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Abstract: Random effect models have been popularly used as a mainstream statis-

tical technique over several decades; and the same can be said for response transfor-

mation models such as the Box-Cox transformation. The latter aims at ensuring that

the assumptions of normality and of homoscedasticity of the response distribution are

fulfilled, which are essential conditions for inference based on a linear model or a linear

mixed model. However, methodology for response transformation and simultaneous

inclusion of random effects has been developed and implemented only scarcely, and is

so far restricted to Gaussian random effects. We develop such methodology, thereby
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not requiring parametric assumptions on the distribution of the random effects. This

is achieved by extending the “Nonparametric Maximum Likelihood” towards a “Non-

parametric Profile Maximum Likelihood” (NPPML) technique, allowing to deal with

overdispersion as well as two-level data scenarios.

Key words: Box-Cox transformation; Random effects model; Variance component

model; Nonparametric maximum likelihood; EM algorithm

1 Introduction

In regression analysis, meeting the assumptions of normality and homoscedasticity

of the response distribution and linearity of the model often requires transforming

the response variable. The power transformation that was proposed by Box and

Cox (1964) allows the response variable to achieve at least approximately a normal

distribution, implicitly making the variance more nearly constant across data points

around the regression line. Osborne (2010) suggested that normalizing data via the

Box–Cox transformation to be a stage in data cleaning routines.

The Box-Cox transformation has been widely used in applied data analysis. The

objective of the transformation is to select an appropriate parameter λ which is then

used to transform data so that they follow a normal distribution more closely than

the untransformed data. The transformation of the responses yi, i = 1, . . . , n, takes

the form

y
(λ)
i =


yλi −1

λ
(λ 6= 0),

log yi (λ = 0),

(1.1)



Response transformations for random effect models 3

where the restriction yi > 0 applies. This family of transformations includes many

traditional transformations to meet the needs of the data (Osborne , 2010), in par-

ticular λ = 1 means that no transformation is needed and hence produces results

identical to the original data, λ = 1/2 is the square root transformation, λ = 1/3

corresponds to the cube root transformation, λ = 0 is the natural log transformation,

λ = −1/2 yields the reciprocal square root transformation, and λ = −1 is the inverse

transformation.

There is some close connection between such transformations and variance-stabilizing

transformations. Sakia (1992) pointed out that the variance of a Box-Cox trans-

formed variable can be approximated by

Var
(
y
(λ)
i

)
= Var(yi)E(yi)

2λ−2. (1.2)

That is, the transformation λ = 1/2 is variance-stabilizing if the variance is pro-

portional to the mean, such as for Poisson models, whereas λ = 0 has a variance-

stabilizing effect if the variance is a quadratic function of the mean.

Box and Cox (1964) introduced their transformation originally for the linear model,

where it is assumed that a set of explanatory variables xi, i = 1, . . . , n, and a response

variable yi are linearly related such that yi = xTi β + εi, with independent errors εi

which are usually taken to be Gaussian and homoscedastic. The transformation

y
(λ)
i is designed to mitigate violations of the latter two properties. However, not all

types of violations can be mitigated through this route. It is often the case that the

population from which the data are sampled consists of heterogeneous subpopulations.

If these subpopulations are known, then they can simply be accounted for through

an additional covariate in the model. However, frequently the subpopulations are

latent, i.e. it is not possible to identify to which subpopulations the observations
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of a sample belong (Wang , 2004). Under the resulting unobserved heteorogeneity,

the errors cease to be independent, and their distribution tends to be multimodal.

Fortunately, there is a well–known solution to this problem: The contribution by the

latent subpopulation is captured by a random effect, conditional on which the errors

restore their independence.

In this work, we intend to connect and combine both approaches, i.e. we assume

that there is a value of λ so that the transformed responses are independently and

normally distributed with mean function E(y
(λ)
i |zi) = xTi β + zi, conditionally on the

random effect zi. In explicit notation, one has then

y
(λ)
i |zi ∼ N(xTi β + zi, σ

2), (1.3)

where zi is a random effect term with some density g(·). Under the presence of a

random effect, the intercept term can be omitted from xTi β, so that, in what follows,

β ∈ Rp denotes the vector of regression parameters excluding the intercept. For the

distribution of g(·), several choices are possible, among them the normal distribution,

as in the classical literature on linear mixed models. The extension of the transfor-

mation under this scenario was proposed by Gurka et al. (2006), and extended to

the longitudinal data setting by Maruo et al. (2017) whose main interests were in

robust estimation of fixed (treatment) effects.

However, a normal distribution is by definition unimodal, and hence may fail to

capture the full heterogeneity of the latent subpopulations. An obvious concern is

whether there are any harmful effects of this potential misspecification. Agresti et al.

(2004) showed that a misspecification of the random effects distribution may affect

the prediction accuracy of the random effects as well as the fixed effects, and suggest
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that the “safest approach might seem to be always to use a nonparametric rather

than a parametric approach for the random effects distribution.” In consideration of

the random effects misspecification, Wang et al. (2012) argued that even when the

estimation of the fixed effect is robust, the estimation of the random effects could be

invalid.

Accordingly, we follow in this work the concepts laid out by Aitkin (1996), which

allows leaving the density g(·) unspecified. For estimation purposes, g(·) is then

approximated by a finite discrete mixture with masses πk at mass points zk, k =

1, . . . , K. These mixture parameters can be estimated alongside the other regression

parameters in a usual EM algorithm. While it could, superficially, be argued that a

‘discrete random effect’ constitutes an even stronger limitation than a normal random

effect, there is solid evidence that this is not the case. Methodologically, what is being

approximated is the marginal likelihood,

L =
n∏
i=1

∫
f(yi|zi)g(zi)dzi ≈

n∏
i=1

K∑
k=1

πkf(yi|zk) (1.4)

(where in our context f(yi|zi) is the conditional density of the raw — not the trans-

formed — data, which can be obtained from (1.3) using the transformation formula

for probability density functions). It is known from early work by Laird (1978), Bock

and Aitkin (1981) and Lindsay (1983), that this integral can be approximated with

very high accuracy, and that the NPML estimate of the mixing distribution involves a

finite number K of mass-points and corresponding masses. In practical applications,

this integer K is typically very small, with values between K = 2 and 10.

In the context of model (1.3), the parameter λ needs to be estimated on top of the

regression and mixture parameters, which leads us to an approach which one can

consider as a ‘nonparametric profile maximum likelihood’ (NPPML) technique, in a
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direct extension of the profile maximum log–likelihood estimation technique discussed

by Box and Cox (1964). Box and Cox also suggested a way of producing confidence

intervals for λ based on the χ2-distribution.

Within the context of NPML estimation, Böhning et al. (2006) remarked that “profile

likelihood ratios will not have standard χ2-distributions”, therefore, they suggested

using model selection criteria for determining the number of components. Piepho and

McCulloch (2004) considered the model selection in mixed models with transforma-

tions as “a difficult problem”. Gurka (2004) suggested the use of likelihood-based

measures such as Akaike’s information criterion (AIC; Akaike, 1998) and the Bayesian

information criterion (BIC; Schwarz , 1978) in the context of transformation models.

Furthermore, graphical measures can be used for exploring normality such as control

charts, probability plots, or histograms of residuals. Piepho and McCulloch (2004)

suggested to fit a number of models and compare their fits by plotting the residual

on the transformed and untransformed scale.

The rest of the paper is organized as follows. In Section 2 we introduce the NPPML

technique by combining the Box-Cox transformation and the NPML estimation tech-

nique. Specifically, Subsection 2.1 lays out the maximum likelihood problem and

derives explicit equations for the required EM algorithm. Subsection 2.2 is dedicated

to model selection (for K), and the remaining subsections summarize further relevant

technicalities. We extend the proposed technique to the two-level variance compo-

nent model in Section 3. Simulated and real data applications are used to verify the

proposed approach in Sections 4 and 5, respectively. Finally, we summarize our find-

ings in Section 6. An implementation of the methodology is available in R package

boxcoxmix (Almohaimeed and Einbeck , 2020).
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2 Box-Cox transformation in random effect models

2.1 NPPML estimation

In this section, we consider estimation of the parameters in model (1.3). While the

main goal is to estimate λ and β under the presence of the random effect, the discrete

mixture approximation to the random effect distribution will be implicitly estimated,

and may also be of interest in its own right in special applications.

Assuming positive responses yi, and taking account of the Jacobian of the transfor-

mation from yi to y
(λ)
i , the conditional probability density function of yi given zi

is

f(yi|zi) =
yλ−1
i√
2πσ2

exp

[
− 1

2σ2
(y

(λ)
i − xTi β − zi)2

]
. (2.1)

Under the nonparametric maximum likelihood estimation approach, the distribution

of the random effect will be approximated by a discrete distribution at mass points

z1, . . . , zK , with masses π1, . . . , πk (Aitkin et al. , 2009), under the obvious constraints

πk ≥ 0, k = 1, . . . , K, and
∑K

k=1 πk = 1. Along the lines of (1.4), the likelihood in

relation to the original observations can be approximated as

L(λ, β, σ2, z1, ...., zk, π1, ....., πk) =
n∏
i=1

K∑
k=1

πkfik (2.2)

where fik = f(yi|zk). Defining indicators Gik = 1 if case i stems from cluster k and 0

otherwise (which constitute the ‘missing information’ for EM purposes), the complete

log-likelihood takes the shape

`∗ = logL∗ =
n∑
i=1

K∑
k=1

[Gik log πk +Gik log fik] , (2.3)

where L∗ =
∏n

i=1

∏K
k=1(πkfik)

Gik . If K = 1, the log-likelihood would be the usual

log-likelihood of the Box-Cox model without random effects. Of course, `∗ depends
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on λ. For fixed λ, one proceeds via a standard EM algorithm, where in the E-step

expectations of Gik are obtained via

wik =
πkfik∑
` π`fi`

, (2.4)

and in the M-step the expected complete likelihood is maximized, yielding

β̂ =

(
n∑
i=1

xix
T
i

)−1 n∑
i=1

xi

(
y
(λ)
i −

K∑
k=1

wikẑk

)
, (2.5)

σ̂2 =
n∑
i=1

K∑
k=1

wik(y
(λ)
i − xT β̂ − ẑk)2

n
, (2.6)

ẑk =

∑n
i=1wik(y

(λ)
i − xTi β̂)∑n

i=1wik
, (2.7)

π̂k =

∑n
i=1wik
n

. (2.8)

The estimates ẑk, k = 1, . . . , K, and β̂ are obtained by iterating between Equations

(2.7) and (2.5) a small number of times within each M-step, where the resulting

estimates of the previous EM iteration are used as starting values in this inner loop.

This inner loop does not detrimentally impact the convergence behavior of the overall

EM algorithm; note that the EM algorithm will still converge even if the M-step fails

to identify the maximum of the complete likelihood, as long as an improvement of

the latter is made (Dempster , 1997).

With view to the presence of
∑n

i=1wik in the denominator of (2.7), it is noted that this

sum approaching the value 0 would correspond to π̂k −→ 0 and so `∗ approaching−∞,

that is, clearly not maximizing the (expected) complete log-likelihood. Hence, if K

is larger than necessary, it appears more attractive for the EM algorithm to produce

many identical ẑk’s with split probability mass, rather than allocating individual

components the probability 0, even though the latter behavior has also been reported

(Lukoĉienė , 2010). As long as K does not exceed the NPML solution (Böhning ,
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2000), components with probability 0 (and denominators equal to 0 in (2.7)) are not

to be expected, and indeed we did not observe such issues with the above algorithm.

So far λ has been fixed, and of course it is possible to stop here, in which case one

has now completed the maximum likelihood estimation of mixture parameters under

a given transformation parameter. However, the more interesting case is that λ needs

to be estimated. In this case one repeats the procedure above over a grid of λ values,

each time plugging the estimates (2.5) to (2.8) obtained for a given fixed λ into fik and

then into the right-hand term of equation (2.2). This produces the profile-likelihood

function LP (λ), or its logarithmic version `P (λ) = log(LP (λ)). The non-parametric

profile maximum likelihood (NPPML) estimator is therefore given by

λ̂ = arg max
λ

`P (λ), (2.9)

which can be found through a grid search over λ.

2.2 Model selection

In the original sense of NPML estimation, the value K is estimated by maximizing

the likelihood successively for K = 1, 2, 3 . . . until there is no further improvement of

the maximized likelihood (Laird , 1978; Aitkin et al. , 2009). Leroux and Puterman

(1992) indicated that the NPML estimate may require an unnecessarily high number

of components to maximize the likelihood whereas well-fitting models with a small

number of components are usually preferred. Hence, it has become common to base

the selection of K on a model selection criterion rather than the likelihood itself.

In this work we follow Lukoĉienė (2010), who suggested an approach in which the

number of components is increased until no further improvement is possible for the

criterion used for model selection.
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Commonly used criteria are Akaike’s Information Criterion (AIC) and the Bayesian

Information Criterion (BIC). Adapted to NPPML estimation, these criteria take the

shape

AIC = −2`P (λ̂) + 2× (p+ 2K − 1 + c) (2.10)

BIC = −2`P (λ̂) + log(n)× (p+ 2K − 1 + c), (2.11)

i.e. the disparity, −2`P (λ̂), penalized by a quantity involving the total number of

parameters estimated in the model. The constant c takes the value 1 if the transfor-

mation parameter is estimated and zero otherwise (in which case λ̂ ≡ λ, the given

fixed value of the transformation parameter). The model with the selected number

of classes is the one with the minimum AIC or BIC value.

Note that, even though σ̂ depends on zk and λ, the parameter σ is of no relevance

for the problem of model selection, therefore, it is not included in the degrees of

freedom (df) of the model. See Table 1 for an overview over all model parameters

and associated df. As such, given a set of models, the best model in terms of relative

quality will be the one with minimum AIC or BIC value.

While AIC is sometimes used in the literature to infer the number of components, it

is known for its tendency to overestimate this number (McLachlan and Peel , 2004).

The theoretical assumptions underlying both AIC and BIC break down for mixture

models, but there is still some evidence supporting the use of the BIC, including a

consistency result when considering the mixture as a density estimator (Celeux et al. ,

2018). In direct comparison, the BIC has meanwhile established itself as the preferred

choice (Steele and Raftery , 2010). The BIC still tends to overestimate the number of

components especially if the model assumption for the component densities is invalid

(McLachlan and Peel , 2004). Complications with BIC can also arise in variance
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component models (Lukoĉienė and Vermunt , 2009).

Possible strategies for tailoring model selection criteria to the mixture problem are

outlined in Celeux et al. (2018) or Naik et al. (2007). The latter paper, which

introduces the ‘mixture regression criterion’ as a variant of the AIC, also indicates

that the gain in accuracy of estimating the number of components as compared to

BIC is not very large. For our purposes, the analysis which follows will consider

AIC and BIC in order to select K, eventually confirming the established preference

hierarchy of these two criteria in the context of NPPML estimation.

Parameters df

ẑ1, . . . , ẑK K

π̂1, . . . , π̂K−1 K − 1

β̂1, . . . , β̂p p

λ̂ 1

Table 1: Model parameters and degrees and freedom for use in information criteria

2.3 Starting point selection and the first cycle

In the first cycle of the EM algorithm, the model is fitted initially as

y
(λ)
i = β0 + xTi β + εi. (2.12)

The usual least squares solution of (2.12) delivers starting values β0 ∈ Rp for β and

σ0 for σ. We set the initial estimates π0
k as equal probabilities 1/K, so that it remains

to choose the starting mass points z0k. There are several ways in which this can be

done. Firstly, one can make use of Gauss-Hermite quadrature points (Einbeck and
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Hinde , 2006). Under this approach, one sets

z0k = β0 + tol× σ0 × gk, (2.13)

where tol is a scaling parameter which is typically restricted to the choice 0 ≤ tol

≤ 2, and gk are Gauss-Hermite quadrature points.

Alternatively, one could also make use of a quantile-based version

z0k = ȳ(λ) + tol× q(λ)k (2.14)

where ȳ(λ) is the mean of the transformed responses y
(λ)
i and q

(λ)
k are ( k

K
− 1

2K
)-quantiles

of the empirical distribution of y
(λ)
i − ȳ(λ). All application studies in this paper make

use of the first of these two methods. The R package boxcoxmix (Almohaimeed and

Einbeck , 2020) implements both approaches.

In either case, following the definition of the z0k one obtains the extended linear

predictor for the k-th component E(y
(λ)
i |z0k) = xTi β

0 + z0k and associated densities

f(yi|z0k) according to (2.1). Together with π0
k, one is now able to compute initial

weights w0
ik = π0

kf(yi|z0k)/
∑

` f(yi|z0` ), completing the initial E-step.

The subsequent M-step finds the parameter estimates by computing Equations (2.5)

to (2.8), using wik = w0
ik. From the resulting estimates of this cycle, one gets an

updated value of the weights, and so on.

A comment is needed on the selection of the tuning parameter tol. For each fixed

λ, one could in principle run the procedure described in Section 2.1 for a grid of

tol values, and then choose the value of tol which returns the minimal disparity.

However, this procedure is computationally expensive. Hence, we suggest a simpler

approach where, for the fixed setting λ = 1, one finds the value of tol which minimizes
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the disparity. This value of tol is then used across all considered λ values.

2.4 Summary of NPPML estimation procedure

For a fixed value of K, the previously described elements can be summarized as

follows.

1. Decide on a range over which the optimization of λ will occur. We suggest the

range from λmin = −3 to λmax = 3, with a grid of size 10 × (λmax − λmin).

(Extreme transformations beyond this range are usually considered ineffective

due to poor restoration of normality and other problems, see Osborne (2013)

for related discussion.)

2. For the fixed setting λ = 1, find the value of tol which minimizes the disparity.

Use this value of tol then across the whole grid of λ values.

3. For each fixed value of λ in the grid

(a) Carry out the procedure described in Section 2.3 to identify suitable start-

ing points.

(b) Run the EM algorithm described by the E-step (2.4), and the M-step

given by (2.5)–(2.8), noting the additional iteration between (2.7) and

(2.5) required within each M-step.

(c) Stop the algorithm if the difference of disparities (−2`P (λ̂)) between two

subsequent iterations falls below a small threshold, such as 0.0001.

(d) The resulting ML estimates ẑk, σ̂
2, β̂ , π̂k are used to produce `P (λ).

4. The optimal choice for λ is the one that maximizes `P (λ).
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It is noted that this procedure is not equivalent to fitting a set of transformation

models over a grid of λ values and then carrying out a simple grid search over λ to

identify the ‘best’ model in some sense; such a procedure would be incorrect since

the individual likelihoods would be based on the respective transformed data, not the

raw data as in our approach, and hence not be comparable.

Concerning the selection of K, our practical advice would be to initially produce the

values of the model selection criterion, such as BIC, until K = 3, and then increase

K further if it has not yet stopped decreasing.

3 Box-Cox transformation in variance component mod-

els

For data with a two-level structure, such as longitudinal data, correlation of responses

within upper–level units can be induced by adding a random effect zi to the linear

predictor xTijβ, with the upper-level indexed by i = 1, . . . , r, and the lower-level

indexed by j = 1, . . . , ni,
∑
ni = n. We assume that there is a value of λ for which

y
(λ)
ij |zi ∼ N(xTijβ + zi, σ

2) (3.1)

where zi is a random effect with an unspecified mixing distribution g(zi). Under this

model, which is also known as a variance component model, the responses y
(λ)
ij are

assumed to be conditionally independent given the random effect, with mean function

E(y
(λ)
ij |zi) = xTijβ + zi. (3.2)
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The marginal likelihood can again be approximated using NPML estimation (Aitkin

et al. , 2009),

L(λ, β, σ2, g) =
r∏
i=1

∫ [ ni∏
j=1

f(yij|zi)

]
g(zi)dzi ≈

r∏
i=1

K∑
k=1

πkmik, (3.3)

where mik =
∏ni

j=1 f(yij|zk). The complete log-likelihood is thus

`∗ = logL∗ =
r∑
i=1

K∑
k=1

[Gik log πk +Gik logmik] (3.4)

where L∗ =
∏r

i=1

∏K
k=1(πkmik)

Gik . We apply the expectation-maximization (EM)

approach similar as before, with the following adjustments:

1. In the E-step, the weights wik replace fik by mik.

2. In the M-step, the four estimators are now:

β̂ =

(
r∑
i=1

ni∑
j=1

xijx
T
ij

)−1 r∑
i=1

ni∑
j=1

xij

(
y
(λ)
ij −

K∑
k=1

wikẑk

)
,

σ̂2 =

∑r
i=1

∑K
k=1wik

[∑ni
j=1(y

(λ)
ij − xTijβ̂ − ẑk)2

]
∑r

i=1 ni
,

ẑk =

∑r
i=1wik

[∑ni
j=1(y

(λ)
ij − xTijβ̂)

]
∑r

i=1 niwik
,

π̂k =

∑r
i=1wik
r

.

As with the random effect models, we iterate between ẑk and β̂ a small number of

times in each M-step to obtain their values. Substituting the results into Equation

(3.3) we get the non-parametric profile log-likelihood function

`P (λ) =
n∑
i=1

log
( K∑
k=1

π̂km̂ik

)
. (3.5)

The NPPML estimator is therefore given by

λ̂ = arg max
λ

`P (λ), (3.6)
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which can be found through a grid search over λ as in Equation (2.9). The procedures

described in Subsections 2.3 and 2.4 extend accordingly to this scenario.

Concerning the choice of K, the comments relating to the relative merits of AIC

and BIC apply similarly to variance component models (Lukoĉienė and Vermunt ,

2009); however, as mentioned earlier there is a difficulty in the use of BIC which

needs addressing. Note from (2.11) that the penalty term contains the quantity n.

By strict use of BIC this would be the total sample size, that is the sum n =
∑r

i=1 ni.

However, noting that the mixture components operate on the upper level, Lukoĉienė

and Vermunt (2009) made the case for employing instead the number of upper-level-

units, r, for use in BIC, and endorsed this argument by a simulation study which

shows that BIC may underfit the number of components otherwise. The possibility

for BIC to underfit was also mentioned by McLachlan and Peel (2004) (albeit not

in the context of variance component models), who stated that such behavior is

possible if the samples sizes are ‘not very large’ and the component densities are

‘valid’. However, we did not observe underfitting of the BIC criterion in real data

sets, and this even though the samples sizes considered were rather small. Hence,

we decided to use, and report, the BIC criterion for variance component models only

according to its original definition, with n =
∑r

i=1 ni in (2.11).

4 Simulation studies

We are interested in examining the method’s ability to estimate the true parameter

values. Therefore, we first simulate data by applying the Box-Cox transformation

‘backwards’, through a transformation ỹ(·) as defined below, from a dataset that fol-
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lows a normal distribution. Specifically, we consider the following simulation designs:

Random effect model. We consider sample sizes n = 100 and 200, and K = 1, 2, 4

and 8. For each combination of n and K, and each of four given values λ`, ` = 1, 2, 3, 4,

we generate 1000 datasets. In each dataset, the i-th observation, i = 1, . . . , n, for each

` = 1, . . . , 4, is generated as

ỹ(ηi, λ`) =


(
1 + λ`ηi

)1/λ` for λ` 6= 0,

eηi for λ` = 0

(4.1)

ηi = 3 x1,i + 0.5 x2,i + zi + εi, ε ∼ N(0, 0.52)

X1 ∼ U(−1, 1), X2 ∼ U(−3, 3)

λ1 = 0, λ2 = 0.5, λ3 = 1, λ4 = 2

zi ∼ Multinomial{1, (z1, . . . , zK)|π1, . . . , πK}

πk = 1/K, k = 1, ..., K,

(zk)k=1..K =



(20) for K = 1

(20, 35) for K = 2

(15, 20, 30, 35) for K = 4

(20, 30, 35, 40, 50, 55, 60, 70) for K = 8

Variance component model. For the variance compopnent model, we consider

K = 2 and K = 4. The i-th replicate, i = 1, . . . , nj, in the j-th upper-level unit,
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j = 1, . . . , J , for each ` = 1, . . . , 4, is generated as

ỹ(ηij, λ`) =


(
1 + λ`ηij

)1/λ` for λ` 6= 0,

eηij for λ` = 0

(4.2)

ηij = 3 xij + zi + εij

xij ∼ U(−4, 4), εij ∼ N(0, 0.5)

λ1 = 0, λ2 = 0.5, λ3 = 1, λ4 = 2

zi ∼ Multinomial{1, (z1, . . . , z4)|π1, . . . , π4}

(zk)k=1..K =

 (35, 50) for K = 2

(15, 20, 30, 35) for K = 4

Clearly, the generated data possess random effects and variance component structures,

respectively, due to the random effect terms zi.

In the estimation step, we estimate λ and β (using a grid for λ as described in Section

2.4), yielding for each (true) value of λ a total of 1000 estimates of λ̂ and β̂ for each

model. For the random effect model with K = 4, Figure 1 shows the boxplots for

the regression and transformation parameter estimates, for samples sizes n = 100 and

n = 200. The reference lines in the figures indicate the actual values of the parameters.

The means and medians of the estimated λ and β parameters are also provided in

Table 2. We find that the median of the estimated λ and β is approximately equal

to the true value in each case, with the estimates being closer to the true values for

n = 200. There are some outliers in each of the plots; in fact the outliers in the

transformation estimates can cause even larger outliers in the regression estimates.

This is, for instance, visible in the biased mean values of β̂1 in Table 2. It is clear,

once that the estimate of λ is biased, then the estimate of β1 has to be biased as the

biased transformation shifts the scale of the linear predictor. Mitigatingly, for such
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cases, one should say that the individual estimates of the regression parameters may

still be useful given the respective estimated values of λ; they are just very poor in

relation to the true parameters for the true values of λ. The corresponding tables

for K = 1, K = 2 and K = 8 are provided in Appendix A. We see that the problem

of outlying β estimates is not restricted to random effect models, and also occurs for

K = 1. The results are generally best for K = 2. For K = 8, estimates get poor

except if the true λ is equal to 0.

We also investigate the standard errors of the regression parameter estimates. An

empirical but robust measure of spread of the estimated β can be obtained by com-

puting the IQR of (the non-logarithmic version of) each of the four columns in Figure

1. Via normal reference, the IQR can be mapped back to the scale of the standard

deviations by division through 1.349. We call the resulting estimate RESD(β̂), read-

ing Robust Estimate of Standard Deviation. Tables 2 displays RESD(β̂) values along

with means and medians of EM-based standard errors, SE(β̂), which were obtained by

extraction from the model fitted in the last M-step. It is conceptually clear that such

EM-based standard errors cannot be ‘correct’ as they ignore the variation caused by

the EM algorithm itself and the variation caused by the estimation of λ, but we see

from Table 2 that at least for λ ≤ 0.5, they are still satisfyingly close to their em-

pirical counterparts, with the approximation getting closer (and the standard errors

generally getting smaller) for larger n. A look at the boxplots in Figure 1 shows that

the variance of the estimates of λ increases as the value λ gets larger. This in turn

causes the increased variability of the parameter estimates, yielding biases of their

estimated standard errors for larger values of λ. If λ is assumed fixed and known, we

would get Mean(ŜE(β̂)) values which are nearly equal to RESD(β̂) (not shown); that

is, it is not the presence of λ by itself which causes the increased variance of β̂, but
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the need to estimate it.

Figure 1: Simulation results for random effects model with K = 4, for n = 100 (left)

and n = 200 (right): Estimates λ̂ (top) and β̂ (bottom; logarithmic scale), in each

panel for true λ` = 0, 0.5, 1, 2 (from left to right). Horizontal lines indicate the true

values.

For the variance component model, we set initially J = 20 and nj = 5, j = 1, . . . , J ,

and investigate the cases K = 2 and K = 4. Results are provided in Figure 2 and

Table 3. We see again an almost perfect match of the median estimates of transfor-

mation and regression parameters to their true values. It is also again visible that,
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K = 4 n = 100 n = 200

λ = 0 λ = 0.5 λ = 1 λ = 2 λ = 0 λ = 0.5 λ = 1 λ = 2

Mean(λ̂) 0.0006 0.5022 1.0046 2.0061 0 0.4992 1.0004 2.0007

Median(λ̂) 0 0.5 1 2 0 0.5 1 2

β1 3 3 3 3 3 3 3 3

Mean(β̂1) 3.3958 3.2882 3.3449 3.2626 2.9987 3.0240 3.0614 3.0718

Median(β̂1) 3.0047 2.9990 3.0075 3.0073 2.9973 2.9975 2.9981 2.9983

RESD(β̂1) 0.0983 0.1268 1.2527 0.8864 0.0611 0.0676 0.1135 0.8245

Mean(ŜE(β̂1)) 0.1387 0.0967 0.0988 0.0985 0.0660 0.0614 0.0621 0.0623

Median(ŜE(β̂1)) 0.0854 0.0843 0.0841 0.0842 0.0608 0.0607 0.0607 0.0607

β2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Mean(β̂2) 0.5566 0.5472 0.5599 0.5432 0.5000 0.5049 0.5112 0.5129

Median(β̂2) 0.5011 0.5011 0.5024 0.4998 0.5004 0.5003 0.5006 0.5019

RESD(β̂2) 0.0339 0.0456 0.1702 0.1476 0.0206 0.0231 0.0371 0.1288

Mean(ŜE(β̂2)) 0.0461 0.0322 0.0330 0.0328 0.0221 0.0205 0.0207 0.0208

Median(ŜE(β̂2)) 0.0285 0.0282 0.0281 0.0282 0.0204 0.0203 0.0203 0.0203

Table 2: Summary of simulation results for random effects model with K = 4.

for K = 2, the estimates are more precise than for K = 4 (of course, assuming that

the true K is used for estimation). We also see that the empirical and approximate

standard errors are more similar as compared to the random effect model, with a very

close correspondence if the median values of the latter are considered. In Appendix

A, we also study the effect of a larger sample size in two ways, with firstly considering

the double number of lower-level units, and then the double number of upper-level

units (in each case totalling to n = 200). From Figure 6 we see that, qualitatively,

not much seems to have changed; however from detailed analysis in Table 11 we

find that standard errors of regression parameter estimates have become smaller, and
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the correspondence of approximated to empirical standard errors has become better,

especially in the second case where J = 40.

Figure 2: Simulation results for the variance component model with K = 2 (left)

and K = 4 (right): Estimates λ̂ (top) and β̂ (bottom; logarithmic scale), in each plot

for true λ` = 0, 0.5, 1, 2 (from left to right). Horizontal lines indicate the true values.

5 Applications to real data

In this section, we illustrate the application of the proposed approaches using real

data examples.
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K = 2 K = 4

True values λ = 0 λ = 0.5 λ = 1 λ = 2 λ = 0 λ = 0.5 λ = 1 λ = 2

β 3 3 3 3 3 3 3 3

Mean(λ̂) 0 0.5 1.0002 1.9994 0.0000 0.5091 1.0220 2.0279

Median(λ̂) 0 0.5 1 2 0 0.5 1 2

Mean(β̂) 3.0001 3.0001 3.0029 2.9984 2.9984 3.5760 3.9958 3.8369

Median(β̂) 3.0001 3.0001 3.0001 3 3.0001 3.0002 3.0003 3.0002

RESD(β̂) 0.0060 0.0060 0.0060 0.0061 0.0069 0.0072 0.0072 0.0072

Mean(ŜE(β̂)) 0.0059 0.0059 0.0059 0.0059 0.0191 0.03160 0.0434 0.0395

Median(ŜE(β̂)) 0.0057 0.0057 0.0057 0.0057 0.0061 0.00613 0.0061 0.0061

Table 3: Summary of simulation results for variance component model, for K = 2

(left) and K = 4 (right).

5.1 Internet Usage data

We firstly consider the WWWusage data from the R library datasets (R Core Team

, 2016) which is a time series which records, over 100 minutes, how many users an

internet server had every minute. The graphical representations by Qarmalah et al.

(2018) indicated that the data follows a mixture of either three or four normal distri-

butions. However, it is a relevant question, already alluded to in McLachlan and Peel

(2004), whether heterogeneity can be reduced by considering an adequate transfor-

mation such as a log-normal model. In the context of our work, this corresponds to

the problem of finding the best transformation parameter in order to fit a Gaussian

mixture model (without any predictors) to the transformed data. In the notation

of (1.3), this situation is described as y
(λ)
i |zi ∼ N(zi, σ

2). Note that in this scenario

the NPPML estimation is slightly simplified since (2.6) and (2.7) are replaced by
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σ̂2 = 1
n

∑n
i=1

∑K
k=1wik(y

(λ)
i − zk)

2 and ẑk =
∑n
i=1 wiky

(λ)
i∑n

i=1 wik
respectively, and hence no

additional iteration within the M-step is required.

We investigate this problem by applying the Box-Cox transformation. Following

discussion in Section 2.2, K is informed by considering the AIC and BIC from fitting

mixture models for different numbers of classes. The model is initially fitted with

λ = 1 and this value of tol is henceforth used for all considered λ’s. The results are

illustrated in Table 4. For both raw and transformed data, AIC achieves its minimum

at K = 8, and BIC at K = 4. It is emphasized that the values of the criteria for the

transformed and untransformed models are indeed comparable, since the likelihoods

are always with reference to the original data, and hence operate on the same scale.

This means, for this data set, the untransformed BIC solution at K = 4 (995.43) is

preferable to the transformed BIC solution (999.97).

The trade-off between λ and K, as illustrated in Figure 3, is interesting: For K = 1

or 2, a log-transformation (or similar) appears suitable, while for K ≥ 3 the estimates

of λ settle quite robustly at around λ ≈ 1, clearly indicating that there is no need for

transformation once that heterogeneity is accounted for through an increased number

of components. That supports the suggestion by Qarmalah et al. (2018) that the

WWWusage data follows a normal distribution subject to heterogeneity.

5.2 Fabric data

In this example, we consider a data set available as part of the R package npmlreg

(Einbeck et al. , 2007), which consists of 32 observations concerning faults in rolls

of fabric. We are interested in the effect of the number of faults y on the log of the
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λ = 1 λ = λ̂

K tol −2`P (λ) AIC BIC λ̂ −2`P (λ) AIC BIC

1 – 1021.56 1023.56 1026.17 0.14 1015.76 1019.76 1024.97

2 1.1 1016.71 1022.71 1030.53 0.14 1014.75 1022.75 1033.18

3 0.6 992.32 1002.32 1015.35 1.02 992.57 1004.57 1020.20

4 0.2 963.19 977.19 995.43 0.9 963.13 979.13 999.97

5 0.1 963.19 981.19 1004.64 0.9 963.13 983.13 1009.18

6 0.1 958.00 980.00 1008.66 0.61 957.73 981.73 1012.99

7 0.2 955.68 981.68 1015.55 1.37 953.94 981.94 1018.41

8 0.1 938.81 968.81 1007.89 0.725 936.75 968.75 1010.43

9 0.1 955.68 989.68 1033.97 0.78 936.18 972.18 1019.07

Table 4: Comparison of results from the untransformed and transformed WWWusage

data using K from 1 to 9. Minimal values for each column given in bold face.

length of the roll given by the variable x. McLachlan and Peel (2004) and Aitkin

et al. (2009) observed overdispersion of the simple Poisson regression model, and used

NPML with two and three mass-points to produce Poisson mixture regression models.

Aitkin (1996) and Hinde and Demetrio (1998) fitted several further related models to

these data. We approach this modelling problem through transformation models. In

order to account for the overdispersion, a random effect zi with an unspecified mixing

distribution g(z) is added to the linear predictors,

y
(λ)
i = β1xi + zi + εi. (5.1)

The optimal tol values, the disparities, AIC and BIC values for each K are given in

Table 5. The first observation to make is that the values of the selection criteria for

the transformed model are throughout well below their untransformed counterparts,

giving clear evidence that a transformation is beneficial.
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Figure 3: λ̂ as a function of K for modelling the WWWusage data. The minimal BIC

value at K=4 is highlighted through a vertical dashed line.

From Table 5, one finds that, for the untransformed data, the disparity settles at

K = 8, but AIC and BIC attain their minimum already at K = 1, with both criteria

thereafter monotonically increasing until K = 7. AIC and BIC values of the model

after applying the response transformation are also shown in Table 5 and the minimal

AIC value (172.93) occurred at K = 9 with λ̂ = −3, while the minimal BIC value

(186.05) occurs at K = 1 with λ̂ = 0.1.

The first row of Table 5, for K = 1, corresponds just to a fixed effect model. That

is, the value λ̂ = 0.1 given for K = 1 in the right hand part of the table is just the

‘usual’ Box-Cox estimate for λ under the model

y
(λ)
i = β0 + β1xi + εi. (5.2)

This suggests that, while both the fixed and random effect model benefit from trans-
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formation, there is only some ambiguous evidence for using a random effect model at

all, with AIC favoring a model with K = 9, and BIC favoring the fixed effects model

(K = 1).

What can be said about the relative merits of the AIC and BIC solutions for the trans-

formed model? The BIC solution involves a relatively mild transformation, which is

reasonably stable over a quite wide range of K values (Figure 4). In contrast, the

AIC solution delivers a high number of K, and a very extreme setting of λ, which

is furthermore quite instable over neighboring values of K. It is noted that the AIC

solution λ̂ = −3 sits at the boundary of the considered range of transformation pa-

rameters, but as indicated in Section 2.4 we would advise against using such extreme

settings of λ if it can be avoided — and here it can clearly be avoided using the BIC

solution. It is furthermore noted that the AIC solution at K = 9 involves only five

clearly distinct mass points and has a random effect standard deviation of σ̂ ≈ 0.0001,

indicating that the NPPML routine falls trap to some type of likelihood spike at this

instance (Aitkin et al. , 2009). We also see that for K = 10, estimation of the

transformed model deteriorates considerably.

From the right hand part of Table 5, there appears to be good evidence that a suitable

response transformation of the fabric data will be in the region λ ≈ 0, which suggests

a log-transformation. Indeed, given that the ‘number of faults’ are count data, this

is what many practitioners would have intuitively considered. Also, as mentioned,

models fitted to these data in the literature are usually Poisson, which carry a log-link.

So, it is of interest to compare to this model too, and the results are presented in Table

6. We see that, while for the Poisson model there is evidence for heterogeneity, for the

logarithmically transformed model there is not. Interestingly, a log-transformation for
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λ = 1 λ = λ̂

K tol −2`P (λ) AIC BIC λ̂ −2`P (λ) AIC BIC

1 – 194.28 198.28 201.21 0.1 175.65 181.65 186.05

2 1.5 192.21 200.21 206.07 -0.3 171.88 181.88 189.20

3 1.5 192.21 204.21 213.01 -0.3 171.88 185.88 196.14

4 1.5 192.21 208.21 219.94 -0.3 171.88 189.88 203.07

5 1.4 192.21 212.21 226.87 -0.3 171.88 193.88 210.00

6 0.1 192.21 216.21 233.80 -0.4 164.93 190.94 209.99

7 0.1 192.21 220.21 240.73 -0.4 162.31 192.31 214.29

8 0.1 181.20 213.20 236.65 -2.8 142.58 176.58 201.50

9 0.1 181.20 217.20 243.58 -3 134.93 172.93 200.78

10 1.5 181.20 221.20 250.51 -1.6 158.16 200.16 230.94

Table 5: Comparison of results from the untransformed and transformed fabric data

using K from 1 to 10. Minimal values for each column given in bold face.

K = 1 is preferable, under both selection criteria, to the Poisson log-linear model for

K = 2, giving some justification to the use of a transformation model for these data.

Note finally that the only reason why the AIC and BIC values of the logarithmic model

in Table 6 are smaller than those of the full transformation model from Table 5 is that

the former involves one less degree of freedom for the estimation of the transformation

parameter; arguably this is not quite fair since even for the logarithmic model the

data analyst needs to ‘decide’ on using that transformation which could be considered

as a process ‘costing’ 1 df as well.

In practical applications, it is usually a good idea to look beyond simple model se-

lection criteria, and investigate properties of the fitted model in more detail before

making a final judgement. For instance, control charts are a helpful tool to assess
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Figure 4: λ̂ as a function of K for modelling the fabric data. The minimal BIC

value at K=1 is highlighted through a vertical dashed line.

the normality of data and/or the homogeneity of variance. An application of control

charts to models fitted to the fabric data is given in Appendix B.

5.3 Heights of boys in Oxford data

Next we consider a data set available as part of the R package nlme (Pinheiro et al

, 2016), which consists of measurements of height (in cm) and age for 26 boys in

Oxford. The variable age is reported on a standardized and dimensionless scale

with nine possible values, yielding a total of 234 observations. We fitted a variance

component model

E(yij|zi) = agej + zi
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λ = 0 Poisson model

K −2`P (λ) AIC BIC −2`P (λ) AIC BIC

1 175.98 179.98 182.91 187.84 191.84 194.77

2 173.29 181.29 187.15 172.66 180.66 186.52

3 173.28 185.28 194.07 172.67 184.67 193.46

4 173.28 189.28 201.00 172.66 188.66 200.39

Table 6: Comparison of results for λ = 0 and for the Poisson log-linear model, for the

fabric data using K from 1 to 4. Minimal values for each column given in bold face

(results for K ≥ 5 do not bring further improvements and are hence omitted). The

models on the left hand side are fitted using function np.boxcoxmix in R package

boxcoxmix, which executes steps 1—3 in Section 2.4; i.e. it fits transformation

models for fixed λ = 0. The models on the right hand side are fitted using alldist

in R package npmlreg.

where zi is boy-specific random effect and agej is the j-th standardized age measure-

ment, j = 1, . . . , 9, which is equal for all boys for fixed j.

The results before and after applying the response transformation are summarized in

Table 7. We see that, for the untransformed data, BIC suggests K = 9 mass points.

After transformation, an 8-component model is the best choice. These values of K

still appear quite high, given that they describe the heterogeneity between only 26

boys on the upper level, but they concur with results reported previously for this

data set in the literature (Einbeck et al. (2007); Aitkin et al. (2009)). We see again

a subtle interplay between K and λ: For the fixed effects model with K = 1, there

is no strong evidence that a transformation is required, but once we go to three or

more classes we see that the selected transformation parameter oscillates around a

log-transformation (λ = 0). This is also illustrated, for the specified range of K from
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Figure 5: λ̂ as a function of K for the Oxboys data. The minimal BIC value at K=8

is highlighted through a vertical dashed line.

1 to 10, in Figure 5. In direct comparison of BIC values for each fixed K = 1, ..., 10,

respectively, the transformed version is superior for all K ≥ 5, giving some evidence

that the transformation leads to better fitting models than the original data.

For the practicing data analyst, it will of course not be practicable to produce tables

such as Table 7, 4 or 5 for every data set considered. Hence, if heterogeneity is

suspected, we suggest to follow the guidance formulated at the end of Section 2.4, i.e.

consider firstly the BIC values up to K = 3 and then proceed further if required.
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λ = 1 λ = λ̂

K tol −2`P (λ) AIC BIC λ̂ −2`P (λ) AIC BIC

1 – 1641.93 1645.93 1652.84 0.86 1641.88 1647.88 1658.25

2 1.5 1466.76 1474.76 1488.58 -0.938 1457.86 1467.86 1485.14

3 1.2 1320.88 1332.88 1353.61 0.188 1318.47 1332.47 1356.66

4 0.2 1212.66 1228.66 1256.30 0.41 1211.35 1229.35 1260.44

5 0.8 1132.85 1152.85 1187.40 -0.150 1121.09 1143.09 1181.10

6 1.1 1048.27 1072.27 1113.73 -0.333 1025.25 1051.25 1096.17

7 0.5 1017.27 1045.27 1093.64 0.41 1002.91 1032.91 1084.74

8 0.5 931.38 963.38 1018.66 -0.190 887.49 921.49 980.23

9 0.5 916.09 952.09 1014.29 -0.520 878.56 916.56 982.21

10 0.3 908.00 948.00 1017.11 0.075 866.76 908.76 981.32

Table 7: Comparison of results from the untransformed and transformed Oxboys data

using K from 1 to 10. Minimal values for each column given in bold face.

6 Discussion

It is common to normalize non-normal data via a normalizing transformation prior

to analysis. In order to select an appropriate transformation parameter for the linear

model with random effects of unspecified distribution, we have developed methodol-

ogy for simultaneous response transformation and estimation of regression parame-

ters. This is achieved by extending the “Nonparametric Maximum Likelihood” to-

wards a “Nonparametric Profile Maximum Likelihood” technique. The methodology

is implemented in R package boxcoxmix (Almohaimeed and Einbeck , 2020) which

is available on CRAN. This package features further variants and capabilities which

have not been introduced here, such as a version for logistic mixed effect models.
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To assess the performance of the proposed approach, we conducted two simulation

studies. The first simulation was for the Box-Cox transformed random effects model.

We have seen that the method is able to identify well the true value of both λ

and β, with, however, some outlying estimates of the former having a potentially

severe impact on the estimates of the latter. The second study concerned the Box-

Cox transformed variance component model. To some extent, the results of this

simulation differ from those of the random effects models: There was less variability

in the estimates of the transformation and regression parameters of the variance

components model, except for a few, relatively symmetrically distributed outliers,

and also the approximation of EM-based to empirical standard errors was closer for

this scenario.

The simulation results also showed a high precision and accuracy of all parameter

estimates (including the transformation parameter) when the log–transformation is

the most appropriate transformation; see the left column of Figures 1 and 2. These

results appear to concur with Asar et al. (2017) who proposed different approaches

to estimate the Box-Cox power transformation parameter and carried out simulation

studies to compare their effectiveness. The results indicated that all of the methods,

including the one that was not preferred to estimate λ, performed well at λ = 0

regardless of what design is used to generate the data. So, it appears to be right

to say that there is something ‘special’ about the log-transformation. Keene (1995)

devoted the title of his paper to this observation, and went on to give several reasons

why this is the case. One of these is the fact that the log transformation is the only

member of the Box-Cox family which can produce a genuinely normally distributed

transform of a positive variable. A second reason, which we already touched upon the

introduction, is its variance-stabilizing property. Note from equation (1.2) for λ = 0,
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that

Var(log(yi)) ≈
1

E(yi)2
Var(yi),

which will be approximately constant whenever the ratio between variance and mean

is quadratic, which is the case for the Gamma distribution but which is also compatible

(up to an additional linear term) with many overdispersed Poisson distributions such

as the negative binomial (type II) distribution. It is worth noting that a quadratic

marginal variance is also obtained when including a normal random effect into the

linear predictor of a Poisson log-linear model. Further discussion on the interplay of

the Box-Cox transformation and variance heterogeneity, under the general scenario

Var(yi) = σ2E(yi)
δ for some known or unknown constant δ, was given by Sakia

(1992).

However, some more sceptical views about log-transformations have also been ex-

pressed in the literature. Changyong et al. (2014) showed that the log transforma-

tion does not necessarily make data conform more closely to the normal distribution.

Gurka (2004) considered the possibility of using a small value of λ that is close to

zero for transforming the response instead of the log-transformation when λ = 0 is

selected as the optimum.

As in the fixed-effect case, the Box-Cox transformation under random effects does

not guarantee that the assumption of normality of the response distribution in the

random effects model is met after applying the transformation, however, it provides

data for which the normality assumption is more reasonable than not applying the

transformation at all. The examples and simulations that we have presented showed

that substantial improvements in terms of the AIC and BIC criteria can be achieved

through transformation; noting that our transformed model fits are ‘conservative’
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since we chose not to optimize the tuning parameter tol for each different setting of

λ.

It is not possible to report a simple likelihood-based confidence interval for λ̂, the

reason being that the likelihood in the considered model class is highly non–concave.

Hence, when faced with the decision on whether or not needing to transform the

response, not only the value of λ̂ but also the relevant model selection criteria such

as AIC and BIC should be taken into account. It is then essential that these are

always based on likelihoods which are reported on the original response scale, as in

the models (2.2) and (3.3); of course, this is the case for the values −2`P (λ), AIC and

BIC provided herein.

In Example 5.1, λ̂ for the fixed effect model was much further away from λ = 1

than for the random effects model, therefore, it is beneficial to test the need for a

transformation of the response of a random effect model even if the fixed effect model

does need transformation! Hence, the proposed method can help to judge whether the

data really needs to be transformed or only the right number of components needs to

be found in order to adequately reflect the heterogeneity in the response distribution.

This ties in with other work recognizing that mixtures can also be used to model

skewed data (Pearson , 1895; McLachlan and Peel , 2004); in the latter monograph it

was also noted that “the choice between the log normal and normal mixture model

is of much interest”. It appears that there is a trade-off between transformation and

mixed-effect models; both of them change the nature of the variance explained by the

model.

This trade-off appears to manifest itself in different ways for different examples. By

inverting the model equation, such as (5.1), to take the shape zi = y
(λ)
i − β1xi − εi,
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it feels plausible to think that a normalization of the response also has a normalizing

effect on the random effect distribution. This should be reflected in a lower number

of classes required for the transformation model. This effect was slightly visible in

Example 5.3, but not clearly visible in Examples 5.1 and 5.2. However, in these

two examples we found that there was either evidence for transformation, or for

the use of a random effect model, but not for both at the same time, which could be

considered another facet of the same effect. In this connection, it is worth noting that

components of the mixture do not necessarily correspond to clusters of participants

in the population, especially if the mixture is used to account for skewness (Bonate

, 2011). In the context of factor mixture models, Lubke and Muthén (2005) raised

the question of whether an extra class can provide a useful information about the

heterogeneity.

Concluding, it is clear that skewness and heterogeneity are related concepts, and that

statistical methods which tackle one of these problems will also implicitly address the

other to some extent. However, the precise nature of this interplay is often not so clear.

While the proposed approach can help us to handle this trade-off from a modelling

point of view, the connection between normal mixture models and transformations

to achieve homogeneous variance deserves further attention.
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Appendix

A. Additional simulation results

In Tables 8, 9, and 10, we provide additional simulation results for the cases K = 1,

K = 2, and K = 8, respectively, complementing the results for K = 4 presented in

Table 2 in the main text. Data were simulated using Design (4.1), and λ and β were

estimated using known K.

We further provide additional results for simulation under design (4.2), for the cases

J = 20, nj = 10, as well as J = 40, nj = 5. In both cases K = 4 was used for

simulation and estimation. Results are provided in Figure 6 and Table 11.

B. Control charts

The content of this section is made available as part of the supplementary material.

Supplementary materials

Supplementary materials, including R code reproducing some of the analyses in this

paper, as well as Appendix B, are available from http://www.statmod.org/smij/

archive.html.

http://www.statmod.org/smij/archive.html
http://www.statmod.org/smij/archive.html
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K = 1 n = 100 n = 200

λ = 0 λ = 0.5 λ = 1 λ = 2 λ = 0 λ = 0.5 λ = 1 λ = 2

Mean(λ̂) 0.0002 0.4947 0.9898 1.9374 0 0.5055 1.0105 2.0039

Median(λ̂) 0 0.5 1 2 0 0.5 1 2

β1 3 3 3 3 3 3 3 3

Mean(β̂1) 3.1514 5.2816 6.7338 5.5577 2.9968 4.1776 4.8383 5.0099

Median(β̂1) 2.9998 2.9824 2.9824 2.9602 2.9966 2.9957 2.9943 2.9911

RESD(β̂1) 0.0893 2.5648 4.4355 4.8507 0.0644 2.2491 2.9084 3.6661

Mean(ŜE(β̂1)) 0.0917 0.1526 0.1941 0.1614 0.0616 0.0857 0.0992 0.1028

Median(ŜE(β̂1)) 0.0871 0.0860 0.0850 0.0845 0.0616 0.0615 0.0625 0.0616

β2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Mean(β̂2) 0.5245 0.8739 1.1125 0.9233 0.5010 0.6966 0.8059 0.8350

Median(β̂2) 0.5008 0.4963 0.4920 0.4825 0.5012 0.5018 0.5033 0.5003

RESD(β̂2) 0.0311 0.4518 0.7903 0.8164 0.0196 0.3788 0.4936 0.6189

Mean(ŜE(β̂2)) 0.0305 0.0507 0.0645 0.0536 0.0205 0.0286 0.0331 0.0343

Median(ŜE(β̂2)) 0.0290 0.0287 0.0282 0.0282 0.0205 0.0206 0.0209 0.0208

Table 8: Summary of simulation results for fixed effects model.
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K = 2 n = 100 n = 200

λ = 0 λ = 0.5 λ = 1 λ = 2 λ = 0 λ = 0.5 λ = 1 λ = 2

Mean(λ̂) 0 0.4977 0.9957 1.9886 0 0.5 0.9980 1.9954

Median(λ̂) 0 0.5 1 2 0 0.5 1 2

β1 3 3 3 3 3 3 3 3

Mean(β̂1) 2.9992 3.0820 3.1068 3.1264 3.0030 3.0591 3.0563 3.0748

Median(β̂1) 2.9972 2.9965 2.9902 2.9669 3.0034 3.0041 3.0013 3.0018

RESD(β̂1) 0.0914 0.1329 1.3171 0.9462 0.0616 0.0724 0.1247 0.8728

Mean(ŜE(β̂1)) 0.0860 0.0811 0.0888 0.0893 0.0610 0.0620 0.0619 0.0622

Median(ŜE(β̂1)) 0.0861 0.0852 0.0845 0.0821 0.0609 0.0608 0.0607 0.0601

β2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Mean(β̂2) 0.4982 0.5117 0.5161 0.5193 0.5002 0.5094 0.5088 0.5117

Median(β̂2) 0.4989 0.4974 0.4964 0.4900 0.5008 0.5007 0.4996 0.4978

RESD(β̂2) 0.0291 0.0435 0.1939 0.1681 0.0204 0.0245 0.0422 0.1392

Mean(ŜE(β̂2)) 0.0287 0.0294 0.0296 0.0298 0.0203 0.0207 0.0207 0.0208

Median(ŜE(β̂2)) 0.0286 0.0285 0.0282 0.0278 0.0203 0.0203 0.0203 0.0201

Table 9: Summary of simulation results for random effects model with K = 2.
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Median(ŜE(β̂)) 0.0043 0.0043 0.0043 0.0043 0.0042 0.0042 0.0042 0.0042

Table 11: Summary of simulation results for variance component model, for K = 4

and different sample size configarations totalling to n = 200.

Bonate, Peter L. (2011). Pharmacokinetic-Pharmacodynamic Modeling and Simula-

tion. 2nd Edition, Springer.

Box, G. E. and Cox, D. R. (1964) An analysis of transformations. Journal of the

Royal Statistical Society. Series B (Methodological), 26, 211–252.
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