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ABSTRACT
We quantify the performance of mass mapping techniques on mock imaging and gravitational
lensing data of galaxy clusters. The optimum method depends upon the scientific goal. We
assess measurements of clusters’ radial density profiles, departures from sphericity, and their
filamentary attachment to the cosmic web. We find that mass maps produced by direct (KS93)
inversion of shear measurements are unbiased, and that their noise can be suppressed via
filtering with MRLENS. Forward-fitting techniques, such as LENSTOOL, suppress noise further,
but at a cost of biased ellipticity in the cluster core and overestimation of mass at large radii.
Interestingly, current searches for filaments are noise-limited by the intrinsic shapes of weakly
lensed galaxies, rather than by the projection of line-of-sight structures. Therefore, space-
based or balloon-based imaging surveys that resolve a high density of lensed galaxies could
soon detect one or two filaments around most clusters.

Key words: gravitational lensing: weak – techniques: image processing – galaxies: clusters:
general – large-scale structure of Universe.

1 IN T RO D U C T I O N

The Lambda cold dark matter (�CDM) standard model of cosmol-
ogy suggests that structures in the Universe formed hierarchically,
via mergers of small overdensities in the early Universe into larger
and larger objects (White & Rees 1978; Springel et al. 2005; Schaye
et al. 2015). Thirteen billion years after the big bang, the largest
objects are currently clusters of hundreds or thousands of galaxies.
Because their growth has spanned the entire age of the Universe, and
has depended upon the density of building material and its collapse
under gravity, versus its disruption by supernovae, active galactic
nuclei, and dark energy, measurements of the precise number and
properties of clusters are a highly sensitive test of the standard
cosmological model (e.g. Bahcall & Cen 1993; Bahcall & Bode
2003; Ho, Bahcall & Bode 2006; Rozo et al. 2010; Weinberg et al.
2015; Jauzac et al. 2016; Schwinn et al. 2017; Mao et al. 2018; Fluri
et al. 2019).

Gravitational lensing is particularly efficient at investigating
clusters. The dense concentration of mass in a foreground galaxy
cluster deflects light rays emitted by unrelated galaxies far in
the background. Since adjacent light rays are almost coherently
deflected, the shapes of those distant galaxies appear distorted, and
typically stretched in such a way that their long axes make circular
patterns around the cluster. Crucially, the deflection of light rays

� E-mail: sut-ieng.tam@durham.ac.uk

depends only upon the total projected mass distribution. Measure-
ments of gravitational lensing are therefore uniquely sensitive to
the distribution of invisible-but-dominant dark matter, and unbiased
by the nature and dynamical state of ordinary matter (e.g. Massey,
Kitching & Richard 2010; Kneib & Natarajan 2011; Hoekstra 2013;
Kilbinger 2015; Treu & Ellis 2015; Bartelmann & Maturi 2017).

Ground-based observations of gravitational lensing by galaxy
clusters have been successfully used to measure clusters’ average
or bulk properties, such as mass (e.g. Umetsu et al. 2014; von der
Linden et al. 2014; Okabe & Smith 2016; Medezinski et al. 2018;
Sereno et al. 2017; Schrabback et al. 2018; Herbonnet et al. 2019;
McClintock et al. 2019; Miyatake et al. 2019; Rehmann et al. 2019;
Umetsu et al. 2020) and ellipticity (e.g. Evans & Bridle 2009; Oguri
et al. 2010; Clampitt & Jain 2016; van Uitert et al. 2017; Chiu et al.
2018; Shin et al. 2018; Umetsu et al. 2018). The CLASH survey
(Cluster Lensing and Supernova Survey with Hubble; Postman
et al. 2012) measured the mass and concentration of 25 clusters, by
combining wide-field Subaru imaging with Hubble Space Telescope
(HST) imaging of the cluster cores (Merten et al. 2015). However,
ground-based observations have yielded only marginally significant
detections of filaments (e.g. Kaiser et al. 1998; Gray et al. 2002;
Gavazzi et al. 2004; Clowe et al. 2006; Dietrich et al. 2012; Martinet
et al. 2016), whose dark matter density is too low (and the filaments
too narrow to resolve).

Space-based imaging reveals the shapes of more background
galaxies, and increases the S/N of lensing measurements in multiple
resolution elements across an individual cluster. Thus, the shape
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and morphology of individual mass distributions can be precisely
mapped, without the need to average out features over a population
of clusters. Space-based lensing reconstructions have resolved
substructure near cluster cores (e.g. Merten et al. 2011; Natarajan
et al. 2017); bimodality even in relatively distant clusters like the
‘Bullet Cluster’ (Bradac et al. 2006) or ‘El Gordo’ (Jee et al.
2014); and filaments in Abell 901/902 (Heymans et al. 2008) and
MACSJ 0717+3745 (Jauzac et al. 2012). None the less, these
analyses remain rare because the ∼3 arcmin × 3 arcmin field of view
of HST’s Advanced Camera for Surveys is smaller than a typical
cluster’s angular size. Furthermore, both of HST’s contiguous
surveys (GOODS and COSMOS) unluckily sampled regions of the
Universe that are underdense at the z = 0.2–0.4 redshifts where
lensing is most sensitive (Heymans et al. 2005; Massey et al.
2007a; Krolewski et al. 2018), so happen to contain few lensing
clusters (Guzzo et al. 2007; Massey et al. 2007b). Until recently,
only around one cluster, MS 0451−03, having a dedicated wide-
field mosaic of contiguous HST imaging had been obtained (Moran
et al. 2007).

There will soon be wide-field, space-resolution imaging taken
around six more clusters through the HST/BUFFALO survey
(Steinhardt et al. 2020), 200 more clusters from the balloon-borne
telescope SuperBIT (Romualdez et al. 2016; Romualdez et al. 2018),
and 10 000 from Euclid (Laureijs et al. 2011). In the next decade,
40 000 clusters will be observed to even greater depth by Nancy
Grace Roman Space Telescope (Spergel et al. 2013).

The intent of this work is to prepare for future observations,
much as Van Waerbeke et al. (2013) calibrated mass mapping
methods for the current generation of wide-field ground-based
lensing surveys. We use mock space-based weak-lensing data to
develop and quantify the performance of two different methods
to map dark matter around galaxy clusters, to measure deviations
from sphericity, and to search for filaments connecting it with
the cosmic web. Where we must make decisions about general
properties (e.g. distance, mass) of clusters that we simulate, we
shall use MS 0451−03 as a template, so our predictions can be
immediately tested on real observations (see our companion paper,
Tam et al. 2020).

This paper is organized as follows. We summarize background
theory in Section 2, and introduce the simulated data in Section 3.
In the context of various scientific motivations, we describe weak-
lensing mass mapping and analysis techniques in Section 4. We
quantify their results in Section 5, and conclude in Section 6.
Throughout the paper, we define angular diameter distances as-
suming a background cosmology with �m = 0.287, �� = 0.713,
and h = H0/100 km s−1 Mpc−1 = 0.693 (WMAP 9-yr cosmology;
Hinshaw et al. 2013). All magnitudes are quoted in the AB
system.

2 W E A K G R AV I TAT I O NA L L E N S I N G T H E O RY

2.1 Coherent deflection of light rays

Gravitational lensing is the deflection of light rays from a distant
source, by massive objects along our line of sight. The apparent
shape of the source becomes distorted when a bundle of light rays
from it are coherently distorted. Because cosmological distances are
so large, the 3D distribution of intervening mass can be conveniently
represented (through the ‘thin lens’ approximation) as a 2D surface
density, �(R), where R = (x, y) is the 2D angular position in the
plane of the sky. A similar projection can be applied to obtain a
2D effective gravitational potential ϕ(R). The angle through which

light rays are deflected corresponds to spatial derivatives in the
gravitational potential.

In the weak-lensing regime, where deflection angles are small,
the image distortions can be split into two dominant components.
The first is an isotropic magnification, by a factor proportional to
the projected density and known as ‘convergence’:

κ(R) = �(R)

�c
, (1)

where the ‘critical density’

�c = c2

4πG

Ds

DlDls
= c2

4πGDl
β−1(zl, zs) (2)

depends upon the angular diameter distances from the observer to
the lens, Dl, from the observer to the source, Ds, and from the lens to
the source, Dls. The lensing sensitivity function, β(zl, zs) = Dls/Ds,
describes the lensing strength as a function of the lens and source
redshifts (zl, zs). For a foreground galaxy with zs < zl, β(zl, zs) =
0. The second component of the distortion is a shear

γ = γ1 + iγ2 = |γ |e2iφ, (3)

where the real component, γ 1, represents elongation along the x
direction, and the complex component, γ 2, represents elongation at
45◦.

An observable quantity, ‘reduced shear’

g ≡ γ

1 − κ
(4)

can be measured from the apparent shapes of galaxies. In the weak-
lensing regime, it is typically true that κ � 1; hence, g ≈ γ . For
more information, see e.g. Bartelmann & Maturi (2017).

2.2 Analytic mass distributions

In several places throughout this paper, we will approximate a mass
distribution using one of two parametric models. The models are
usually described in circularly symmetric form, �(|R|) or ϕ(|R|),
but can be made elliptical by a coordinate transformation

|R′|2 = q(x2 cos2 φ + y2 sin2 φ) + (y2 cos2 φ − x2 sin2 φ)/q (5)

(Kassiola & Kovner 1993; Oguri et al. 2010) that maps a circle to an
ellipse with axial ratio 0 < q ≤ 1 and orientation φ. Except where
mentioned explicitly, we apply this transformation to the projected
mass distribution. Applying it instead to the gravitational potential
yields different results, and no simple mapping exists between them.

2.2.1 tPIEMD profile

Massive elliptical galaxies are empirically observed to have an
approximately isothermal density distribution (ρ∝r−2), and total
mass proportional to the velocity distribution of their stars, σ . This
would have an inconvenient mathematical singularity at the centre,
which is removed in the truncated pseudo-isothermal elliptical mass
distribution (tPIEMD; Kassiola & Kovner 1993; Limousin, Kneib
& Natarajan 2005; Elı́asdóttir et al. 2007)

ρtPIEMD = ρ0

(1 + r2/r2
c )(1 + r2/r2

t )
. (6)

This has constant density

ρ0 = σ 2

2πG

rc + rt

r2
c rt

(7)
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inside core radius rc and has finite integrated mass because of
the truncation at radius rt. The projected two-dimensional mass
distribution is

�tPIEMD(R) = σ 2

2G

rt

rt − rc

(
1√

R2 + r2
c

− 1√
R2 + r2

t

)
. (8)

2.2.2 NFW profile

Numerical simulations suggest that the distribution of dark matter
in isolated haloes forms a Navarro–Frenk–White (NFW; Navarro,
Frenk & White 1996, 1997) profile

ρNFW = ρs

(r/rs)(1 + (r/rs))2
, (9)

where ρs and rs are a characteristic density and radius. For any given
cosmology and cluster redshift, this model can also be parametrized
in terms of a concentration c200 ≡ r200/rs, where r200 is the 3D radius
within which the mean enclosed density is equal to 200 times
the critical density ρc of the Universe, and halo mass M200 ≡
(4π/3)200ρcr

3
200. The projected two-dimensional mass distribution

(Bartelmann 1996) is

�NFW(R) = 2ρsrsF (x), (10)

where x = R/rs and

F (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
x2−1

(
1 − 2√

x2−1
arctan

√
x−1
x+1

)
if x > 1 ,

1
3 if x = 1 ,

1
x2−1

(
1 − 2√

1−x2
arctan

√
1−x
1+x

)
if x < 1 .

(11)

3 DATA

We use N-body particle data from the BAHAMAS suite of cos-
mological simulations (McCarthy et al. 2017, 2018). These were
run with different background cosmologies and implementations of
sub-grid galaxy formation physics, and designed to test the impact of
baryonic physics on large-scale structure (LSS) tests of cosmology.
For this paper, we use the version with a WMAP 9-yr (Hinshaw et al.
2013) cosmology, and sub-grid feedback model that is calibrated to
produce a good match to the observed stellar mass function, X-ray
luminosities and gas fractions of galaxy clusters. This simulation
occupies a periodic cubic volume, 400 h−1 Mpc on a side, with
dark matter and (initial) baryon particle masses of 5.5 × 109 and
1.1 × 109 M�, respectively.

3.1 Distribution of mass in clusters

We extract the 10 most massive clusters from the z = 0.5 simulation
snapshot. We first use the friends-of-friends algorithm (FOF;
More et al. 2011) to identify all matter overdensities. For each
FOF group, we calculate r200 and M200, the total mass enclosed
within this sphere. For the 10 most massive clusters, which have
4 × 1014 M� < M200 < 2 × 1015 M�, we store the 3D distribution
of dark matter, stars and gas.

To generate a 2D, pixellated convergence map, we follow the
method of Robertson et al. (2019). In summary, we project the
location of all simulation particles within 5 r200 of the centre of
a cluster along a line of sight (here, the simulation z-axis). In a
25 × 25 Mpc (2048 × 2048 pixel) map centred on the most bound
particle, we use an adaptive triangular shaped cloud scheme to
smooth each particle’s mass over a kernel whose size depends on

the 3D distance to that particle’s 32nd nearest neighbour. Resulting
convergence maps are shown in Fig. 1, adopting the lens redshift
zl = 0.55 of galaxy cluster MS0451−03 as a concrete example, and
source redshift zs = 0.97 typical of HST observations to single-orbit
depth (Leauthaud et al. 2007). The masses of the clusters are listed
in Table 1.

Before proceeding further, we identify 40 filaments in the 10
projected mass maps, defined as radially extended regions with
convergence 0.005 < κ < 0.01, which is equivalent to a surface
density of 1.7 × 107 < � (M� kpc−2) < 3.4 × 107. These are in-
dicated by white dashed lines in the bottom panel of Fig. 1.

3.2 Distribution of all other mass along a line of sight

In addition to the mass of the galaxy cluster itself, we also account
for LSS projected by chance along the same line of sight. This is a
source of noise in the projected mass of the cluster, which is then
added to the mock data in Section 3.4.

To quantify the expected level of noise, we generate realizations
of LSS along 1000 random lines of sight through the BAHAMAS
simulation box. We then integrate the 3D mass along the line
of sight, weighted by the lensing sensitivity function β(z) with
〈zs〉 = 0.97, interpreting it as a mass distribution in a single lens
plane at zl = 0.55. For each realization of LSS, we calculate an
effective radial density profile, κ(R). The mean of these realizations
is (unsurprisingly) consistent with zero; we also calculate the rms
scatter σ LSS. In concentric annuli of width R = 25 arcsec, these
are well fitted by

σLSS(R) = A√
R(arcsec) + B

, (12)

with best-fitting values for free parameters

A = 0.197 ± 0.008, B = 6.441 ± 0.502 . (13)

We add this in quadrature to the statistical uncertainty on the
reconstructed density profiles in Section 4.2. Note that it would
also be possible to compute the full covariance matrix between LSS
at different radii or in adjacent pixels of a mass map. Here, we use
only the diagonal elements, but in our companion paper (Tam et al.
2020), we fit to real observations using the full covariance matrix.

3.3 Mock near-IR imaging

To generate a mock catalogue of the cluster galaxies’ K-band
magnitudes, we run SUBFIND algorithm (Springel et al. 2001) on
the particle distribution from the simulations, to identify individual
galaxies. We sum their stellar masses, and convert these to K-band
luminosity based on the relation presented by Arnouts et al. (2007)
for the evolution of stellar mass to light ratio, (M/LK), with redshift
for a sample of quiescent galaxies, and based on the Salpeter (1955)
initial mass function. The power-law fitting function is defined as

log10 (M/LK ) = a z + b, (14)

where the mass M and luminosity LK are in units of M� and L�,
respectively. The best-fitting value for parameters a and b from
Arnouts et al. (2007) are

a = −0.18 ± 0.04, b = +0.07 ± 0.04. (15)

3.4 Mock weak-lensing shears

To generate mock weak-lensing observations, we convert the mass
distributions into reduced shear. For the case with projected LSS,
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3976 S.-I. Tam et al.

Figure 1. Noise-free maps of the total mass distribution in the 10 most massive clusters of the BAHAMAS simulations, projected along a randomly oriented
line of sight. Clusters have masses M200 from 2 × 1015 M� (cluster 1) to 4 × 1014 M� (cluster 10), and are sorted in descending order of MFOF, as in
Table 1. Colours show the lensing convergence κ (top panel: linear scale; bottom panel: logarithmic scale). Dotted white lines show filaments identified from
the noise-free, projected mass distribution, above density thresholds defined in Section 3.1. For reference, red lines indicate the field of view in which HST
observations exist for real cluster MS 0451−03.

Table 1. Masses of the 10 most massive clusters in the BAHAMAS
simulations, which we use as mock data for this study. Columns list the
friends-of-friends masses MFOF and overdensity mass M200.

MFOF (×1014 M�) M200 (×1014 M�)

Cluster 1 27.7 17.3
Cluster 2 17.9 15.0
Cluster 3 17.8 17.7
Cluster 4 16.6 14.6
Cluster 5 14.3 9.7
Cluster 6 13.3 11.0
Cluster 7 12.9 8.9
Cluster 8 11.1 4.0
Cluster 9 9.4 8.2
Cluster 10 9.3 5.7

we sum the effective convergence from the cluster (Section 3.1)
and a random realization of projected LSS (Section 3.2). Since both
convergence κ(R) and shear γ (R) fields are linear combinations of

second derivatives of ϕ(R), it is possible to directly convert between
their Fourier transforms κ̂(k) and γ̂ (k)

γ̂1(k) = k2
1 − k2

2

k2
1 + k2

2

κ̂(k), (16)

γ̂2(k) = 2k1k2

k2
1 + k2

2

κ̂(k) , (17)

where k = (k1, k2) is the wave vector conjugate to R (Kaiser
& Squires 1993, hereafter KS93). To implement this in prac-
tice, we pixellate the fields within a 34 arcmin × 34 arcmin
(2048 × 2048 pixel) grid, add zero padding to twice that linear size
to mitigate boundary effects, then use discrete Fourier transforms.
We finally use equation (4) to convert shear γ (R) into reduced shear
g(R).

We generate a mock shear catalogue by randomly placing
source galaxies throughout the high-resolution pixellated shear
field. Mimicking typical single-orbit depth HST observations, we
sample 50 arcmin−2 source galaxies. Note that we achieve a uniform
density of background galaxies; in real observations, the number
density of background galaxies is both clustered, and dips near the
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centre of a cluster because of obscuration by, and confusion with,
its member galaxies. To each shear value, we add Gaussian random
noise with width σγ = 0.36, representing each galaxy’s unknown
intrinsic shape, plus uncertainty in shape measurement. This value
matches that measured in HST measurements near MS 0451−03
(Tam et al. 2020), and is consistent with that measured for faint
galaxies in the HST COSMOS field (see fig. 17 in Leauthaud et al.
2007). It is slightly larger than the intrinsic shape noise referenced
elsewhere, because it also includes measurement noise.

4 ME T H O D S

In this section, we describe several methods that have been used
(or suggested) to analyse the distribution of mass in clusters. A
common theme will be the suppression of noise – the two main
sources of which are projected LSS, and galaxies’ intrinsic shapes.
In particular, sophisticated non-linear noise-suppression techniques
have been developed to map the 2D distribution of mass. Even for
measurements that could be obtained directly from the shear field,
it may therefore be efficient to first infer (and suppress noise in) a
mass map, then to measure equivalent quantities from that.

4.1 Mass mapping

We start by exploring two frequently used methods to reconstruct
the distribution of lensing mass: one frequentist and the second
Bayesian. Where relevant, we adopt parameters in the methods that
are typically used by their protagonists.

4.1.1 Direct inversion with KS93+MRLENS

Under the weak-lensing approximation g = γ , the KS93 Fourier
space relation (see Section 3.4) can also be used to convert γ (R)
into

κ̂(k) = 1

2

(
k2

1 − k2
2

k2
1 + k2

2

)
γ̂1(k) + 1

2

(
k1k2

k2
1 + k2

2

)
γ̂2(k) . (18)

This is a non-local mapping. In observations of the real Universe,
any missing shear values (e.g. outside the survey boundary or behind
bright stars) must be replaced via ‘inpainting’ (Pires et al. 2009;
Raghunathan et al. 2019) to avoid suppressing the convergence
signal inferred nearby. We avoid this effect by a using mock shear
catalogue that is contiguous and covers a larger area (34 arcmin ×
34 arcmin) than the mosaicked HST imaging of MS 0451−03. We
bin the shear field γ (R) into 0.4 arcmin pixels, add zero padding
out to 105 arcmin × 105 arcmin (Merten et al. 2009; Umetsu
et al. 2015), and implement equation (18) using discrete Fourier
transforms.

Noise was suppressed in early incarnations of KS93 by con-
volving the mass distribution with a larger smoothing kernel
while in Fourier space. We omit this step, and instead filter the
final convergence map using the Multi-Resolution method for
gravitational Lensing (MRLENS; Starck, Pires & Réfrégier 2006).
This decomposes an image into multiscale starlet wavelets, and
applies non-linear regularization on each wavelet scale. It aims
to retain statistically significant signal but suppress noise through
an approach that, under the assumption of a multiscale entropy
prior, optimizes the False Discovery Ratio of false detections to
true detections. Starck et al. (2006) show that MRLENS outperforms
Gaussian or Wiener filtering at this task, and Pires et al. (2010)
demonstrate specifically that it improves the reconstruction of non-
Gaussian structures like the distribution of mass in galaxy clusters.

The software implementation1 has various free parameters: we use
10 iterations during the filtering process, and decompose the noisy
2D convergence map into six wavelet scales, starting at j = 3.
These have size ϑ = 2j pixels. For a starlet wavelet (equation 11 of
Leonard, Pires & Starck 2012), the j = 3 (highest resolution) wavelet
is a Mexican hat with full width at half-maximum of 0.5 arcmin.
For comparison to older analyses, we also repeat the analysis after
smoothing and rebinning the shear field into larger, 1 arcmin pixels.

4.1.2 Forward fitting with LENSTOOL

We also use LENSTOOL2 (Jullo & Kneib 2009) to fit the reduced
shear catalogues g(R) with a sum of analytic mass distributions.
The field of view considered is the same size as the mosaicked HST
imaging around MS 0451−03. Jullo & Kneib (2009) advocate a
mass model built of three components.

(i) Cluster-scale halo: For clusters that produce strong grav-
itational lensing, the observed positions of multiple images are
typically used to pre-fit the smooth, large-scale distribution of
mass (Kneib et al. 1996; Smith et al. 2005; Richard et al. 2011;
Jauzac et al. 2015b). Like many clusters, our mock data do not
include strong lensing, so we omit this component. Note that
our performance forecasts will therefore be conservative, because
this information efficiently captures the broad features of a mass
distribution in only a few parameters, and removes degeneracies
between the remaining parameters that we shall fit (Jauzac et al.
2015a).

(ii) Cluster member galaxies: We model the total mass of
each galaxy in the cluster as a tPIEMD (equation 8). Following
Jauzac et al. (2012), their core radii, truncation radii, and velocity
dispersions are scaled using empirical relations

rc = r∗
c

(
L

L∗

) 1
2

, rt = r∗
t

(
L

L∗

) 1
2

, σ = σ ∗
(

L

L∗

) 1
4

, (19)

where rc = 0.15 kpc, rt = 58 kpc and σ ∗ = 163.10 k ms−1 for a
typical galaxy with K-band magnitude m∗ = 18.699 at z = 0.55.
These scaling relations describe early-type cluster galaxies (Wuyts
et al. 2004), and assume a constant mass-to-light ratio for all cluster
members.

(iii) Multiscale, free-form grid: We add a free-form (pixellated)
mass distribution with spatially varying resolution that is adapted
to the cluster’s light distribution. Following Jullo & Kneib (2009,
fig. 1), we initialize a grid of points by drawing a large hexagon over
the entire field of view, split into six equilateral triangles with side
length = 1152 arcsec. If a single pixel inside any of these triangles
exceeds a predefined light-surface-density threshold, we split that
triangle into four smaller triangles. This refinement continues for
six levels of recursion, until the brightest parts of the cluster are
covered by the highest resolution grid with rc = 18 arcsec. We
extend this grid into the cluster centre, which is inevitably modelled
at the highest resolution. At the centre of every triangle, we place a
circular (q = 1) tPIEMD (equation 8), with core radius rc set to the
side length of the triangle, truncation radius rt = 3rc, and velocity

1We implement MRLENS using the 2017 June 26 version of software available
at https://www.cosmostat.org/software/mrlens. Note that a 3D extension
of this method has also been developed, known as GLIMPSE (Leonard,
Lanusse & Starck 2015).
2We implement LENSTOOL using version 7.1 of the software available at
https://projets.lam.fr/projects/Lenstool/wiki.
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dispersion that is free to vary. This process represents a prior that
light-traces-where-mass-is, rather than explicitly light-traces-mass.

We optimize free parameters in this model using the MASSINF

Markov chain Monte Carlo algorithm. The parameter space is highly
dimensional, so to optimize the multiscale grid, we adopt the Gibbs
approach (Jullo et al. 2007), whereby the most discrepant masses
are adjusted during each step of the Markov Chain and as a prior,
the initial number of RBFs to explore is set to be 2 per cent (Jauzac
et al. 2012; Jullo et al. 2014). We apply a prior that the masses are all
positive. This need not necessarily be true, since we are really fitting
departures from the mean density of the Universe; for example, the
convergence of the LSS is consistent with fluctuations around zero
(Section 3.2). However, the prior is frequently used, and reasonable
near a galaxy cluster. We then finally compute the marginalized
mean convergence, and its 68 per cent confidence limits.

4.2 Radial density profiles

Most analyses of galaxy clusters involve fitting models of an
azimuthally averaged density profile. Measuring density profiles is
a key test of cosmological structure formation (e.g. the ‘splashback’
feature reveals a characteristic build-up of accreted mass, pausing
at first apocentre after first core passage Diemer & Kravtsov 2014)
and the nature of dark matter (Newman et al. 2013; Newman, Ellis
& Treu 2015; Robertson et al. 2019). Because almost all clusters
have irregular features, and approximately half are significantly
unrelaxed (Smith et al. 2010), it is necessary to statistically combine
the profiles of many clusters. This can be achieved by rescaling and
averaging their density profiles in radial bins, or by fitting parametric
models with radial (or elliptical) symmetry, then averaging the best-
fitting parameters.

We calculate the radial density profiles of each simulated cluster
by azimuthally averaging the reconstructed density maps within
linearly spaced annuli of fixed width R = 25 arcsec. For LENSTOOL

reconstructions, we quote the statistical uncertainty in each annulus,
σ stat, determined during the MCMC sampling. When the signal from
projected LSS is included, we add σ LSS, as detailed in Section 3.2,
such that the total uncertainty error on the density profile, σ 2

tot =
σ 2

stat + σ 2
LSS.

4.3 Halo shapes

On large scales, the accretion of matter from the surrounding large-
scale environment plays a key role in determining the shape and
orientation of cluster dark matter haloes (Shaw et al. 2006). Haloes
are not necessarily self-similar (concentric ellipsoids with the same
orientation and ellipticity; Suto et al. 2016), but align with the infall
direction of subhaloes and surrounding filaments at large radii. Thus,
the shape of galaxy clusters is a fundamental probe of the history
of its mass accretion. Numerical simulations with collisionless dark
matter predict cluster haloes to be triaxial (Warren et al. 1992; Jing
& Suto 2002). Allowing DM particles to self-interact isotropizes the
orbits of dark matter particles, and makes the inner mass distribution
more spherical. For a cross-section of 1 cm2 g−1, the median minor-
to-major axial ratio 100 kpc from the halo centre is ∼0.8, compared
with ∼0.5 with CDM (Robertson et al. 2019).

We fit an elliptical NFW mass distribution (equation 10) to
the 2D convergence maps reconstructed from KS93+MRLENS or
LENSTOOL, with no noise, with shape noise, with LSS noise or both.

The fit3 minimize the sum of the squared difference between the
reconstructed surface mass density of each BAHAMAS simulated
cluster and an elliptical NFW model, within a circle of radius Rap.
We then vary Rap, to investigate changes between the cluster’s inner
and outer haloes. During the fits, we fix the centre of the NFW (to
the location of the most bound particle) because it is degenerate
with axial ratio. We adopt flat priors on other free parameters:
0.1 ≤ M200 (1015 M�) ≤ 5, 0.1 ≤ c200 ≤ 8, 0 ≤ φ ≤ 180, and
0.1 ≤ q ≤ 0.9, and neglect covariance between adjacent pixels.
The uncertainties of q in this test can be underestimated. However,
it match those in observational data, as we add only one, fixed
realization of LSS along the line of sight associated with each
cluster.

4.4 Searches for filaments

Dark matter and gas are accreted on to a cluster mainly through
filaments that connect it to the ‘cosmic web’. Filaments are key
transition regions in the evolution of galaxy morphology (Pandey
& Bharadwaj 2006; Einasto et al. 2007; Nuza et al. 2014; Kuutma,
Tamm & Tempel 2017; Liu et al. 2019; Martizzi et al. 2020) and star
formation (Crain et al. 2009; White, Cohn & Smit 2010; Alpaslan
et al. 2015, 2016; Yuan et al. 2019).

Filaments are much lower density environments than a cluster, so
appear in gravitational lensing observations with correspondingly
lower signal-to-noise. While it is possible to search for filaments
directly in shear data (Dietrich et al. 2005; Dietrich et al. 2012;
Jauzac et al. 2012), we explore whether it is efficient to leverage the
denoising techniques developed for mass mapping, then to analyse
the inferred convergence field.

4.4.1 Removing the smooth mass component

First, we subtract the smooth distribution of mass in the clusters,
which would otherwise dominate the lower density contrast in the
filaments.

We fit mock reduced shear data (with or without LSS and galaxy
shape noise), using an elliptical NFW potential. This model has
six free parameters: the coordinates of the centre of mass, (xc, yc),
the ellipticity, e = (1 − q2)/(1 + q2) where q is the axial ratio,
the position angle, φ, the scale radius, rs, and the concentration,
c. We set flat priors on xc and yc within a 15 arcsec × 15 arcsec
box centred on the most bound particle, and flat priors on e ∈
[0.05, 0.7], φ ∈ [0, 180], rs ∈ [50, 1000] kpc, and c ∈ [0.5, 10].
Note that we introduce ellipticity to this model via a coordinate
transformation to the gravitational potential (rather than the mass,
as in Section 2.2) because code to achieve this already exists within
LENSTOOL.4 The smooth distribution of mass in most simulated
clusters is well approximated by a single potential. However,
we use two to fit bimodal clusters 1, 2, and 9, and three for
cluster 3.

We then subtract the best-fitting smooth haloes from the conver-
gence maps. Since the mass distribution of simulated clusters cannot

3We use the SCIPY.MINIMIZE implementation of the L-BFGS-B algorithm
(Byrd et al. 1995), available at https://docs.scipy.org/doc/scipy/reference/g
enerated/scipy.optimize.minimize.html.
4An elliptical gravitational potential produces a ‘boxy’ mass distribution
if e > 0.6. However, for the low values of ellipticity that we obtain, the
maximum distance δR between a projected density contour and a true ellipse
is δR/R < 10 per cent (see fig. 6 in Golse & Kneib 2002).
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Calibrating cluster weak lensing 3979

Figure 2. An example of aperture multipole moments of various orders, which pick out different features of the noise-free mass distribution of one simulated
cluster (cluster 5, which happens to have several features in the plane of the sky). Moments are calculated after subtracting the large-scale smooth mass
distribution. From left to right, panels show: (a) monopole, (b) dipole, (c) quadrupole moments, and (d) the radial component of the quadrupole moment. For
reference, black contours show the true mass distribution.

be perfectly described by elliptical NFW potentials, small residuals
are left near the cluster centre. Such residuals do not impact searches
for filaments at much larger radii.

4.4.2 Aperture multipole moments

Schneider & Bartelmann (1997) first suggested looking for sub-
structures or filaments using multipole moments of a convergence
field within circular apertures. These are

Qn(R) =
∫ ∞

0
|R′ − R|n eniφ Un(|R′ − R|) κ(R′) d2 R′ , (20)

where n is the order of the multipole, (R, φ) are polar coordinates,
and Un(R) is a radially symmetric weight function, for which
Dietrich et al. (2005) suggested

Un(R) =
{

1 −
(

R
Rmax,n

)2
for R � Rmax,n,

0 otherwise.
(21)

Equation (20) can also be expressed in terms of shear measurements,
which Dietrich et al. (2005) used to detect filament candidates in
close pairs of clusters. Since modern mass reconstruction methods
successfully suppress noise, we attempt instead to measure multiple
moments directly from the pixellated convergence field

Qn(R) = Apix

Npix∑
i=1

Rn
i eniφi Un(Ri) κ(Ri ) , (22)

where Npix is the total number of pixels inside the aperture and Apix

is an area per pixel. For n > 0, Qn is complex; we shall generally
take its modulus, |Qn|.

Multipoles of different orders highlight different features in a
mass distribution (see Fig. 2). Monopole moments (n = 0) are the
aperture mass or normalization. Dipole moments (n = 1) are the
local gradient of a convergence field. They form ring-like structures
around mass clumps. Quadrupole moments (n = 2) are the locally
weighted curvature or Hessian of the convergence field. As Dietrich
et al. (2005) explain using a toy model, linear overdensities with
a lower mass on either side (i.e. filaments) have large quadrupole
moments. However, regions between two substructures also have
large quadrupole moments. To identify the former and suppress
the latter, Mead, King & McCarthy (2010) suggested combining
multipole moments

Q ≡ α0 Q0 + α1 Q+1 + α2 Q2 + · · · (23)

where the constants, αi, can be adjusted to boost a signal of interest.
We have tried different combinations and aperture sizes, and find
that a choice of

α0 = −α1 = 0.7 and α2 = 1 , (24)

Rmax,0 = 1′ and Rmax,1 = Rmax,2 = 2′ (25)

typically highlights narrow filaments (see Fig. 3). The quadrupole
term is sensitive to linearly extended mass distributions, and the
rings that it adds around substructures are removed by the negative
dipole term. The monopole term fills in the subtracted mass, and
suppresses regions between two substructures but without mass.

4.4.3 Filament identification

To identify individual filaments, we search for spatially extended
regions with Q above a threshold Qthreshold. The normalization of
coefficients in equation (24) conveniently ensures that regions inside
a contour Qthreshold have mean convergence 〈κ〉 ≈ Qthreshold (Fig. 4).
We identify as possible filaments any region with Q > Qthreshold in
a contiguous area or multiple peaks with total area >1.13 arcmin2,
that is aligned within ∼45◦ of the radial direction to the cluster
centre. Applied to noise-free data and using Qthreshold = 0.005, this
recipe identifies 22 of the 40 filaments, all of which are real, i.e.
55 per cent completeness (the number identified divided by the true
number) and 100 per cent purity (the number identified that are
true divided by the number identified). The identified filaments are
highlighted in magenta in Fig. 3.

4.4.4 Additional noise suppression strategies

Measurements of multipole moments will be more difficult in noisy
data – especially for high n moments, where the diverging |R′ − R|n
term is particularly sensitive to noise in κ near the aperture boundary.
We shall explore three strategies to reduce noise. First, noise can be
averaged away by enlarging the aperture. However, signal is also
averaged away for a filter than is not matched to the size of the
feature – and filaments are relatively narrow, even around clusters
at low redshift. Secondly, negative noise peaks can be eliminated
by forcing κ = max{κ , 0}. Negative convergence is physically
possible, because convergence represents deviation from the mean
cosmic density; but it is unlikely along the line of sight to even a
low-density structure, and probably noise rather than signal. Thirdly,
we could assume that all filaments extend radially away from the
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3980 S.-I. Tam et al.

Figure 3. A combination of aperture multipole moments, Q (equations 23–25), can be used to identify filamentary features in a mass map. Colours (top panel:
linear scale, bottom panel: logarithmic scale) show Q calculated from the true convergence map (without shape noise or LSS noise; black contours), after
subtracting its best-fitting smooth component. Dotted lines reproduce the 40 filaments from Fig. 1. The 22 filaments successfully identified using Q and the
procedure described in Section 4.4.3 are highlighted in magenta.

cluster, while noise is isotropic, and suppress quadrupole and dipole
moments whose phases are tangential. We calculate

Qn,projected = |Qn| cos (φ − θ ), with n = 1, 2 (26)

where θ is an phase angle of Qn. Fig. 2(d) shows the projected
quadrupole moments in the noise-free case, as an example.

5 R ESULTS AND DISCUSSION

To the 10 simulated clusters presented in Section 3, we shall now
apply the analysis methods described in Section 4. We compare
the reconstructed convergence maps, radial density profiles and
halo shapes, to the known, true distribution of mass. We then
search for observable signatures of filaments extending from the
clusters. For all these analyses, we quantify the impact of the two
main sources of noise in weak-lensing measurements: unrelated
LSS projected by chance along the line of sight to the cluster
(Section 3.2), and the intrinsic shapes of background galaxies
(Section 3.4).

5.1 Mass mapping

We quantify the precision and accuracy of mass maps produced
by KS93+MRLENS (Fig. 5) and LENSTOOL (Fig. 6) by comparing
them to the noise-free distributions of mass, κ true (which includes
only the mass of the cluster, not projected LSS). We first measure
deviations from this truth, κ res ≡ κ − κ true, to obtain the residual
maps. For each map, we compute the noise level σ κ , defined as the
root mean square (rms) deviation from the mean of κ res, over all
pixels in a field of view equivalent in size to the HST observations
of MS 0451-03. We then average the performance of each method
over all 10 clusters (Table 2).

In observations of the real Universe, σ κ cannot be calculated
because there is no privileged knowledge of κ true. For comparison
with observations, we therefore also measure σ obs

κ , the rms deviation
from the mean of κ . We find values of σ obs

κ roughly consistent with
σκ being added in quadrature to an irreducible component that is
the rms deviation from the mean of κ true, 0.022 ± 0.0007 on average
(0.027 for the five highest mass clusters, or 0.017 for the five lowest).
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Calibrating cluster weak lensing 3981

Figure 4. A combination of aperture multipole moments, Q (equations 23–
25), can be used to identify features in a mass distribution with filamentary
topology (see Fig. 3) and higher density than the background. Solid lines
show the mean projected density 〈κ〉 inside a contour defined by Qthreshold,
for all 10 simulated clusters. The dotted line and shaded region show their
mean and standard deviation. The normalization of coefficients (24) is
chosen so that 〈κ〉 = Qthreshold. The lower dashed line shows the mean
convergence, weighted by the number of pixels that contain Q > Qthreshold.

5.1.1 Direct inversion mass reconstruction

MRLENS suppresses galaxy shape noise by a factor 3.8 (a factor
1.5 better than smoothing with 1

′
pixels, and retaining higher

spatial resolution). However, galaxy shapes still contribute more
noise to the mass maps than (physically real) LSS noise. Spurious
noise peaks are found in all regions of the field of view. Massive
substructures with κ > 0.096 can be detected with S/N >3.

Mass reconstructions using KS93+MRLENS are statistically
consistent with being unbiased. Both positive and negative noise
fluctuations are produced, at all radii. The mean residual of maps
with both sources of noise is 〈κ res〉 = −0.0005 ± 0.0018, where
the averaging is over 10 clusters, and the uncertainty is the standard
deviation between them. The marginally negative mean may be
because density is underestimated in a small region near cluster
cores (see Section 5.2).

5.1.2 Forward-fitting mass reconstruction

LENSTOOL suppresses noise even further. Galaxy shape noise is an
additional factor 2 lower than KS93+MRLENS (averaged across the
field of view) – with the similar level as the LSS noise.

The spatial distribution of noise is non-uniform. A LENSTOOL

reconstruction has more freedom in regions with a high-resolution
free-form grid (Section 4.1.2), such as the cluster core and as-
sociated substructures. Spurious κ peaks appear preferentially in
those regions, even when we replace the shear catalogue with
one that contains only (spatially uniform) galaxy shape noise. To
further investigate this effect, we split the 10 clusters into two
subsamples: higher mass (clusters 1–5), and lower mass (clusters
6–10). Multiscale grids of the high-mass sample have larger high-
resolution regions, resulting in noisier maps on average. Assessing
the S/N of any identified peak must therefore involve bootstrap
analysis at the specific region of interest. This confirms Jullo
et al. (2014)’s similar assessment of the performance of LENSTOOL.
For many scientific purposes, spatially varying noise is a useful

feature: the lower resolution and positive definite constraints help
to suppress positive LSS noise and remove negative noise at large
radii. Even filaments contain a statistically significant overdensity
of galaxies (Galárraga-Espinosa et al. 2020), so the reconstruction
can be given sufficient flexibility to include (rather than suppress)
them.

Mass reconstructions using LENSTOOL slightly overestimate the
total mass, because of its positive-definite constraint. Averaged over
the field of view, the mean residual of maps with both sources of
noise is 〈κ res〉 = 0.0088 ± 0.0064 (we quote the mean of κ res for 10
clusters and the standard deviation between them).

5.2 Radial density profiles

We recover the clusters’ density profiles by azimuthally aver-
aging the convergence maps (Fig. 7). The smoothing inherent
to KS93+MRLENS results in an underestimation of density in
the cluster core, and an overestimate just outside. This biases
the inner profile slope that is often used to distinguish between
cusps and cores. LENSTOOL is accurate in the cluster core, because
its basis functions have a density profile that matches those
of the simulated clusters. This is not affected by LENSTOOL’s
positive-definite constraint, because the true mass distribution is
very positive near the core. In the cluster outskirts, LENSTOOL

strongly suppresses galaxy shape noise, and the reconstruction
is dominated by LSS noise. Because of the positive-definite
constraint, this is also potentially biased. The amplitude of LSS
noise varies a great deal depending on environments along the
line-of-sight LSS, but we typically find artificial boosts in in-
ferred density of up to σLSS = 4 × 107 M� / kpc2, at large pro-
jected radii, R > 1000 kpc. This effect must be taken into
account when measuring properties at large radius (e.g. M200,
c200, splashback radius). To militate against this, measurements
of galaxy redshifts will be invaluable to disentangle structures
connected to the cluster from those lying in the foreground or
background.

5.3 Halo shapes

Both mass reconstruction methods produce distributions that are
rounder than the truth (Fig. 8). eNFW models fitted to the recon-
structed mass maps (Figs 5 and 6) have a higher mean axial ratio
〈q〉 than models fitted to the true mass maps (Fig. 1). However,
they successfully capture the decrease in 〈q〉(R) at large radii that
is seen in the true mass maps (reflecting a transition from dominant
baryonic effects to the infall of structures along filaments; Suto et al.
2017). The orientation of most inner (R = 650 kpc) and outer (R =
3 Mpc) haloes also remain aligned within φ ≤ 10◦, matching the
true distributions (and also the simulations by Despali et al. 2017).
Two exceptions to this are clusters 5 and 9, which have complex
cores and φ = 17◦ and φ = 15◦. This likely indicates a transitory
state during a major merger.

Using KS93+MRLENS leads to inferred values of 〈q〉 that are
too high by about 6 per cent. The level of bias is not significantly
influenced by either source of noise in the shear catalogue (although
adding noise increases scatter in individual measurements of q as
expected). It is likely due to the isotropic blurring associated with
pixellization and MRLENS filtering.

Using LENSTOOL leads to inferred values of 〈q〉 that are too high
by 10 per cent in the cluster core and 15 per cent in the outskirts.
The bias appears to be caused by two effects:
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3982 S.-I. Tam et al.

Figure 5. Projected mass maps of the 10 simulated clusters reconstructed using the KS93+MRLENS direct inversion method, including different components
of noise. Top panels: reconstruction with no noise. Second panels: including only shape noise from 50 background galaxies per square arcminute. Third panels:
including only projected LSS. Bottom panels: including both sources of noise simultaneously. Colour scales are identical for all panels. For reference, red lines
indicate the field of view of the largest HST mosaic obtained around a massive galaxy cluster, MS 0451−03.

MNRAS 496, 3973–3990 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/496/3/3973/5859963 by U
niversity of D

urham
 user on 21 O

ctober 2020



Calibrating cluster weak lensing 3983

Figure 6. Same as Fig. 5, but reconstructed using LENSTOOL.

(i) The mass distribution is built from components that are all
individually spherical. If the dominant halo in the cluster core is
anomalously spherical (see clusters 4, 5, 8, or 10 in Fig. 9), it
can bias the apparent axial ratio of the mass inside a circle by

up to 10 per cent, almost regardless of the size Rap of that circle.
Substructures far from the centre of the cluster look surprisingly
uniform, but this does not affect measurements of the overall
shape.
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3984 S.-I. Tam et al.

Table 2. Noise level in mass maps created using different methods, measured as the standard deviation of all pixels inside a field of view equivalent to HST
observations of MS 0451−03. Central values and uncertainties show the mean and standard deviation between clusters. The first three columns show deviations
from the true, noise-free mass map; the second three columns show deviations from zero – which can be compared to observations of the real Universe. The
2nd, 3rd, 5th, and 6th columns refer to analyses in which the shear catalogues contain only certain sources of noise, so their relative effect can be assessed.
The first two rows quantify the performance of KS93 direct inversion, with noise suppressed only via convolution with a top hat window function. The middle
rows suppress noise using MRLENS. The bottom rows use LENSTOOL.

σκ σ obs
κ

Full mock Shape noise only LSS noise only Full mock Shape noise only LSS noise only

KS93 (pixel scale 0.4 arcmin) 0.088 ± 0.001 0.091 ± 0.001 0.017 ± 0.002 0.090 ± 0.002 0.092 ± 0.001 0.027 ± 0.006
KS93 (pixel scale 1 arcmin) 0.037 ± 0.001 0.037 ± 0.001 0.013 ± 0.002 0.042 ± 0.003 0.039 ± 0.002 0.024 ± 0.006

KS93+MRLENS 0.026 ± 0.001 0.024 ± 0.001 0.014 ± 0.002 0.032 ± 0.004 0.028 ± 0.002 0.024 ± 0.006
High-mass clusters 0.026 ± 0.001 0.024 ± 0.001 0.016 ± 0.001 0.035 ± 0.004 0.030 ± 0.002 0.029 ± 0.005
Low-mass clusters 0.026 ± 0.002 0.024 ± 0.001 0.012 ± 0.001 0.029 ± 0.003 0.026 ± 0.001 0.019 ± 0.003

LENSTOOL 0.015 ± 0.004 0.012 ± 0.003 0.013 ± 0.004 0.023 ± 0.007 0.022 ± 0.007 0.024 ± 0.008
High-mass clusters 0.018 ± 0.002 0.014 ± 0.002 0.016 ± 0.003 0.031 ± 0.005 0.030 ± 0.005 0.030 ± 0.008
Low-mass clusters 0.012 ± 0.002 0.010 ± 0.002 0.010 ± 0.001 0.018 ± 0.003 0.018 ± 0.003 0.019 ± 0.004

(ii) The mass distribution is constrained to be positive definite. In
the absence of noise, this has no effect. If we add galaxy shape noise,
it is also relevant that the reconstructed mass distribution is higher
resolution (has more freedom) along its major axis. The positive-
definite bias in noise artefacts then exaggerates the major axis,
reducing 〈q〉 by ∼5 per cent. If we add LSS noise, 〈q〉 increases by
8 per cent because there is a larger area at close to zero convergence
along the minor axis.

It is possible to mitigate the first effect by masking the cluster
core. We successfully recover the true axial ratio when fitting an
eNFW using to noise-free data inside an annulus 35 arcsec < R
< Rap (instead of a circle of radius Rap). Fitting inside annuli also
decorrelates measurements of 〈q〉 at different radii, and steepens
the apparent gradient in 〈q〉(R). Note that the second effect still
increases 〈q〉 by ∼6 per cent in the presence of both sources of
noise.

A different strategy to mitigate sphericity bias could be to pre-fit
the axial ratio of central haloes, then hold them fixed while the
rest of the grid is constrained. A similar two-step process happens
naturally in most combined analyses of strong plus weak lensing,
where strong-lensing information constrains a cluster core. This
bias should therefore not affect LENSTOOL strong-lensing analyses.
However, it would be difficult to characterize statistical uncertainty
in such analysis, because shear data would be used twice.

5.3.1 Comparison with previous studies

Previous work by simulators to measure the shape of cluster-scale
haloes split into two distinct conclusions. Hopkins, Bahcall & Bode
(2005) found that 2D cluster ellipticity increases with clustercentric
radius, in agreement with our results. However, they also found that
the ellipticity is ε ≈ 0.05z + 0.33 for the redshift range 0 < z <

3, which implies q = 0.64 at the z = 0.55 redshift of our simulated
clusters. Similarly, Ho et al. (2006) found q ∼ 0.616 for haloes
with masses M > 1014 M� at z = 0.55 assuming �m = 0.3, and
σ 8 = 0.7, and little dependence upon cosmological model. Both of
these results are slightly rounder than our measurement of 〈q〉true ∼
0.55 ± 0.03.

More recently, Despali et al. (2017) found that M ∼ 1015 M� h−1

haloes in the SBARBINE N-body simulations had more elliptical
shapes, with q ∼ 0.55. Suto et al. (2016) studied the probability

distribution function (PDF) of q from projected density distributions
without assumptions of self-similarity. Using their PDF fit formula
for Mvir at z = 0.4, we obtain q = 0.57 ± 0.17. These results
match ours closely, and more recent independent analyses appear
to be converging. Note that the other simulations were DM-only,
but Suto et al. (2017) found that non-sphericity is unaffected by
baryonic physics beyond half of the virial radius, so it is reasonable
to compare to our measurements.

Several observational studies of weak-lensing have attempted to
measure cluster halo ellipticity. In the Sloan Digital Sky Survey
(SDSS), Evans & Bridle (2009) found a mean projected axial
ratio 〈q〉 = 0.48+0.14

−0.09 in the redshift range 0.1 < z < 0.3. By
directly fitting 2D shear-maps with eNFW models, Oguri et al.
(2010) measured an mean projected axial ratio 〈q〉 = 0.54 ± 0.04
for a sample of 18 X-ray luminous clusters in the redshift range
0.15 < z < 0.3. Shin et al. (2018) measured 〈q〉 = 0.56 ± 0.09
for 10 428 SDSS clusters. These results are consistent with our
measurement. Intriguingly, Umetsu et al. (2018) measured the
median projected axial ratio of 20 high-mass galaxy clusters in
the HST-CLASH survey to be 〈q〉 = 0.67 ± 0.07, within a
scale of 2 Mpc h−1. However, their measurement from the CLASH
high-magnification subsample was 〈q〉 = 0.55 ± 0.11, consistent
with our results. This suggests a lensing selection bias towards
haloes that are more elliptical (in the plane of the sky as well
as along a line of sight). In contrast, X-ray selected clusters
tend to be relaxed clusters with rounder dark matter halo shapes.
For clusters selected by the red sequence technique, it is more
likely that they are elongated along the line of sight, causing
an overdensity of red galaxies in the projected sky-plane. Since
our simulated cluster sample is selected by their high mass, with
each halo projected along a random line of sight, we can only
give the mass-selected mean halo shape. For direct comparison
with observational data, future theoretical predictions will need
to take the selection function of the observed sample into ef-
fect.

Other shape measurement techniques are possible. Studies using
quadrupole estimators to quantify halo shape include Adhikari,
Chue & Dalal (2015), Clampitt & Jain (2016), van Uitert et al.
(2017), and Shin et al. (2018). In particular, Clampitt & Jain (2016)
developed a new estimator to measure the quadrupole weak-lensing
signal from 70 000 SDSS Luminous Red Galaxies haloes, and found
a best-fitting axial ratio 〈q〉 ∼ 0.78. Their analysis assumes that dark
matter perfectly aligns with light, so one potential systematic in their
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Calibrating cluster weak lensing 3985

Figure 7. Surface mass density profiles for all 10 simulated clusters. Blue solid lines show the density profile calculated from the true mass distribution in
Fig 1. Green solid lines are the density profiles of +MRLENS reconstructed maps after adding shapes noise and LSS. Cyan, orange, and red lines show the
results recovered by LENSTOOL including shape noise, projected LSS, and both shape noise and LSS, respectively. Error bars with line caps are statistical errors
from the MCMC sample. Error bars with triangle caps are total errors that are the combination of statistical errors with the estimated noise from the projected
LSS (equation 12).
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Figure 8. Best-fitting axial ratios of the mass distribution in galaxy clusters,
as a function of projected, clustercentric radius R. Grey lines show the
BAHAMAS simulated clusters, whose axial ratio profiles are measured from
the true mass distribution. Blue lines show the mean and standard deviations
from this set of clusters. Black (green) lines show the mean axial ratio and
its scatter measured from noise-free KS93+MRLENS reconstruction (with
LSS and shape noise). Red (yellow) lines show the mean results measured
from noise-free LENSTOOL reconstruction (with LSS and shape noise).
Cyan (magenta) lines show the axial ratio measured from the masked R <

35 arcsec (228 kpc) LENSTOOL reconstruction (with LSS and shape noise).

study is the possibility of light and dark matter misalignment. The
determination of the orientation of each lens–source pair could
become inaccurate due to this misalignment, and result in the
dilution of the final stacked signal of the halo ellipticity. Indeed,
applying the misalignment distribution of Okumura, Jing & Li
(2009) to their measurement, they obtain q ∼ 0.6, consistent with
our results.

5.4 Searches for filaments

In the presence of galaxy shape noise and LSS noise, maps of our
combination of aperture multipole moments Q have lower signal
to noise than maps of convergence κ (Fig. 10; given the noise
level, we show them only in linear scale, not logarithmic). We
quantify the noise level by defining σ Q as the standard deviation
of all pixels in the final Q map. Despite our attempt to eliminate
isolated substructures from the Q maps by combining different
multipole moments, clusters 1, 2 and 5 contain sufficiently massive
substructures to induce higher Q than lower density filaments.
Following the methodology in Section 4.4.3, we then search for
filaments as extended regions with Q > 3σ Q (illustrated in Fig. 10)
or Q > 4σ Q. Results for both are listed in Table 3.

In the default LENSTOOL mass reconstructions, we find 〈σ Q〉 =
0.011 and, with Qthreshold = 3σ Q we identify 17 of the 40 fila-
ments (42.5 per cent completeness), plus 5 false positive detections
(77.3 per cent purity). Increasing the detection threshold to 4σ Q

removes all but one false detection, but finds only 12 real filaments.
Identifying filaments in the noisier KS93+MRLENS mass recon-

structions is much more difficult. To obtain useful results, we need
to apply all three denoising strategies presented in Section 4.4.4.
We enlarge the apertures to Rmax,0 = 2 arcmin, Rmax, 1=Rmax,2 =
2.5 arcmin; we replace negative convergence by zeros; and we
project all quadrupole and dipole moments in the radial direction.
In combination, these strategies reduce 〈σ Q〉 from 0.11 to 0.06.
Filament identification statistics after this noise suppression are
listed in Table 3. At 3σ Q detection threshold, we identify 15 of the
40 filaments (37.5 per cent completeness), but also 21 false positive
detections (41.7 per cent purity).

Most of the false-positive filament detections are caused by
galaxy shape noise. Repeating the KS93+MRLENS analysis with
only shape noise yields a Q map with σ Q = 0.058; with only
LSS noise, it is σ Q = 0.033. Because shape noise is apparently so
dominant, we also investigate the effect of different survey strategies
on the success of filament identification. We simulate ground-

Figure 9. Elliptical eNFW models fitted to the LENSTOOL mass maps are ∼6 per cent too round, on average (see Fig. 8). Black ellipses have the same axial
ratio of the true mass distribution (see Fig. 1) inside annulus R < Rap, where different values of Rap are indicated by the length of the major axis. White dashed
ellipses show the axial ratio measured from masked lenstool reconstructions, inside the largest 35 arcsec < R < Rap. The background image shows the mass
distribution reconstructed by LENSTOOL, as in Fig. 6 but with a logarithmic scale to highlight one problem with the LENSTOOL method: overly circular central
haloes.
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Calibrating cluster weak lensing 3987

Figure 10. Results for the filament search around 10 simulated clusters. Colours show a linear combination of aperture multipole moments Q, calculated from
the mass maps after subtracting their best-fitting smooth component. Dotted lines show true filaments, reproduced from Fig. 1; those identified successfully
(with Qthreshold = 3σQ, see Section 4.4.3) are highlighted in magenta. Solid lines show false positive detections. The top and second panel use mass maps created
by LENSTOOL (including shape noise and LSS), with 50 and 100 arcmin−2 source galaxies, respectively. The third and bottom panels show the phase-projected
version of the filter applied to the positive-only KS93+MRLENS mass map (with a different colour scale to the top two panels). In all panels, red contours show
Q = 3σQ and 4σQ, and black contours show the true mass distribution.
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Table 3. Filament identification efficiency at 3σ or 4σ detection significance, from multipole aperture moments in mass
maps created by KS93+MRLENS or LENSTOOL, assuming different densities of weakly lensed galaxies. Completeness
indicates the fraction of the 40 real filaments (see Section 3.1) that are successfully identified. Purity indicates the
fraction of the identified filaments that are real.

Galaxy number Purity Completeness
density (arcmin−2) 3 σQ 4 σQ 3 σQ 4 σQ

20 35.0 per cent 40.0 per cent 50.0 per cent 35.0 per cent
KS93+MRLENS 50 41.7 per cent 44.4 per cent 37.5 per cent 30.0 per cent

100 50.0 per cent 57.9 per cent 42.5 per cent 27.5 per cent

20 76.0 per cent 78.0 per cent 40.0 per cent 27.5 per cent
LENSTOOL 50 77.3 per cent 92.3 per cent 42.5 per cent 30.0 per cent

100 81.8 per cent 93.3 per cent 45.0 per cent 35.0 per cent

based observations, which typically resolve the shapes of only
20 galaxies arcmin−2, and extremely deep space-based observations
that resolve ∼100 galaxies arcmin−2 (we assume all faint galaxies
have constant intrinsic shape noise, as suggested by fig. 17 of
Leauthaud et al. 2007). With these catalogues, we repeat the whole
analysis: including the mass reconstruction and filament search
(Table 3). The low purity and high completeness of KS93+MRLENS

with 20 arcmin−2 source galaxy is because the Q maps are filled
with random noise peaks that mimic the filament signals. Some
radial directions defined by the alignment of noise peaks match the
true filament direction by chance and thus boost the completeness in
spite of low purity. Since these maps are not informative, we show
only those Q measurements using 100 arcmin−2 source galaxies
in Fig. 10. The performance of LENSTOOL reconstructions with
deep space-based data is impressive: thanks to the prior assumption
of looking harder where there are galaxies, it finds 18 filaments
around 10 clusters (45 per cent completeness) with 82 per cent
purity. Recall that, even with noise-free data (Section 4.4.3), the
maximum completeness with the multipole moment technique was
55 per cent. In general, we find that LENSTOOL is most appropriate
for filament searches. Applied to future deep space-based surveys,
the multipole moment technique should detect one or two filaments
around most clusters.

6 C O N C L U S I O N S

High-precision calibration of weak-lensing mass reconstruction
techniques will be essential for the next generation of space-based
surveys. Understanding methods’ performance in different systems
(such as non-linear structures or stacked clusters), and quantifying
any biases they introduce, will help identify the optimal method for
each scientific analysis.

In this paper, we simulate mock observations of 10 galaxy clusters
from the BAHAMAS cosmological simulation. We use their known
distribution of mass 4 × 1014 < M200/M� < 2 × 1015 to test two
mass mapping methods: (1) direct KS93 inversion from lensing
shear observations to the projected mass distribution, which is then
denoised using MRLENS; (2) the forward-fitting LENSTOOL technique
that uses a Bayesian MCMC sampler to fit the distribution of mass in
a multiscale grid. Any mass reconstruction method must interpolate
the finite resolution in a shear catalogue that samples the shear field
only along the lines of sight to galaxies.

We find that MRLENS is particularly efficient at suppressing
noise owing to the diverse intrinsic shapes of background galaxies,
while retaining signal from statistically significant structures on
all scales. In a typical cluster field, it reduces total noise σ κ from
0.088 ± 0.001 to 0.026 ± 0.001. The KS93+MRLENS method will

be appropriate for use on stacked observations of a large number of
galaxy clusters. However, it has no knowledge of cluster physics,
and its noise suppression via smoothing softens the inferred central
density profile. At large projected radii, R > 1 Mpc, noise in the map
of an individual cluster becomes dominated by unrelated structures
at different redshifts, projected along adjacent lines of sight.

LENSTOOL incorporates physical knowledge of galaxy clusters by
imposing strong priors on the distribution of mass. For example, it
preserves central cusps. The method is more aggressive in denoising
the reconstructed convergence field, achieving σ κ = 0.015 ± 0.004.
By adjusting the grid’s adaptive resolution, it is also possible to
suppress the spurious signal from unrelated, isolated structures at
different redshifts, once they have been identified via multiband
photometry or spectroscopy. We find that this method is well suited
to reconstructions of individual clusters, or measurements of low
signal-to-noise quantities, such as filaments.

In its standard configuration however, we find that LENSTOOL

biases a mass reconstruction at large distances from the centre of a
cluster, by imposing a prior that the projected density everywhere
in a field of view must be positive (relative to the mean density
in the Universe). This bias will need to be managed carefully
when statistical errors are reduced by averaging over a population
of clusters: perhaps by reconfiguring the Bayesian optimization
engine. The standard configuration of LENSTOOL also forces the
mass distribution in every grid point to be spherically symmetric. In
a purely weak-lensing analysis, this leads to spuriously spherical
cluster cores, even when the global mass distribution is well
modelled. This issue is automatically solved and irrelevant if strong
gravitational lensing information is available, and used to pre-fit the
axial ratio of the core. In this weak-lensing-only study, we adopt
a simple solution by masking the central R < 35 arcsec regions
of a weak-lensing-only reconstruction. This avoids modelling the
central spherical core for halo shape measurement.

Based on the performance of these two methods, for an individual
cluster, or measurements of highly non-linear quantities such as
filament detection, LENSTOOL is well suited to applications that
require as precise a reconstruction as possible. However, for high-
precision analyses that stack many clusters, it would be necessary to
drop LENSTOOL’s positive definite constraint to reduce bias of mass
overestimation. By contrast, KS93+MRLENS retains a higher level
of noise, but the positive and negative fluctuations are preserved in
a manner that can reduce bias in stacked measurements.

We also develop a filter to search for filaments and measure their
orientation. The low density of filaments leads to low signal to noise
in reconstructed maps, and they can rarely be stacked usefully.
To retain their individual signal while suppressing noise, we
construct a linear combination of multipole moments. We explore
two further strategies: (1) filtering on the orientations (complex
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phases) of higher order moments, exploiting the prior knowledge
that filaments typically extend radially out of from cluster haloes and
(2) replacing with the mean density of the Universe those regions
inferred to have (negative) less density, which are more likely to
be noise than regions inferred to have (positive) higher density.
We find that it will be impossible to detect individual filaments
using data from ground-based telescopes, and remains challenging
with current space-based (HST) data. However, we find that the
dominant source of noise relevant to filament detection comes from
lensed galaxies’ intrinsic shapes. Deeper observations with the next
generation of space-based telescopes will resolve more background
galaxies, and efficiently beat down this noise. Our filtering method
successfully finds 45 per cent of filaments with projected density
� > 1.7 × 107 M� kpc−2 (with a false detection rate <20 per cent),
when applied to mock observations at the depth of possible future
surveys.
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