USp(2N) ≈ S4N+3, so the obstructions to reducing to USp(2) vanish for d < 8.
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formulas

TorH4(∂M11) =
(
H2(M5)⊗ TorH2(Y5)

)
⊕
(
H0(M5)⊗ TorH4(Y5)

)
, (3.3a)

TorH7(∂M11) =
(
H3(M5)⊗ TorH4(Y5)

)
⊕
(
H5(M5)⊗ TorH2(Y5)

)
. (3.3b)

Poincaré duality, together with the universal coefficient theorem, implies that TorH2(Y5) =
TorH4(Y5). For conciseness, let us define

Z := TorH3(Y5) = TorH2(Y5) = TorH4(Y5) = TorH1(Y5) . (3.4)

(In Lagrangian theories Z will be the center of the simply connected group with the given
algebra.) The defect group for these geometries is

D =
(
Z(1)
M2 ⊕ Z(2)

M5

)
⊕
(
Z(−1)
M2 ⊕ Z(4)

M5

)
. (3.5)

Under the assumption that M5 is torsion-free, the universal coefficient theorem implies
that H i(M5) ⊗ Z = H i(M5; Z), so the first terms on the right hand side are the ones
we had anticipated from our field theory analysis above. We see that in the M-theory
language these cohomology groups parametrize the flux operators measuring the fluxes
created by M2 branes wrapping non-compact two-cycles in V , and M5 branes wrapping
non-compact four-cycles in V , respectively, as one would have expected. The last two
terms correspond to (−1)-form and 4-form symmetries, which are somewhat more exotic
from the field theory point of view, and we will ignore them in our analysis. (See [87–89]
for recent work exploring such symmetries from the field theory point of view.)

For our purposes it will be convenient to work with a smoothed out and compactified
version of the geometry. Denote by Ṽ6 some smooth crepant resolution of V6 (it does not
matter which one), and introduce X6 := B6 ∩ Ṽ6, where B6 is a sufficiently large ball
containing the exceptional set of Ṽ6. Branes extending from the origin to infinity in V6
will map to branes extending to the boundary of X6. We have that Hi(Ṽ6) = Hi(X6), and
since (topologically) Y5 = ∂X6 we have a long exact sequence of the form

. . .→ Hn(Y5)→ Hn(X6)→ Hn(X6, Y5)→ Hn−1(Y5)→ . . . (3.6)

The physical interpretation of this long exact sequence in our physical context is as follows:
branes wrapped on Hn(X6) give rise to dynamical objects in the theory. Branes going to
infinity will be associated to elements of the relative homology groups Hn(X6, Y5): these are
defined to be those cycles in X6 that are closed, modulo cycles living on Y5. These branes
wrapping non-compact cycles give rise to defects in the theory, whose lattice of charges is
given precisely by this group. However, physically, we are only interested in the charges
that survive ’t Hooft screening by dynamical operators, mathematically this is encoded in
the fact that we only care about the quotient Hn(X6, Y5)/Hn(X6), or equivalently that
we only need to know about the homology class of the intersection of the non-compact
cycle with the boundary, namely Hn−1(Y5). (The long exact sequence does not necessarily
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truncate on Hn−1(Y5) in general, so this statement would need correction in those cases in
which it doesn’t, but the truncation does take place in all cases of interest to us.)

Next, we use Lefschetz duality [86] to rewrite

Hk(X6, Y5) = Hn−k
c (X6) . (3.7)

We will assume that X6 is torsion free (which is true, in particular, for toric varieties [90–
92]), so by the universal coefficient theorem for cohomology we get

Hk(X6, Y5) = Hn−k
c (X6) = Hom(Hn−k(X6),Z) . (3.8)

If we now assume that H2n+1(X6) = 0 (which is again true in the special case of toric
varieties [90–92], but also more generally), the long exact sequence (3.6) reduces to

0→ Hom(H0(X6),Z)→ H5(Y5)→ 0 , (3.9a)

0→ H4(Y5)→ H4(X6) Q4−−→ Hom(H2(X6),Z) ∂4−→ H3(Y5)→ 0 , (3.9b)

0→ H2(Y5)→ H2(X6) Q2−−→ Hom(H4(X6),Z) ∂2−→ H1(Y5)→ 0 , (3.9c)
0→ H0(Y5)→ H0(X6)→ 0 , (3.9d)

where, the homomorphisms Qk : Hk(X6)→ Hom(H6−k(X6),Z) are given by partial evalu-
ation of the intersection forms

qk : Hk(X6)×H6−k(X6)→ Z (3.10)

with k = 2, 4. That is, Qk(x)(y) = qk(x, y). Note that Q4 = Qt2. It follows from these
exact sequences that H0(Y5) = H5(Y5) = H0(X) = Z, and that

H4(Y5) = ker(Q4), H3(Y5) = coker(Q4),
H2(Y5) = ker(Q2), H1(Y5) = coker(Q2),

(3.11)

so finally
Z = Tor coker(Q4) = Tor coker(Q2) . (3.12)

Having understood the space of charge operators for the five dimensional theory, we
still need to find their commutation relations. This follows straightforwardly from (2.3),
in a way very analogous to (2.9). Writing a = α⊗ Σa and b = β ⊗Db, with α ∈ H2(M5),
β ∈ H3(M5), Σa ∈ TorH2(Y5) and Db ∈ TorH4(Y5), we have

L(a, b) = (α · β)LY5(Σa, Db) (3.13)

with LY5 the linking form in Y5, a perfect pairing

LY5 : TorHk(Y5)× TorH5−k+1(Y5)→ Q/Z . (3.14)

We can derive LY5 from knowledge of the intersection matrix Q4 = Qt2 as follows. Let σ ∈
TorH3(Y5) and σ̄ ∈ TorH1(Y5), and choose µ ∈ Hom(H2(Y5),Z) and µ̄ ∈ Hom(H4(Y5),Z)
such that, ∂4µ = σ and ∂2µ̄ = σ̄. Then, for non-trivial TorH3(Y5) and TorH1(Y5), there
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are non-zero integers n and m such that ∂(nµ) = nσ = 0 and ∂̄(mµ̄) = mσ̄ = 0. Thus, we
may pick ν ∈ H4(X6) and ν̄ ∈ H2(X6) such that, Q4ν = nµ and Q2ν̄ = mµ̄. The linking
pairing is then11 [93]

LY5(σ, σ̄) ≡ 1
nm

q(ν, ν̄) mod 1 . (3.15)

This may be equivalently written as

LY5(σ, σ̄) ≡ q−1(µ, µ̄) mod 1 , (3.16)

where q−1 : Hom(H2(X6),Z) × Hom(H4(X6),Z) → Q. More explicitly, this means that,
if α′∗i is a generator of Hom(H2(X6),Z) and β

′∗
j is a generator of Hom(H4(X6),Z) such

that ∂α′∗i is the generator of TorH3(Y5) and ∂̄β′∗j is the generator of TorH1(Y5) then, the
linking number is just the (i× j)th element of q−1:

LY5(∂α′∗i , ∂̄β
′∗
j ) = q−1(α′∗i , β

′∗
j ) = q−1

ij mod 1 . (3.17)

The appendices contain various worked out examples of the application of this relation,
which encodes the discrete mixed ’t Hooft anomaly coefficients for defect groups associated
to the higher form symmetries of 5d SCFTs.

3.3 The case of toric Calabi-Yau varieties

An important special case of the previous discussion is that when V6 is a toric Calabi-Yau
variety. (We refer the reader to [94–97] for systematic reviews of toric geometry.)

The crepant resolution Ṽ6 is obtained by choosing a triangulation for the toric diagram.
As mentioned above, the odd dimensional homology groups of a toric variety vanish, and the
even homology groups for X6 can be easily obtained by looking at the toric diagram for V6.
Let I be the number of points in the interior of the diagram and B be the number of points
on the edges of the diagram. Then the number of 4-cycles is I, and since V6 is connected the
number of 0-cycles is 1. The Euler characteristic of the Calabi-Yau equals to the number of
2-dimensional faces of the resolved toric diagram [98], which is twice the area A of the toric
diagram. The Euler characteristic also equals the number of even-dimensional cycles minus
the number of odd-dimensional cycles. We know by Pick’s theorem that 2A = 2I +B − 2,
so the number of 2-cycles is I +B − 3, so we have

H0(X) = Z, H2(X) = Z(I+B−3), H4(X) = ZI , H6(X) = 0 . (3.18)

One can also compute Q4 (or equivalently Q2) in toric varieties quite conveniently
purely in terms of the toric data. What one needs to construct is the Mori cone of effective
curves in the toric variety, and find their intersections with the compact divisors, which
are manifest in the toric description as points in the interior of the toric diagram. Well
developed algorithms for doing this exist, reviewed for example in [95], and implemented
for instance in Sage [99]. As an example, consider the Calabi-Yau cone over F0 = P1×P1.
This geometry can be alternatively described as the (real) Calabi-Yau cone over Y 2,0. Its

11Note that we use q and qt interchangeably. It should be clear from the context which one we mean.
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toric diagram has external vertices pi = {(1, 0), (−1, 0), (0, 1), (0,−1)}, and an internal
vertex at t = (0, 0). Its Mori cone is generated by two curves C1, C2 with intersection
matrix with the toric divisors given by

V (p1) V (p2) V (p3) V (p4) V (t)
C1 1 0 1 0 −2
C1 0 1 0 1 −2

(3.19)

We have included all toric divisors here, but the V (pi) divisors are non-compact. The
divisor V (t) is compact, on the other hand, so we find that

Q2 =
(
−2 −2

)
(3.20)

and we predict that
Z = Tor coker(Q2) = Z2 . (3.21)

We will see below that this result agrees with the expectation from field theory: the defect
group in this case is

D = Z(1)
2 ⊕ Z(2)

2 . (3.22)

All the results below can be derived using these methods, but in practice it is much
more efficient to use instead a method introduced (to our knowledge) in [100], which avoids
the need to introduce a triangulation or computing the Mori cone. Consider a toric Calabi-
Yau cone with an isolated singularity, and v external vertices. (In section 5.2 we will derive
a modified form of the method in [100] valid for non-isolated singularities.) In terms of
the toric diagram, this means that there are no lattice points along the edges of the toric
diagram. As argued in [100], one has that

Hi(Y5) = Hi(BL
3 ) for i ≤ 2 , (3.23)

where BL
3 is a chain of lens spaces Ln1 , . . . , Lnv , joined at their torsion cycle, constructed as

follows. For each external vertex pi, i ∈ {1, . . . , v}, construct the triangle Ti defined by the
vertex and the two vertices adjacent to it, that is, the convex hull of {pi−1, pi, pi+1} (with
p0 := pv and pv+1 := p1). Then ni = 2Area(Ti). Additionally, one can show that [100]

H1(BL
3 ) = Zgcd(n1,...,nv) , (3.24)

so we find that in the toric case
Z = Zgcd(n1,...,nv) (3.25)

Coming back to our CR(Y 2,0) example, we have four triangles, all of unit area. So

Z = Zgcd(2,2,2,2) = Z2 . (3.26)

4 su(p)k theory

We will now apply the previous results to a simple set of cases: su(p) theories at Chern-
Simons level k.
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•v−1 · · ·
•v

•1
...

•2 •3
1 2

3

...
...

v-1

v

Figure 1. Schematic topology of BL
3 [100].

(0,p)
•

•

... •
(1,l)

•

•
(−1,0)

•
(0,0)

Figure 2. Toric diagram for Y p,q. We have defined l ≡ p− q.

4.1 Toric realization and geometric computation

It is well-known that su(p)k theories can be obtained exploiting canonical CY singularities
that are cones over Sasaki-Einstein manifolds of Y p,q type (see, for instance, [41] for a
recent account and [101] for the original analysis of these geometries). Let us introduce for
convenience q := −k, and we will assume 0 ≤ q < p. We show the resulting toric diagram
in figure 2.

From our general discussion above, we need to compute TorH2(Y p,q) = TorH4(Y p,q),
together with the linking pairing, in order to determine the Heisenberg group encoding the
higher symmetries of the theory. Whenever p and q are relatively prime, we have that [101]
Y p,q is topologically S2 × S3, so there is no torsion. So in these cases there is no choice of
global structure for the field theory. More interesting is the case where gcd(p, q) 6= 1. We
can compute the relevant torsion groups following the general prescription in section 3.3
as follows. Choose an ordering of the external points of the toric diagram in figure 2 such
that adjacent points are consecutive. For instance, choose

{p1, p2, p3, p4} = {(−1, 0), (0, 0), (1, l), (p, 0)} . (4.1)

Define now the triangles Ti, i ∈ {1, . . . , 4}, as the convex hull of {pi−1, pi, pi+1} (with
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(0,p)
•

•

... •
(1,l)

•

•
(−1,0)

•
(0,0)

Figure 3. One of the triangles defined in the text.

p0 := p4 and p5 := p1). We show the triangle T2 in figure 3 as an example. We have that

TorH2(Y p,q) = TorH4(Y p,q) = Zgcd(n1,n2,n3,n4) (4.2)

where ni is defined as twice the area of Ti. It is elementary to show that ni = {p, l, p, 2p−
l} = {p, p− q, p, p+ q}, which implies that

Z = TorH2(Y p,q) = TorH4(Y p,q) = Zgcd(p,q) . (4.3)

We show in appendix B.1 that the linking pairing LY p,q : TorH2(Y p,q) × TorH4(Y p,q) →
Q/Z is

LY p,q (1, 1) = − 1
gcd(p, q) mod 1 . (4.4)

In the case that the Chern-Simons level k vanishes this leads to Z = Zp, which is the
expected result for pure N = 1 su(p)0 theory in five dimensions. This theory admits a
number of global variants, for instance SU(p)0 or PSU(p)0 := SU(p)0/Zp. The classification
of all such global forms proceeds just as in the case of su(p) theories in four dimensions [77],
so we will not delve on it further. The case with k 6= 0 is more subtle, and we turn to it now.

4.2 Non-vanishing Chern-Simons levels and the charge of instanton particles

We would now like to reproduce the M-theory results above from a field theoretical per-
spective, particularly in the case q > 0. We will see that the instanton particles are charged
under the center Zp of the gauge group, so they will break this group to the subgroup under
which the instanton particles are uncharged.

In order to determine the charge of the instanton particles, note that the instanton
particles will arise in M-theory from M2 branes wrapping holomorphic curves in the ge-
ometry. On the other hand, the center of the gauge group lies in the orbit of the Cartan
generators, which can be understood geometrically in terms of divisors in the M-theory
picture. So, in this context, the charge of the instanton particles will be encoded in an
intersection of the effective curve that the instanton is wrapping with some suitably chosen
combination of divisors.
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(0,p)
•

•

• •
(1,l)

•

•
(−1,0)

•
(0,0)

Figure 4. Triangulation of Y p,q considered in the text.

It is useful to choose the triangulation of the C(Y p,q) geometry given in figure 4.
Denoting the points at (0, i) by Ii, the cones of this triangulation are of the form (p1, Ii, Ii+1)
and (p3, Ii, Ii+1). The instanton particles are naturally associated to the curves Ci :=
DIi ·DIi−1 , with DIi the toric divisor associated to the point Ii, and i ∈ {1, . . . , p}. On the
other hand, the Cartan generators are associated to the interior points: for each compact
four-cycle D in the geometry we have a Poincaré dual harmonic two-form PD[Di], and
dimensional reduction of C3 along these harmonic forms gives rise to the gauge bosons in
the Cartan of the five dimensional theory. In the geometry at hand the compact four-cycles
are generated by the toric divisors associated to the interior points Ii, i ∈ {1, . . . , p − 1}.
The charge of a curve C under the U(1) Cartan associated to the divisor is then simply

Qi(C) =
∫
C

PD[DIi ] = DIi · C . (4.5)

We are only interested on a very specific element of the Cartan of SU(p), the generator
of the Zp center of the group. This generator is of the form

gZ =


ωp

ωp
. . .

ωp

 (4.6)

with ωp = exp(2πi/p). On the other hand, it is natural to choose an embedding of the
U(1) subgroups associated to the Di into SU(p) of the form

g1(α) =



eiα

e−iα

1
1
. . .


; g2(α) =



1
eiα

e−iα

1
. . .


. . . gp−1(α) =



1
. . .

1
eiα

e−iα


.

(4.7)
(One reason that this embedding is natural is that the DIi geometrically parametrize
separation of the Cartan branes in a U(p) stack, and each Cartan brane in the U(p) theory
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naturally embed as diag(1, . . . , 1, eiα, 1, . . .).) We can write

gZ =
p−1∏
k=1

(gk(2π/p))k . (4.8)

So if we want to measure the charge of a curve C under the generator gZ of the center of
SU(p), we can define a divisor Z :=

∑p−1
k=1 kDIk

, and the charge will be given by

QZ(C) ≡ C · Z =
p−1∑
k=1

k C ·DIk
mod p (4.9)

where we have used the fact that the charge under the centre is defined modulo p.
We thus only need to determine the charge of the instanton particles associated to Cj

under the Cartan associated to DIi . We denote this by Qi(Cj). It is straightforward to
compute from the toric data, and it was also obtained using field theory methods in [41].
Either way, one obtains

Qi−1(Ci) = (p− q − 2i)
Qi(Ci) = −(p− q − 2(i− 1))

(4.10)

with all other charges vanishing. The charge under the centre is thus

QZ(Ci) ≡ (i− 1)(p− q − 2i)− i(p− q − 2(i− 1)) ≡ q mod p . (4.11)

So we obtain the result (that one might have guessed from the form of the Chern-Simons
coupling in the first place) that instanton particles have charge q under the center of SU(p).
Recalling that the subgroup of Zp preserved by a particle with charge q is precisely gcd(p, q),
we reproduce the result from the geometric computation above.

There is one last remaining subtlety to take care of: we have just shown that there
are instantonic particles have charge q mod p, but it could in principle be possible that
there is some class of particles with charge different from q or 0 under Zp, which would
change the result. It is not difficult to show that this is not the case, as follows. Every
particle will wrap an effective curve in the geometry, or in other words a curve in the Mori
cone of the toric variety. This Mori cone is finitely generated, we give a set of generators in
appendix A. It is a simple exercise, using the ideas above, to show that all the generators of
the Mori cone found there have charge 0 or q under Zp, so the same will hold for any curve
in the Mori cone. So we can conclude that the Zgcd(p,q) 1-form symmetry is not broken any
further by M2 brane states.

4.3 Adding fundamental matter

As a final check of our formalism, let us consider the case of the SU(p)q theory with
a hypermultiplet in the fundamental representation. This theory can be engineered by
considering the geometry in figure 5 [102]. It is related by adding a triangle to the Y p,q

toric diagram. Note that the added triangle is of minimal area, which implies that there
is no torsion in the horizon manifold for this geometry, so we will have that Z is trivial,
reproducing the field theory expectation that upon addition of a flavor in the fundamental
representation the higher form symmetry is broken.
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(0,p)
•

•

... •
(1,l)

• •

•
(−1,0)

•
(0,0)

Figure 5. Geometry realizing su(p) with one flavor. We show the added triangle, which is of
minimal area.

5 Higher form symmetries and 5d duality

Often massive deformations of a 5d SCFTs can give rise to gauge theory phases [16]. A
given 5d SCFT can admit several such phases related to inequivalent effective gauge theories
thus resulting in a so called 5d “duality” [19, 102] (see also [45] for a huge list of novel such
dualities predicted using geometric engineering). Here we use the word duality in quotes
to emphasize that this is not a duality in any conventional field theoretical sense, rather
the manifestation that the Coulomb phases of certain effective gauge theory description
of a relevant deformation of a 5d SCFT happen to overlap [41]. Higher form symmetries
provide an interesting consistency condition: these deformations are neutral with respect
to the higher forms of the SCFTs, and therefore different 5d dual gauge theories must have
the same higher form symmetries.

In this section we illustrate some examples of this consistency checks building upon a
field theory analysis. As many of these examples have also nontrivial nonabelian 0-form
symmetry groups, the corresponding geometries typically have corresponding curves of
singularities, and our prescription to compute the center symmetry must be modified to
include non-isolated singularities. Having at our disposal several gauge theory examples,
it is easy to conjecture a modified prescription that works in this case and reproduces all
the field theoretical results. After motivating the conjecture from physical considerations,
we will prove that it is indeed correct.

5.1 The beetles

Consider the 5d duality

SU(2)π × SU(2)π ←→ SU(3)0 Nf = 2 (5.1)

which can be understood from the corresponding geometry as follows. The 5d SCFT from
which this 5d duality originates is realized as a TV6 where V6 is the toric CY singularity
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with toric diagram
• •

• ◦ ◦ •

• •

(5.2)

the so called ‘beetle geometry’ [41]. The SU(2)×SU(2) phase can be characterized via the
vertical reduction/ruling (see [18] for the original analysis and [41] for some recent results)

• •

• ◦ ◦ •

• •

2◦ 2◦

(5.3)

The SU(3) Nf = 2 phase can be characterized via the horizontal reduction/ruling

• •
1
�

• ◦ ◦ • 3◦

• •
1
�

(5.4)

From this latter perspective it is clear that this model cannot have higher form symmetries:
the fundamental of SU(3) has unit charge with respect to the center of the gauge group, and
therefore the corresponding one form symmetry is broken. However, from the perspective
of the SU(2)× SU(2) phase, it might seem that we still have a one form symmetry: indeed
via the isomorphism

SU(2)× SU(2) ' Spin(4) (5.5)

we can identify the bifundamental (2, 2̄) as a 4v, which has charge (1, 0) with respect to
the Z2 × Z2 center of Spin(4). For this reason one might expect to have a surviving Z2
factor. The solution of this conundrum is given by realizing that we have a non-trivial
discrete theta term for the two SU(2) factors in this theory. Geometry clearly encodes this
fact: recall that the singularity obtained by shrinking a dP1 surface to zero size corresponds
to the SU(2)π gauge theory, that has a nontrivial discrete theta angle (and no one form
symmetry, as we showed in section 4). Cutting the toric diagram open along the dotted
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diagonal

• •

• ◦ ◦ •

• •

←→

• •

• ◦

•

+

•

◦ •

• •

(5.6)

we clearly see that we can identify the two gauge theory subsectors with SU(2)π theories
that have a trivial Z2 one-form symmetry: because of the discrete theta term, the corre-
sponding BPS instantons are charged with respect to the center of the gauge group and
break the diagonal Z2. This result clearly matches our prescription: the defect group for
this geometry is trivial, since this geometry has outer triangles of minimal area.

This argument generalizes to the case of other quiver theories. As an example let’s
consider the duality

SU(2)π × SU(2)0 × · × SU(2)0︸ ︷︷ ︸
N−2 times

×SU(2)π ←→ SU(N + 1) Nf = 2N − 2 . (5.7)

The 5d SCFT from which this 5d duality originates is realized as a TV6 where V6 is the
toric CY singularity with toric diagram

• • · · · • •

• ◦ ◦ · · · ◦ ◦ •

• • · · · • •

︸ ︷︷ ︸
N times

(5.8)

From the horizontal reduction it is manifest that we do not have any residual one-form
symmetry: we obtain an SU(N + 1) theory coupled to matter in the fundamental, which
completely breaks the center symmetry, which is manifest from the following horizontal
reduction/ruling

• • · · · • •
N−1
�

• ◦ ◦ · · · ◦ ◦ • N+1◦

• • · · · • •
N−1
�

︸ ︷︷ ︸
N times

(5.9)
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From the vertical reduction one obtains a quiver SU(2) gauge theory with bifundamental
matter, therefore naively one could expect to preserve an overall diagonal Z2 action. Also
in this case geometry reveals the presence of discrete theta terms: proceeding as above we
can cut open this geometry in a way compatible with the ruling associated to the SU(2)
quiver description

• •

• ◦

•

+

• •

◦

• •

· · ·

• •

◦

• •

+

•

◦ •

• •

(5.10)

which corresponds to the surface-quiver diagram

dP1 F0 · · · F0 dP1 (5.11)

and the two SU(2) factors at the end of the quiver tails carry a nontrivial discrete theta
term. For this reason the corresponding instantonic BPS states are charged with respect
to the center symmetry thus breaking the overall diagonal Z2.

5.2 Dualities and modified prescription for non-isolated toric singularities

The example above corresponds to geometries that have curves of singularities giving rise
to a non abelian SU(2N − 2)(0) global symmetry. The corresponding singularity is non-
isolated, and therefore the prescription we introduced in section 3.3 to compute the defect
groups geometrically needs to be slightly modified. Motivated by the discussion above, it is
natural to conjecture that whenever the geometry has non-compact curves of singularities
corresponding to marked points on an outer edge of the toric diagram, the only triangles
Ti = 〈pi−1, pi, pi+1〉 that should be included in the computation are those where pi is not
along an edge of the toric diagram. We will call the vertices appearing in such triangles
“good” outer vertices. Let us consider the above example: the good outer vertices are
in green

• • • · · · • • •

• ◦ ◦ ◦ · · · ◦ ◦ ◦ •

• • • · · · • • •

(5.12)

and it is clear that there is at least one outer triangle with minimal area (dashed line
above), thus leading to a trivial defect group.

As a further consistency check let us consider the theory

SU(2)0 × · · · × SU(2)0︸ ︷︷ ︸
N times

(5.13)
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• • • · · · • • •
◦ ◦ · · · ◦ ◦ ◦

• • • · · · • • •

• • • · · · • • •
◦ ◦ · · · ◦ ◦ ◦

• • • · · · • • •

Figure 6. Computation of the defect group for the (SU(2)0)N theory: all the allowed triangles
have twice the minimal area. Here we draw two of the four allowed triangles — the other two are
the symmetric ones, on the other side of the figure.

is realized as a TV6 where V6 is the toric CY singularity with toric diagram

• • · · · • • •

◦ ◦ · · · ◦ ◦

• • • · · · • •

︸ ︷︷ ︸
N times

(5.14)

Clearly this does not admit a horizontal reduction, however the corresponding vertical
reduction gives rise to the quiver theory in equation (5.13). According to the gauge theory
analysis this geometry should correspond to a model that has a nontrivial Z(1)

2 × Z(2)
2

discrete higher symmetry group: the instantons are neutral with respect to the diagonal
Z2 center simmetry, which is unbroken. The fact that all discrete theta terms are zero
corresponds to the fact that this geometry has the surface-quiver diagram

F0 F0 · · · F0 (5.15)

Coloring the good outer vertices according to our modified prescription we obtain the graph
in figure 6: it is clear that the corresponding outer triangles obtained by connecting 3 green
adjacent vertices all have area 1. According to our prescription the corresponding defect
group is Z(1)

2 × Z(2)
2 , which clearly matches with the field theory prediction.

As a further consistency, let us consider another variation on the theme above, the
theory

SU(K)0 × · · · × SU(K)0︸ ︷︷ ︸
N times

(5.16)

is expected, from a similar token, to have a defect group Z(1)
K ×Z

(2)
K , arising from the diagonal

ZK center symmetry which leaves the bifundamentals invariant. The corresponding colored
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toric diagram is a trapezium of height K:

• • • · · · • • •

◦ ◦ · · · ◦ ◦ ◦
... · · ·

...
...

◦ ◦ · · · ◦ ◦ ◦

• • • · · · • • •

︸ ︷︷ ︸
N times

(5.17)

The corresponding allowed triangles all have area K/2, and therefore the corresponding
defect group is indeed Z(1)

K × Z(2)
K also from geometry, thus matching the gauge theory

expectation.

Geometric interpretation. It is not very difficult to argue that the modified prescrip-
tion that we have given is indeed the correct one geometrically. Recall that the key observa-
tion in the analysis in [100], reviewed in section 3.3, is that for the purposes of computing
the torsion of Y5 one can replace Y5 by a chain of lens spaces Lni , connected on their
non-trivial one-cycle. Each lens space is associated with a triangle Ti formed by the three
consecutive boundary vertices {pi−1, pi, pn+1}, and ni, the degree of the torsion group of
the lens space, is twice the area of Ti.

Whenever we have a point pi along an edge, the triangle Ti will have zero area, so
this is formally L0. If we define the lens space Ln as a circle fibration over S2 of degree n,
then L0 ∼= S2 × S1. This is the right answer from the toric geometry: whenever we have
points along an edge, upon crepant resolution the local geometry of the T 2 fiber considered
in [100] around the point is that of S2 × S1 — see figure 7. Connecting the S1 factor to
torsion cycles on either side is homotopically equivalent to connecting the torsion cycles
directly, so effectively one can ignore the L0 factors, which is the prescription we used
above. Alternatively, we can include these triangles, and simply state that the prescription
is still as in (3.25):

Z = Zgcd(n1,...,nv) (5.18)

taking into account that gcd(0, . . .) = gcd(. . .).
In the next section, exploiting this prescription, we analyze several strongly coupled

examples and determine the corresponding global structure. Having done that we give more
applications in the context of other 5d “dualities” involving strongly coupled conformal
matter in section 6.4.

6 Non-Lagrangian examples

In this section we exploit the formalism developed above to study the defect group and
global structures of 5d SCFTs without a 5d gauge theory phase.
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•v−1 · · ·

•v
...

•1 •2 •3 •4
1

2

3

v

v-1

...
...

4

Figure 7. Schematic topology of BL
3 .

6.1 The global structure of the 5d E0 SCFT

The simplest example of model that does not admit any gauge theory phase is given by
the 5d E0 SCFT associated to the toric canonical singularity C3/Z3, with toric diagram

•

◦ •

•

(6.1)

The naive defect group for the E0 theory is12

Z(1)
3 × Z(2)

3 (6.2)

since in the toric diagram (6.1) there is a single outer triangle with area 3/2. This can be
understood both from the perspective of the charged defects and from the perspective of
the corresponding charge operators.

The model has a non-trivial BPS string supported on the exceptional P2 which arises
by resolving the singularity, as well as non-trivial BPS state corresponding to the only
compact curve in the geometry C. This BPS string has a nontrivial Dirac pairing with the
corresponding BPS particles:

D ≡ Cx ·E = −3 , (6.3)

therefore the defect group for this model is

D = (Z3)(1)
M2 ⊕ (Z(2)

3 )M5 (6.4)

Let’s now study this model from the perspective of the flux operators as well. The analysis
of this model proceeds similarly to the Lagrangian cases we discussed in section 4, but

12Here we are ignoring the Z(0)
3 symmetry coming from the isometries — we thank Kantaro Ohmori for

pointing this out. In this particular case it is easy to see that it acts trivially on the fluxes, and therefore
it is a global symmetry for all the theories in this class.
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now we have no gauge theoretical interpretation of the result. Nevertheless, if we had
one we would expect the different global forms to be associated to possible choices of flux
backgrounds in

H2(M5; Z)e ×H3(M5; Z)m , (6.5)

for some Z playing the role of the “center of the gauge group”. We do obtain this structure
from the M-theory construction: we now have

H•(S5/Z3) = {Z, 0,Z3, 0,Z3,Z} . (6.6)

Using the Künneth formula as in section 3.2 we conclude that

Tor H4(M5 × (S5/Z3)) =
(
H2(M5)⊗ Tor H2(S5/Z3)

)
⊕
(
H0(M5)⊗ Tor H4(S5/Z3)

)
Tor H7(M5 × (S5/Z3)) =

(
H3(M5)⊗ Tor H4(S5/Z3)

)
⊕
(
H5(M5)⊗ Tor H2(S5/Z3)

)
We see that we have room for (−1)-form and 4-form background fluxes. We plan to
investigate these in the future, for now we focus on the fluxes for the 1-form and the
2-form higher symmetries for this model.

The charge operators for the higher 1- and 2- form symmetries of this theory are
represented by the decomposition of the M-theory fluxes above. Notice that the M2 flux
Φa is parametrized by a class a ∈ H2(M5;Z3), while the M5 flux Ψb is parametrized by
a class b ∈ H3(M5;Z3). We can decompose a = ω2 ⊗ a where a ∈ Tor H2(S5/Z3) and
ω2 ∈ H2(M5), and b = ω3 ⊗ b where b ∈ Tor H4(S5/Z3) and ω3 ∈ H3(M5), then

ΦaΨb = e2πiL(a,b)ΨbΦa (6.7)

where
L(a, b) ≡ `(a, b)

(∫
M5

ω2 ∧ ω3

)
. (6.8)

The second term in parenthesis gives the linking for the support of the two operators along
M5, while the first term is given by the linking pairing

` : H2(S5/Z3)×H4(S5/Z3)→ U(1) . (6.9)

The only missing piece in order to show that this does indeed lead to a choice of global
structure for this theory is showing that this linking pairing is nontrivial — but it necessarily
is non-trivial due to being perfect. Indeed, the general computation in appendix B.2 gives

`(1, 1) = −1
3 (6.10)

and therefore the possible choices of global structure for this model are the same as those
of the su(3) theory in 4d [77].

As pointed out in [102], this model is the 5d analogue of an Argyres-Douglas the-
ory [103], and indeed it arises along the Coulomb branch of the 5d N = 1 gauge SU(2)π
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gauge theory, precisely by suitable tuning, as manifest from the corresponding toric dia-
gram — recall that SU(2)π corresponds to the CY threefold obtained from a dP1 base:

•

◦ •

• •

decoupling−−−−−−→

•

◦ •

•

(6.11)

It is interesting to remark that, while SU(2)π does not have nontrivial higher form symme-
tries, upon decoupling these symmetry emerge. Clearly the particles we are decoupling are
charged with respect to this discrete symmetry and thus are breaking it explicitly in the
SU(2)π theory. The decoupling is achieved starting from an SU(2)π gauge theory phase
by a flop transition involving a massless BPS instanton. Naively one would expect a Z2
symmetry, however along this transition the symmetry enhances.

6.2 The higher rank 5d E0 theories

The discussion in the previous section carries over word for word for the class of higher
rank 5d E0 Argyres-Douglas like theories, which correspond to the M-theory singularities
C3/Z2p+1. These models can be obtained by deforming SU(p)1 as follows [102]

•
...

◦

◦ •

• •

decoupling−−−−−−→

•
...

◦

◦ •

•

(6.12)

The gauge theory we begin with has trivial defect group, while the higher rank E0 theory
has defect group13

Z(1)
2p+1 × Z(2)

2p+1 .

An enhancement similar to the one observed in the previous section is in place. As we shall
see below this enhancement is a feature for many descendants of the trinionic 5d SCFTs
as well.

The global structure in this case is obtained by the same procedure. We have

H•(S5/Z2p+1) = {Z, 0,Z2p+1, 0,Z2p+1,Z} , (6.13)

and therefore, proceeding as in the previous section we obtain

Tor H4(M5 × (S5/Z3)) = H2(M5;Z2p+1)⊕H0(M5;Z2p+1) (6.14)
Tor H7(M5 × (S5/Z3)) = H3(M5;Z2p+1)⊕H5(M5;Z2p+1) . (6.15)

13As in footnote 12 here we are ignoring the Z(0)
p symmetry coming from the isometries. The same

remark applies.
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Ignoring the (-1)-form and the 4-form symmetries, we focus on the M2 flux Φa parametrized
by a class a ∈ H2(M5;Z2p+1), and on the M5 flux Ψb parametrized by a class b ∈
H3(M5;Z2p+1). We have that

ΦaΨb = e2πiL(a,b)ΨbΦa (6.16)

and decomposing a = ω2 ⊗ a and b = ω3 ⊗ b

L(a, b) ≡ `(a, b)
(∫
M5

ω2 ∧ ω3

)
, (6.17)

where `(a, b) is the linking pairing (see appendix B.2)

`(1, 1) = − 1
2p+ 1 , (6.18)

we see that this linking pairing has the same structure (up to a sign) as the pairing for
the 4d su(2p + 1) algebras, and therefore the rank p E0 theories have the same choices of
global structures! These global structures have been worked out in [77], to which we refer
the interested readers.

6.3 The 5d trinions and their descendants

Consider the singularity corresponding to the 5d TN theory [104]

VN ≡
C3

ZN × ZN
. (6.19)

The corresponding SCFT has 0-form global symmetry (SU(N)(0))3, which is manifest from
the fact that there are three lines of singularities C2/ZN × C meeting at the origin. The
corresponding colored toric diagram is

•

• •

• •
... . . .

• •

• •

• • • · · · • • •

(6.20)

where each edge has N + 1 bullets. It is manifest that there are triangles of minimal area
above, therefore this theory has a trivial defect group. This fact can be understood easily
because the 5d trinion has a gauge theory phase [22, 23]

N
�

N−1◦ N−2◦ · · · 3◦ 2◦
2
� (6.21)

and the presence of matter in the fundamental is breaking the diagonal center symmetry.
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descendant defect group

•
• •
• •
... . . .

• •
• •
• • • · · · • • •

Z(1)
N × Z(2)

N

•
• •
• •
... . . .

• •
• •
• • • · · · • • •

Z(1)
N2−3(N−1) × Z(2)

N2−3(N−1)

Figure 8. Examples of TN descendants [105] with a nontrivial center symmetry. The one on the
bottom is known as the BN theory [105].

The TN theories have several descendant theories obtained by decoupling in [105]. As
descendant theories are determined by decoupling, these correspond to those convex toric
diagrams that embed in the ones associated to the TN theories. In particular notice that
all TK theories with K < N are always descendants of TN . Using our method is rather easy
to identify graphically examples in this class that have non-trivial higher form symmetries
by applying the following two criteria

1. Non-Lagrangian: the descendant geometries with a larger defect group typically do
not admit a quiver gauge theory phase, which entails some of the horizontal, vertical
and diagonal rulings must be obstructed;

2. High gcd: the outer green triangles should have areas with non-trivial greater common
divisor

Some examples of descendant theories with a nontrivial higher form symmetry are listed
in figure 8. A systematic analysis of the remaining cases is beyond the scope of the
present note.

6.4 More about 5d “dualities”

It is interesting to remark that the 5d quiver theory (SU(K)0)N has 5d “duals” that are
realized via quiver theories with strongly coupled trinionic 5d conformal matter. As a
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concrete example, consider the theory (SU(4)0)6, which belongs to the family of models we
have analyzed in the previous paragraph. Considering the following ruling of this geometry:

• • • • • • •

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

• • • • • • •

(6.22)

It is manifest that this model admits a different quiver description, namely

TV6� 40◦ 40◦ 40◦ 40◦
TV6� (6.23)

where, as usual, the edges denote bifundamentals, while nodes Nk◦ correspond to a gauge
subsector SU(N)k, but we have introduced another kind of “meta-node,” �, which corre-
sponds to a strongly coupled sector. Edges connecting the meta-nodes to a gauge node
indicate the gauging of a zero-form global symmetry. In the context of this example, we
have two meta-nodes associated to two copies of the same TV6 theory, where V6 is the toric
canonical singularity associated to the toric diagram

• • • •

◦ ◦ •

◦ •

•

•

(6.24)

This model is among the descendant theories of the 5d T4 trinion and clearly has a
global symmetry SU(4)(0) × SU(3)(0), and no 1-form symmetries. From the duality, it is
manifest that the operators in this theory must be invariant under the Z4 center symmetry
of SU(4), which survives the gauging, and provides the necessary structure for the gauged
theory to have the Z4 center symmetry.

We can also consider gauging this flavor symmetry only, thus producing yet another
5d SCFT corresponding to the toric diagram below

• • • • •

◦ ◦ •

◦ •

•

•

(6.25)

here we have marked in red the nodes corresponding to the SU(4) gauge symmetry, and in
green the nodes which enters the computation of the defect groups. The resulting theory
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has quiver
TV6� 40◦ (6.26)

and defect group Z(1)
4 × Z(2)

4 . Notice that we can introduce a nontrivial CS level for the
SU(4) gauge theory, leading to the gauge theories

TV6�
4p◦ (6.27)

with defect groups Z(1)
gcd(4,p) × Z(2)

gcd(4,p), corresponding to the following toric diagrams

• • • •
◦ ◦ • •
◦ •
•

•

• • • •
◦ ◦ •
◦ • •
•

•

• • • •
◦ ◦ •
◦ •
• •

•

(6.28)

In these examples, the center of the gauge group is broken (partially, for p = 2) by the
charges of the corresponding instantons. It is interesting to remark that the second model
has a different 5d “dual” description

• • • •
◦ • •
◦ • •
•

•

(6.29)

which has a generalized quiver
T1� 20◦ T2� (6.30)

where we see another manifestation of the fact that the descendant of the 5d trinions
respect the center of the gauge group upon gauging, which in this case gives a defect group
that is precisely Z(1)

2 × Z(2)
2 .

These examples (which easily generalize) illustrate another application of 5d “dual-
ities” to understand the structure of the operators of strongly coupled 5d SCFTs. (A
somewhat analogous argument, applied in reverse, was used in [69] to learn about the
1-form symmetries of the TN theories.)

7 Global structure of 4d N = 1 theories and M-theory on G2 spaces

In this section we give an appetizer about the application of our method in the context
of M-theory on spaces with G2 holonomy. More precisely we consider here a geometric
engineering on a space

M4 × V7 (7.1)
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where V7 is a local G2 space. For the applications we have in mind,

V7 = C(Y6) (7.2)

where Y6 is a nearly Kähler manifold or an orbifold thereof — see e.g. [106]. It is well-
known that M-theory on a G2 cone gives rise to four-dimensional quantum field theories
with N = 1 supersymmetry (see e.g. [107] and references therein for a nice review). Our
task in this section is to determine the global structure of one such theory.

Repeating the same arguments as above we expect this is determined from the structure
of flux operators ΦM2,a with a ∈ TorH4(M4 × Y6) and ΨM5,b with b ∈ TorH7(M4 × Y6)
(measuring torsional M2 and M5 charge, respectively). Again we are interested in studying
the structure of

ΦM2,aΨM5,b = e2πiL(a,b)ΨM5,bΦM2,a (7.3)

where
L : TorH4(M4 × Y6)× TorH7(M4 × Y6)→ Q/Z (7.4)

is the linking pairing inM4 × Y6.
Assuming thatM4 has no torsion we are interested in the cohomology groups

TorHm(M4 × Y6) =
∑

i+j=m
H i(M4)⊗ TorHj(Y6) m = 4, 7 (7.5)

Poincaré duality, together with the universal coefficient theorem, implies that

Z = TorH2(Y6) = TorH5(Y6) Z̃ = TorH3(Y6) = TorH4(Y6) (7.6)

are the only nonzero torsional parts from the cohomology of Y6, and therefore the relevant
parts of EM (M4×Y6) that can give rise to a nontrivial global structure are (by the universal
coefficient theorem)

TorH4(M4 × Y6) = H2(M4,Z)⊕H1(M4, Z̃)⊕H0(M4, Z̃)
TorH7(M4 × Y6) = H2(M4,Z)⊕H3(M4, Z̃)⊕H4(M4, Z̃)

(7.7)

where the direct summands above are paired along the vertical direction in the above equa-
tion, meaning that for this class of examples we have three distinct commuting Heisenberg
algebras acting on HM (M4 × Y6).

From the above structure we see that from the first summand there are an electric and
a magnetic Z(1) form symmetry, from the second summand we have similarly a Z̃(0) form
and a Z̃(2) form symmetry, while the last summand corresponds to Z̃(−1) form and a Z̃(3)

form symmetries. The defect group for this geometry is

D =
(
Z(1)
M2 ⊕ Z(1)

M5

)
⊕
(
Z̃(0)
M2 ⊕ Z̃(2)

M5

)
⊕
(
Z̃(−1)
M2 ⊕ Z̃(3)

M5

)
(7.8)

In this paper we are going to ignore the effects associated to (-1)-form symmetries and the
3-form symmetries.14

14These are somewhat more exotic and we defer their study to the future — see [88] for a reference
about these.
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Each of the three summands in parenthesis in (7.7) belongs to a distinct Heisenberg
factor, thus signalling a mixed ’t Hooft anomaly for the defect group. The non-commuting
1-form symmetries in this case are the analogues of the electric and the magnetic 1-form
symmetries in Yang-Mills theory in four-dimensions, so this hardly come as a surprise [108].

It is interesting to remark however that discrete 0-form charge operators and 2-form
charge operator do not commute. This entails that we cannot specify a background for
the discrete 0-form symmetries of one such model and a background flux for the 2-form
symmetries simultaneously wheneverM4 has non-trivial one-cycles and three-cycles.15 An
interesting example of a manifold where this choice needs to be made is

M4 = S1 × S3 . (7.9)

We emphasize that the choice that we need to make here is independent of the choice that
we make in the 1-form symmetry sector (note that generically, Z 6= Z̃). So whenever our
manifold M4 has non-trivial one and two-cycles, there are generically two independent
choices of global structure to be made when computing partition functions. There are
interesting partition functions of this sort, the simplest is

M4 = T 2 × S2 . (7.10)

7.1 Example: 4d N = 1 SYM

Here we focus on a simple class of examples of this kind provided by the Bryant-Salamon
G2 metric on the spin bundle over S3 (and some of its orbifolds) [109, 110]. This metric
has topology S3×R4, and we can realize this space as a hyperbolic submanifold of H×H '
C2 × C2

|q1|2 − |q2|2 = |z1,1|2 + |z1,2|2 − |z2,1|2 − |z2,2|2 = V V ∈ R>0 , (7.11)

where zi,j are complex coordinates. From this presentation it is clear that we can orbifold
this space with a discrete subgroup Γ ⊂ SU(2) acting only on one of the two sets of
coordinates, thus obtaining a space that topologically is S3 × C2/Γ. This space is known
to geometrically engineer a four-dimensional N = 1 SYM theory in M-theory [111–113].

One feature of this G2 space is that it is a cone C(S3 × S3/Γ). It is straightforward to
compute

H•(S3 × S3/Γ) = {Z, 0,Γab,Z⊕ Z, 0,Γab,Z} (7.12)

hence for this class of examples the two groups in (7.7) are given by

Z = Γab = Z(GΓ) Z̃ = 0 (7.13)

therefore in this specific model there only one Heisenberg algebra. More precisely, for fluxes
labelled by ai = (ω ⊗ `)i ∈ H2(M4)⊗ Z we have

ΦM2,a1ΨM5,a2 = exp
(

2πi LΓ(`1, `2)
∫
M4

ω1 ∧ ω2

)
ΨM5,a2ΦM2,a1 (7.14)

15Ultimately this effect is related to the fact that scalars are dual to tensors in four dimensions.
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where LΓ is the same pairing we introduced in section 2. We thus reproduce the statement
about the mixed ’t Hooft anomaly among the Z(GΓ)(1)

M2 and the Z(GΓ)(1)
M5 symmetries in

the defect group mentioned in the introduction of this paper.
More examples of G2 cones are available in the literature. The global structures of

these models are interesting and can be analyzed using our method. We will address this
question in future work.
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A The Mori cone for CR(Y p,q)

In this section we will study in detail the structure of the Mori cone for the Calabi-Yau
cone over Y p,q [101], which we denote by CR(Y p,q). This Calabi-Yau threefold is toric,
which simplifies the analysis of the relevant geometry. We refer the reader to [94] for
general background on toric geometry and [95–97] for introductions aimed to physicists.
The computer algebra program Sage contains very useful implementations of the toric
algorithms that we use [99].

Define l := p − q. We can take the points in the toric diagram for CR(Y p,q) to be
P1 = (−1, 1), P3 = (l, 0) and Ii = (0, i), i ∈ {0, 1, · · · , p}. We choose the triangulation
as in figure 4, that is, such that the 3-dimensional cones are of the form (P1, Ik, Ik+1) and
(P3, Ik, Ik+1) with k ∈ {0, 1, 2, · · · , p− 1}.

We can construct a (non-minimal) basis of generating curves by taking intersections
of toric divisors. The intersection numbers of the compact curves constructed in this way
and the toric divisors are given in table 2. The Mori cone is spanned by compact curves
corresponding to 2-dimensional cones. Thus, the number of the generators of the Mori cone
equals to the number of independent 2-cycles. From our discussion in (3.18) we find that
the number of independent compact 2-cycles is p, so this is the dimension of the Mori cone.
We denote the Mori cone generators C1, . . . , Cp. Any two curves are linearly equivalent iff
their intersection with all toric divisors are the same, so the problem of determining the Ci
reduces to finding a basis of linearly independent rows in table 2. From the table we can
deduce the equivalence relations

P1 · Ik ≡ P3 · Ik, Ik−1 · Ik − Ik · Ik+1 ≡ (l − 2k)P1 · Ik, (A.1)

where k ∈ {1, 2, · · · , (p− 1)}. Thus, we may choose the Mori cone generators to be

Ck = P1 · Ik, Cp = I0 · I1 . (A.2)
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Curve P1 P3 I0 I1 I2 · · · Ik−1 Ik Ik+1 · · · Ip−1 Ip

P1 · I1 0 0 1 −2 1 · · · 0 0 0 · · · 0 0
· · ·
P1 · Ik 0 0 0 0 0 · · · 1 −2 1 · · · 0 0
· · ·
I0 · I1 1 1 l − 2 −l 0 · · · 0 0 0 · · · 0 0
Ik · Ik+1 1 1 0 0 0 · · · 0 l − 2k − 2 −l + 2k · · · 0 0
· · ·
Ip−1 · Ip 1 1 0 0 · · · 0 0 0 0 · · · l − 2p −l + 2(p− 1)

Table 2. The intersection numbers of the (2P − 1) compact curves P1 · Ii, Ii · Ii−1 and the (P + 3)
points P1 = (−1, 1), P3 = (l, 0) and Ii = (0, i), where i ∈ {0, 1, · · · , p}, and k ∈ {1, 2, · · · , (p− 1)}.
We have omitted the result for the curves P3 · Ik as they give the same intersection numbers as
P1 · Ik for each fixed k.

B Linking forms

B.1 CR(Y p,q)

The intersection form Q4 (Q2 = QT4 ) between 4-cycles (2-cycles) and 2-cycles (4-cycles)
can be easily read from the Mori cone generators to be

Q4 =



−2 1 0 0 · · · 0 0 0 0
1 −2 1 0 · · · 0 0 0 0
...
0 0 0 0 · · · 0 1 −2 1
0 0 0 0 · · · 0 0 1 −2
−l 0 0 0 · · · 0 0 0 0


,

for even l, where −2 in the last row is in the column l/2 of Q4 or in a more compact
notation

Q4 = (qi,j), qi,j =


δi,j−1 − 2δi,j + δi,j+1, for i, j ∈ {1, 2, · · · , p− 1},
−l for i = p and j = 1
0, otherwise.

(B.1)

Now, we can calculate the homology groups of Y p,q using (3.11). We can easily deter-
mine the kernel and the cokernel of Q4 by finding the Smith normal form of Q4, which we
call S4. We find that S4 has the form

S4 =



1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...
0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 gcd(p, q)
0 0 0 · · · 0 0 0


(B.2)
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or in more compact notation

Q4 = (si,j), si,j =


δi,j , for i, j ∈ {1, 2, · · · , p− 1},
gcd(p, q)δi,p−1δj,p−1, for i = j = p− 1,
0, otherwise.

(B.3)

Hence, the image of Q4 is Im(Q4) = Zp−2 + gcd(p, q)Z and its kernel is zero. We have

H3(Y p,q) = coker(Q4) = Z + Zgcd(p,q),

H4(Y p,q) = ker(Q4) = 0 .

Similarly, since Q2 = QT4 we find

H2(Y p,q) = ker(Q2) = Z, H1(Y p,q) = coker(Q2) = Zgcd(p,q) .

We now want to compute the linking pairing

LY p,q : TorHp−1(Y p,q)× TorHn−p−1(Y p,q)→ Q/Z . (B.4)

In our case the only homology groups with non-trivial torsion are H3(Y p,q) and H1(Y p,q)
so we may compute the linking of 3-cycles and 1-cycles as follows. From (3.17)

L(∂α′∗i , ∂̄β
′∗
j ) = q−1(α′∗i , β

′∗
j ) = q−1

ij (mod 1) . (B.5)

We find

q−1
i,k =



(i− j) + (p− j)c/2, for i ≥ j , j < p and i < p− 1
(p− j)c/2, for i < j , j < p and i < p− 1
(p− 2− j)/2 + (p− j)c/2, for j < p and i = p− 1
−i/l − pc/(2l), for j = p and i < p− 1
(1/l − p/(2l))− pc/(2l), for j = p and i = p− 1 ,

(B.6)

such that q−1q = I. All that remains is to find the generators α′∗i and β′∗j defined above.
This may be done by tracking how the generators in the basis defined by the matrix q(T )

change as we switch basis by writing the matrix in its Smith normal form S(T ). Given the
form of our matrix q in (B.1)), for β∗i and β′∗j the generators of Hom(H4(X6),Z) in the q
basis and the S basis, respectively, we find that, β′∗p−1 = β∗p−1 where ∂β′∗p−1 is the generator
of TorH1(Y ). Similarly, for α∗

ī
and α′∗

j̄
the generators of Hom(H2(X),Z) in the qT basis,

and the ST basis, respectively, we find α′∗p = p′α∗1 + q′α∗p such that, ∂α′∗p is the generator
of TorH3(Y p,q) where, p′ = p

gcd(p,q) and q′ = lp−l
gcd(p,q) . Therefore, the linking number is

L(∂α′∗p , ∂̄β
′∗
p−1) = L

(
p′∂α∗1 + q′∂α∗p, ∂̄β

∗
p−1
)

= p′q−1
1,p−1 + q′q−1

p,p−1

= − 1
gcd(p, q) (mod 1) ,

(B.7)

using (B.6) and the bilinearity of the linking pairing.
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Curve a b I0 I1 I2 · · · Ik−1 Ik Ik+1 · · · In−1 In

a · I1 0 0 1 −2 1 · · · 0 0 0 · · · 0 0
· · ·
a · Ik 0 0 0 0 0 · · · 1 −2 1 · · · 0 0
· · ·
I0 · I1 1 1 −3 1 0 · · · 0 0 0 · · · 0 0
Ik · Ik+1 1 1 0 0 0 · · · 0 −3− 2k 2k + 1 · · · 0 0
· · ·
In−1 · In 1 1 0 0 · · · 0 0 0 0 · · · −2n− 1 2n− 1

Table 3. The intersection numbers of the (2P − 1) compact curves a · Ik, Ik · Ik−1 and the (n+ 3)
points a = (−1, 0), b = (1,−1) and Ii = (0, i), where i ∈ {0, 1, 2, · · · , n} and k∈{0, 1, 2, · · · , (n−1)}.
We have omitted the result for the curves b ·Ik and a ·I0 as they give the same intersection numbers
as a · Ik and I0 · I1 for each fixed k, respectively.

B.2 C3/Z2n+1

Let a = (−1, 0), b = (1,−1) and Ii = (0, i) be the points on the toric diagram with
i = 0, 1, 2, · · · , n, and choose the triangulation such that the 3-dimensional cones are of the
form (a, b, I0), (a, Ik, Ik+1) and (b, Ik, Ik+1), where k = 0, 1, 2, · · · , n − 1. As before, from
the toric diagram we have

H2(X6) = H4(X6) = Zn . (B.8)

From the intersection numbers given in table 3, we deduce the equivalence relations
(by subtracting the two relevant rows in terms of k for the latter relation)

a · Ii ≡ b · Ii , a · I0 ≡ I0 · I1 , Ik+1 · Ik+2 − Ik · Ik+1 ≡ (3 + 2k)a · Ik . (B.9)

Therefore, we can choose the Mori cone generators Ck to be the rows of table given by the
intersection numbers for a · Ik

Ck = a · Ik . (B.10)

The intersection form is

qi,j =

δi,j − 2δi,j−1 + δi,j−2 , for i ∈ {1, 2, ..n− 1} , j ∈ {1, 2, ..n}
−3δ1,j + δ2,j , for i = n , j ∈ {1, 2, ..n}

(B.11)

which has Smith normal form

Si,j =

δi,j , for i, j ∈ {1, 2, ..n− 1}
2n+ 1 , for i, j = n

(B.12)

From this we find

H1(Y5) = H3(Y5) = coker(Q) = Z2n+1,

H2(Y5) = H4(Y5) = ker(Q) = 0 .
(B.13)
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Now, to find the linking number, we track the effect on the generators as we write Q in
its Smith normal form. We find α∗n and β∗n to be the generators of Hom(H2(X),Z) and
Hom(H4(X6),Z), respectively such that, ∂α∗n and ∂β∗n are the generators of TorH3(Y5)
and TorH1(Y5), respectively. It can be shown that the inverse of qi,j is

− (2n+ 1)q−1
i,j =


(2i− 1)(n− j) , for j < n and j + 1 ≥ i
(n− i+ 1)(2j + 1) , for j + 1 ≤ i
(n− i+ 1) , for j = n

(B.14)

i.e. q−1
nn = − 1

2n+1 , and so we have

L(∂α∗n, ∂β∗n) = q−1
nn = − 1

2n+ 1 mod 1 . (B.15)
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