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Abstract 

Educational researchers advocate the use of an effect size and its confidence interval to assess 

the effectiveness of interventions instead of relying on a p-value, which has been blamed for 

lack of reproducibility of research findings and the misuse of statistics. The aim of this study is 

to provide a framework, which can provide direct evidence of whether an intervention works 

for the study participants in an educational trial as the first step before generalising evidence to 

the wider population. A hierarchical Bayesian model was applied to ten cluster and multisite 

educational trials funded by the Education Endowment Foundation in England, to estimate the 

effect size and associated credible intervals. The use of posterior probability is proposed as an 

alternative to p-values as a simple and easily interpretable metric of whether an intervention 

worked or not. The probability of at least one month’s progression or any other appropriate 

threshold is proposed to use in education outcomes instead of using a threshold of zero to 

determine a positive impact. The results show that the probability of at least one month’s 

progress ranges from 0.09 for one trial, GraphoGame Rime, to 0.94 for another, the Improving 

Numeracy and Literacy trial. 

 

Keywords: Randomised Control Trial, Multisite Trial, Cluster randomised trial, Effect size, 

significant threshold, Bayesian probability, educational evaluation 
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Introduction 

The aim of the Education Endowment Foundation (EEF) is to improve educational attainment, 

especially of disadvantaged pupils, in schools across England through different interventions 

and teaching approaches. Similar to the other disciplines, educational stakeholders make 

decisions about an intervention based on the statistics obtained from either a Bayesian or a 

frequentist approach. In the latter approach, this is often based on a p-value, which is mostly 

misinterpreted as ‘a probability that the null hypothesis is (not) true’. According to Lesaffre and 

Lawson (2012), this probability can be formally called the posterior probability (i.e. P(H0|data) 

that can be correctly obtained through a Bayesian approach. Many statisticians have advocated 

replacing the p-value with a Bayesian approach as the latter approach describes how to think 

about probability as the plausibility of an outcome, rather than as the potential frequency of that 

outcome (Nuzzo, 2014). A p-value has wide sample-to-sample variability unless the statistical 

power is very high. It is also not able to reliably indicate the strength of evidence against the 

null hypothesis (Halsey et al., 2015). Additionally, the replication success of any study finding 

is negatively correlated with the p-value of the original study (Camerer et al., 2018).  

Furthermore, the current practice of using p-values is problematic and provides oversimplified 

evidence based on an arbitrary threshold (Cumming, 2008; Goodman, 2019; Trafimow & 

Marks, 2015; Wasserstein, Schirm, & Lazar, 2019; Ying & Belitskaya-Levy, 2015). The point 

estimate of the treatment difference and its confidence interval (CI) can be used instead to 

quantify the impact of an intervention and to provide the magnitude of an intervention’s 

effectiveness in educational trials (Valentine & Cooper, 2003). However, these statistics are 

not comparable between trials because of their dependence on the units, measuring methods, 

and scales used in the evaluation of each intervention (Ying & Belitskaya-Levy, 2015). In this 

case, a unitless statistic, typically the effect size (ES) is used. Hedges (2007, 2008) elaborated 

the methods, which can be used to estimate ESs with their standard errors and CI in the most 

commonly designed educational trials. However, a CI carries a similar message to a p-value, 
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albeit with the advantage of providing a range of values as evidence of the impact of an 

intervention. Given the criticisms of p-values and significance tests, a CI should not be 

considered as a measure of significance (McShane et al., 2019; Wasserstein et al., 2019). 

Further, the frequentist interpretation of a CI as a percentage (mainly 95%) of probability that 

true value falls within confidence limits actually corresponds to the interpretation of a Bayesian 

credible interval (BCI) (Cumming, 2008; Lesaffre & Lawson, 2012; Thompson, 2002), but 

does not actually represent this. In most of the cases, especially non-statisticians intuitively 

apply a Bayesian interpretation to a frequentist approach.  

It therefore seems natural to consider a Bayesian framework for the evaluation of educational 

trials. The correct BCI estimates can easily be obtained as each unknown quantity is treated as 

a random parameter with its prior distribution. The posterior distribution of the unknown 

quantity is also straightforward as the information from the data is combined with the prior 

information. One can obtain a BCI using the posterior distribution, as the uncertainty of each 

unknown quantity is explicitly indicated by the spread of the posterior distribution (Kruschke 

& Liddell, 2018). In general, the fundamentals of Bayesian inference can be summarised 

through Bayes’ theorem, mathematically written as  𝑃(𝜃|𝑑𝑎𝑡𝑎) ∝ 𝑃(𝑑𝑎𝑡𝑎|𝜃) ∗ 𝑃(𝜃) , 

where 𝑃(𝜃|𝑑𝑎𝑡𝑎) , 𝑃(𝜃)  and 𝑃(𝑑𝑎𝑡𝑎|𝜃) refers to the posterior, prior and the sampling 

distribution (or data distribution), respectively (Gelman et al., 2013; Lesaffre & Lawson, 2012). 

Priors can be developed using a range of information sources including previous information 

and expert opinion. Although the quantification of previous knowledge is possible in Bayesian 

statistics, it is also arguably its most controversial aspect as the choice of appropriate priors is 

inherently subjective (König & Schoot, 2018). However, uninformative or vague distributions 

can also be used to allow inferences to be driven largely by the data.  

This study proposes the use of Bayesian posterior probability as a complementary metric for 

evidence in educational trials. Bayesian inference requires a posterior distribution that can be 

summarised by calculating the probability that an ES exceeds a certain threshold. A higher 

posterior probability indicates greater effectiveness of the intervention. This probability is 
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induced purely from the data, which makes this method consistent across trials, as suggested by 

several researchers including Thompson (2002; 2007), who strongly advocated that the 

conclusion of a study should be based on what data tells about the magnitude of effects, not 

based on a dichotomous reject or not reject decision. A posterior probability is a more 

understandable way to inform policy-makers and educational stakeholders about the 

effectiveness of an intervention. This method has already been applied in several other 

disciplines (Cummings et al., 2003; Friston & Penny, 2003). For example, Bayesian methods 

are applied in population genetics, genomics, and human genetics which have allowed complex 

models to be studied and biologically relevant parameters to be estimated, as well as allowing 

prior information to be efficiently incorporated (Beaumont & Rannala, 2004). Hahn (2014) has 

given examples from the reasoning and argumentation literature whereby Bayesian methods 

have demonstrably increased the level of behavioural prediction relative to that previously 

available in the relevant domain of cognition research. Kruschke and Liddell (2018) argue that 

Bayesian methods achieve the goals of the New Statistics (estimation based on ESs, CIs, and 

meta-analysis) better than frequentist methods and can be helpfully used in randomized 

controlled trials. However, there is limited literature on the application of Bayesian methods 

(König & Schoot, 2018) and posterior probability in educational trials. This study estimates 

effect size using a hierarchical Bayesian model and proposes posterior probability as a measure 

of evidence, with values closer to 1 providing increasing evidence in favour of an intervention.  

Method 

Case Studies 

The EEF is an independent charity that aims to raise the attainment of disadvantaged children 

in primary and secondary schools in England. In this light, different projects have been 

conducted to evaluate a range of interventions directly or indirectly involving pupils to improve 

their educational attainment. Each project is independently evaluated and the data collated in 

an archive. This study comprises an analysis of ten EEF projects, selected from the available 
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EEF archive data according to the study design and the implementation quality. Multisite trials 

(MST), where there are control and intervention pupils in the same school and cluster 

randomised trials (CRT), where each school contains only intervention or control pupils in 

educational trials with reading or mathematics as an outcome with a high degree of inference 

validity (i.e. an EEF padlock security ≥ 3) were selected, as shown in Table 1. The security 

ratings of EEF’s educational trials vary from low (padlock = 0) to the best type of evidence 

that could be expected from a study (padlock = 5) (EEF, 2019). Note that CRT and MST are 

fundamentally different in terms of model specification. Whilst it is sufficient to specify only 

schools as random effects for cluster randomised trials (CRT), it is also important to specify 

school-by-intervention interactions as random effects for multisite trials (MST). A brief 

description of each selected project is provided below.  

‘Table 1 here’ 

Five CRT projects where schools were randomly allocated to either intervention or control 

(Xiao, Higgins, & Kasim, 2017) were selected. Improving Numeracy and Literacy (EEF Project 

41) aimed to improve both numeracy and literacy abilities. It was implemented through two 

separate programmes of teacher training and accompanying teaching materials focusing on 

mathematical reasoning and morphological activities, as well as computer games. The 

programme was evaluated using the mathematics attainment of pupils in Year 2 (6-7 years old) 

(Worth et al., 2015). Embedding Formative Assessment (EEF Project 110) was a whole-school 

professional development programme designed to improve pupils’ attainment through 

feedback. Schools received detailed resource packs to run monthly workshops and to 

implement specific strategies in lessons to pupils in all year groups. General Certificate of 

Secondary Education (GCSE) Attainment 8 maths and English scores were used to assess the 

impact of the intervention on pupils who were in Year 10 (aged 14-15) at the start of the trial 

(Speckesser et al., 2018). GCSE Attainment 8 measures a student’s average grade across eight 

subjects at age 16. 1stClass@Number (EEF Project 122) was designed by Edge Hill University. 
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It covered five basic mathematics topics in 30 half-hour lessons to help pupils aged 6-7 years 

who were struggling with the mathematics curriculum of Year 2 so that they could continue to 

learn successfully in class after the end of the intervention. A quantitative reasoning test, which 

focuses on number knowledge and mathematical problem solving, was used to evaluate the 

intervention (Nunes et al., 2018). Tutor Trust Primary (EEF Project 126) was led by a 

Manchester-based charity that aims to provide affordable small group and one-to-one tuition, 

in order to improve the mathematics attainment of pupils in Year 6 (aged 10-11) who were 

working below age expected levels in mathematics, as identified by their class teachers 

(Torgerson et al., 2018). Catch Up® Literacy (project 133) is a structured one-to-one 

intervention that aims to improve the reading ability of readers struggling in Years 4 or 5 (8-10 

years old). The intervention is book-based and comprises two 15-minute sessions each week 

for approximately 6 to 12 months depending on individual need (Rutt et al., 2019).  

Five MST studies were also selected where randomisation was undertaken at the pupil or class 

level in each school (Xiao et al., 2017). Catch Up® Numeracy (EEF Project 9) was a one to 

one intervention for pupils in upper primary schools (aged 7 – 11) who were struggling with 

numeracy. It consisted of two 15-minute sessions per week, for 30 weeks delivered by teaching 

assistants (TAs) (Rutt, Easton, & Stacey, 2014). The Summer Active Reading Programme (EEF 

Project 17) aimed to improve reading skills, particularly comprehension, by encouraging 

children to read and enjoy reading at the transition from primary school to secondary school. 

The study involved pupils in the north of England who were identified as unlikely to achieve 

at least Level 4 in English by the end of Key Stage 2 (11 years old). Booktrust implemented 

the programme by offering book packs to pupils and volunteers recruited by Booktrust to 

support a range of activities, including one to one reading, at the summer events (Maxwell et 

al., 2014). The Vocabulary Enrichment Full Programme (EEF Project 22) aimed to improve 

the reading abilities of pupils in Year 7 and was delivered by school teachers. It combined a 

phonics programme, teaching new words as well as encouraging pupils to use these words in 

speaking and writing through the Vocabulary Enrichment Intervention Programme (VEIP). It 
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provided extra support for young people who were late in literacy development to move from 

level 3 to level 4 in English (Styles et al., 2014). Texting Parents (EEF Project 67) was a school-

level intervention designed to improve pupil outcomes by engaging parents in their children’s 

learning through text messages (Miller et al., 2017). Lastly, the GraphoGame Rime (EEF 

Project 109) was a computer game originally developed by a Finnish University to analyse 

performance and constantly adjust the difficulty of the game to match learner’s ability. The 

English version of GraphoGame Rime was developed at the University of Cambridge. The 

intervention aimed to improve the reading ability of pupils in Year 3 (7-8 years old) having low 

literacy skills, as measured by the phonics screening check taken at the end of Year 1 (5-6 years 

old) (Worth et al., 2018). An independent research team appointed by EEF, who submitted the 

data from the evaluation to EEF for archiving and further research, evaluated all of the projects. 

Statistical Method 

A Gaussian hierarchical or multilevel model (MLM) with continuous outcomes was applied to 

model the relationship between post-test scores and the intervention with adjustment for other 

important covariates. Since the outcome from each project was continuous and pupils were 

clustered in schools (Lesaffre & Lawson (2012); Verbeke & Molenberghs (2009)), 2-level 

models were considered. The first level of the multilevel models were pupils and the second 

level were schools. Pupils are nested within schools for CRT, and pupils and interventions both 

are nested within schools for MST.   

One of the EEF’s objectives is to compare the ES estimates across a series of studies around 

England. However, the comparability of ES estimates is not always straightforward for studies 

that have adjusted for different covariates. Xiao et al. (2017) argued that it is inappropriate to 

compare such varying ESs. Similar thoughts were also suggested by Hedges (2008) and 

Nakagawa and Cuthill (2007). Following this line of argument, EEF (2015) advised using an 

ANCOVA model with post-test as the dependent variable and pre-test and treatment indicator 

as covariates. The model considered in this study incorporated only the aforementioned 

covariates; school indicator was added as a random variable to account for the clustering of 
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pupils within the same school in CRT studies (Xiao, Kasim, & Higgins, 2016). For MST 

studies, the random effects for school and school-by-intervention interactions were added to 

the model (Feaster, Mikulich-Gilbertson, & Brincks, 2011). The multilevel model specified in 

this study is given by: 

Postij = β0 + β1Pretij + β2Tij +  𝒁𝒊𝒋
𝑻 bi + εij,   (1) 

Where 𝐙𝐢𝐣
𝐓𝐛𝐢 =  bi for CRT and 𝐙𝐢𝐣

𝐓𝐛𝐢 = b1i + b2i ∗ 𝑇𝑖𝑗  for MST 

𝑃𝑜𝑠𝑡𝑖𝑗  is the post-test scores of 𝑗𝑡ℎ  pupil from 𝑖𝑡ℎ  school, 𝛃 = (𝛽0, 𝛽1, 𝛽2) is the vector of 

regression coefficients, that are intercept, effect of pre-test, and treatment effect respectively. 

Deviation of school 𝑖 from average intercept is denoted by 𝑏1𝑖  for MST (or 𝑏𝑖 for CRT) and 

𝑏2𝑖  is the deviation of school 𝑖  from average treatment effect  𝛽2 .  Lastly εij   indicate the 

idiosyncratic error terms. The model assumptions are specified in equation 2, 3 and 4. 

Residual: 𝜀𝑖𝑗 ∼ 𝑁(0, 𝜎2)  (2) 

CRT: 𝐛𝐢 ∼ 𝑁(0, 𝐺), 𝐺 = 𝜎𝑏
2 

 

 
(3) 

MST: (𝐛𝟏𝐢, 𝐛𝟐𝐢) ∼ [(
0
0

) , 𝐆] , with 𝐆 = (
𝜎𝑏1

2 𝜎𝑏1,𝑏2

𝜎𝑏1,𝑏2 𝜎𝑏2
2 )  

 

(4) 

 

Further, for MST studies, it was assumed that there is no relationship between school and 

school-by-intervention  𝜎𝑏1,𝑏2 = 0.  More information about the model specifications are 

provided in Appendix A1. According to Hedges (2007) and Xiao et al. (2016), ES for the 

frequentist model was calculated from the model parameters defined in equation 1, 2, 3 and 4. 

Within the Bayesian approach, each parameter of the model defined in equation 1 was assigned 

a prior. Thus, the Bayesian MLM combines a hierarchical two level model with the third level 

that contains the priors for model parameter as shown in equation 5, 6 and 7: 

 



10 

Level 1: 𝑃𝑜𝑠𝑡𝑖𝑗|𝛃, 𝐛𝐢, 𝜎2 ∼ 𝑁(𝑥𝑖𝑗
𝑇 𝛃 + 𝑧𝑖𝑗

𝑇 𝐛𝐢, 𝜎2) for 𝑗 = 1, . . . , 𝑚𝑖; 𝑖 = 1, . . . , 𝑛                  (5) 

 

Level 2: 𝐛𝐢|𝐆 ∼ 𝑁(0, 𝐆) for 𝑖 = 1. . . 𝑛   (6) 

Level 3: 𝜎𝑖
2 ∼ 𝑝(𝜎𝑖

2),  𝛃 ∼ 𝑝(𝛃),  𝑎𝑛𝑑 𝐆 ∼ 𝑝(𝐆)  (7) 

 

The joint posterior distribution for the Bayesian MLM is a product of the likelihood 

(∏ ∏ 𝑝𝑚𝑖
𝑗=1

𝑛
𝑖=1 (𝑃𝑜𝑠𝑡𝑖𝑗|𝐛𝐢, 𝜎2, 𝛃)) and the prior distributions (∏ 𝑝𝑛

𝑖=1 (𝐛𝐢|𝐆)𝑝(𝛃)𝑝(𝐆)𝑝(𝜎2) ) given 

by:  

𝑝( 𝛃, 𝐆, 𝜎2, 𝑏1, . . . 𝑏𝑛 ∣∣ 𝑦1, . . . 𝑦𝑛 ) ∝ ∏ ∏ 𝑝

𝑚𝑖

𝑗=1

𝑛

𝑖=1

(𝑃𝑜𝑠𝑡𝑖𝑗|𝐛𝐢, 𝜎2, 𝛃) ∏ 𝑝

𝑛

𝑖=1

(𝐛𝐢|𝐆)𝑝(𝛃)𝑝(𝐆)𝑝(𝜎2)         (8) 

Note that the likelihood is determined by the data. However, prior distributions for all the 

unknown parameters must be specified. Although it is advisable to use informative priors where 

possible, there is no single agreed set of prior specifications for unknown parameters.  

Consequently, the use of non-informative or vague priors is recommended for a Bayesian 

evaluation of educational trials to ensure the conclusion is largely determined by the data instead 

of the researchers’ prior knowledge. Vague Gaussian priors ( 𝑁(0, 106)  were specified 

independently for each of the regression parameters, and such a prior has been used elsewhere 

in other disciplines (Barrado, Coart, & Burzykowski, 2019; Wang, Zhang, McArdle & 

Salthouse, 2008). Please do note that the similar results can be obtained with 𝑁(0, 103) or 

𝑁(0, 102) . Whilst independent inverse gamma priors ( 𝐼𝐺(0.0001, 0.0001 )) according to 

Congdon (2014) were specified for each of the variance parameters specified in equation 8.  

Analytical determination of the posterior distribution in Bayesian models is often not feasible 

in practice. Hence, Markov Chain Monte Carlo (MCMC) a computer-driven sampling method 

(Van Ravenzwaaij, Cassey, & Brown, 2018) is used in this study to determine information about 

the posterior distributions. Different initial values per chain (in this study 3 chains were used) 

are needed to form the first iteration for the Markov Chain. Each new iteration depends on the 
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previous iteration values; this process continues until sampling from stationary distribution.  At 

this stage, all chains are sampling from the same distribution, even if their starting points are 

very different, and this is one of convergence indications. The number of iterations necessary to 

obtain convergence depends on the analysis at hand, the more you increase this number the 

greater the chance to sample from the target distribution (Raftery & Lewis, 1995). In this study, 

200,000 iterations were considered for each chain and the first half of the iterations were 

discarded as the burn-in part, as the posterior distribution should not depend on the initial 

values,. The burn-in part is the number of iterations ignored since the beginning of an MCMC 

run so that the posterior distribution can be independent of the initial values. Further, the 

posterior distribution should be made of independent iterations, so thinning was used. The 

purpose of thinning is to reduce autocorrelation between iterations. We used thinning = 10 by 

keeping only every tenth iteration to build the posterior distribution. After checking model 

convergence, we believe that the remaining iterations are guaranteed to be a sample from the 

target or posterior distribution. The posterior distribution for each parameter was made up of 

10,000 iterations from each chain. Depaoli, Clifton and Cobb (2016) provide more details about 

initial values, burn-in and thin specification in a Bayesian model.  

All Bayesian results were reported after checking model convergence (Figure A1 and Figure 

A2) according to Lesaffre and Lawson (2012). Figure A1 and A2 in the appendix provides the 

trace and density plots from MCMC for convergence check in each trial. Another way to 

monitor the chain convergence is through the Rhat convergence diagnostic, which compares the 

between- and within-chain estimates for model parameters. If chains have mixed well, the 

between- and within-chain estimates agree, Rhat values for model parameters are very close to 

1 (Brooks & Gelman, 1998). The Rhat estimate for all parameters of Bayesian model used for 

each trial in this study is 1, which suggests that the Bayesian model has converged well. Note 

that formal Geweke test can also be used to check convergence (Lesaffre & Lawson, 2012).  

Further, a sensitivity analysis was conducted to study the impact of using a different prior 
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specification on the posterior probability estimates. The impact of using a different prior 

distribution for variance parameters was assessed on posterior probability estimates. 

Non-identifiability was not an issue for the Bayesian hierarchical model used in this study, since 

our model converged. Although, it is worth noting that hierarchical models are often slow to 

converge for a number of reasons including identifiability issues, particularly when using vague 

priors (Gelfand & Sahu, 1999) and the likelihood is not sufficient to provide a unique estimate 

of the model parameters. Studies in the future can follow these steps mentioned below to resolve 

such an identifiability issue. The common practice is to use sum-to-zero or corner constraints 

(Ntzoufras, 2011, Congdon, 2019). For instance, the corner constraint is often used in classical 

analysis, by setting unidentified parameters to 0 to obtain unique solutions. Furthermore, non-

identifiability can be improved by specifying suitable informative priors or by applying 

parameter constraints in a Bayesian model (Congdon, 2019). In this light, Gelfand and Sahu 

(1999) pointed out that placing a proper point mass prior on the unidentified parameters to make 

the posterior distribution proper, amount to constraining non-identifiable parameters to 0. 

Alternatively, efficient parameterisation such as hierarchical centring can be helpful in 

achieving Bayesian model convergence (Gelfand, Sahu, & Carlin, 1995).  

 

Calculating Posterior Probabilities 

For the Bayesian model, the ES estimate and its credible interval were obtained directly from 

the posterior distributions of the parameters. The mathematical expression used to calculate ES 

at each iteration is given by: 

                                                𝐸𝑆|𝜎2, 𝐆, 𝜷, 𝐛, 𝑦 =
𝛽2

√𝜎𝑇
2
 (9) 

Where  𝜎𝑇
2 =  𝜎𝑏

2 + 𝜎2 for CRT and 𝜎𝑇
2 = 𝜎𝑏1

2
+ 𝜎𝑏2

2 + 𝜎2 for MST. 
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Finally, the posterior probability that the intervention improves the outcome beyond a specific 

threshold can be used to evaluate the effectiveness of an intervention. For example, probability 

that 𝐸𝑆 ≥ 0.1 𝑆𝐷. Note that 0.1 SD (standard deviation) can be interpreted as equivalent to at 

least one month’s progress (Higgins et al. 2016) in educational attainment. A threshold of 0.1 

SD is often the minimum expected impact for an educational intervention. However, the 

posterior probability estimates were also reported for different threshold values ranging from 

0.0 to 1.0. The formula used to obtain the posterior probability (Ntzoufras, 2011) is similar to 

the posterior predictive probability (Gelman et al., 2013; Meng et al., 1994), where instead of 

comparing the observed and replicated data, the comparison occurred between ESs from a 

model and the pre-specified threshold. Since the posterior probability is defined as the 

probability that the estimated ES is greater than or equal to a specified threshold given the data 

and the model (Lesaffre & Lawson, 2012; Yang & Rannala, 2005), it can be mathematically 

summarised as: 

𝑃(𝐸𝑆 ≥ 𝜙 ∣ 𝐸𝑆, 𝜎2, 𝐆, 𝛃, 𝐛, 𝑦) =
∑ 𝐼𝐾

𝑖=1 (𝐸𝑆(𝑖) ≥ 𝜙)

𝐾
 

                            (10) 

where K is the length of Markov Chain Monte Carlo (MCMC), after excluding the burn-in part, 

together with those excluded due to the thinning process (K=30000 iterations, 10000 from each 

chain). Note that 𝜙 = 0 will provide evidence that the intervention has a positive effect, whilst 

𝜙 = 0.1 will provide evidence that the intervention improved educational outcome by at least 

one month’s progress in accordance with EEF’s conversion scale (Higgins et al. 2016).  

All the frequentist analysis was done in R software using ‘lme4 package’. Alternatively, the 

frequentist and Bayesian ES estimate and its CI (or BCI) can also be obtained directly using 

the ‘eefAnalytics’ R package (Kasim et al., 2017). ‘R2jags’ an R package, which interfaces 

with WinBUGS software, was used to obtain Bayesian ES estimates as well as posterior 
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probability estimates. The WinBUGS programme used in the analysis is provided in the 

appendix A2.   

Although our proposed method is based on MCMC, similar results can also be obtained with 

Stan, which uses the no-U-turn sampler based on Hamiltonian Monte Carlo (HMC).  Readers 

need to be aware that HMC generally explores the posterior parameter space faster and more 

efficiently than BUGS and JAGS (Hoffman & Gelman, 2014), especially for hierarchical 

models (Betancourt & Girolami, 2015). For example, Stan Development Team (2017) pointed 

out that the analysis that BUGS requires 100,000 iterations to converge, in Stan, only 1,000 

iterations might be enough. Stan codes equivalent to the WinBUGS programme used for this 

analysis are provided in the appendix A3. 

 

Results 

The distribution of pupils’ and schools’ participation are summarised in Table 2. In contrast to 

the school participation in each trial, pupils were not equally distributed in the control and 

intervention groups. The number of pupils varies from 182 in Project 17 to 25393 in Project 

110 and the number of schools varies from 12 in trial 22 to 141 in trial 133. Each school had 

pupils who received intervention and others who continued with business as usual. Note that 

for CRT, all pupils from the same school either received the same intervention or continued 

with business as usual. 

‘Table 2 here’ 

Table 3 compares the ES estimates obtained from frequentist and Bayesian methods and Table 

4 presents the posterior probabilities. All estimates presented in this table were obtained as 

specified in the methods section. Since non-informative priors were used in the Bayesian 

analysis, the point estimates of the ES were similar to the frequentist analysis. It turns out that 

the estimated CIs from frequentist and BCIs from Bayesian method were similar and a minimal 

difference was observed for each of the projects (see also (Xiao et al., 2016), figure 3). This 
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finding is consistently independent of the magnitude of the ICC. However, this cannot be 

generalised to all studies but can be said for the CRT and MST studies considered in this study. 

Beta coefficients for the interventions from the frequentist and Bayesian methods is provided 

in the appendix Table A1, which were used to estimate ES.  

‘Table 3 here’ 

Policymakers and non-academics do not always easily understand using CI or credible 

intervals. Since a p-value is problematic and somewhat prone to misinterpretation, this study 

proposes using posterior probability as a metric of confidence in the estimated impact of an 

intervention. Specifically, it recommends evaluating each intervention on the likelihood that its 

effect is at least 0.1 standard deviation, which corresponds to one month’s progress (Higgins et 

al., 2016), using EEF’s conversion scale. Among the CRT projects, Project 41, with an 

estimated ES of 0.30 and a credible interval of 0.04 to 0.55 (Table 3), has a posterior probability 

of 0.94 (Table 4) that the impact of the intervention is at least one month’s progress (>= 0.1 

SD). Project 110 with an ES of 0.10 (-0.05 0.25) has a posterior probability of 0.51 that the ES 

is at least 0.1 SD. Project 122 with an effect size of 0.17 (-0.06, 0.40) has 0.72 posterior 

probability, Project 126 with an ES of 0.21 (-0.04, 0.45) has a posterior probability of 0.80 and 

project 133 with an ES of 0.02 (-0.19, 0.22) has a 0.22 probability that the intervention 

improved the attainment outcome by at least one month’s progress. It is clear from these results 

that the larger the ES the greater the probability of at least one month’s progress. In this context, 

the posterior probability is more informative than a p-value and provides a helpful level of 

confidence to support each result. 

Among the MST projects, Project 9 with an ES of 0.28 (0.02, 0.53) has a posterior probability 

of 0.90 that it improves outcome by at least one month’s progress. Project 17 with an ES of 

0.13 (-0.15, 0.42) has a 0.60 probability, Project 22 with an ES of 0.07 (-0.18, 0.31) has 0.42 

posterior probability, Project 67 with an ES of 0.11 (-0.02, 0.24) has a 0.56 posterior 

probability, and Project 109 with an ES of -0.06 (-0.29, 0.17) has a posterior probability of only 

0.09 that it improves outcome by at least one month’s progress. Similar to CRTs, the larger the 



16 

ES, the greater the posterior probability of at least one month’s progress in the outcome. It is 

important to note that the posterior probability is conditioned on the current data and it provides 

confidence for the internal validity of the evaluation effect. This can be interpreted as a focus 

on ‘what worked’ instead of ‘what works’ (Higgins, 2018). 

Although this study proposes to focus on the probability that an intervention improves an 

educational outcome by at least one month’s progress, the posterior probability that an 

intervention has a positive impact at all was reported as well i.e. 𝑃0(𝐸𝑆 > 0). Table 4 presents 

the posterior probabilities for a grid of thresholds ranging from 0 to 1 for all CRT and MST 

projects. The posterior probability that an intervention has a positive effect on the participants 

was consistently above 0.90 for the trials with positive ES, except for Project 133 and Project 

22. The probabilities, unlike p-values, can be interpreted as evidence of the effectiveness of the 

interventions. Trials with negative ESs had a posterior probability of less than 0.50, which is to 

be expected. It is advised against just testing for positive effects or using 𝑃0(𝐸𝑆 > 0) because 

it is rarely the case that one would expect an intervention to have zero impact prior to a trial. 

As, it is expected that educational interventions improve outcomes for children and young 

people. Therefore, this study proposes to use 𝑃0.1(𝐸𝑆 ≥ 0.1) or any other appropriate threshold 

above zero. The posterior probability for an intervention to improve educational outcomes by 

at least one month’s progress (𝑃0.1(𝐸𝑆 ≥ 0.1)) varies from 0.09 for project 109 (Table 4) to 

0.94 for project 41 respectively (Table 4) across the ten evaluation analysed in this study. There 

is a clear relationship between posterior probability and the estimated magnitude of ES. 

‘Table 4 here’ 

In addition to the posterior probability estimates, the histogram of the posterior distribution of 

ES is also included in Figure 1 and Figure 2. These figures provide useful information about 

how to obtain posterior probability. For instance, for project 41,  𝑃0.1(𝐸𝑆 ≥ 0.1) = 1 − (1 +

8 + 59 + 350 + 1570)/30000.  Here 30000 in denominator is the number of iterations used 

to estimate posterior parameters. 
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Impact of prior on posterior probability 

As mentioned in the introductory section, the posterior distribution is obtained from the prior 

distribution and the likelihood (data), which is one of the strengths of the Bayesian method. A 

prior reflects knowledge or understanding of the parameters regardless of actual data. However, 

informative priors are often not available, as in this study. In this case, AVCI, (2017) 

recommended the use of non-informative priors, as the use of an incorrect ‘informative’ prior 

may wrongly influence inferences and subsequent decisions (Morita, Thall, & Müller, 2010).  

In this section, the aim was to investigate the effect of different priors on the posterior 

probabilities in education trials.  First, their impact was evaluated on the posterior distribution 

of ES, which is the active ingredient in the estimation of the posterior probability. To do this, 

different hypothetical priors for the simulated dataset were considered. Assuming a pre-test 

variable follows a normal distribution with a mean of 28.16 and 5.52 as variance, two treatment 

groups each with 30 schools and 20 pupils per school, the post-test outcome was obtained as 

𝑦𝑖𝑠 = −1.89 − 2.52 ∗ 𝑝𝑟𝑒𝑡𝑒𝑠𝑡 + 1.85 ∗ 𝑡 + 𝑏𝑠 + 𝜀𝑖𝑠.   

Where 𝜀𝑖𝑠 ~ 𝑁(0,5.922), 𝑏𝑠 ~𝑁(0,1.772). 

Applying the ANCOVA model specified in equation 1, a likelihood distribution of ES was 

obtained with a mean of 0.40 and a variance of 0.0032 (𝐸𝑆~𝑁(0.40,0.0032)). 

It was assumed that no ES prior information was available by using a non-informative Gaussian 

prior 𝐸𝑆~𝑁(0, 106), which is also used in the main analysis of this paper. In addition, we have 

also used 𝐸𝑆~𝑁(0, 102) and 𝐸𝑆~𝑁(0, 103) as non-informative priors  These priors are very 

different from the likelihood of the ES but they do not have the power to shift the posterior 

distribution from the likelihood in the same way as shown in the first row of Figure 3 (see  

panel a-c). On the other hand, when prior information is available, the posterior distribution is 

effectively the compromise between the prior and the likelihood. In statistics, it is almost 

impossible to have full information about a parameter under study, so variance or precision is 
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used to express the extent of unknown information. In this light, the term less informative, 

informative, and very informative priors was used in terms of the magnitude of variances that 

are respectively greater, equal, and less than that of likelihood. Further, we also shifted the 

mean to 0.25 for more clarity on the effect of priors on the likelihood. For the less informative 

prior, it was assumed that 𝐸𝑆~𝑁(0.25,0.0032 ∗ 10), the likelihood has greater impact on 

posterior distribution as observed in Figure 3 panel d.  For the informative prior, it was assumed 

that 𝐸𝑆~𝑁(0.25,0.0032), so both the likelihood and the prior has the same impact on posterior 

distribution (Figure 3 panel e). Finally, the very informative prior with the smallest variance 

(=0.00032/5) and mean 0.25 has a greater impact on posterior distribution than likelihood 

(Figure 3 panel f). 

‘Figure 1 here’ 

Knowing that the ES estimate, is the main parameter of interest for estimating posterior 

probability, which is sensitive to the choice of the prior, the posterior probability estimate is 

therefore also sensitive to the choice of prior. Yang and Rannala (2005) had similar thoughts 

in estimating the posterior probability of phylogeny. Table 5 shows how the choice of the prior 

and use of a different distribution for variance parameters and different threshold values in a 

MST trial modified the posterior probability estimates.  It is worth knowing that when a prior 

is very informative relative to the likelihood, it has a high impact on posterior probabilities. In 

other words, the more informative the prior is, the less the variation in the posterior probability 

estimates. As the data plays only a little role in shifting the posterior from the prior distribution 

(the prior remains fixed as the iteration changes).  It was assumed in this study that in an MST 

trial, the covariance parameter for the random intercept and slope component is independent, 

i.e., 𝜎𝑏1,𝑏2 = 0. However, if one assumes that 𝜎𝑏1,𝑏2 ≠ 0, then in that case, Inverse Wishart 

distribution will be the natural choice for variance and covariance parameters (Congdon, 

2006), in this study  𝐼𝑊 ([
1 0
0 1

] , 2) was used.  The first two columns of Table 5 provides the 

posterior probability estimates assuming prespecified Inverse Wishart and gamma distribution 
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for the variance and covariance parameters. It is apparent that estimates of posterior probability 

do not vary much between the Inverse Wishart and gamma priors and some marginal 

differences were only observed for the threshold values between 0.3-0.5.    

‘Table 5 here’ 

 

Discussion and Conclusion 

The main mission of the Education Endowment Foundation (EEF) is to improve educational 

attainment, especially the attainment of disadvantaged pupils in the England. With this 

objective in mind, the EEF has commissioned over 150 evaluations with distinct educational 

interventions since 2011. The effectiveness of an intervention is typically assessed through the 

ES (standardised mean difference) with its associated confidence (or credible) interval. This 

study have demonstrated how Bayesian posterior probability can be used to provide evidence 

of the effectiveness of an intervention. The proposed application of posterior probability may 

be more easily communicated to the policymakers and education stakeholders.  

 

‘Figure 2 here’ 

The Bayesian framework provides a natural way to specify models, estimate parameters, and 

draw inferences even in cases where classical statistical methods fail (Swaminathan, Rogers, 

& Horner, 2014). To reduce educational researchers’ dependence on p-values, a CI for the ES 

is often suggested as an alternative. However, a CI is based on the same frequentist assumptions 

as a p-value threshold, which means that they are also prone to the same fallacies and 

misinterpretations. Further, CI presume that the effect under consideration exists in a wider 

population and their use implies that every problem of inference is a problem of parameter 

estimation rather than hypothesis testing (Wagenmakers et al., 2018). With the Bayesian 

approach, obtaining the analogous ‘confidence’ interval for an ES (i.e. its credible interval) is 

straightforward, as each parameter in Bayesian model follows a distribution, including the ES.  
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‘Figure 3 here’ 

Although this study shows that the frequentist CI and BCI usually do not differ, this finding 

cannot be generalised to studies not considered in this paper, especially when the priors used 

are not relatively flat (non-informative) or models are not regular. Overall, Bayesian credible 

intervals around an ES are a more reliable estimate of impact as outlined in the argument above. 

Posterior probabilities estimated from a Bayesian analysis can provide estimates of the 

probability of an intervention’s effect being above a specific threshold or even the probability 

that the intervention’s impact might lie between a range of specific values. These answers 

cannot be obtained from the traditional frequentist framework (Wagenmakers, Morey, & Lee, 

2016) but could be useful in decision making by education stakeholders and policymakers.  

A comparison of the posterior probability given a similar threshold for different interventions 

can, therefore, be a useful way to identify which intervention is more effective. This is evident 

from the findings presented in this analysis. The posterior probabilities that the ESs are above 

0.10 for EEF Project 41 is 0.94 and for Project 9 is 0.90. These are much higher than the 

posterior probabilities for other projects with a similar threshold. This suggests that the 

interventions in Project 41 and 9 are rather more effective than the other interventions in this 

study at this specific threshold. They might therefore be a ’better bet’ for other schools to try 

(Higgins, 2018).  

According to the different factors involved (including the intervention, the targeted pupils, and 

the outcome of interest), researchers can specify the value of threshold differently according 

to Hill et al. (2008). There is a long debate about the use of specific thresholds to quantify the 

impact of an intervention in education, such as a small, medium, or large effect (Cohen, 1988; 

Hedges & Hedberg, 2007; Lipsey et al., 2012). However, Glass, Smith, and McGaw (1981) 

suggest that for education a small effect of 0.1, can be considered as important, particularly if 

it is cheap to implement or reliable (Higgins, 2018). In this study, all the possible ES thresholds 

for effective interventions ranging from 0.0 to 1.0 were accommodated. Estimates of posterior 

probabilities for such a wide range of thresholds might better empower the educational 



21 

stakeholders and policymakers to understand the change in the effectiveness of an intervention 

for a specific threshold. Bayesian posterior probabilities can also be used to provide odds for 

P[ES>0.1]/P[ES<0], which is relevant for decision making along with P[ES>0.1]. These odds 

can also be estimated for different threshold values like 0.2 or 0.3.  However, the estimation of 

such odds was beyond the scope of this study but can be explored in the future.  

This would help with cost/benefit analyses and might provide realistic goals for policy changes. 

Based on this analysis, and subject to further exploration, it is recommended using 0.1 to 

evidence the effectiveness of an educational intervention, if a threshold must be chosen. 

Relying just on an ES to determine the practical significance of interventions in education can 

be problematic, as is using p-values to determine statistical significance (Pogrow, 2019). There 

is a need for educational researchers to move towards a simpler measure of practical benefit 

that can estimate the likely benefit of an intervention, based on how effective it has been in a 

specific evaluation. This study is making an important contribution in this direction by 

proposing a Bayesian approach to evaluate an intervention’s effectiveness and by providing a 

range of probability estimates given the observed data. Since the estimates for posterior 

probability and Bayesian credible intervals are the estimates given the observed data, the results 

can safely be said to focus on internal validity and what’s worked in a specific trial. 

However, the choice of prior in Bayesian analysis required careful consideration. This study has 

shown the dependence of the posterior probability on the choice of priors in simulated data. 

Therefore, too informative prior will have a strong influence on the posterior, except when 

mixed with high-powered data in terms of sample size (Lemoine, 2019; Ley, Reinert, & Swan, 

2017). If the researchers are confident about the accuracy of their knowledge of prior, then 

informative priors can be integrated with the empirical data to estimate posterior probabilities. 

This study recommends using vague prior for Bayesian evaluation of education trials so that 

any conclusion about the effectiveness of an intervention is largely driven by the data instead 

of the researcher’s subjective prior knowledge. 
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Table 1  

Description of the projects used in this study. 

Design Full EEF title (project number) Outcome Padlock 

 Improving Numeracy and Literacy (41) Maths 5 

 Embeddive formative assessment (110) Reading 5 

CRT 1stClass@Number (122) Maths 4 

 Tutor Trust Primary (126) Maths 4 

 Catch Up® Literacy (133) Reading 4 

 Catch Up® Numeracy (9) Maths 3 

 Summer Active Reading (17) Reading 3 

MST Vocabulary Enrichment (22) Reading 4 

 Texting Parents (67) Maths 3 

 Graphorime (109) Reading 5 
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Table 2: 

Number of pupils and schools participated in each project. 

  Control Intervention Overall 

 Project Pupils Schools Pupils Schools Pupils Schools 

 41 848 19 517 17 1365 36 

 110 13035 70 12358 70 25393 140 

CRT 122 227 62 239 67 466 129 

 126 634 52 567 50 1201 102 

 133 505 72 501 69 1006 141 

 9 

 

108 

 

54 

 

108 

 

54 

 

216 

 

54 

 

 17 89 42 93 41 182 48 

MST 22 288 12 282 12 570 12 

 67 5977 28 5613 29 11590 29 

 109 177 14 185 14 362 14 
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Table 3: 

Comparison of effect size estimates from frequentist and Bayesian methods. 

  Frequentist Bayesian 

 Trial Estimate 95% LB 95% UB Estimate 95% LB 95% UB ICC 

 41 0.30 0.04 0.56 0.30 0.04 0.55 0.13 

 110 0.11 -0.04 0.25 0.10 -0.05 0.25 0.20 

CRT 122 0.17 -0.06 0.39 0.17 -0.06 0.40 0.20 

 123 0.21 -0.03 0.44 0.21 -0.04 0.45 0.30 

 133 0.02 -0.19 0.23 0.02 -0.19 0.22 0.28 

 9 0.28 0.03 0.52 0.28 0.02 0.53 0.14 

      17 0.14 -0.14 0.41 0.13 -0.15 0.42 0.11 

MST 22 0.07 -0.17 0.32 0.07 -0.18 0.31 0.05 

 67 0.11 -0.02 0.24 0.11 -0.02 0.24 0.07 

 109 -0.06 -0.30 0.17 -0.06 -0.29 0.17 0.05 
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Table 4: 

Posterior probability estimates for different threshold values in both cluster randomised and 

multisite trials projects.  

 Cut-off  

(φ) 

CRT projects  MST projects 

41 110 122 126 133  9 17 22 67 109 

0.0 0.98 0.92 0.92 0.95 0.57  0.98 0.82 0.74 0.94 0.31 

0.1 0.94 0.51 0.72 0.80 0.22  0.90 0.60 0.42 0.56 0.09 

0.2 0.77 0.11 0.39 0.53 0.04  0.72 0.32 0.14 0.08 0.02 

0.3 0.49 0.01 0.13 0.22 0.00  0.43 0.12 0.03 0.00 0.00 

0.4 0.22 0.00 0.02 0.06 0.00  0.18 0.03 0.00 0.00 0.00 

0.5 0.07 0.00 0.00 0.01 0.00  0.04 0.01 0.00 0.00 0.00 

0.6 0.01 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 

0.7 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 

0.8 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 

0.9 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 

1.0 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 
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Table 5: 

Posterior Probability estimates from simulated data with different priors, and posterior 

probability estimates from a MST model with vague prior and assuming that correlation 

between both random effect parameters exist. 

Cut-off 

(φ) 

Vague 

Wishart* 

Vague 

Gamma** 

Less 

informative 

Informative 

Very 

informative 

0.0 1.00 1.00 1.00 1.00 1.00 

0.1 1.00 1.00 1.00 1.00 1.00 

0.2 0.98 0.99 0.98 0.97 1.00 

0.3 0.82 0.87 0.81 0.45 0.05 

0.4 0.39 0.50 0.36 0.01 0.00 

0.5 0.07 0.13 0.05 0.00 0.00 

0.6 0.00 0.01 0.00 0.00 0.00 

0.7 0.00 0.00 0.00 0.00 0.00 

0.8 0.00 0.00 0.00 0.00 0.00 

0.9 0.00 0.00 0.00 0.00 0.00 

1.0 0.00 0.00 0.00 0.00 0.00 

*Wishart: generalization to multiple dimensions of the gamma distribution and Off diagonal 

elements of variance covariance matrix are not 0.  

**Gamma: random intercept and slope are independent.  
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Figure 1: Plot of posterior distribution of effect size (ES) from CRT studies based on 30000 

iterations. 

  



36 

 

 

 

Figure 2: Plot of posterior distribution of effect size (ES) from MST studies based on 30000 

iterations. 

  



 

 

Figure 3: Prior, likelihood and posterior distributions of effect size. Panel a)-c) Non informative, d) less informative ES~N(0.25,0.032), e) Informative 

prior ES~N(0.25,0.0032) and f) very-informative prior ES~N(0.25, 0.00064).
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Appendix 

Table A1 

Beta coefficients of intervention from archive frequentist and Bayesian analysis. 

   Frequentist   Bayesian  

 Project Estimate 95% LB 95% UB Estimate 95% LB 95% UB 

CRT 

41 

110 

1.05 

0.10 

0.15 

-0.04 

1.95 

0.23 

1.04 

0.10 

0.13 

-0.04 

1.94 

0.24 

 122 0.73 -0.25 1.71 0.74 -0.28 1.75 

 126 1.04 -0.13 2.21 1.03 -0.18 2.21 

 133 0.15 -1.56 1.85 0.14 -1.58 1.82 

MST 

9 

17 

2.92 

1.22 

0.34 

-1.25 

5.50 

3.70 

2.91 

1.22 

0.22 

-1.34 

5.55 

3.85 

 22 0.38 -0.90 1.64 0.38 -0.94 1.63 

 67 0.07 -0.01 0.14 0.07 -0.01 0.14 

 109 -0.37 -1.93 1.08 -0.36 -1.85 1.11 

Note: These are beta coefficients for intervention, which were used to calculate effect size and 

confidence/credible intervals.  

 

  



40 



41 

  



42 

Appendix A1: Formulation of Multilevel model (MLM) 

The ES estimation strategy starts from a multilevel model (MLM) where the school is defined 

at the highest level of the model (level 2) and the pupil within the school at the lowest level 

(level 1).  

1. CRT 

Schools are randomised to receive treatment or control 

Level 1: Postij = mui + εij,   

Level 2: mui = β0 +  β2Tij + bi,     

Level 1 and 2 combined with important covariate (pre-test) 

Postij = β0 +  𝛃𝟏𝐩𝐫𝐞𝐭𝐢𝐣 + β2Tij + bi + εij.  

 

2. MST 

Pupils within school are randomised to receive treatment or control 

Level 1: Postij = mu0i + mu1iTij +  εij  

Level 2:  mu0i = β0 + b1i,    

                 mu1i = β2 +  b2i,   

Level 1 and 2 combined with important covariate (pre-test) 

Postij = β0 +  𝛃𝟏𝐩𝐫𝐞𝐭𝐢𝐣 + β2Tij + b1i + b2iTij + εij  

 

Since according to the MST and CRT study designs, the pupil's attainments from the same 

school are assumed to be correlated while those from different schools are independent. So, we 

assumed a distribution(s) for the school deviation parameters 𝐛𝐢 for CRT and 𝐛𝟏𝐢 for MST. In 

addition, we included the parameter that can help to estimate the school by treatment effects 

(𝐛𝟐𝐢) only for MST studies. Since pupils within these schools were randomized to receive 

either treatment or control. Whereas for the CRT studies, it is not possible to estimate such 

parameter since the whole school is randomized to receive either treatment or control.   
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Appendix A2: WinBUGS programme for Bayesian multilevel model and 

posterior probability  

1. CRT 

 

model{ 

# 1. ANCOVA model 

#------------------------ 

  for(i in 1:N){ 

    y[i] ~dnorm(mu[i],tau) 

    mu[i] <- beta[1] + beta[2]*pret[i] + beta[3]*t[i] + b1[school[i]]    

  }                 

  for(j in 1:M){ 

    b1[j]~dnorm(0.0,tau.b1) 

  } 

# 2. Priors 

#------------------------ 

  tau.b1~dgamma(0.0001,0.0001) 

  sigma.b1<-1/tau.b1 

  tau~dgamma(0.0001,0.0001) 

  sigma<-1/tau                

  for(k in 1:p){beta[k]~dnorm(0.0,1.0E-06)}  

   

# 3. ES, ICC and Total Variance   

#--------------------------------------- 

  sigma.tt <-sigma + sigma.b1  

  icc <- sigma.b1 * pow(sigma.tt ,-1)    

  ES <- beta[3]/sqrt(sigma.tt)   #Effect Size   

         

# 5. Check effectiveness of Intervention relative to particular Threshold 

#--------------------------------------------------------------------------------------------- 

  for (c in 1:11) { 

    TS.tt[c]<- step(Total-catof[c])  # catof=0, 0.1, …, 1 

  } 

} 
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2. MST 

 

model{ 

# 1. ANCOVA model 

#------------------------ 

  for(i in 1:N){ 

    y[i] ~dnorm(mu[i],tau) 

    mu[i] <- beta[1]+beta[2]*pret[i]+beta[3]*t[i]+b1[school[i]]+b2[school[i],tt[i]]  

  } 

  for(j in 1:M){ 

    b1[j]~dnorm(0.0,tau.b1) 

    #b2[j]~dnorm(0.0,tau.b2) 

    for(k in 1:2){b2[j,k]~dnorm(0.0,tau.b2)} 

  } 

# 2. Priors 

#------------- 

  tau.b1~dgamma(0.0001,0.0001) 

  sigma.b1<-1/tau.b1 

  tau.b2~dgamma(0.0001,0.0001) 

  sigma.b2<-1/tau.b2 

  tau~dgamma(0.0001,0.0001) 

  sigma<-1/tau  

  for(k in 1:p){beta[k]~dnorm(0.0,1.0E-06)}  

 

# 3. ES, ICC and Total Variance   

#--------------------------------------- 

  sigma.tt <-sigma + sigma.b1 + sigma.b2 

  icc <- (sigma.b1+sigma.b2) * pow(sigma.tt ,-1)      

  ES <- beta[3]/sqrt(sigma.tt)  # 4. Effect Size     

           

# 5. Check effectiveness of Intervention relative to particular Threshold 

#----------------------------------------------------------------------------------------------- 

  for (c in 1:12) { 

    TS.tt[c]<- 1-step(cutof[c]-Total) # catof=0, 0.1, …, 1 

  } 

} 
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Appendix A3:  Stan with R       

#***************************************************************** 

#                                                                        1.  CRT 

#**************************************************************** 

 

library(rstanarm) 

  stan.mlm <- stan_lmer(post ~ pret + t + +(1|school),  

adapt_delta=0.999,  

data=MyData) # ,iter=4000: default 

sims <- as.matrix(stan.mlm) 

Sim_betas <- as.matrix(stan.mlm,pars="t") #treatment effect 

Sim_resi <- as.matrix(stan.mlm,pars="sigma") #sigma(pupil): sqrt of residual 

Sim_schl <- as.matrix(stan.mlm,pars="Sigma[school:(Intercept),(Intercept)]") #sigma(school)^2 

 

# 3. ES, ICC and Total Variance   

#--------------------------------------- 

sigma.tt <-  mean(Sim_resi^2+Sim_schl) 

icc <- mean(Sim_schl) /sigma.tt 

sim_ES <- Sim_betas/sqrt(Sim_resi^2+Sim_schl) 

ES <- round(c("ES"=mean(sim_ES), quantile(sim_ES,probs=c(0.025,0.975))),2) 

 

# 5. Check effectiveness of Intervention relative to particular Threshold 

#----------------------------------------------------------------------------------------------- 

Threshold <- 0:10/10 

P0to1<- data.frame(sapply(Threshold, function(x) as.numeric(sim_ES>x))) 

names(P0to1)<- paste0("P", Threshold) 

Pprob<- round(sapply(P0to1, mean),2) 
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#***************************************************************** 

#                                                                        2. MST 

#**************************************************************** 

 

library(rstanarm) 

stan.mlm <- stan_lmer(post ~ pret + t  + (1|school/t), 

                      adapt_delta=0.999,  

                      data=MyData) # ,iter=4000: default 

sims <- as.matrix(stan.mlm) 

Sim_betas <- as.matrix(stan.mlm,pars="t") #treatment effect 

Sim_resi <- as.matrix(stan.mlm,pars="sigma") #sigma(pupil): sqrt of residual 

Sim_schl <- as.matrix(stan.mlm,pars="Sigma[school:(Intercept),(Intercept)]") #sigma(school)^2 

Sim_Gschl<- as.matrix(stan.mlm,pars="Sigma[t:school:(Intercept),(Intercept)]") #sigma(treatment by 
school)^2 

 

# 3. ES, ICC and Total Variance   

#--------------------------------------- 

sigma.tt <-  mean(Sim_resi^2+Sim_schl +Sim_Gschl) 

icc <- mean(Sim_schl+Sim_Gschl) /sigma.tt 

sim_ES <- Sim_betas/sqrt(Sim_resi^2+Sim_schl) 

ES <- round(c("ES"=mean(sim_ES), quantile(sim_ES,probs=c(0.025,0.975))),2) 

 

# 5. Check effectiveness of Intervention relative to particular Threshold 

#----------------------------------------------------------------------------------------------- 

Threshold <- 0:10/10 

P0to1<- data.frame(sapply(Threshold, function(x) as.numeric(sim_ES>x))) 

names(P0to1)<- paste0("P", Threshold) 

Pprob<- round(sapply(P0to1, mean),2) 

 

 


