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Abstract. We propose a simple statistical model of electrochemical cell degra-

dation based on the general characteristics observed in previous large-scale
experimental studies of cell degradation. This model is used to statistically

explore the behaviour and lifetime performance of battery systems where the

cells are organised into modules that are controlled semi-independently. Intu-
itively, such systems should offer improved reliability and energy availability

compared to monolithic systems as the system ages and cells degrade and fail.
To validate this intuition, this paper explores the capacity evolution of pop-

ulations of systems composed of random populations of cells. This approach

allows the probability that a given system design meets a given lifetime specifi-
cation to be calculated. A cost model that includes the effect of uncertainty in
degradation behaviour is introduced and used to explore the cost-benefit trade-

offs arising from the interaction of degradation and module size. Case studies
of an electric vehicle battery pack and a grid-connected energy storage system

are used to demonstrate the use of the model to find lifetime cost-optimum

designs. It is observed that breaking a battery energy storage system up into
smaller modules can lead to large increases in accessible system capacity and

may lead to a decision to use lower-quality, lower-cost cells in a cost-optimum
system.

1. Introduction

For electric vehicles and grid-connected energy storage systems, the construction
of large, reliable battery packs is a crucial technological hurdle. This is because the
quantity of stored energy required in these applications is far in excess of that which
can be provided by a single cell: compare for example a 10 Wh 3.7 V single-cell
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mobile phone battery to a 50 kWh 400V PEV battery pack containing 400 or more
cells, or to a 10 MWh grid storage system connected at medium voltage that may
contain 100,000 cells. In these large systems, battery packs are formed by connect-
ing cells in series in order to provide a pack terminal voltage that is suited to the
application. An individual electrochemical cell is a complicated object consisting
of tens or hundreds of layers of anode, cathode, electrolyte and separator materials
which exhibit complex electrochemical, thermal and mechanical behaviour. Dif-
ferences between cells stemming from manufacturing tolerances and variations in
operating conditions should therefore be expected. As a result, although the series
connection process inherent in forming a battery pack is conceptually simple, it
gives rise to a multitude of engineering challenges attached to the management of
many similar-but-not-identical cells that must perform predictably and repeatably
in the context of an overall energy storage system.

Although manufacturers take great care to deliver uniform cell populations to
their customers, it has been shown numerous times that even nominally identical
cells using mature technology and taken from the same batch demonstrate signif-
icant variations in initial capacity [16] and other parameters such as impedance
[23]. It is also well-known that cells display varying degradation rates dependent
on discharge rate [11] and ambient temperature [12], for example. The authors
of long-term cycling studies comment on the unpredictability of the cell-to-cell be-
haviour, in the sense that the capacity observed during cycle N is not a particularly
strong predictor of, for example, capacity at cycle N + 200, and that the rate of
capacity loss varies over time such that cell capacities “cross each other” [15] dur-
ing the lifetime of the system: the highest capacity cell in a batch at time T is not
particularly likely to be so at time 2T .

In this work, we focus on the interaction between uncertain cell degradation
behaviour and Energy Storage System (ESS) design because we believe statistical
modelling of large ESSs has been under-explored in the literature to-date and that
there are useful lessons to be learnt by abstracting the problem away from particular
chemistries and particular applications. The problem is approached by defining
a simple statistical cell model that qualitatively replicates the behaviour seen in
previous experimental studies of cell degradation. The model lends itself to studying
the behaviour of large ESSs through analytical techniques and large-scale numerical
simulation.

Underlying this study is the general concept of ESS modularisation: this is the
process of breaking an ESS up into sub-units (modules) so that differences between
modules do not affect operation of the other modules. In this way, cell-to-cell
variation, cell degradation and cell failure is acceptable because although this may
cause a module to perform poorly or fail, the ESS (composed of many modules)
can continue to function, albeit with a small overall reduction in performance. The
engineering justification for modularisation is clear: for a given cell type and appli-
cation, there will be an upper limit on how many cells can be connected together
in series before the probability of failure of the string becomes unacceptably high.
This general idea is sometimes explicitly, but often implicitly, discussed in the ESS
literature. In [6] three different designs for a 1 MWh grid-connected ESS were com-
pared, all of which were modularised in some fashion in order to provide adequate
reliability (cells were assumed to have a constant or temperature-dependent failure
rate). In [18] several pack configurations for a grid-connected ESS were studied,
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with the authors noting “it is not recommended to let the number of cells in series
go over 200. An appropriate tradeoff needs to be made between the battery module
voltage level and the system reliability.” A probabilistic approach is used to com-
pare different EV battery pack layouts in [19], and the authors show that although
the prediction of pack state-of-health becomes less accurate as the packs age, this
can be mitigated to some extent through appropriate design of the pack. There are
many studies that present what are, in-effect, methods to achieve modularisation,
although often the authors do not describe it in this way; terms such as ‘cell bal-
ancing’ [13, 21, 7, 5], ‘cell equalization’ [10] or ‘pack reconfiguration’ [20] may be
used instead.

It is important to draw a distinction between modularisation and cell balancing :
a system that implements a cell balancing mechanism is able to charge and discharge
different cells at different rates in order to accommodate cell-to-cell variation in ca-
pacity. The differential rate capability (i.e. how different the charging/discharging
rates can be made from one cell to another) may be relatively small, perhaps 5-20%
of nominal rates. In such cases, the system can be considered to be modularised
in the way meant in this work, but this modularisation only works so long as the
differential-rate capability is not exceeded (i.e. the cells do not develop exces-
sive variation). Specifically, in a simple series-connected pack (which often contain
differential-rate limited cell balancing circuits of some form or another) it is nor-
mally not possible to isolate a completely failed cell, but in some more-complex
designs it is possible [6, 5, 20]. This work studies hypothetical systems that are
truly modularised, i.e. ones that can bypass cells completely, in order to avoid the
need to explicitly choose a somewhat arbitrary differential-rate capability. However,
many of the key observations apply to systems using balancing-type circuits.

In this study, we use Monte Carlo simulation [22] to quantify the effects of vari-
ability in cell capacities and in the degradation process when designing modularised
battery systems, following a similar approach to simulation in reliability analysis
of power systems [2, 3]. To see how these effects impact design decisions, we use
standard statistical decision analysis [8, 17].

The paper is structured as follows: Sections 2 and 3 introduce a generic statisti-
cal model of a cell, a definition of the process of modularisation and presents some
general results. Section 4 provides a numerical investigation of the behaviour of a
population of cells operating in a modular battery battery system. Section 5 intro-
duces cost and revenue models which are used to explore optimal design of modular
battery systems. Section 6 concludes the paper and highlights the contributions of
the work.

2. System modelling

The capacity Ci(t) of a cell (where i denotes the cell index, and t denotes time)
is defined as the total energy that the cell will release when taken from a fully-
charged to fully-discharged state. The cell capacity is an indicator of the remaining
economic value of the cell; once cell capacity is zero the cell performs no useful
energy storage function. A pack-producer is likely to have quite precise knowledge
of initial capacity Ci(0), as this is easily measured. As time t increases, the cell
will degrade, and thus Ci(t) will be a decreasing function. The degradation rate is
typically uncertain, and will vary between cells.
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The accessible capacity C(t) of a system is defined as the total energy that the
system will release when taken from a fully-charged to fully-discharged state. In
the ideal case the accessible capacity will be equal to the sum of all the capacities
of the cells it contains:

(1) Cideal(t) :=

n∑
i=1

Ci(t)

However, in practical systems, the accessible capacity will almost always be smaller
than the underlying sum of all individual cell capacities. In a simple series-connected
string of cells, each cell can deliver only the capacity equal to the capacity of the
lowest capacity cell (this is because the (dis)charge process must stop when any
one cell is fully (dis)charged, as attempting further (dis)charging will damage the
cell permanently):

(2) Cseries(t) := n
n

min
i=1

Ci(t)

Clearly, Cseries(t) ≤ Cideal(t) where equality obtains when all cells have identical
capacities. The inefficiency increases as cell capacities become less homogeneous.

2.1. Modularisation. In order to mitigate this effect, and as discussed previously,
larger battery stems are often modularised in some way. In this work, this is taken
to mean that m series strings of cells, each containing ` cells, are combined into a
larger system such that all the accessible capacity of each string can be delivered
by the system. The accessible system capacity of a modularised system is

(3) C(t; `,m) =

m∑
i=1

`
`

min
j=1

Cij(t) =

m∑
i=1

`C ′i1(t)

where C ′ij(t) denotes the jth smallest element of Ci1(t), . . . , Ci`(t).
For m = 1 (` = n), Equation (3) is equivalent to Equation (2) and the system is

composed of a single large series string; in this case the system is not modularised.
For m = n (` = 1), Equation (3) is equivalent to Equation (1) and the capacity of
every cell is fully accessible; in this case the system is fully modularised. Clearly,
for a fixed number of cells n = `m, as m increases, the accessible capacity is likely
to increase because a low-capacity cell in one module does not affect other modules.
As cells age, their capacities will tend to diverge and so a highly modularised system
will tend to maintain larger accessible capacity over time. After failure of one cell
in a string, the accessible capacity of the string containing that cell will be zero
and so, if cell failure rate is relatively high compared to the intended lifetime of the
system, modularisation is necessary to maintain functionality for a longer period.

2.2. System metrics. A useful metric is the Accessible Capacity Fraction (ACF):

(4) ACF(t; `,m) :=
C(t; `,m)∑n
i=1 Ci(t)

∈ [0, 1]

This represents the fraction of underlying cell capacity that is accessible in a par-
ticular system design at any point t in the life of that system, i.e. how close to
complete utilisation of its cells a system gets. ACF = 1 if ` = 1 and in general
ACF < 1 if ` > 1 unless all cells are perfectly matched. ACF will tend to fall over
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l series-

connected
cells in a
module

m modules
in a system

module power electronics
provides control over the average
current flowing in the module

lm cells in the system, modules

are connected in series and
parallel to meet the system
voltage and current specifications

Figure 1. Conceptualisation of a modularised battery pack. Cells
inside a module are connected in series and have equal currents.
The participation of a module in the overall system is controlled
by the module power electronics. The practical realisation of the
power electronics will vary depending on the application.

time as cells become less well matched. A second useful metric is the Accessible
Integrated Capacity Fraction (AICF):

(5) AICF(T ; `,m) :=
1

T

∫ T

0

ACF(t; `,m) dt ∈ [0, 1]

The AICF provides an indication of the advantage of modularisation accrued over
the lifetime of the system. An AICF close to 1 indicates the design is able to exploit
the capacities of the cells it contains over the life of the system.

2.3. Optimal ordering of cells. An intuitive idea is that, during manufacture,
the accessible capacity of a new system may be maximised by grouping similar-
capacity cells together in modules because this leaves the least capacity inaccessible
in each module. Formally, it is shown in Appendix A that C(t; `,m) (and therefore
the ACF and AICF) is maximal when the ordering of the cell capacities matches
the lexical ordering of the cell indices, i.e. when the ordering of Cij(t) matches the
natural ordering of `(i − 1) + j. This also applies at any point t in the lifetime of
the system, i.e. there is an optimal rearrangement of cells which is made by swap-
ping cells between modules that results in the highest accessible system capacity.
However, in practice, this is likely to be a highly invasive procedure which may be
cost-prohibitive.

3. Cell modelling

3.1. A Simple Degradation Model. In this work, we use the term cell degra-
dation to simply mean a decrease in cell capacity over time. In practice, cell
degradation is a complex mixture of chemical and mechanical processes that vary



6 D.J. ROGERS, L.J.M. ASLETT, AND M.C.M. TROFFAES

from once cell type to another, not all of which are fully understood [4]. All cell
types tend to experience a loss of active material over time due to slow but irre-
versible side-reactions occurring within them, even when the cell is not actively
cycled. For most lithium ion cell types, the intercalation of ions in porous anode
and cathode materials during cycling produces mechanical stresses that cause grad-
ual accumulated damage to the structure of the cell, leading to reduced capacity.
Degradation rates tend to increase if a cell is operated at particularly high or low
temperatures and/or at high charge or discharge currents, i.e. cell degradation de-
pends on how the cell is operated. We do not attempt to model any one particular
degradation mechanism or group of mechanisms, but instead to relate the general
expected degradation behaviour of a particular set of cells to the overall behaviour
of a system composed of these cells.

The underlying requirement is to construct Ci(t) such that it is a non-increasing
random process that qualitatively replicates the degradation behaviour that has
been observed experimentally in previous studies (specifically the variation of degra-
dation in a population of similar cells). We note that articles containing information
of the sort required are relatively rare, likely because of the large-scale facilities and
long timescales required to test many similar cells over hundreds of cycles. The fol-
lowing three studies have, however, performed this type of work and therefore help
provide a justification for the design of the model:

(1) [1] describes an experiment on 48 1.85 Ah carbon/nickel manganese oxide
(NMC) cylindrical cells operated for 1700 charge/discharge cycles under
the same conditions for all cells (1.08C charge and discharge). The authors
observed a clear distinction between “two ageing mechanisms with different
degradation rates” in a plot of cell capacity versus cycle number. This plot
exhibits a breakpoint at approximately 1100 cycles and 10-15 % drop in
capacity. Before this breakpoint, cell capacity fell on average at a rate of
0.017 % capacity loss per cycle, and after at 0.063 % per cycle.

(2) [15] describes an experiment on 24 4.4 Ah graphite/lithium cobalt oxide
(LCO) pouch cells operated for 593 cycles (1C charge, 10C discharge). Most
cells display a breakpoint in the degradation data, with slower degradation
(0.04 %/cycle) occurring before and faster degradation (0.12 %/cycle) af-
terwards. However, cell behaviour is different from that observed in [1] in
that the breakpoints tend to occur earlier and are more widely distributed
in proportion to the length of the experiment (from 180 cycles onwards),
although the capacity drop at which it occurs is similar at 8-15 %.

(3) [24] describes an experiment on 124 1.1Ah graphite/lithium iron phosphate
cells (LFP) operated for 1000 cycles. A major difference versus [1, 15]
is that the charging conditions were not the same for all cells (charging
varied between 3.6 C and 6 C, discharging was 1 C for all cells), leading to
very different degradation rates across the population. However, a similar
breakpoint effect is observed for most cells, with the cycle number at which
the breakpoint occurs being lower for higher charging rates. The breakpoint
tends to occur after 400 cycles and 4-10 % capacity drop, although there are
three outlier cells that degrade very rapidly and several cells which appear
to not reach the breakpoint during the experiment.

Although only presenting results for three lithium titanate (LTO) cells, [14] ex-
plicitly fits a “two-stage piecewise linear model” of degradation to experimental
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data. In [25] cell resistance and power delivery capability exhibit a breakpoint,
suggesting that degradation mechanisms affect other cell parameters beyond ca-
pacity. There are studies where a breakpoint in degradation rate is not observed,
for example [9] presents results for 51 18650-format LCO cells showing constant
cell degradation rates at 0.25 C and 1.5 C rates over 1000 cycles, although there is
significant variation in this rate between cells.

Based on these observations, we propose the following simple degradation model
for the capacity of an individual cell:

(6) Ci(t) =

{
max{0, Ci(0)−Dit} if t < Ti

max{0, Ci(0)−Dit− Ei(t− Ti)} if t ≥ Ti

where Ci(t) is the capacity of cell i at time t, Di is the degradation rate, Di + Ei
is the accelerated degradation rate, and Ti is the breakpoint time of transition
to accelerated degradation. Random variables are denoted by capital letters, and
their realisations by lower case letters. It is assumed that Ci(0), Di, Ei, and Ti
are independent and follow non-negatively truncated Normal distributions. This
model conforms to the behaviour of lithium-ion cells reported in the literature
and by application engineers: a relatively narrow spread in initial capacity that
diverges due to degradation until capacity has dropped by 5-15%, followed by more
rapid degradation and divergence until the cell is deemed to have failed. The
definition of cell failure is application-specific; it could be related directly to capacity
(i.e. because the capacity of the cell is now inadequate to serve the intended role)
or related to its electrical performance (for example, internal impedance increase
leading to inadequate charge/discharge rate capability). We do not attempt to
model any failure mechanism beyond capacity degradation, although this could
be added to the model if sufficient data were available to support it. Tailored
models could of course be built for a particular cell design by performing large-
scale tests, with functional relationships and parameters statistically fitted and
validated accordingly. However, the model as proposed exhibits the main features
of typical cell behaviour and allows us to demonstrate a methodology for studying
and quantifying the impact of cell variability on pack design and eventual system
profitability.

3.2. Limitations of the model. An attraction of the model is that it is inde-
pendent of engineering implementation detail and is therefore relatively simple and
capable of providing general insight. However, the assumption of independence be-
tween cells is potentially näıve. Rates of degradation may be positively correlated
between nearby cells in a pack if, for example, the thermal management system
is inadequate and leads to hotspots forming in the pack. A major cell failure in a
practical system could occasionally result in thermal runaway of the cell and, in the
worst case, a cascading failure. Such correlations could not be modelled without
significant engineering detail of the proposed system and so these are not included
here. This means that to some degree, the model relies on the observation that
a well engineered system should not contain obvious weaknesses (e.g. by allowing
hotspots to form); it appears reasonable to assume that correlated capacity loss
(and/or outright failure) is avoided as a result of sensible design and maintenance
practices. Unusual degradation or frequent failures would lead to the system being
improved upon until these were avoided. As a result, the framework presented here
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Parameter Good cell Bad cell
σC0 0.01 0.03
σD 0.02 0.05
σT 0.1 0.2
σE 0.1 0.2

Table 1. Parameter values used for numerical simulation study,
representing typical behaviour of ‘good’ and ‘bad’ cells. Both
‘good’ and ‘bad’ cells have means µC0

= 1, µD = 0.2, µT = 1
and µE = 0.6.

represents a well designed pack that is only affected by unavoidable and unpre-
dictable cell degradation behaviour.

Variation in cell behaviour is dictated solely by the parameters given in Table 1.
The model does not include an equivalent circuit or electrochemical submodel. As a
result, instantaneous dependence of degradation rate (e.g. higher degradation rates
at higher C-rates) or the effect of operating conditions over the lifetime of the system
(e.g. seasonal ambient temperatures) are not explicitly modelled. Such effects could
be approximated by modifying the cell parameters to reflect the anticipated use
case, i.e. the degradation parameters in Table 1 could be increased if the system
was to be operated at a high discharge rate or under cold conditions, for example.

4. Numerical simulation of system behaviour

The cell model is now used to perform a set of numerical simulations of systems
composed of two types of cells, the parameters of which are given in Table 1. These
cells are labelled ‘good’ and ‘bad’. Good cells are characterised by tight statistical
distributions such that the capacities of all cells start close and stay relatively
similar over time across the system. Conversely, bad cells are characterised by loose
statistical distributions such that their capacities are relatively dissimilar and tend
to diverge quickly. The good cells represent the output of a well controlled, close-
tolerance manufacturing process, perhaps with a high fraction of rejects, and are
likely to be relatively expensive. The bad cells represent the opposite: a relatively
low-tolerance manufacturing process that does not reject a large number of cells.
Of course, it is likely that the bad cells will cost less than the good cells, and it is
perfectly feasible that a well-designed system composed of bad cells will be capable
of serving the same application as a system composed of good cells, but at a lower
cost.

The following sections use the ACF and AICF metrics to quantify the value
of systems composed of good and bad cells. We seek to answer the question: is
it better to build battery systems using relatively few, large modules made up of
expensive, tightly distributed good cells, or use many, small modules made up of
cheaper bad cells?

The average starting capacity (µC0
= 1), average initial degradation rate (µD =

0.2), the average breakpoint time (µT = 1) and the average accelerated degradation
rate (µE = 0.6) are the same for good and bad cells. This means that, for both
good and bad cells, the mean cell starts with a capacity of 1, degrades to a capacity
of 0.8 in time 1 and then degrades to zero capacity in a further time 1. Good
and bad cells differ only in the tightness of the distribution of the parameters that
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control degradation, not their mean values: as a result, the expected capacity of
good and bad cells are equal at any time instant.

Figure 2 depicts the behaviour of modularised battery storage systems. The sys-
tem is composed of 100,000 cells and is large enough to demonstrate the important
statistical behaviour of the system. It was observed that initial optimal ordering
of cells (as per Theorem 1, Appendix A) improves ACF by roughly 1-5% in most
cases, but does not qualitatively affect the overall pattern of the results (of course,
in the case of ` = 1, the ordering of cells is irrelevant because every cell has its own
module). In the following discussion we assume this initial ordering is conducted by
the system manufacturer in order to gain this improvement in system performance
at what is likely to be a relatively low cost.

More highly modularised systems (i.e. smaller `) provide a greater ACF, partic-
ularly once a significant fraction of cells begin accelerated degradation at approxi-
mately times 0.8 (good cells) and 0.4 (bad cells). In addition, highly modularised
systems provide significantly longer periods of time with high ACF. For example,
a good-cell system with ` = 10 provides ACF > 0.75 up to time 1.4 (versus 1.0
for ` = 160), and a bad-cell ` = 10 system provides ACF > 0.75 up to time 1.15
(versus 0.75 for ` = 180).

The AICF plots emphasize the cumulative effect of modularisation: highly mod-
ular systems benefit from higher ACF for longer. In practice, it is unlikely that any
system would be operated until T = 2 as at this time all cells are severely degraded
and so the system would only deliver a tiny fraction of its original capacity, likely
making operation economically unviable. Instead, system end-of-life may be con-
sidered to be T = 1. At this time, half the cells have experienced the accelerated
degradation breakpoint and so average cell capacity begins to fall rapidly after this
time. By T = 1, a good-cell ` = 10 system will deliver approximately 6.5% more
AICF than a ` = 10000 system. For a bad-cell system this increase is 31%, demon-
strating that a high degree of modularisation is particularly valuable for systems
where the spread in cell degradation is not well-controlled.

4.1. Other parameter selections. The cell parameters in Table 1 could instead
be chosen to compare the performance of different cell chemistries in a particular
application. For example, when designing an ESS for a high-temperature environ-
ment, the designer may wish to compare a ‘standard’ cell chemistry with relatively
high degradation rates at elevated temperatures, against a ‘specialised’ cell chem-
istry that has lower energy density but also lower degradation rates. The specialised
cell would be modelled with a lower µC0

but also lower µD and µE and higher µT .
In another scenario, a designer might wish to compare two ESS cooling systems, one
which ensures very even temperature between cells and another, cheaper, solution
that allows more temperature variation and so causes a wider spread in degrada-
tion rates: this could be modelled by increasing σD, σE and/or σT for the cheaper
design.

5. Optimal system design

5.1. System cost. Modularisation comes at a cost in terms of additional power
electronics, sensing and communication hardware required to implement each mod-
ule. The total cost of a modularised system can be modelled as a cost k1 per cell,
a fixed cost k2 per module and a module cost k3 that scales with the size of the
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Figure 2. Comparison of modularised systems composed of good
or bad cells. Coloured bands show 95% confidence intervals.

module. k2 represents the one-off module costs associated with sensing and commu-
nication electronics. k3 represents the costs that scale with the size of the module,
for example mechanical housings, wiring, and the requirement for the power elec-
tronics to handle a power proportional to module size. This leads to a total system
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cost:

(7) K(`,m) := m(k1`+ [k2 + `k3])

Setting k1 + k3 = 1 has the effect of normalising the cost equation to the cost
component that scales linearly with system cell count (m`), i.e. the marginal cost
of adding a cell to the system. This gives system cost:

(8) K(`,m) := m(`+ k)

where k represents the cost, relative to the marginal cost of adding a cell to the
system, of the one-off hardware cost to form a new module. The costs presented
in the numerical studies that follow involve only one free cost parameter k and can
be interpreted as being normalised to the cell marginal cost.

5.2. System profit. The value (profit) of the system is its ability to deliver an
intended service over a period of time. Practically, many external factors are likely
to influence profit; for example both revenue and costs are likely to be dependent
on the evolution of market conditions over the lifetime of the system. Here, we
ignore external factors and explore a simple approach for linking system ACF to a
quantified profit, thereby allowing the value of modularisation to be explored.

5.3. Lifetime capacity profit model. This represents a scenario where a system
operator is paid per unit of energy exchanged with a supply/load over the lifetime
of the system. This is a good representation of the revenue model for a grid-
connected arbitrage application, for example. It is assumed that the system is
fully utilised and in continuous operation so that it exchanges its full capacity with
the grid many times over its lifetime. In this case, the instantaneous value of the
system is proportional to its capacity, i.e. the revenue to be generated by one full
charge/discharge cycle performed at a particular moment in the life of the system.
The accumulated lifetime revenue is

(9) R1(`,m) := α1

∫ T

0

C(t; `,m) dt

where α1 is a proportionality constant that places a value on the time-capacity
product delivered by the system.

The goal of the system designer is to maximise the expected profit by choosing
the optimal level of modularisation, given the cost of modularisation relative to the
marginal cost of the cells (k), for a fixed number of cells in the system (n):

(10) P1(`,m) := E[R1(`,m)]−K(`,m)

subject to

(11) `m = n

This is an integer programming problem as ` and m must be positive integers.
Figure 3 shows the result of this optimisation with α1 = 2, n = 100000 as k
is varied between 10−2 and 102. When the cost of modularisation is low, smaller
module sizes are favoured because of the increase in AICF that this enables. Smaller
module sizes are also favoured if the system is allowed to run for longer periods of
time because small modules are better able to tolerate the wide variation in cell
capacities that occurs near end-of-life.

It is instructive to study the value of α1 that results in break-even cost (i.e.
P1(`,m) = 0) for the optimal `. This indicates the revenue required per-cell in
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Figure 3. Optimal design of systems composed of 100,000 good
or bad cells as function of k, the ratio of the incremental cost of a
cell to the cost of modularisation.

order for the optimal system to break-even. One way of thinking about this is to
imagine a system composed of perfectly matched, non-degrading cells (at a marginal
cost of 1 each) that are assembled into a system that has no other costs: effectively
a system made of one large module (` = n), such that the one-off module costs
are negligible and so K = n. If this system were operated for time 1, the revenue
would be R1 = n and the break-even α1 would be 1. Lower break-even α1 will be
achieved if the system is operated for a longer time, higher break-even α1 will occur
if modularisation electronics is required (and k > 0) or cells degrade.
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Figure 3 shows three predictable effects: Break-even α1 is lower when the system
is run for longer periods of time, is lower when the cost of modularisation is lower,
and is lower when using good cells. Perhaps less obvious is the relatively weak
effect of the cost of modularisation on break-even α1: For example, when using
good cells, large changes to the cost of modularisation (k changing from 10−2

and 102) increases break-even cost by a relatively small amount (< 8%). This is
because module sizes remain large and so the total additional cost attributable to
modularisation is low. A system constructed using bad cells tends to use smaller
modules and so the gradient of the break-even α1 line is steeper. An interesting
result is that, especially for long system lifetimes and low modularisation costs, the
bad cell break-even α1 is only 10-15% higher than the good cell break-even α1.
This can be interpreted as it being rational to choose to build a system with bad
cells if their marginal cost is less than roughly 85% that of the good cells.

This interpretation can be generalised: If the system designer has estimates of
the degradation characteristics of good and bad cells, and of the costs associated
with modularisation, and a revenue model, it is natural ask how much less should
they pay for the bad cells in order to justify choosing them over the good cells.
Figure 4 aids a decision making process: it depicts the profit differential between
an optimally designed system using bad cells and an optimally designed system
using good cells (optimal in the sense of Figure 3) as the relative cost of the good
versus bad cells and the modularisation cost k is varied. If the cost is positive, the
optimal bad-cell system outperforms the optimal good-cell system and it is rational
for the designer to choose to use the bad cell (and, by implication, smaller module
sizes in order to handle the increased cell variability). An important result is that,
even for high cost of modularisation (k → 10) over long timeframes (T → 2), it
is necessary for bad cells to cost only about 22% less than the good cells to make
their choice favourable.

5.4. Minimum capacity profit model. The second model is one where the sys-
tem is required to offer at least some minimum capacity over a given lifetime, for
example in an electric vehicle application where the manufacturer guarantees a cer-
tain number of miles-per-charge during a warranty period. In this case, the ACF
plots of Figure 2 may be used to design a suitable system. To find the actual sys-
tem capacity at any instant in time, the mean capacity of the population of cells
(subfigure A) should be multiplied by the ACF at that instant. For example at
time T = 1 the mean capacity of the cells is approximately 0.8. Therefore, for good
cells, to deliver a system C/n > 0.6 at T = 1 requires an ACF > 0.6/0.8 = 0.75
and so only systems with ` ≤ 625 are viable.

In many applications, the penalty associated with failing to meet a particular
capacity-lifetime point is not absolute. Instead, the manufacturer may pay a fixed
penalty when the specification is not met because they must then provide com-
pensation, repair or replacement. For example, this model is broadly applicable to
an EV manufacturer who warrants their vehicle’s battery for a certain time period
and/or a maximum mileage. In this case the manufacturer should rationally trade
the expected cost incurred by honouring the warranty against the up-front cost of
installing larger battery packs (or choosing smaller `) to ensure more headroom for
cell degradation. This can be modelled as follows. First, define a warranty penalty
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cost:

(12) W (`,m) := α2(`,m)IC(T ;`,m)<c?

where IC(T ;`,m)<c? is the indicator function of the event C(T ; `,m) < c?, i.e. it is
1 when C(T ; `,m) < c? occurs, and 0 otherwise. α2(`,m) is the penalty cost when
warranty specifications are not met. We can then define the expected lifetime profit
as follows (note that all terms are negative as we only consider costs in this model):

P2(`,m) := E[−K(`,m)−W (`,m)](13)

= −K(`,m)− α2(`,m)P (C(T ; `,m) < c?)(14)

The up-front cost K(`,m) of the system was defined earlier in Equation (8).
This helps illustrate a secondary value of modularisation beyond simple improve-

ments in ACF: better predictability of system capacity over time despite uncertain
cell degradation behaviour. The 95% confidence intervals of Figure 2 suggest that
if ` > 2500 the spread in system capacities becomes negligible, i.e. the negative
systemic effects of cell capacity variation cease to be a concern because the system
can be relied upon to deliver a tightly-defined ACF. In this case the battery system
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can be designed assuming a simple mean-capacity model of the cells (of course,
the underlying variation in cell degradation behaviour must be well-modelled in
order to turn this into a prediction of actual system capacity and corresponding
W (`,m)). The broad expectation is that successful system designs will give pre-
dictable capacities under a spread of cell degradation behaviour, i.e. will have an
appropriately low ` for a given cell type.

In this context, the goal of the system designer is to minimise K subject to the
constraint

(15) `m = n

Once more, this is an integer programming problem in ` and m, although in this
instance n is an optimisation variable (system capacity at a given time can be
increased through better modularisation, but also by simply increasing the number
of cells in the system). A reasonable choice is to set α2 = K(`,m), representing the
condition where failure to provide the specified minimum capacity over the specified
lifetime results in a penalty equal to the cost of the battery system. In this case:

(16) P2(`,m) = −K(`,m)
(
1 + P (C(T ; `,m) < c?)

)
Figures 5 and 6 show the results of minimising 16, i.e. system designs in terms of the
number of cells `m and module size ` that results in the lowest P2 cost, for systems
composed of either good or bad cells. Clearly, not only the minimum cost, but also
the optimum design will depend on the cost of modularisation and the relative cost
of good to bad cells. The bold boundary line running bottom-left to top-right allows
the designer to make a simple binary decision: Given knowledge of modularisation
cost and relative cell costs, is the lowest-cost system to be built using good or bad
cells? The colouring of Figure 5 then indicates how many cells the lowest-cost
system at any given design point contains. The results conform to expectations: if
bad cells cost nearly as much as good cells, it is rational to select good cells as this
will allow larger modules sizes and so reduce modularisation costs. As the relative
cost of bad cells goes down, a higher cost of modularisation can be tolerated whilst
still leading to a lower total cost than for a system composed of good cells. This
effect is quite strong: if bad cells are two-thirds the price of good cells, a bad-cell
system is favourable until the modularisation cost k rises above 10, indicating that
it is rational to invest in substantial amounts of additional electronics in order to
manage cell variability (as opposed to investing in good cells to reduce variability
directly).

For a fixed k (moving left to right on Figures 5 and 6), the optimal number
of modules or cells in a design is not influenced by the ratio of good to bad cell
cost except at the change point when bad cell systems become preferable. This
is because the cost of modularisation is normalised to the cell cost; changing the
cell cost scales the modularisation cost proportionally. The striations visible on
the graph are a combined artefact of a discrete optimisation and the fact that a
stochastic algorithm with limited runtime was to be used to locate the optimum
design at each point (i.e. some minor variation in the solution from run-to-run
should be expected).

The systems containing the least number of cells, and so the physically smallest,
are clustered in the bottom of both Figures. As expected, these have small module
sizes (i.e. many modules in Figure 6) in order to obtain high ACF throughout their
lifetimes. There are six system designs that are the very ‘smallest’ in the sense that
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they contain the minimum number of cells out of all the designs: these use 1294
good cells and are fully modularised (one cell per module), and are indicated with
gold stars in Figure 5. In practice, the physical size of the module electronics would
need to be considered in order to determine the true lowest-volume (or lowest-mass)
system, but of course this is highly implementation-dependent.

Conversely, there are some designs described in Figures 5 and 6 that are likely to
be infeasible in practice because they contain a lot of cells. Systems containing 3000
or more cells are highlighted with a dark shaded box in Figure 5. These systems
occur in the top-right of the Figures where bad cells are very inexpensive but the
cost of modularisation is high; in this case the lowest-cost design deploys many bad
cells arranged in a small number of modules. In such a design, the degradation of a
single cell will cause a low ACF but this can be tolerated simply because there are
many cells all contributing a small amount of capacity. This implies a physically-
large battery that would have major negative effects on the overall EV performance
in terms of mass and acceleration (and would produce integration challenges), and
so would not be viable in practice. The optimisation problem could be extended to
place a penalty on total mass or volume in order to model such knock-on system
effects.
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Figure 5. The number of cells in the lowest-cost system as de-
fined by Equation (16), evaluated for a range of relative cell costs
and relative modularisation costs. Each design is either composed
entirely of good or bad cells, and the lowest cost design is chosen
at each point. The boundary between both systems is indicated
by the bold line. Systems below the white line contain 1600 cells
or less.
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6. Conclusion

This paper has explored the effect of cell variability and degradation on battery
system design with a focus on the application of modularisation as a means to
lessen the impact of cell variability on overall system performance. Underpinning
the study is a simple statistical model designed to qualitatively exhibit similar
behaviour to that observed in several large-scale cell cycling studies. Two measures
of system performance were proposed, ACF and AICF, which provide an intuitive
exposition of the advantages of using small module sizes.

In practice, however, a battery system designer is faced with an essentially eco-
nomic decision: What is the choice of cell type and system design that meets a
specification at minimum cost? We have shown how these two choices are inter-
linked; the designer cannot choose the best system design without knowing how
the cell population is likely to degrade, and they may decide to use a different
cell type depending on non-cell costs (i.e. the costs of modularisation). This is
essentially summarised by the observation that if supporting electronics are cheap,
it may be rational to use cheaper-but-higher-variability cells arranged into many,
small modules.

In an attempt to provide answers to such economics-driven decision problems,
two example cost models were proposed and solved to find the lowest-cost system
designs. The first model was a simple lifetime capacity maximisation applicable
to scenarios in which the accumulated lifetime system capacity is a good indicator
of system value, which we suggest is a fair model of grid-connected energy storage
systems. The second model was intended to represent scenarios where some mini-
mum level of capacity must be maintained over a given lifetime, which we suggest
aligns well with an EV manufacturer providing a range warranty.
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For the ACF and AICF measures, and the two economic models, the broad con-
clusion is that very significant cell variability (e.g. that of the bad cells in this
paper) can be compensated to a great degree by suitably fine-grained modularisa-
tion (roughly at the 10-cell level). It would be instructive to further study the real
costs associated with modularisation, and for battery system engineers to propose
methods of achieving fine-grained modularisation in a cost-effective manner.

As discussed in Section 1, the results presented in this paper are broadly appli-
cable to any ESS that can create different charge/discharge rates between defined
groups of cells. This includes all systems that are truly modular (i.e. that can fully
bypass cells as required and so have an infinite differential-rate capability), but also
includes all systems with balancing circuitry, under the assumption that a given
system’s maximum differential-rate capability is not exceeded. This assumption
translates directly into a limit on the maximum variation in cell capacities that a
given system can tolerate. If this assumption holds, then the system will behave
as predicted here. If it does not hold, then the ACF and AICF of the system will
be limited by the particular differential-rate capability of that system for the time
when the capability is exceeded.
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Appendix A. Optimal ordering of cells

Theorem 1. Consider any non-decreasing sequence of real numbers c0, . . . , cn−1,
where n = m × `. Let S be the set of all possible permutations of {0, . . . , n − 1}.
Then

(17)

m−1∑
i=0

`
`−1
min
j=0

c`i+j = max
σ∈S

m−1∑
i=0

`
`−1
min
j=0

cσ(`i+j).

Proof. Consider any permutation σ. We can bring cσ(0), . . . , cσ(n−1) into non-
decreasing order through selection sort. In selection sort, we swap the first element
of the sequence with the sequence’s minimal value. Then, we swap the next element
with the minimal value of the sequence excluding the first value, and so on. We
show that every step of the selection sort algorithm applied on the sequence cannot
decrease the value. Because we can do this for every permutation σ, it follows that
the value is maximal when the sequence is non-decreasing.

To make the proof concise, we do not apply selection sort to the letter, as in
each step we will perform some additional swaps in the yet to be sorted part of
the sequence. This will still result in a fully ordered sequence at the end of the
algorithm: all we need for the proof to work is that the algorithm builds up a fully
sorted sequence.

For brevity of notation, let dp := cσ(p) for all p ∈ {0, . . . , n − 1}. The value of
the objective function is then

(18)

m−1∑
i=0

`
`−1
min
j=0

d`i+j .

Suppose that the first r values of the sequence d0, . . . , dn−1 have been sorted
already through selection sort, i.e.

(19) d0 ≤ d1 · · · ≤ dr−1 ≤
n−1
min
p=r

dp

Without loss of generality, we can assume that for every i ∈ {0, . . . ,m− 1}

(20) d`i =
`−1
min
j=0

d`i+j ,

and that

(21) d0 ≤ d` ≤ d2` ≤ · · · ≤ d(m−1)`
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because we can always achieve this with some simple swaps which leave the value
of the objective function unchanged, and which also leave the first r − 1 values
unchanged.

Selection sort proceeds by swapping dq and dq′ , where q′ is such that dq′ =

minn−1p=q dp. Let i, i′ < m and j, j′ < ` be the unique numbers such that q = `i + j
and q′ = `i′ + j′.

If j = 0, then we can choose q′ = q, that is, we do not need to swap anything.
Indeed, because of the assumptions we made in Equations (20) and (21), d`i is
already equal to minn−1p=`i dp.

If i = i′, then the swap will also clearly leave the objective function unchanged.
If j > 0, and i < i′, then by construction d`i ≤ d`i′ ≤ d`i′+j′ , and so

`
`−1
min
q=0

d`i+q = `d`i = `min

{
`−1
min

q=0,q 6=j
d`i+q, d`i′+j′

}
.(22)

We also have that, d`i′+j′ ≤ d`i+j , and therefore

`
`−1
min
q=0

d`i′+q ≤ `min

{
`−1
min

q=0,q 6=j′
d`i′+q, d`i+j

}
.(23)

We conclude that the value of the objective function cannot decrease. �
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