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1 Introduction

For many years, price momentum (Jegadeesh and Titman 1993; Fama and French 1996) and

the value premium (Basu 1983; Rosenberg, Reid, and Lanstein 1985; Lakonishok, Shleifer, and

Vishny 1994) have been the traditional market anomalies, and hence the focus of attention for

newly proposed asset pricing models.1 However, recent years have seen an explosion of new market

anomalies, which correspond to novel patterns in cross-sectional equity risk premia left unexplained

by the baseline CAPM of Sharpe (1964) and Lintner (1965). Specifically, Hou, Xue, and Zhang

(2015) examine in total around 80 anomalies covering six broad categories: Momentum, value-growth,

investment, profitability, intangibles, and trading frictions. They find that nearly half of these

anomalies (including those related to trading frictions) are not statistically significant and end up

testing their 4-factor model over 35 portfolio sorts. Among the most prominent new patterns in

cross-sectional risk premia are a number of investment- and profitability-based anomalies. The

investment anomaly can be broadly classified as a pattern in which stocks of firms that invest more

exhibit lower average returns than stocks of firms that invest less.2 The profitability-based anomalies

refer to the evidence indicating that more profitable firms earn higher average returns than less

profitable firms.3

The traditional workhorse in the empirical asset pricing literature—the 3-factor model of Fama

and French (1993, 1996)—fails to explain the new market anomalies (see, for example, Fama and

French 2015; Hou, Xue, and Zhang 2015). Moreover, the 4-factor model of Carhart (1997) (C4)

does a good job in capturing price momentum and other variants of momentum, but struggles

in terms of explaining some of the profitability- and investment-based anomalies (see Hou, Xue,

and Zhang 2015 for details). In response to this gap, we have witnessed the emergence of new
1The value premium refers to the evidence showing that value stocks (stocks with high equity valuation ratios such

as book-to-market, earnings-to-price, or cash flow-to-price) outperform growth stocks (low valuation ratios). On the
other hand, price momentum corresponds to a cross-sectional pattern where stocks with high prior short-term returns
outperform stocks with low prior returns.

2The variables that represent corporate investment can be total asset growth (Cooper, Gulen, and Schill 2008),
abnormal corporate investment (Titman, Wei, and Xie 2004), investment growth (Xing 2008), inventory growth
(Belo and Lin 2011), composite issuance (Daniel and Titman 2006), net stock issues (Pontiff and Woodgate 2008),
and different measures of accruals (Sloan 1996; Richardson, Sloan, Soliman, and Tuna 2005; Hafzalla, Lundholm,
and Van Winkle 2011).

3The profitability measures that have been employed in the literature include return on equity (Haugen and Baker
1996), return on assets (Balakrishnan, Bartov, and Faurel 2010), gross profits-to-assets (Novy-Marx 2013), number
of consecutive quarters with earnings increases (Barth, Elliott, and Finn 1999), and failure probability (Campbell,
Hilscher, and Szilagyi (2008)).
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multifactor models containing (different versions of) investment and profitability factors, in particular

the 5-factor model of Fama and French (2015, 2016) (FF5) and the 4-factor model of Hou, Xue, and

Zhang (2015) (HXZ4).4 However, several dimensions of the broad cross-section of stock returns are

still not explained by these multifactor models. In particular, the 5-factor model does not account

for momentum-based anomalies (including both earnings and industry momentum), while neither of

these two models captures several profitability and investment-based (in particular, several forms of

accruals) anomalies (see Hou, Xue, and Zhang 2015; Fama and French 2016; Maio and Philip

2018; Cooper and Maio 2019b; Hou, Mo, Xue, and Zhang 2020 for details on the performance of

those models for the broad cross-section). In response to this evidence, Fama and French (2018)

augment FF5 with the momentum factor into a 6-factor model (FF6), whereas Hou, Mo, Xue, and

Zhang (2019, 2020) add an expected growth factor to HXZ4 (HMXZ5).

Given this broad picture, we aim to examine systematically the performance of the current

multifactor models proposed in the literature in terms of explaining large-scale cross-sectional risk

premia. Our unique approach is to compare the multifactor models against a statistical benchmark

model that is motivated by the general framework of the Arbitrage Pricing Theory (APT) of Ross

(1976). By doing so, we evaluate the consistency of the existing multifactor models with the

APT framework, which has not been well studied in the literature: For the empirical models to

be consistent with the APT framework they should not underperform the benchmark statistical

model by a great deal. This approach is well justified for two reasons. First, according to the

APT, variables that provide a fairly good description of the time-series variation in stock returns

should represent risk factors that help to price those same assets. Thus, the APT represents a

natural asset pricing benchmark, since several of the most successful multifactor models in the

literature, such as those mentioned above, contain factors that are highly correlated with the testing

portfolios.5 Second, the APT is less demanding than other asset pricing frameworks (such as the

ICAPM of Merton 1973) in the sense that it relies on relative asset pricing, specifically, given the

exogenous common sources of systematic risk (factors), what should be the correct discount rates

for equity portfolios. By building the benchmark APT factor model, we also address the research
4Feng, Giglio, and Xiu (2020) show that the investment and profitability factors tend to be robust to the presence

of other potential factors.
5This is the case of the value-growth factor (HML) in relation to portfolios sorted on valuation ratios, the

momentum factor (UMD) against momentum portfolios, and the investment and profitability factors used in Fama
and French (2015, 2016) and Hou, Xue, and Zhang (2015) in relation to portfolios sorted on these two variables.
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question regarding how many factors we need to successfully describe the broad cross-section of

stock returns.6

We follow part of the empirical APT literature in terms of estimating common statistical factors

by applying asymptotical principal components analysis (PCA) to a large cross-section of excess

stock returns (e.g., Connor and Korajczyk (1986, 1988); Goyal, Pérignon, and Villa (2008)). Hence,

statistical factors, which explain the covariance matrix of the returns of the testing assets, are

also pricing factors that help explaining cross-sectional dispersion in risk premia. We employ 42

anomalies or portfolio sorts, which represent a subset of the anomalies considered in Green, Hand,

and Zhang (2017), for a total of 420 decile portfolios. Following Hou, Xue, and Zhang (2015,

2020), these anomalies can be generically classified in strategies related to value-growth, momentum,

investment, profitability, intangibles, and trading frictions. The goal is to estimate a benchmark

statistical model, which by construction and under the APT intuition, has a large explanatory

power for this representative cross-section of stock returns.7

The estimation of the principal components indicates nine common factors that are dominant

over our sample period (1973 to 2016). These nine factors cumulatively explain around 92% of the

common variation in the 420 raw portfolio returns. The first factor acts a level factor and hence is

strongly correlated with the market return. The second factor is especially correlated with several

anomalies in the profitability and trading frictions categories. The third factor is more correlated

with several value-growth anomalies, while the fourth factor mainly captures momentum. The

sixth factor is mainly correlated with intangibles, while the eighth factor is correlated with price

momentum. Therefore, to a large degree the nine statistical factors capture different dimensions of

our cross-section of 42 anomalies.

We conduct cross-sectional asset pricing tests of our APT model by using the 420 equity portfolios

as testing assets. The results show that a 6-factor model (denoted by APT6), containing the first,
6In his presidential address, Cochrane (2011) raises this question: “Can we again account for N dimensions of

expected returns with K < N factor exposures?”
7Our APT model estimates static weights for the latent statistical factors. Therefore, any dynamic relationships

between the factors and testing assets are not modelled explicitly. In this regard, our empirical framework differs from
the recent approaches of Kelly, Pruitt, and Su (2019) and Kim, Korajczyk, and Neuhierl (2020), who utilise firm
characteristics as conditioning information for expected returns to introduce time variation in factor loadings and
alphas. The other important distinction is that these papers use individual stocks as test assets, while we use a large
dimensional panel of portfolios sorted on firm characteristics as testing assets. Our empirical choices of using static
statistical factors and employing a large number of portfolios as test assets stems from consistency and comparison
purposes: All the empirical multifactor models tested in the paper represent unconditional models (i.e., both factor
risk prices and betas are constant over time) and are typically tested on a (large) cross-section of equity portfolios.
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second, fourth, sixth, eighth, and ninth principal components as risk factors, explains 51% of

the cross-sectional variation in the risk premia associated with the 420 portfolios. Moreover, the

corresponding factor risk price estimates are strongly statistically significant. When we impose

the constraint that the factor risk price estimates are equal to the factor means, the resulting

cross-sectional R2 (“constrained” R2) is essentially the same as the OLS counterpart (0.50). Such

explanatory ratio uses the intercepts from the time-series regressions (alphas), or equivalently, the

pricing errors from a “constrained” cross-sectional regression in which the risk price estimates are

equal to the factor means. This estimate is also strongly statistically significant, based on the

inference associated with a bootstrap simulation.

We conduct an alternative asset pricing test with 252 portfolios associated with the three extreme

deciles (on each leg) for each market anomaly. This stems from the fact that most cross-sectional

dispersion in risk premia is concentrated on the extreme deciles within each portfolio group. The

results show a slightly larger fit for the statistical model, as indicated by the OLS and constrained

explanatory ratios of around 0.58.

The central analysis in the paper is to compare some of the most popular multifactor models

existent in the literature (denoted by empirical models) against our APT model in terms of pricing

the 420 portfolios. That is, the statistical model represents a benchmark to evaluate the performance

of the proposed factor models. The empirical models we examine include the above-mentioned C4,

HXZ4, HMXZ5, FF5, and FF6 models. We also estimate the 6-factor model proposed by Barillas

and Shanken (2018) (BS6, which roughly combines the factors from HXZ4 and FF5), and the

4-factor model of Stambaugh and Yuan (2017) (SY4, which contains two composite factors related

to firms’ performance and management). By running spanning regressions of each statistical factor

(in our benchmark model) onto the equity long-short factors (associated with each of the seven

empirical models) we find there is a substantial amount of information in the statistical factors that

is not explained by these seven factor models.

The asset pricing tests show that the performance of the seven empirical models lags behind

the fit of the 6-factor APT, with differences in cross-sectional R2 between 28 percentage points

(comparison against HMXZ5) and 91 percentage points (comparison with BS6). When using the

shorter and more interesting cross-section associated with the extreme portfolios, the gaps in

explanatory ratio relative to the benchmark model vary between 25 percentage points (HMXZ5)

5



and 86 percentage points (BS6). Critically, the APT model dominates most of the empirical models

in statistical terms (at the 5% level). The sole exception is HMXZ5, in which case the gaps in

cross-sectional R2 estimates relative to the benchmark model are not always significant at the 5%

level. However, this last finding is not robust to changes in the empirical design.

Our main findings are robust to employing a shorter time-series, excluding some anomalies from

the testing assets, employing alternative statistical inference, using alternative model evaluation

metrics, or estimating the models with alternative testing portfolios. We also find that the benchmark

statistical model dominates the empirical models by conducting an “out-of-sample” analysis over

the time-series dimension.

The overall conclusions from this paper are simple, but important. Several of the current

empirical workhorses employed in the asset pricing literature fail to be good empirical proxies for the

APT. That is, they deviate significantly, both in economic and statistical terms, from a benchmark

statistical model that is designed in such a way (APT intuition) to explain well a rich cross-section of

equity risk premia. Therefore, assuming that explaining the broad cross-section of CAPM anomalies

is the main goal of a successful empirical multifactor model, our results suggest that most of the

models proposed in the literature fail considerably on such dimension. The only possible (but weak)

exception to this pattern is the 5-factor model of Hou, Mo, Xue, and Zhang (2019), which is not

always dominated statistically by the reference model at conventional significance levels.

Our main goal in the paper is to use the statistical model as a reference point to evaluate the

performance of the empirical models, rather than proposing yet a new multifactor model to the

long list already existent in the literature. We follow this approach for two main reasons. First, the

design of our benchmark statistical model is deliberately in-sample, that is, the statistical factors

that explain the covariance matrix of returns of the testing assets are employed to price the risk

premia of the very same assets. This implies that a priori the pricing performance of our model

may not be generalizable to other testing assets. For example, it is possible that our model does

not do a good job in pricing bond risk premia or individual stocks. If we are interested a priori in

pricing other sources of risk premia (e.g., individual stocks), the benchmark statistical model should

be constructed from the realized returns of those very same assets. In that sense, our analysis

represents a “new empirical method” to evaluate current multifactor models rather than a “new

multifactor model”, and such exercise is critically sensitive to the cross-section chosen in the first

6



place. Second, an important ingredient of every linear factor model is the economic plausibility of

the cross-sectional dispersion in the factor loadings (which ultimately drives the pricing performance

of the model). The economic interpretation of the patterns in factor loadings becomes much less

clear if we employ statistical factors, which are (by construction) related with several segments

(anomalies or characteristics) of the cross-section. Using equity factors constructed from a single

characteristic, which is the norm pursued in the empirical asset pricing literature, provides a clearer

and sharper interpretation of the factor loadings. All in all, a major implication from the paper

is that we need “better” single-characteristic-based factors than those currently included in most

empirical multifactor models proposed in the literature.

This paper is related to the growing literature that focuses on evaluating and comparing asset

pricing models containing only traded factors by using a relatively rich cross-section of portfolio

risk premia. Examples include Fama and French (2015, 2016), Hou, Xue, and Zhang (2015),

Maio and Santa-Clara (2017), Cooper and Maio (2019b), and Hou, Mo, Xue, and Zhang (2020).

Our key innovation relative to these studies is that, apart from assessing the fit of each model for

large-scale portfolio risk premia, we evaluate the difference in performance against a benchmark

statistical model that is designed to have a large fit for cross-sectional equity risk premia. This is

important because a given empirical model can have a seemingly good fit for a given cross-section

(as indicated by a small average pricing error or a high cross-sectional R2), while still considerably

underperforming the reference model. Critically, following the prescription of Lewellen, Nagel, and

Shanken (2010), our empirical analysis relies on forcing the models to price simultaneously the full

cross-section containing the 42 CAPM anomalies, consistent with the procedure used in Hou, Xue,

and Zhang (2015), Maio and Santa-Clara (2017), Cooper and Maio (2019b), and Hou, Mo, Xue,

and Zhang (2020). This represents a substantially more challenging cross-sectional asset pricing

test than merely forcing a given model to price each anomaly (e.g., book-to-market portfolios) on a

stand-alone basis, as in Fama and French (2015, 2016).

Our work also has implications for a recent strand of the literature that conducts comparison of

asset pricing models without relying on cross-sectional risk premia as testing assets (e.g., Barillas

and Shanken 2017, 2018; Fama and French 2018; Hou, Mo, Xue, and Zhang 2019). The underlying

principle is that the comparison between two competing models reduces to the degree by which each

factor on a given model is spanned by the factors in the other model, hence the testing assets become
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irrelevant for model comparison. However, ranking factor models exclusively by the magnitudes and

statistical significance of the estimated intercepts (alphas) from spanning regressions might mask

the fact that those models do not price the cross-section of testing assets in the first place. This may

render the comparison meaningless, as pricing the cross-section of asset risk premia should be the

primary goal for any candidate asset pricing model. Our results suggest that this might be the case

for most workhorses proposed in the literature if we aim to price a sufficiently rich cross-section of

equity risk premia. Therefore, to properly evaluate and compare models, it is important to provide

evidence from cross-sectional tests (including the deviations relative to a benchmark statistical

model) in addition to the time-series spanning tests.

This study is also related to the recent works of Giglio and Xiu (2019) and Kozak, Nagel, and

Santosh (2018), who also construct common statistical factors from the cross-section of realized

stock returns. Among other aspects, our paper differs from those studies in two key dimensions.

First, we use the model containing the PCA factors as a reference point to show that the current

factor models (used in the literature) are not sufficiently successful in terms of pricing a large number

of market anomalies. Secondly, in comparison with Kozak, Nagel, and Santosh (2018), we use a

considerably larger cross-section of portfolio returns to evaluate factor models. Our study is also

related to the recent work of Pukthuanthong, Roll, and Subrahmanyam (2019) in the sense that in

their paper the selection of risk factors (that price assets) is motivated by information obtained

from the covariance matrix of the returns of the testing assets.

2 Theoretical Background

The Arbitrage Pricing Theory (APT) is first developed by Ross (1976). Chamberlain and Rothschild

(1983) present a generalized version of the APT that embeds an approximate factor structure, and

suggest the use of principal component analysis in empirical tests of factor models motivated by the

APT. In this section, we provide a simple derivation of the APT to motivate the empirical analysis

conducted in the following sections. Our presentation largely follows Back (2017) (Chapter 6) and

Cochrane (2005) (Chapter 9).
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Consider the following equation for any of the N risky assets indexed by i = 1, ..., N ,

Rei,t+1 = ai + βi,1G̃1,t+1 + ...+ βi,KG̃K,t+1 + εi,t+1, (1)

where Rei,t+1 = Ri,t+1 −Rf,t+1 denotes the return on asset i in excess of the risk-free rate, εi,t+1 is

the residual return, and G̃j,t+1 ≡ Gj,t+1 − E(Gj,t+1), j = 1, ...,K represents each of the demeaned

common K factors. Since the factors are demeaned, it follows that E(Rei,t+1) = ai.

Assume that there is a stochastic discount factor (SDF), Mt+1, that prices assets in this economy.

By multiplying both sides of the regression above by Mt+1, taking unconditional expectations, and

using both E(Mt+1R
e
i,t+1) = 0 and E(Rei,t+1) = αi, we obtain:

E(Rei,t+1) = −βi,1
E(Mt+1G̃1,t+1)

E(Mt+1) − ...− βi,K
E(Mt+1G̃K,t+1)

E(Mt+1) − E(Mt+1εi,t+1)
E(Mt+1) . (2)

Consistent with our empirical analysis, we assume there is a risk-free asset. Hence, we have

E(Rf,t+1) = 1/E(Mt+1), which leads to the following expected return-beta equation,

E(Rei,t+1) = βi,1λ1 + ...+ βi,KλK + δi, (3)

where

λj = −E(Rf,t+1) E(Mt+1G̃j,t+1), j = 1, ...,K,

represents the risk price for factor j, and

δi ≡ −
E(Mt+1εi,t+1)

E(Mt+1) ,

denotes the “pricing error” for asset i.8

Now assume that idiosyncratic risk is small for all assets, Var(εi,t+1) ≈ 0. This implies that

E(Mt+1εi,t+1) = Cov(Mt+1, εi,t+1) ≈ 0, which in turn implies δi ≈ 0: In the limit, a very small
8If we further assume that all the factors are excess returns, E(Mt+1Gj,t+1) = 0, the risk price for factor j is equal

to the corresponding factor mean:

λj = − E(Rf,t+1) E[Mt+1(Gj,t+1 − E(Gj,t+1))] = E(Rf,t+1) E(Mt+1) E(Gj,t+1) = E(Gj,t+1).
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value of Var(εi,t+1) means that εi,t+1 is not a random variable (see Cochrane 2005; Back 2017).

Consequently, we have an approximate linear K-factor model for asset i:

E(Rei,t+1) ≈ βi,1λ1 + ...+ βi,KλK . (4)

However, the assumption of small or negligible idiosyncratic risk is not realistic for individual

assets (e.g., stocks). Therefore, the APT approximation relies on the construction of well-diversified

portfolios. By defining a portfolio p with excess return given by Rep,t+1 =
∑N
i=1 ωiR

e
i,t+1, and using

Equation (3), we obtain,

E(Rep,t+1) = βp,1λ1 + ...+ βp,KλK + δp, (5)

where βp,j ≡
∑N
i=1 ωiβi,j , j = 1, ...,K denote the factor betas for portfolio p; εp,t+1 ≡

∑N
i=1 ωiεi,t+1

represents the residual return for portfolio p; and δp ≡
∑N
i=1 ωiδi = −E(Mt+1εp,t+1)/E(Mt+1)

denotes the pricing error for portfolio p.

The traditional derivation of the APT relies on the assumption that the covariance matrix of

the residual returns is diagonal,

E(εi,t+1εl,t+1) = 0,

for any two different assets i and l. Furthermore, we have the critical assumption that the variance

of the residual returns of individual assets is bounded:

max
i=1,...,N

Var(εi,t+1) ≤ σ2.

These two conditions imply that the variance of the residual return of a well diversified portfolio

(e.g., ωi = 1/N) is given by

Var(εp,t+1) = 1
N2

N∑
i=1

Var(εi,t+1) ≤ σ2

N
.

This expression approaches zero for a large number of assets. Consequently, the pricing error

(δp) is approximately close to zero and the linear multifactor model holds as a good approximation
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in terms of explaining the risk premia of portfolio p:

E(Rep,t+1) ≈ βp,1λ1 + ...+ βp,KλK . (6)

By relying on asymptotic arguments, it turns out that the linear factor model also applies

(approximately) to individual assets. Under the conditions of a diagonal covariance matrix of

residual returns combined with bounded Var(εi,t+1), it follows that

lim
N→∞

N∑
i=1

δ2
i <∞. (7)

This condition in turn implies that most assets have small pricing errors in magnitude, that is,

for any real number δ > 0, there are only a finite number of assets with |δi| ≥ δ.9 Hence, within the

general framework of the APT, it follows that statistical factors that explain well the covariance

matrix of returns should also be pricing factors that explain well cross-sectional risk premia for both

portfolios and (many of the) individual assets.

However, the critical assumption stated above of a strict factor structure, which generates exactly

orthogonal residual returns across assets, is unrealistic from an empirical viewpoint. This invalidates

that the pricing errors for diversified portfolios on the one hand, or for many individual assets on

the other hand, are approximately zero. To overcome such limitation, Chamberlain and Rothschild

(1983) provide an alternative derivation of the APT under weaker conditions. In their framework,

the covariance matrix of the residual returns does not need to be diagonal with bounded diagonal

elements. Instead, sufficient conditions for obtaining the APT approximation are that (i) there is

an approximate factor structure (in which weak correlations of the residual returns are allowed)

and (ii) the maximum eigenvalue of the covariance matrix of the residual returns is bounded as the

number of assets increases.

A couple of observations about the empirical implications of the APT are pertinent. First, the

discussion above implies that the APT approximation is more plausible if we use well-diversified

equity portfolios, rather than individual stocks, as testing assets. The reason is that the individual
9See Reisman (1988) and Back (2017) for details on the derivation of this result. An equivalent condition,

limN→∞(1/N)
∑N

i=1 δ
2
i = 0, can be derived by relying on the absence of asymptotic arbitrage opportunities: Construct

a large zero-cost portfolio with zero variance and impose the restriction that both the realized and expected portfolios
returns are zero (see Ingersoll (1987) and Pennacchi (2008) for details).
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stocks have larger idiosyncratic risk than most equity portfolios.10

Secondly, the exposition above shows that the factors in the APT can be either traded or

non-traded. Yet, given the restriction of an approximate factor structure, it follows that successful

empirical applications of the APT should contain factors that represent excess stock returns (zero-

cost portfolios). The reason is that those factors are typically more correlated with the excess

returns on the testing assets (equity portfolios) than non-traded factors such as macro variables

(e.g., CPI inflation, industrial production growth, bond yields, short-term interest rates), and thus

should do a better job in explaining the covariance matrix of the residual returns.11 Critically, if the

factors are excess returns, the risk price estimates cannot be freely estimated by a cross-sectional

regression and should be equal to the corresponding factor means.12

3 Statistical Factors

In this section, we estimate the statistical factors that summarize the information from the broad

cross-section of stock returns.

3.1 Data

The portfolio return data used in the estimation of the common statistical factors are associated

with the most relevant market or CAPM anomalies, which represent patterns in cross-sectional

stock returns that are not explained by the baseline CAPM. We employ 42 anomalies or portfolio

sorts, which represent a subset of the anomalies considered in Green, Hand, and Zhang (2017), for

a total of 420 portfolios. Table 1 contains the list and description of the anomalies included in this
10Using well-diversified equity portfolios (associated with firm characteristics) as testing assets has been the most

popular practice in the cross-sectional asset practice literature (see Fama and French 2015, 2016; Hou, Xue, and
Zhang 2015; Maio and Santa-Clara 2017; Cooper and Maio 2019a,b; Hou, Mo, Xue, and Zhang 2020 as recent
examples). In related work, Kirby (2020) employs “managed” equity portfolios. For asset pricing tests with individual
stocks, see, for example, Kim and Skoulakis (2018), Pukthuanthong, Roll, and Subrahmanyam (2019), and Ang, Liu,
and Schwarz (2020). For examples of asset pricing tests conducted with other asset classes, see Lettau, Maggiori, and
Weber (2014) and Delikouras and Kostakis (2019).

11Actually, in some cases these large correlations are (nearly) mechanical, such as the case of HML (against
portfolios sorted on the book-to-market ratio) or the case of UMD (in relation to momentum portfolios).

12Another implication from the APT is that such framework is mainly about relative asset pricing: Given the
factors, what should be the correct prices (i.e., expected returns) of the other assets in the economy. However, the
APT does not provide an economic explanation for the risk premium associated with each original source of systematic
risk (the factors). Alternative asset pricing frameworks, which provide a theory of the factor risk premiums, include
the Consumption CAPM (Breeden 1979), the Intertemporal CAPM (Merton 1973), and the baseline CAPM (Sharpe
1964; Lintner 1965).
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paper. Following Hou, Xue, and Zhang (2015, 2020), these anomalies can be generically classified

in strategies related to value-growth, momentum, investment, profitability, intangibles, and trading

frictions.13

For all anomalies, we form value-weighted decile portfolios with NYSE breakpoints and rebalance

these decile portfolios monthly. For most of the anomalies, we follow the same procedure of portfolio

construction as in Green, Hand, and Zhang (2017). The exception applies to five anomalies that

use quarterly earnings/sales information, including earnings announcement return (ear); return

on assets (roaq); return on equity (roeq); and revenue surprise (rsup). For these anomalies, we

use earnings/sales data in Compustat quarterly files in the months immediately after the most

recent public earnings announcement dates (Compustat item RDQ) when forming portfolio sorts

of stocks.14 Furthermore, for a firm to be included in the portfolio sorts, we require the end of

the fiscal quarter corresponding to the most recently announced earnings/sales to be within six

months prior to the portfolio formation, to exclude stale earnings/sales information. This procedure

is consistent with Hou, Xue, and Zhang (2015, 2020). In comparison to the 102 portfolio groups

employed in Green, Hand, and Zhang (2017), we start with 72 anomalies that have return data

available since 1973. Of these 72 anomalies, we exclude 28 anomalies in which the corresponding

“high-minus-low” return spreads produce insignificant (at the 10% level) CAPM alphas.15 We

exclude two additional groups—market beta squared and stock return volatility—for which the

corresponding high-minus-low return spreads have correlations above 90% (in magnitude) relative

to other anomalies. This leads to a total of 42 groups in the end. To construct portfolio excess

returns, we subtract the 1-month Treasury bill rate, available from Kenneth French’s website. The

sample period is 1973:01 to 2016:12.

The descriptive statistics for high-minus-low return spreads (between the last and first deciles

among each portfolio class) are presented in the Online Appendix. The anomaly with the largest

spread in average returns is 12-month momentum (mom12m), with a premium above 1% per month.

The return spreads associated with book-to-market (bm), change in 6-month momentum (chmom),
13We follow most of the cross-sectional asset pricing literature in working with all the deciles associated with a

given anomaly rather than just focusing on the extreme first and last deciles (e.g., Fama and French 2015, 2016; Hou,
Xue, and Zhang 2015; Hou, Mo, Xue, and Zhang 2020).

14As discussed in Jegadeesh and Livnat (2006), sales are generally announced with earnings during quarterly
earnings announcements.

15Yan and Zheng (2017) show that many CAPM anomalies cannot be attributed to random chance.
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ear, earnings-to-price ratio (ep), and sales-to-price ratio (sp) are also economically important, with

(absolute) means above 0.60% per month. The anomalies with lower average returns are market

beta (beta), current ratio (currat), idiosyncratic volatility (idiovol), % change in current ratio

(pchcurrat), quick ratio (quick), sales-to-cash ratio (salecash), sales-to-inventory ratio (saleinv),

and share turnover (turn), all with average return spreads below 0.20% (in absolute value). Beta is

the anomaly with the most volatile spread in returns (standard deviation above 8% per month),

followed by bid-ask spread (baspread), idiovol, and mom12m, all three spreads with volatilities

above 7%. At the other end of the spectrum, there are several anomalies with volatilities of return

spreads below 3% per month: Industry-adjusted change in asset turnover (chatoia), growth in long-

term debt (lgr), % change in capital expenditures (pchcapx), pchcurrat, % change in depreciation

(pchdepr), % change in sales minus % change in inventory (pchsale pchinvt), and % change in

sales-to-inventory ratio (pchsaleinv).

3.2 Estimation

To estimate the pervasive factors spanning the common factor space of the broad cross-section of

stock returns, we use the approximate factor model framework developed by Connor and Korajczyk

(1986, 1988), which has been successfully implemented to uncover the cross-correlations present in

large macroeconomic or financial panels (see Ludvigson and Ng 2007, 2009, 2010; Goyal, Pérignon,

and Villa 2008; Connor, Korajczyk, and Uhlaner 2015; Maio and Philip 2015, among others).

This method is denoted by asymptotic principal components.16 Given the exposition in the previous

section, the multifactor model containing the statistical factors is a valid approximation to the

linear combination of the true risk factors embedded in our cross-section of stock returns. Indeed,

Connor and Korajczyk (1986, 1988) show that the statistical factors estimated under this approach

converge to the true (unobserved) risk factors as the number of assets diverges. More recently,

Connor, Korajczyk, and Uhlaner (2015) show that the statistical factors associated with this method

are identical (up to a rotation) to the factors estimated by iterating the two-step cross-sectional

regression method (used to estimate factor models), irrespective of the initial set of factors specified

by the researcher.
16Roll and Ross (1980) propose a related approach. Chen, Connor, and Korajczyk (2018) provide a simulation

exercise based on individual stock returns.
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Consider that equity portfolio excess returns are driven by a finite number of K static unobserv-

able factors,

Rei,t = f ′tβi + εi,t, (8)

where Rei,t is the portfolio (i = 1, ..., N) excess return at time t(= 1, ..., T ); ft is the K-dimensional

vector of latent common factors for all excess returns at t; βi is the K-dimensional vector of factor

loadings for the excess return on asset i; and εi,t stands for the idiosyncratic i.i.d. errors, which are

allowed to have limited correlation among returns.17

This model captures the main sources of variations and covariations among the N portfolio

returns with a set of K common factors (K << N). The framework is estimated using asymptotic

principal components analysis (PCA), which involves an eigen decomposition of the sample covariance

matrix. The (K × T ) pervasive factors’ matrix F̂ contains the K eigenvectors corresponding to the

first K largest eigenvalues of the T × T matrix, RR′/ (NT ), where R is a (T ×N) data matrix of

excess returns. The normalization F̂F̂′ = IK is imposed, where IK is the K-dimensional identity

matrix, since F and the factor loadings matrix are not separately identifiable. Bai and Ng (2002)

show that for large N and large T panels, this methodology can effectively distinguish noise from

signal and summarize information into a small number of estimated common factors.

To determine the value of K, which is the number of common factors, we use the IC2 information

criterion suggested by Bai and Ng (2002). We minimize over K the following criterion,

ln(VK) +K

(
N + T

NT

)
ln(min {N,T}), (9)

where VK = (NT )−1∑N
i=1

∑T
t=1

(
Rei,t −

∑K
j=1 F̂j,tβ̂ij

)2
, with F̂j,t denoting the jth normalized factor

estimate at time t. We consider a maximum set of 40 factors when estimating the optimal K;

however the test results are robust to the choice of maximum.

Based on the IC2 information criterion, we observe the optimal value of K to be ten for our

full sample period. However, we also evaluate the stability of the IC2 criteria across different

sampling periods. Specifically, we estimate the factors for each sample that starts from years 1973

to 2012. Untabulated results reveal that there are nine common factors dominant over the excess

return’s space. Hence, we choose to work with the first nine statistical factors as a first reference
17From now on, i refers to an arbitrary equity portfolio.
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point.18 Table 2 reports summary statistics of the nine estimated factors. We can see that none of

the factors is persistent, as shown by the first-order autocorrelation coefficients around or below

0.15 (in magnitude). This stems from the fact that stock returns do not usually exhibit significant

serial correlation. The nine factors cumulatively explain around 92% of the total variations in the

420 portfolio returns, with the first factor explaining the largest proportion of the cross-sectional

variation in returns (around 85%).

To understand the correlations of the estimated common factors with the raw portfolio returns,

we conduct simple regressions of the 42 return spreads indicated above on each of the statistical

factors,

Rl,10,t −Rl,1,t = $l,j + βl,jF̂j,t + εl,t, j = 1, ..., 9, (10)

where Rl,10,t −Rl,1,t denotes the spread high-minus-low associated with anomaly l, l = 1, ..., 42.

Table 3 presents the R2 estimates associated with these simple regressions. These estimates

represent the square of the pairwise correlations between the returns and each of the factors. We

can see that the first two factors are especially correlated with several anomalies in the trading

frictions category, including baspread, beta, idiovol, maxret, and turn, in all cases with explanatory

ratios around or above 0.40. F̂2 is also correlated with ep, quick, and several profitability anomalies

(roaq and roeq), while the first factor also has a large correlation with currat. The third factor is

correlated with several value-growth anomalies (bm and sp), price momentum (mom12m), cash

productivity (cashpr), and dollar trading volume (dolvol). The fourth factor mainly captures

momentum, as indicated by the explanatory ratios around or above 40% for the indmom, mom6m,

and mom12m return spreads. F̂6 is mainly correlated with intangibles (salecash and salerec), while

F̂8 is more correlated with the change in momentum (chmom). The remaining statistical factors

show a number of smaller correlations with several anomalies, and hence their economic meaning is

less clear.

Overall, the results from Table 3 suggest that to a large degree the nine common factors capture

different subsets of the 42 market anomalies. This is consistent with the role of these factors in

terms of successfully describing the covariance matrix of returns associated with this cross-section
18For robustness, we also implement the ER and GR criterion functions proposed by Ahn and Horenstein (2013).

The tests results indicate the presence of six significant common return factors. However, to avoid undue omission
of important factors explaining the variation of the cross-section of stock returns, we opt to use the first nine PCA
factors as an initial reference point for our analysis in the next section.
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of 420 equity portfolios.

4 Asset Pricing Tests

In this section, we test our “APT model” containing statistical factors over the broad cross-section

of stock returns.

4.1 Methodology

To test our statistical model (as well as the factor models covered in the next section) in the

cross-section of average stock returns, we use several empirical methods. The first method consists

of the two-step time-series/cross-sectional regression procedure employed in Black, Jensen, and

Scholes (1972), Jagannathan and Wang (1998), and Brennan, Wang, and Xia (2004), among

others, which is widely used in the literature. In the first step, the factor betas are estimated from

the time-series (multivariate) regressions for each of the testing portfolios,

rt = α+ βft + εt, (11)

where rt ≡ (Re1,t, ..., ReN,t)′ is a vector of excess portfolio returns; α is a vector of intercepts; β(N×K)

is a matrix of K factor loadings for the N test assets; ft(K × 1) is a vector of factor realizations;

and εt(N × 1) is the vector of return disturbances.19

In the second step, the K-factor model is estimated by an OLS cross-sectional regression,

r = β̂λ+ π, (12)

where r(N × 1) is a vector of average excess returns, r ≡ (1/T )
∑T
t=1 rt = (Re1, ..., ReN )′; λ(K × 1) is

a vector of risk prices; π(N × 1) is the vector of pricing errors; and β̂(N ×K) denotes the matrix

with the estimated factor loadings.20

19Here f denotes the vector of realizations on the pricing factors in a generic K-factor model, which includes not
only our benchmark statistical model, but also the factor models covered in the next section.

20We do not use a GLS cross-section regression in the second step to estimate the factor risk prices (see Kandel and
Stambaugh 1995; Shanken and Zhou 2007; Lewellen, Nagel, and Shanken 2010 for applications of this method). The
reason is that we are particularly interested in pricing the original equity portfolios (which have an economic interest)
rather than an efficient (minimum variance) combination of these portfolios (see Cochrane 2005; Ludvigson 2013 for
a detailed discussion).
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The t-statistics associated with the factor risk price estimates are based on Shanken’s standard

errors (Shanken 1992), which incorporate a correction for the estimation error in the factor loadings.

We do not include an intercept in the cross-sectional regression, since we want to impose the

economic restrictions associated with each factor model. If the statistical model is correctly specified,

the intercept in the cross-sectional regression should be equal to zero.21

To gauge the fit of each model, we compute the cross-sectional OLS coefficient of determination,

R2
OLS = 1− VarN (π̂i)

VarN (Rei )
, (13)

where VarN (π̂i) stands for the cross-sectional variance of the pricing errors and VarN (Rei ) denotes the

cross-sectional variance of the raw risk premia. R2
OLS represents the fraction of the cross-sectional

variance of average excess returns (on the testing assets) explained by the factor loadings associated

with a given model. Since we do not include an intercept in the cross-sectional regression, this

R2 measure can assume negative values. A negative explanatory ratio means that the regression

including the factor loadings (associated with a given model) as regressors performs worse than a

trivial regression containing just an intercept (see Campbell and Vuolteenaho 2004).22 To evaluate

the statistical significance of R2
OLS , we use empirical p-values obtained from a bootstrap simulation

(see Maio and Santa-Clara (2017) and Guo and Maio (2020) for details).

A related cross-sectional R2 metric is given by

ρ2 = 1− VarN (π̂i)
SN (Rei )

, (14)

where SN (·) stands for the cross-sectional second-moment.23 Contrary to the benchmark R2 measure

(R2
OLS), ρ̂2 always lies between zero and one. However, the new measure is less informative about

the explanatory power of a model for the cross-sectional dispersion in risk premia. Indeed, a model
21Another important reason for not including the intercept in the cross-sectional regressions is to preserve consistency

with the time-series regression approach. This last method applies to models where all factors are excess returns and
represents the focus of our empirical analysis, as discussed below. Nonetheless, as a robustness check, we conduct an
alternative cross-sectional regression containing an unrestricted zero-beta rate. The results are discussed in the online
appendix.

22Similar R2 measures are used in Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Maio (2013b),
Lioui and Maio (2014), and Lettau, Maggiori, and Weber (2014), among others.

23Kan, Robotti, and Shanken (2013) employ this measure in the analysis with excess returns and restricted zero-beta
rate (see their Section 3).
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can have a large value of ρ̂2 just by fitting well the cross-sectional mean despite not explaining

cross-sectional dispersion in risk premia (indicated by low or negative estimates of R2
OLS). Hence,

the two measures are not directly comparable.

We compute the difference in ρ2 between the benchmark APT model (containing several

statistical factors) and the single-factor model containing only the first principal component,

Sρ2 = ρ2(APT6) − ρ2(APT1). This allows us to assess the additional explanatory power of the

higher-order statistical factors relative to the first principal component when it comes to price the

42 anomalies. To assess the statistical significance of both ρ2 and Sρ2, we rely on the asymptotic

distribution derived in Kan, Robotti, and Shanken (2013).24

An alternative method to estimate and evaluate asset pricing models is the popular time-series

regression approach (see Fama and French 1993, 1996, 2015; Hou, Xue, and Zhang 2015, and many

others). This methodology is adequate when all the factors in a model represent excess stock returns

as it is the case with the statistical model (see Cochrane 2005). Indeed, the statistical factors

estimated in Section 3 can be interpreted as excess returns since they represent linear combinations

of the excess returns on the raw 420 equity portfolios. Consequently, the implied risk price estimates

are forced to be exactly equal to the respective factor means. Therefore, this method avoids the

common criticism of implausible risk price estimates within the two-step regression approach (see

Lewellen and Nagel 2006; Lewellen, Nagel, and Shanken 2010), making it a more correct procedure

to test our statistical model (as well as the factor models tested in the following sections).

Under the time-series approach, the intercepts from the time-series regressions represent the

pricing errors (α) associated with the factor model, as all factors are traded. To evaluate the fit of

the model, we compute the mean absolute alpha across the testing portfolios:

MAA = 1
N

N∑
i=1
|α̂i|. (15)

To assess the statistical significance of the pricing errors (alphas), we compute the GRS statistic

of Gibbons, Ross, and Shanken (1989), which tests the null hypothesis that the alphas are jointly

equal to zero. We also compute the number of alphas that are statistically significant (at the 5%

level) on an individual basis. To gauge the individual statistical significance, we employ GMM-based
24We thank the referee for suggesting this analysis.
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t-ratios (White 1980).

One limitation of MAA is that it does not relate the magnitudes of the pricing errors with the

magnitudes of the raw portfolio risk premia that we seek to explain in the first place. For example,

a given model may produce an average pricing error that is apparently large, but is actually small

in comparison with the scale of the raw risk premia that we are trying to explain. This is especially

important in our case, as we have joint asset pricing tests involving many different anomalies,

and thus, with different magnitudes of risk premia. To overcome such limitation, we compute the

“constrained” cross-sectional R2 proposed in Maio and Santa-Clara (2017) and Cooper and Maio

(2019b),25

R2
C = 1− VarN (α̂i)

VarN (Rei )
. (16)

This metric is similar to the cross-sectional OLS R2, but is based on the pricing errors (intercepts)

from the time-series regressions. Hence, this explanatory ratio is only valid when all the factors in

the model are excess returns. As shown in Cooper and Maio (2019b) (see also Lewellen, Nagel, and

Shanken 2010; Kan, Robotti, and Shanken 2013), equivalently, the pricing errors can be obtained

from the following constrained cross-sectional regression,

Rei = β̂i,1F1 + ...+ β̂i,KFK + α̂i, (17)

where Fj represents the time-series mean of risk factor j, j = 1, ...,K and β̂i,j denotes the correspond-

ing factor loading for asset i. If the risk price estimates obtained under the OLS two-step regression

approach roughly coincide with the factor means, it turns out that these two measures (R2
C and

R2
OLS) are approximately equivalent. However, in general, R2

C represents a more correct metric to

evaluate the fit of a model (containing only traded factors) than R2
OLS , as the risk price estimates

(obtained from the cross-sectional regression) my differ substantially from the corresponding factor

means.
25A related measure is given by

R2
C∗ = 1 − α̂′α̂

VarN (Re
i )
.

This measure accounts for the possibility that R2
C might be inflated due to small values of VarN (α̂i), even when the

magnitudes of the pricing errors (α̂i) are large. Unreported results show that the estimates of R2
C∗ are quite similar

to the corresponding estimates for R2
C .
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We also compute the difference in R2
C between the benchmark APT model and the single-factor

model, SR2 = R2
C(APT6) − R2

C(APT1). To assess the statistical significance of both R2
C and

SR2, we compute empirical p-values obtained from a bootstrap simulation. The empirical p-values

correspond to the fractions of artificial samples in which the pseudo statistics are higher than the

corresponding sample estimates. In the simulation, we impose the condition that the factors are

independent from the returns (“useless factors” as in Kan and Zhang (1999)), but preserve the

correlations among the factors in a given model. Full details of the simulation are presented in the

Internet Appendix.

4.2 Results

The results for the asset pricing tests of the 9-factor statistical model, as well as a nested model

(containing a subset of the nine factors), based on the OLS cross-sectional regression approach are

displayed in Table 4 (Panel A). The testing assets are the 420 equity portfolios. The 9-factor APT

model containing the first nine PCA factors explains about 51% of the cross-sectional variation

in the equity risk premia among the 420 portfolios. This represents a large fit given the large

dimension of the cross-section and the high number of anomalies considered, some of them being

negatively correlated. To put these results in perspective, the single-factor model containing only

the first principal component produces an R2 estimate of −58%. Since the first factor represents

basically a market factor (as shown in the next section), these results are consistent with previous

evidence showing that the baseline CAPM has a negative fit when it comes to explaining the market

anomalies considered in the paper. Indeed, untabulated results show that the CAPM produces

an explanatory ratio of −59%, which represents basically the same fit as that associated with the

single-factor APT model.26

Turning to the risk price estimates, it turns out that most of these estimates are statistically

significant at the 1% or 5% level. The exceptions are λ3, λ5, and λ7, in which cases the risk price

estimates are not significant even at the 10% level.27 In light of this evidence, we estimate a
26When tested on portfolios such as those used in this paper, the CAPM typically produces negative R2

OLS estimates
(see Campbell and Vuolteenaho 2004; Yogo 2006; Maio 2013a; Maio and Santa-Clara 2017, among others). This
means that the model performs worse than a trivial model that predicts constant average returns in the cross-section
of equity portfolios.

27This suggests that those three statistical factors are mainly related with equity portfolios that have small risk
premia.
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restricted version of the statistical model (denoted by APT6), which excludes the third (F̂3), fifth

(F̂5), and seventh (F̂7) principal components (PC):28

E(Rei,t+1) = βi,1λ1 + βi,2λ2 + βi,4λ4 + βi,6λ6 + βi,8λ8 + βi,9λ9. (18)

The fit of the 6-factor model is basically the same as that associated with the 9-factor model

(51% with significance also at the 1% level), which suggests that the three factors enumerated

above do not add explanatory power to a model that already contains the other six statistical

factors. In other words, the two models are equivalent when it comes to pricing these testing assets.

The estimate of ρ2 for APT6 is identical to that of APT9 (0.97), compared to 0.91 for the model

containing the first PC, and both estimates are statistically significant at the 1% level (p-values

close to zero), based on the asymptotic inference provided by Kan, Robotti, and Shanken (2013).29

We can also see that the risk price estimates within APT6 are unchanged by excluding the three

factors mentioned above, which stems from the fact that the statistical factors are uncorrelated by

construction.

In Panel B of Table 4, we report the estimation results for a smaller cross-section of portfolio

returns. This contains the extreme three deciles (on each leg) within each group of decile portfolios

for a total of 252 (42× 6) portfolios. The reason for using this restricted cross-section hinges on

the fact that most of the cross-sectional dispersion in portfolio risk premia is concentrated on the

extreme deciles within each anomaly. Hence, by excluding the middle deciles we obtain a more

powerful asset pricing test. Moreover, we obtain a partial decoupling between the portfolios used in

the construction of the statistical factors and the portfolios employed as testing assets. The results

show that the fit of the 6-factor model is marginally above the corresponding explanatory ratio in

the estimation with all portfolios, as indicated by the R2
OLS of 0.58. As in the benchmark case,

such an estimate is the same as the explanatory ratio associated with the 9-factor model, indicating

that excluding the third, fifth, and seventh principal components has no impact on the model’s

performance. The estimate of ρ2 for APT6 is 0.97, compared to 0.88 for APT1, with both estimates
28This dimension of the model is close to the five statistical factors proposed in Ahn, Horenstein, and Wang (2018)

and Kelly, Pruitt, and Su (2019).
29The discrepancy in the estimates of R2

OLS and ρ2 in the case of APT1 stems from the single-factor model being
able to match the average cross-sectional risk premium (provided by the first PC), while not being able to capture any
cross-sectional variation in risk premia.
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being strongly significant (1% level). Such difference in fit between the two models (Sρ2) around

9 percentage points is statistically significant at the 1% level (p-value of zero).30 We also observe

that the risk price estimates in APT6 are quite similar to those obtained under the benchmark

asset pricing test. The main difference occurs for the estimates of λ9 (and to a lower degree for

the estimates of λ6), which assume slightly larger magnitudes relative to the estimation with all

portfolios.

Next, we evaluate the APT model by using the time-series approach. The results reported in

Table 5 (Panel A) show that the mean absolute alpha for the 6-factor model is 0.08%, compared to

0.13% for the single-factor model (APT1). More importantly, our 6-factor model produces an R2
C of

50%, which is largely significant based on the empirical p-value (1% level). In comparison, APT1

produces a negative explanatory ratio (−0.58), which indicates that it performs worse than a trivial

model containing only an intercept. The corresponding spread in R2
C among these two models (1.09)

is strongly different than zero in statistical terms (p-value of zero). Despite the substantially larger

explanatory power of APT6, untabulated results indicate that the 6-factor model is rejected (at

the 1% level) by the GRS test (with a p-value about zero), in the same vein as APT1. This stems

from the large cross-section employed (420 portfolios), which makes it very difficult to accept the

null hypothesis that all pricing errors are equal to zero. This issue is reinforced by the problems in

inverting a “large” covariance matrix of the residual returns, which even causes the formal rejection

of a model with “small” pricing errors.31 To get a more robust idea of the statistical significance of

the pricing errors, we compute the number of portfolio groups in which the model is not rejected

(at the 5% level) by the GRS test. This metric is used, for example, in Hou, Xue, and Zhang

(2015), Cooper and Maio (2019b), and Hou, Mo, Xue, and Zhang (2020). We find that APT6

passes the specification test for 32 (out of 42) of the anomaly groups, which represents more than

twice the number obtained for APT1 (13). Additionally, we find that the 6-factor model produces

significant alphas (at the 5% level) for 42 portfolios (10% of all the testing portfolios used), which

represents about a third of the number of significant alphas generated by APT1. This illustrates

another dimension of the outperformance of APT6 in relation to the single-factor model.
30The estimation of Sρ2 is conducted exclusively for the asset pricing tests associated with the extreme deciles. The

reason is that when computing the p-values for this statistic in the main asset pricing estimation (with 420 portfolios)
we face singularity problems.

31All the models used in the paper are rejected by the GRS test, with p-values very close to zero.
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By using the cross-section of 252 portfolios (Panel B of Table 5), we obtain a marginally higher

explanatory ratio of 58% for APT6, which is also strongly significant (1% level). Consequently,

the gap in explanatory ratio against the single-factor model is even larger than in the benchmark

asset pricing estimation, with significance at the 1% level. On one hand, the average alpha for

APT6 is 0.08%, which coincides with the estimate obtained for the full cross-section, and represents

about half the magnitude of the average pricing error for APT1 (0.16%). The 6-factor model is not

rejected for 26 of the 42 anomalies, compared to 12 in the case of APT1. On the other hand, the

number of significant alphas for APT6 is 29, which is less than a third the corresponding estimate

for the single-factor model (95).

Another interesting result is that the R2
C estimates for APT6 are basically the same as the OLS

counterpart estimates discussed above and this holds for both cross-sections. This stems from the

fact that the OLS risk price estimates reported above are quite similar to the corresponding factor

means reported in Table 2: Only in the case of F̂8 there is a bigger difference between the factor

mean (−0.90) and the OLS risk price estimates (around −0.78). In the next section, we will see

that such pattern does not hold for the empirical factor models.

Overall, the results of this section indicate that our APT model, which contains six out of the

first nine PCA factors, does a good job in describing the cross-section of 420 equity portfolios

considered in this study. The fit of the model is even higher when it comes to explaining the

extreme portfolios associated with each anomaly. This performance of the statistical model is not

totally surprising: Under the weak restrictions of the APT framework (large fit in the time-series

regressions, or alternatively, strong factor structure), the statistical factors were designed in such a

way to deliver a large fit for this specific cross-section of equity risk premia. Therefore, the 6-factor

model represents a benchmark against which the performance of popular multifactor models is

measured, at least when it comes to price our fixed cross-section of testing assets. This represents

the focus of analysis in the following sections.

5 Linkage to Factor Models

In this section, we compare our APT model to some of the most popular multifactor models existent

in the literature, which represents the main goal of the paper. Following Section 2, we restrict the
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analysis to models where all the factors represent excess stock returns (zero-cost portfolios).32 Since

the theoretical background of these models is not totally clear in the literature and the factors are

traded, we designate these factor models by “empirical” models. This is merely to facilitate the

distinction against the benchmark statistical model estimated in the previous section.33

In this and the following sections, we consider that, for an empirical factor model to be consistent

with the APT, the model should have a similar (in statistical terms) pricing performance (for

cross-sectional equity risk premia) relative to the statistical model extracted from the principal

component analysis applied to the excess returns of the testing assets. In this sense, the statistical

model represents a benchmark, or an upper-bound, to evaluate the pricing performance of empirical

factor models.

5.1 Multifactor models

We employ seven multifactor models widely used in the cross-sectional asset pricing literature. The

first model is the Carhart’s (Carhart 1997) 4-factor model (C4 henceforth),

E(Ri,t+1 −Rf,t+1) = λMβi,M + λSMBβi,SMB + λHMLβi,HML + λUMDβi,UMD, (19)

which adds a momentum factor (UMD) to the Fama and French (1993) 3-factor model.

The second model is the 4-factor model proposed by Hou, Xue, and Zhang (2015) (HXZ4).

This model adds an investment factor (IA, low-minus-high asset growth) and a profitability factor

(ROE, high-minus-low return on equity) to the usual market and size (ME) factors:34

E(Ri,t+1 −Rf,t+1) = λMβi,M + λMEβi,ME + λIAβi,IA + λROEβi,ROE . (20)

Next, we estimate the 5-factor model proposed by Hou, Mo, Xue, and Zhang (2019, 2020)
32Surprisingly, one of the first so-called APT’s empirical applications is the multifactor model proposed by Chen,

Roll, and Ross (1986), which relies on macro factors.
33Specifically, the models proposed by Fama and French (2015, 2016) and Hou, Xue, and Zhang (2015) both

contain profitability and investment risk factors. However, while Fama and French (2015) motivate their 5-factor
model based on the present-value valuation model of Miller and Modigliani (1961), it turns out that Hou, Xue, and
Zhang (2015) rely on the q-theory of investment. On the other hand, Maio and Santa-Clara (2012) and Cooper and
Maio (2019a) provide evidence that several of the factors included in the models analyzed here are consistent with
Merton’s ICAPM (Merton 1973).

34The size factor employed in Hou, Xue, and Zhang (2015) is constructed in a slightly different way to the
Fama-French size factor (SMB).
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(denoted by HMXZ5), which augments HXZ4 by an expected growth factor (EG):

E(Ri,t+1 −Rf,t+1) = λMβi,M + λMEβi,ME + λIAβi,IA + λROEβi,ROE + λEGβi,EG. (21)

The fourth model is the 5-factor model of Fama and French (2015, 2016) (FF5), which adds

an investment (CMA, low-minus-high asset growth) and a profitability (RMW , high-minus-low

operating profitability) factor to the Fama and French (1993) 3-factor model:

E(Ri,t+1−Rf,t+1) = λMβi,M+λSMB∗βi,SMB∗+λHMLβi,HML+λCMAβi,CMA+λRMWβi,RMW . (22)

Both CMA and RMW are constructed in a different way to the corresponding investment and

profitability factors from Hou, Xue, and Zhang (2015).35 In addition, SMB∗ is constructed from

different portfolio sorts than the original SMB.36

Next, we estimate the 6-factor model proposed by Fama and French (2018), which augments

FF5 by the momentum factor (FF6):

E(Ri,t+1−Rf,t+1) = λMβi,M+λSMB∗βi,SMB∗+λHMLβi,HML+λCMAβi,CMA+λRMWβi,RMW+λUMDβi,UMD.

(23)

The sixth model is the 6-factor model proposed by Barillas and Shanken (2018) (BS6),

E(Ri,t+1 −Rf,t+1) = λMβi,M + λSMB∗βi,SMB∗ + λHML∗βi,HML∗ + λUMDβi,UMD

+ λIAβi,IA + λROEβi,ROE , (24)

which combines some of the factors contained in the HXZ4, FF5, and C4. Barillas and Shanken

(2018) employ the more timely version of HML (denoted by HML∗) proposed by Asness and

Frazzini (2013).

Finally, we estimate the 4-factor model of Stambaugh and Yuan (2017) (SY4):

E(Ri,t+1 −Rf,t+1) = λMβi,M + λSMB∗∗βi,SMB∗∗ + λMGMTβi,MGMT + λPERFβi,PERF . (25)
35See Fama and French (2015) and Hou, Xue, and Zhang (2015) for details.
36See Fama and French (2015) for details.
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This model contains a size factor (SMB∗∗), plus two “mispricing” factors (MGMT and PERF ).

MGMT is constructed from six anomalies that are associated with firms’ management actions,

while PERF is constructed from five anomalies associated with firms’ performance.

5.2 Data

The data on the equity factors, RM , SMB/SMB∗, HML, UMD, CMA, and RMW are obtained

from Kenneth French’s data library. The data associated with ME, IA, and ROE are obtained

from Lu Zhang. The data on HML∗ are retrieved from the AQR data library, while the data on

SMB∗∗, MGMT , and PERF are obtained from Yu Yuan’s webpage. The descriptive statistics,

which are presented in the Internet Appendix, show that the factors with the largest mean are

UMD, MGMT , and PERF , all with average returns above 0.60% per month. The factors with

the lowest average are RMW , ME, SMB, and SMB∗ (around or below 0.30% per month), which

confirms previous evidence that the size premium has declined over time. The most volatile factors

are the equity premium and the momentum factor, with standard deviations above 4% per month.

On the other hand, the investment-based factors (IA and CMA) and EG are the least volatile,

with standard deviations below 2% per month. All the factors have relatively low serial correlation,

as shown by the small first-order autoregressive coefficients (magnitudes below 20% in all cases).

Regarding the pairwise correlations among the empirical factors (also displayed in the Internet

Appendix), it turns out that the different versions of the size factors (SMB, SMB∗, ME, and

SMB∗∗) are strongly correlated, as indicated by the correlations quite close to 1. We also observe a

similar pattern for the asset growth factors (IA and CMA), as shown by the correlation of 0.91.

In comparison, the two profitability factors (ROE and RMW ) show a smaller correlation (0.67),

and the same roughly holds for the two value factors (0.77). Both investment factors are positively

correlated with HML (correlations close to 0.70). This indicates that there is some degree of

comovement among the value- and investment-based strategies (see also Fama and French 2015;

Hou, Xue, and Zhang 2015; Light, Maslov, and Rytchkov 2017; Maio and Santa-Clara 2017). On

the other hand, the other value factor (HML∗) is less correlated with both investment factors (below

0.50). ROE is positively correlated with UMD (0.49), but the same does not occur with RMW .

Hence this suggests that the two profitability factors to a large extent measure different types of risk

premia. Additionally, the momentum factor is negatively correlated with HML∗ (−0.65), but the
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same does not occur with HML. Further, MGMT is positively correlated with both HML and the

investment factors (estimates above 0.70). There is a positive correlation between PERF and both

ROE and UMD (above 0.60), whereas PERF is negatively correlated with HML∗. Interestingly,

UMD and HML∗ are negatively correlated (−0.65), but the same does not occur with HML.

Overall, the evidence is that there are relevant correlations among several of the empirical factors.

We run spanning regressions for each of the six statistical factors (in our benchmark model)

against the seven multifactor models presented above. The objective is to check if the factors in

each of those seven models span our statistical factors (see Barillas and Shanken 2017; Fama and

French 2018; Hou, Mo, Xue, and Zhang 2019, among others). The results presented in the online

appendix show that there is a substantial amount of information in the statistical factors that is not

spanned or subsumed by the empirical factor models. This suggests that the pricing performance of

the empirical models (for the cross-section of 42 anomalies) will deviate considerably from that of

our benchmark model.

5.3 Cross-sectional asset pricing tests

Next, we test the multifactor models presented above for the broad cross-section of stock returns.

We use the same empirical approaches as for the statistical model estimated in the previous section.

The OLS risk price estimates and R2
OLS associated with the empirical models are presented in

Table 6 (Panel A). Table 7 (Panel A) presents the evaluation results associated with the time-series

method. At a first glance, the seven models show a positive performance in terms of pricing the

broad cross-section of stock returns, as indicated by the R2
OLS estimates in the 0.23-0.48 range, with

all estimates being statistically significant. However, this level of fit is smaller than the corresponding

OLS explanatory ratio obtained for the APT6 model (51%). The underperformance of the empirical

models is especially notable in the cases of C4, HXZ4, FF5, FF6, and BS6, with spreads in R2
OLS

around or above 15 percentage points. In comparison, the estimates of ρ2 associated with the

empirical models are on the small 0.96-0.97 interval, with strong significance (1% level) in all seven

cases.

Perhaps, more striking is the fact that the R2
C estimates reported in Table 7 are lower than the

OLS counterparts by at least 15 percentage points in most cases, the sole exception being C4. This

decline in fit is specially relevant in the cases of HMXZ5 (from 0.48 to 0.22), FF5 (from 0.25 to 0.04),
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SY4 (from 0.42 to 0.18), and even more so in the case of BS6 (from 0.35 to −0.41). This reveals that

several of the OLS factor risk price estimates associated with these models differ substantially from

the correct estimates (the corresponding factor means). The restriction on the risk price estimates

seems less severe in the case of C4, as the difference between R2
OLS and R2

C is about nine percentage

points.

It turns out that both FF5 and BS6 register a rather poor fit for broad cross-sectional equity

risk premia, as indicated by the R2
C estimates of 4% and −41% respectively. For both models,

we do not reject the hypothesis of a zero constrained explanatory ratio (at the 10% level), which

indicates that such models are useless when it comes to explaining this cross-section of portfolio

returns.37 Critically, the 6-factor statistical model outperforms the seven empirical models when we

impose the restriction on the factor risk price estimates: The gaps in R2
C (denoted by SR2

2) vary

between 28 percentage points (comparison against HMXZ5) and 91 percentage points (relative to

BS6), which represent evidence of large economic significance. By using the p-values obtained from

the bootstrap simulation, those spreads in R2
C are statistically significant at the 5% level in most

cases. The sole exception occurs for HMXZ5, in which case there is significance only at the 10%

level. One way to assess the economic significance of the additional performance associated with the

benchmark statistical model is to compute the ratio in R2
C : It turns out that the best performing

empirical models (HMXZ5 and FF) produce an explanatory ratio that is less than half (around

42-43%) the fit corresponding to APT6.

The results for the estimation with the 252 extreme portfolios are displayed in Table 6 (Panel

B) and Panel B of Table 7. We can see that both the R2
OLS and R2

C estimates are somewhat higher

than the corresponding estimates obtained in the benchmark test with the 420 portfolios. However,

it is still the case that APT6 produces a higher OLS explanatory ratio than these models. The

unique model with a comparable performance is HMXZ5 with a R2
OLS of 0.54 (versus 0.58 for

APT6). Regarding the estimates of the alternative OLS explanatory ratio (ρ2), results reported in

the appendix show that APT6 delivers a higher fit in all cases, although the differences are relatively

small (below three percentage points). Despite the small magnitudes, those differences in ρ2 are

statistically significant at the 1% (comparison with C4, HXZ4, FF5, FF6, and BS6) or 5% level
37In untabulated results, all seven models dominate the baseline CAPM in statistical terms, as indicated by small

empirical p-values associated with the difference in R2
C relative to the CAPM. However, this represents a very low

hurdle to evaluate the performance of multifactor models for this specific cross-section of risk premia.

29



(SY4). The unique exception to this pattern is in the comparison with HMXZ5, in which case the

estimate of Sρ2 (of 0.4%) is not significant at the 10% level (p-value of 0.51).38

Perhaps more importantly, when relying on the more correct R2
C metric, the statistical model

tends to outperform the empirical models in an economically significant way, with gaps in explanatory

ratio that vary between 25 percentage points (comparison with HMXZ5) and 86 percentage points

(comparison with BS6). Such differences in R2
C are statistically significant at the 5% level in most

cases. Again, the sole exception is HMXZ5, in which case the difference in explanatory ratio is not

even significant at the 10% level (yet marginally so, with a p-value of 0.103).39 To have another

perspective on the significance of the relative performance, only HMXZ5 originates an explanatory

ratio that is more than half (55%) the corresponding estimate for the statistical model.

Therefore, these results largely suggest that most of the empirical factor models clearly lag

behind (both in economic and statistical terms) the reference statistical model. The only exception

is HMXZ5, which is not dominated in statistical terms (at the 5% level) by the benchmark model. It

is interesting to see that apart from FF5 and BS6, the empirical models produce explanatory ratios

that are above zero in statistical terms, as indicated by the associated p-values below 5%. However,

this represents a rather low hurdle when it comes to judging the performance of those models.

A considerably more demanding, but also more relevant, metric is to quantify the difference in

explanatory power relative to our benchmark model (and the corresponding statistical significance).40

Several other results from Table 7 deserve some discussion. First, both HMXZ5 and FF6 have a

similar performance in terms of explaining the complete cross-section of 420 portfolios, as indicated

by the constrained explanatory ratios of 0.22 and 0.21, respectively. However, while the first

model is not dominated in statistical terms by APT6 (at the 5% level), the second model clearly

underperforms the benchmark model (p-values of 0-0.01). In other words, we cannot discriminate

between HMXZ5 and APT6 from a statistical point of view, while we are able to do so when

comparing FF6 and APT6. This suggests that the factors contained in HMXZ5 are closer (in

statistical terms) to the PCA factors than the factors employed in FF6. Second, the expected growth
38In the Internet Appendix, we assess the statistical significance of the difference in OLS R2 between APT6 and the

other models by using an unrestricted zero-beta rate, as in Kan, Robotti, and Shanken (2013).
39We get identical results by using the 9-factor APT model instead of APT6.
40Untabulated results show that both HMXZ5 and SY4 perform similarly to APT6 in what concerns the number of

anomalies that pass the GRS-test (about 31-32), while the other empirical models do worse on such metric. However,
we note that such measure provides only an approximate assessment of the joint pricing power for the 420 portfolios.
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factor is determinant for the performance of HMXZ5: HXZ4 clearly lags behind the statistical

model, as indicated by the differences in R2
C above 33 percentage points, which are significant at

the 1% or 5% level.

Third, although most models are dominated statistically by the benchmark model, BS6 stands

up in terms of negative performance when it comes to explaining the 42 anomalies.41 Indeed,

this 6-factor model is the only empirical model producing negative explanatory ratios, that is, its

performance is worse than a trivial model predicting constant risk premia in the cross-section. The

differences in R2
C (relative to the statistical model) are around 90 percentage points, and these

estimates are significant at the 1% level (p-values around zero). To get another perspective of the

underperformance of such model, unreported results show that the negative spreads in R2
C relative

to the other six empirical models are statistically significant at the 1% level in all cases. Therefore,

our findings suggest that different criteria (cross-sectional asset pricing test versus Bayesian asset

pricing test) can lead to quite opposite results in terms of ranking alternative factor models.42

The results of this section also imply that there is a dramatic room for improving most of

the current workhorses in the literature in terms of pricing a broad cross-section of equity risk

premia. This can include adding new empirical factors or replacing (some of) the existing factors

by better factors.43 The only potential exception to this pattern appears to be HMXZ5, which is

not dominated in statistical terms by the benchmark statistical model, especially when we focus

attention on the more interesting extreme deciles in each anomaly.44

We note that our statistical model represents only an approximation to the underlying true

multifactor model governing our cross-section of risk premia. This is well illustrated by the fact that

the cross-sectional R2 produced by APT6 is substantially below one. To obtain a statistical model

that would generate explanatory ratios closer to one, we would need to include additional statistical
41This is consistent with the evidence provided in Hou, Mo, Xue, and Zhang (2020).
42Barillas and Shanken (2018) use a Bayesian procedure to obtain the best combination of the factors associated

with C4, FF5, HXZ4, as well as HML∗. Yet, their statistical procedure does not take into account the testing assets.
43Another possibility is to derive and estimate conditional versions of the current factors models, which is the route

adopted in Cooper and Maio (2019b).
44On a related note, we expect a priori that SY4 would be the most obvious candidate when it comes to reaching

equivalent (in statistical terms) pricing performance to the benchmark APT model. The reason is that the two key
factors in SY4, PERF and MGMT , are “composite” factors, that is, they are related by construction with several
market anomalies (and thus, with several segments of the cross-section of testing assets). However, our results show
that SY4 is statistically dominated by the benchmark model at the 5% level. In other words, constructing factors
that are mechanically related with several segments of the cross-section does not imply a large pricing power for the
broader set of anomalies.
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factors (i.e., higher-order principal components) in our model. However, such higher-dimensional

statistical model would be of limited utility to our main objective in the paper—comparison with

the empirical models existent in the literature—as the number of factors would be substantially

higher than in those models. If anything, the hurdle on the empirical models would be higher, that

is, the dominance of such augmented statistical model over these models would be even stronger

than what we already document in this section.

We perform several robustness checks to the analysis conducted above. To save space, the

results are presented and discussed in detail in the Internet Appendix. Specifically, the main

findings documented above are robust to employing an alternative bootstrap simulation to assess

the statistical significance of SR2, using a shorter time-series in the asset pricing tests, excluding

some anomalies from the testing assets, or employing an alternative statistical inference. We also

estimate restricted versions of APT6 to gauge the pricing contribution of the different statistical

factors.

5.4 Alternative testing portfolios

We estimate both the statistical and empirical factor models by using alternative equity portfolios

as testing assets. This represents an “out-of-sample” asset pricing test for our statistical model

over the cross-sectional dimension, as we force the model to price different portfolios than those

employed in the construction of the statistical factors. The objective is to control for a possible

in-sample “over-fitting” of the statistical model, which may cause its good pricing performance, and

corresponding statistical dominance over the empirical factor models, to disappear when attempted

to explain alternative equity risk premia.

Specifically, we force the model to price other anomalies that are also employed in Green,

Hand, and Zhang (2017), but were excluded from the cross-section used in the rest of the paper.

Unreported results indicate that the corresponding return spreads associated with the extreme two

or three portfolios (on each leg) generate significant (at the 10% level) CAPM alphas.45 Hence, there

is significant cross-sectional dispersion in risk premia to be priced when we consider the full spectrum

of portfolios within each of these additional portfolio groups (rather than relying exclusively on
45Specifically, the return spread is given by 1

3 (r8 + r9 + r10) − 1
3 (r1 + r2 + r3) or 1

2 (r9 + r10) − 1
2 (r1 + r2), where rj

denotes the return on the jth decile.
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the very top and bottom deciles). In total, we consider eight new anomalies corresponding to 80

portfolios, which are described in the internet appendix.

The results, which are tabulated in the Internet Appendix, show that our statistical model

produces a R2
C estimate of 0.34, which is statistically significant at the 1% level (p-value around

zero). In comparison, the R2
C estimates associated with the C4, HXZ4, FF5, and BS6 models are

either negative or very close to zero. This means that these four models do worse (or the same)

than a trivial model (containing only the intercept) when it comes to pricing the cross-sectional

dispersion in risk premia for those 80 portfolios. Critically, the spreads in R2
C between APT6 and

each of those four models are statistically significant (at the 5% or 1% level). The best performing

empirical model is SY4, with an explanatory ratio of 0.21, which is significant at the 5% level.

The performance of both HMXZ5 and FF6 is somewhat more modest, with a R2
C estimate of 0.14

in both cases and only for FF6 is there significance at the 5% level. However, despite lagging

the statistical model by more than 20 percentage points, both models (as well as SY4) are not

statistically dominated by APT6, as indicated by the p-values (associated with SR2) above 10% in

all three cases (marginally so in the case of FF6, with a p-value of 11.5%).

The estimation results for the cross-section including only the extreme deciles associated with

the eight portfolio groups point to a qualitatively similar picture to the baseline cross-sectional

estimation. The statistical model produces an explanatory ratio of 0.27, which is significant at the

1% level. In comparison, most of the empirical models produce R2
C estimates that are not above zero

in statistical terms. The sole exception is SY4 with an estimate of 0.19, which is significant at the 5%

level. Similar to the estimation with the 80 portfolios, the estimates of SR2 associated with HMXZ5

and FF6, despite showing sizable magnitudes (about 20 percentage points), are not significant at the

10% level. Hence, the large statistical uncertainty implies that we cannot discriminate statistically

between APT6 on one side and either HMXZ5 or FF6 on the other side.46

Overall, the results of this subsection suggest that the statistical dominance of APT6 against the

empirical models does not deteriorate in a substantial way when it comes to pricing “out-of-sample”

CAPM anomalies, that is, employing other portfolios (as testing assets) than those used in the
46One limitation of the asset pricing test described above is that the dimension of the cross-section is substantially

smaller than the “in-sample” tests employed in the rest of the paper (8 versus 42 anomaly groups). To overcome this
limitation, we conduct a second “out-of-sample” asset pricing test on the cross-sectional dimension, which includes
11 new anomalies (in addition to the eight groups employed in the first out-of-sample test). The results, which are
discussed in the appendix, are qualitatively similar to the baseline out-of-sample asset pricing estimation.
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construction of the statistical factors. In fact, the main qualitative results obtained in the previous

section remain robust. This also suggests that there is no excessive in-sample “over-fitting” associated

with the statistical model. One way for interpreting these results is that the 42 anomaly sorts

used in the construction of the PCA factors are fairly representative of the broader cross-section of

CAPM anomalies.

6 Out-of-Sample Asset Pricing Tests

In this section, we focus on the stability over time of the pricing performance of both the statistical

model and the empirical factor models.47 This represents an “out-of-sample” asset pricing test over

the time-series dimension. The empirical factors are constructed from observable measures while

the statistical factors are estimated. It is therefore interesting to examine the pricing performance

of empirical factors relative to that of PCA factors out-of-sample, complementing our main analysis

in the previous sections.

Specifically, we use factor betas and factor risk prices estimated in-sample to forecast one-month

ahead realized portfolio excess returns. Hence, we have a decoupling between the sample used in

the estimation of both the factor betas and risk prices and the sample used in the computation of

the pseudo pricing errors.48 We then compute an “out-of-sample” cross-sectional R2 for both the

statistical model and the empirical factor models to evaluate their relative performance in explaining

cross-sectional risk premia.

Given the out-of-sample nature of this test, for the statistical model, we re-estimate PCA factors

each month t using portfolio returns up to month t− 1. As in Section 3, we choose the number of

PCA factors based on the IC2 information criterion suggested by Bai and Ng (2002). We refer

to this set of PCA factors as the recursive statistical model, which represents our main focus. For

comparison purposes, we also consider the fixed statistical model with six statistical factors (APT6)

estimated once over the full sample period. If the estimated PCs are relatively stable over time, the

pricing performance of the two statistical models will be relatively similar. The sample period for

testing starts in 1978:01 so that the first estimation involves 60 months.
47We thank the referee for suggesting this analysis.
48The pricing errors represent the difference between one-step ahead excess portfolio returns and fitted risk premia,

hence the designation of “pseudo” pricing errors. Simin (2008) uses the terminology of “forecast errors”.
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The estimation procedure of factor betas is as follows. Taking the C4 model as an example,

for each portfolio i and for each month t, we estimate in-sample betas by running the following

regression using returns up to month t− 1,

Rei,τ = αi + βi,MRMτ + βi,SMBSMBτ + βi,HMLHMLτ + βi,UMDUMDτ + εi,τ , τ ∈ [1, t− 1], (26)

where the notation is self-explanatory. As in Simin (2008), we estimate in-sample factor risk

prices as the time-series average of the factor returns up to t− 1, since all factors are traded. We

then calculate the forecasted portfolio risk premium as the sum of the risk premiums (products of

estimated beta and risk price) across all factors (using information up to t− 1),

R̂ei,t ≡ β̂i,MRM + β̂i,SMBSMB + β̂i,HMLHML+ β̂i,UMDUMD,

where f denotes the trailing mean of factor f .49

Defining the out-of-sample one-step ahead forecasting error as ζi,t = Rei,t − R̂ei,t, we have

Rei,t = R̂ei,t + ζi,t. Averaging over the time-series, we have Rei = R̂ei + ζi. We then define the

out-of-sample cross-sectional R2 to closely resemble R2
C in our main analysis, which is given by

R2
OOS = 1− VarN (ζi)

VarN (Rei )
. (27)

In line with our main analysis conducted in the previous sections, we conduct two sets of

estimations using different testing assets. In the first set of analysis, we use all the 420 equity

portfolios as testing assets. We find that R2
OOS is 0.34 for the recursive statistical model and 0.24 for

the fixed statistical model. In comparison, we obtain explanatory ratios of −0.38, −0.02, 0.14, 0.05,

0.08, −0.37, and −0.15 for the C4, HXZ4, HMXZ5, FF5, FF6, BS6, and SY4 models, respectively.

Thus, both statistical models produce a larger fit than that of any of the empirical factor models
49This method shares some similarities with the Fama and MacBeth (1973) (FM) method used in cross-sectional

tests of asset pricing models. In both methods, both the factor betas and risk price estimates are implicitly allowed
to vary over time by using recursive (or rolling) samples. However, there are two key differences relative to the FM
procedure. First, in each period, the factor risk price estimates correspond to the recursive (rolling) means of the
factors rather than being estimated from a cross-sectional regression of realized excess returns onto factor loadings.
Second, the risk price estimates (and corresponding fitted total portfolio risk premia) employed in computing the
pricing errors in t are obtained from the recursive (rolling) sample (containing information up to t− 1) rather than
using information from the current period (t).
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considered and such difference in performance is substantial in most cases. Indeed, several empirical

models (C4, HXZ4, BS6, and SY4) have a very poor performance, as indicated by the negative

explanatory ratios. Hence, SY4 performs substantially worse along this metric than in our baseline

“in-sample” analysis in the previous section. On the other hand, HMXZ5 stands up as the best

performing empirical model on this metric, in line with the evidence in the rest of the paper.

In the second set of estimations, we use the extreme three deciles (on each leg) within each

group of decile portfolios as testing assets. We find that R2
OOS is 0.38 for the recursive statistical

model and 0.30 for the fixed statistical model. Hence, the performance of both models is marginally

higher than in the estimation with all portfolios. In comparison, such metric assumes the values of

−0.31, 0.07, 0.20, 0.10, 0.14, −0.25, and −0.09 for the C4, HXZ4, HMXZ5, FF5, FF6, BS6, and

SY4 models, respectively. Again, both statistical models show a substantially higher fit than that of

any of the empirical factor models considered. Similarly to the estimation with the full-cross-section,

it turns out that HMXZ5 stands up as the best empirical model.50

Overall, the results from this section suggest that the relative outperformance of a model

containing the statistical factors against the empirical factor models remains quite robust out-of-

sample.51

7 Conclusion

In this paper, we aim to examine systematically the performance of the current multifactor models

in the empirical asset pricing literature by using a novel approach. Specifically, we compare these

models against a statistical benchmark model that is consistent with the general framework of the

Arbitrage Pricing Theory (APT) of Ross (1976). We follow the empirical APT literature in terms
50Given that all factor models analyzed in the paper are unconditional, our OOS analysis is based on recursive or

expanding windows. However, as a robustness check, we also consider 60-months rolling samples in the estimation of
the factor loadings and risk prices, a common practice in the literature. Untabulated results show that the statistical
model continues to dominate the empirical models by a large degree. Specifically, in the estimation with all 420
equity portfolios as testing assets, we find that the estimated R2

OOS for the fixed statistical model (APT6) is 0.41.
In comparison, we obtain estimates of −0.16, 0.10, 0.15, 0.26, 0.22, −0.16, and −0.02 for the C4, HXZ4, HMXZ5,
FF5, FF6, BS6, and SY4 models, respectively. In the estimation with the extreme deciles, the statistical model
produces an R2

OOS marginally higher than in the full-cross section test, at 0.46. In comparison, such metric assumes
the values of −0.11, 0.14, 0.19, 0.30, 0.27, −0.11, and 0.00 for the C4, HXZ4, HMXZ5, FF5, FF6, BS6, and SY4
models, respectively.

51We also consider an alternative measure of out-of-sample R2 used in the literature (see e.g. Gu, Kelley, and Xiu
(2020)). Unreported results indicate that both versions of the statistical model outperform the empirical models based
on such new measure of OOS forecasting performance.
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of estimating common statistical factors by applying asymptotical principal components analysis

(PCA) to a large cross-section of stock returns associated with 42 anomalies or portfolio sorts.

market anomalies.

The asset pricing results show that a 6-factor model (denoted by APT6), containing the first,

second, fourth, sixth, eighth, and ninth principal components as risk factors, explains 51% of the

cross-sectional variation in the risk premia. When we impose the constraint that the factor risk

price estimates are equal to the factor means, we obtain a similar fit. We conduct an alternative

asset pricing test with 252 portfolios associated with the extreme three deciles (on each leg) for

each market anomaly. The results show an even slightly larger fit for the statistical model.

The central analysis in the paper is to compare our APT model to some of the most popular

multifactor models existent in the literature (denoted by empirical models) in terms of pricing the

420 portfolios. The asset pricing tests show that the performance of the seven empirical models

lags behind the fit of the statistical model, with differences in cross-sectional R2 between 28 and 91

percentage points. When using the shorter and more interesting cross-section associated with the

extreme portfolios, the gaps in explanatory ratio relative to the benchmark model vary between 25

and 86 percentage points. Critically, the APT model dominates most of the empirical models in

statistical terms (at the 5% level).

The overall conclusions from this paper are simple, but important. Several of the current

empirical workhorses employed in the asset pricing literature fail to be good empirical proxies for the

APT. That is, they deviate significantly, both in economic and statistical terms, from a benchmark

statistical model that is designed in such a way (APT intuition) to explain well a rich cross-section

of equity risk premia. Therefore, assuming that explaining the broad cross-section of stock returns

is the main goal of a successful empirical multifactor model, our results suggest that most of the

models proposed in the literature fail considerably on such dimension.

Following most of the empirical asset pricing literature, our empirical design relies on a cross-

section of equity portfolios sorted on several prominent CAPM anomalies. By design, there is

significant cross-sectional dispersion in risk premia to be priced by the candidate models. However, a

successful asset pricing model should be able to price the risk premia associated with any risky asset.

Examples include individual equities, corporate bonds, Treasury bonds, or currencies. Extending

the analysis to a broader cross-section of asset risk premia is left for future research.
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Table 1: List of portfolio sorts
This table lists the 42 alternative anomalies or portfolio sorts employed in the empirical analy-
sis. “Category” refers to the broad classification employed by Hou, Xue, and Zhang (2015, 2020).

Symbol Anomaly Category
acc Working capital accruals Investment
agr Asset growth Investment

baspread Bid-ask spread Trading frictions
beta Beta Trading frictions

bm ia Industry-adjusted book-to-market ratio Value-growth
bm Book-to-market ratio Value-growth

cashpr Cash productivity Profitability
cfp Cash-flow-to-price ratio Value-growth

chatoia Industry-adjusted change in asset turnover Profitability
chmom Change in 6-month momentum Momentum
currat Current ratio Intangibles
dolvol Dollar trading volume Trading frictions

ear Earnings announcement return Momentum
egr Growth in common shareholder equity Investment
ep Earnings-to-price ratio Value-growth

grcapx Growth in capital expenditures Investment
grltnoa Growth in long-term net operating assets Investment
idiovol Idiosyncratic return volatility Trading frictions

indmom Industry momentum Momentum
invest Capital expenditures and inventory Investment

lgr Growth in long-term debt Investment
maxret Maximum daily return Trading frictions
mom6m 6-month momentum Momentum
mom12m 12-month momentum Momentum
operprof Operating profitability Profitability
pchcapx % change in capital expenditures Investment

pchcurrat % change in current ratio Intangibles
pchdepr % change in depreciation Investment

pchsale pchinvt % change in sales − % change in inventory Intangibles
pchsaleinv % change in sales-to-inventory ratio Intangibles

quick Quick ratio Intangibles
roaq Return on assets Profitability
roeq Return on equity Profitability
roic Return on invested capital Profitability
rsup Revenue surprise Momentum

salecash Sales-to-cash ratio Intangibles
saleinv Sales-to-inventory ratio Intangibles
salerec Sales-to-receivables ratio Intangibles

sgr Sales growth Value-growth
sp Sales-to-price ratio Value-growth

std dolvol Volatility of liquidity Trading frictions
turn Share turnover Trading frictions

Table 2: Descriptive statistics for statistical factors
This table reports some descriptive statistics for the common factors (F̂j , j = 1, ..., 9) estimated from 420 equity
portfolios. φ designates the first-order autocorrelation coefficient. vj represents the cumulative proportion of
the total variance in the raw portfolio returns explained by the factors F̂1 to F̂j . The sample is 1973:01–2016:12.

F̂1 F̂2 F̂3 F̂4 F̂5 F̂6 F̂7 F̂8 F̂9
Mean(%) 0.53 −0.59 0.01 −0.67 0.09 0.47 −0.03 −0.90 −0.55

φ 0.08 0.00 0.11 −0.03 0.11 0.05 0.15 0.04 0.02
vj 0.85 0.88 0.89 0.90 0.90 0.91 0.91 0.91 0.92
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Table 3: Anomalies and statistical factors
This table reports R2 estimates from single regressions of return spreads onto the estimated com-
mon factors (F̂j). The “high-minus-low” return spreads are associated with 42 market anoma-
lies. See Table 1 for a description of the different portfolio sorts. The sample is 1973:01–2016:12.

F̂1 F̂2 F̂3 F̂4 F̂5 F̂6 F̂7 F̂8 F̂9

acc 0.00 0.06 0.01 0.02 0.03 0.02 0.05 0.01 0.01
agr 0.03 0.04 0.18 0.14 0.08 0.00 0.00 0.00 0.09

baspread 0.42 0.45 0.02 0.00 0.00 0.00 0.01 0.00 0.00
beta 0.50 0.38 0.00 0.00 0.03 0.00 0.00 0.00 0.00

bm ia 0.07 0.18 0.01 0.01 0.03 0.00 0.00 0.15 0.00
bm 0.01 0.00 0.59 0.16 0.00 0.00 0.01 0.00 0.03

cashpr 0.04 0.11 0.42 0.05 0.01 0.04 0.02 0.00 0.02
cfp 0.05 0.28 0.02 0.00 0.08 0.00 0.06 0.05 0.06

chatoia 0.01 0.02 0.00 0.03 0.11 0.00 0.01 0.01 0.00
chmom 0.09 0.01 0.01 0.14 0.01 0.03 0.00 0.33 0.00
currat 0.37 0.28 0.01 0.00 0.03 0.03 0.03 0.01 0.01
dolvol 0.00 0.08 0.45 0.09 0.00 0.06 0.09 0.02 0.00

ear 0.01 0.00 0.11 0.05 0.00 0.01 0.02 0.00 0.00
egr 0.06 0.05 0.10 0.13 0.13 0.00 0.01 0.01 0.08
ep 0.10 0.32 0.05 0.01 0.07 0.03 0.00 0.02 0.06

grcapx 0.04 0.12 0.10 0.12 0.01 0.03 0.00 0.02 0.03
grltnoa 0.00 0.09 0.08 0.04 0.00 0.04 0.03 0.01 0.00
idiovol 0.41 0.52 0.00 0.01 0.01 0.00 0.00 0.00 0.00

indmom 0.01 0.00 0.17 0.38 0.01 0.00 0.00 0.04 0.00
invest 0.04 0.01 0.08 0.04 0.11 0.08 0.02 0.06 0.02

lgr 0.03 0.03 0.10 0.11 0.04 0.00 0.00 0.01 0.11
maxret 0.37 0.47 0.01 0.00 0.00 0.00 0.01 0.01 0.00
mom6m 0.07 0.02 0.24 0.47 0.00 0.03 0.00 0.03 0.00
mom12m 0.05 0.02 0.34 0.42 0.01 0.01 0.00 0.02 0.00
operprof 0.00 0.03 0.26 0.05 0.04 0.07 0.10 0.01 0.00
pchcapx 0.04 0.17 0.08 0.05 0.00 0.05 0.00 0.00 0.03

pchcurrat 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
pchdepr 0.00 0.08 0.01 0.02 0.05 0.00 0.00 0.02 0.01

pchsale pchinvt 0.00 0.01 0.00 0.06 0.01 0.00 0.02 0.00 0.01
pchsaleinv 0.00 0.01 0.01 0.05 0.01 0.00 0.01 0.00 0.00

quick 0.24 0.35 0.02 0.00 0.00 0.09 0.00 0.00 0.02
roaq 0.11 0.29 0.25 0.00 0.11 0.00 0.00 0.00 0.01
roeq 0.09 0.33 0.21 0.01 0.15 0.00 0.00 0.00 0.01
roic 0.14 0.25 0.17 0.07 0.09 0.01 0.01 0.00 0.00
rsup 0.00 0.01 0.09 0.06 0.04 0.03 0.02 0.00 0.06

salecash 0.11 0.14 0.01 0.03 0.00 0.39 0.01 0.04 0.00
saleinv 0.26 0.06 0.03 0.00 0.08 0.05 0.00 0.02 0.00
salerec 0.06 0.01 0.13 0.01 0.01 0.36 0.15 0.01 0.00

sgr 0.04 0.05 0.24 0.05 0.12 0.00 0.00 0.00 0.10
sp 0.01 0.01 0.48 0.15 0.01 0.07 0.01 0.00 0.02

std dolvol 0.00 0.13 0.25 0.14 0.01 0.02 0.14 0.00 0.00
turn 0.36 0.42 0.03 0.00 0.01 0.00 0.01 0.00 0.00
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Table 4: APT model: Factor risk premia estimates
This table reports the factor risk price estimates for the APT 9- and 6-factor models. The common factors
are estimated from PCA applied to 420 equity portfolios. The empirical method is the two-step regression
approach, where the second step consists of an OLS cross-sectional regression of average portfolio excess
returns on factor betas. The testing assets represent 420 portfolios associated with 42 portfolio sorts. See
Table 1 for a description of the different portfolio sorts. In Panel B, the testing assets are the extreme
three deciles (on each leg) for each group. λj denotes the risk price estimate (in %) for the jth common
factor (F̂j). Below the risk price estimates are displayed t-statistics based on Shanken’s standard errors (in
parentheses). The column labeled R2

OLS denotes the cross-sectional OLS R2. The values in parentheses
denote empirical p-values (obtained from a bootstrap simulation) for the null hypothesis R2

OLS = 0. ρ2

represents an alternative cross-sectional OLS R2, with the values in parentheses denoting asymptotic p-values
for the null hypothesis ρ2 = 0. The sample is 1973:01–2016:12. Italic, underlined, and bold t-ratios denote
statistical significance at the 10%, 5%, and 1% levels, respectively.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 R2
OLS ρ2

A. All deciles
1 0.53 −0.58 0.01 −0.64 0.08 0.43 −0.03 −0.78 −0.48 0.51 0.97

(2.81) (−3.08) (0.04) (−3.41) (0.41) (2.26) (−0.14) (−4.18) (−2.54) (0.000) (0.004)
2 0.53 −0.58 −0.64 0.42 −0.78 −0.48 0.51 0.97

(2.81) (−3.08) (−3.41) (2.26) (−4.18) (−2.53) (0.000) (0.004)
B. Extreme deciles

1 0.53 −0.59 −0.00 −0.62 −0.03 0.48 −0.08 −0.78 −0.59 0.58 0.97
(2.81) (−3.15) (−0.01) (−3.31) (−0.14) (2.53) (−0.41) (−4.16) (−3.09) (0.001) (0.006)

2 0.53 −0.59 −0.62 0.48 −0.79 −0.59 0.58 0.97
(2.81) (−3.15) (−3.31) (2.53) (−4.17) (−2.98) (0.000) (0.006)

Table 5: Time-series tests for APT model
This table reports the evaluation results for the 6-factor APT model (APT6). The empirical method is
time-series regressions applied to each testing portfolio. The testing assets represent 420 portfolios associated
with 42 portfolio sorts (Panel A). See Table 1 for a description of the different portfolio sorts. In Panel B,
the testing assets are the extreme three deciles (on each leg) for each group. MAA is the mean absolute
alpha (in %). #GRS denotes the number of portfolio groups in which the model is not rejected by the
GRS-test (at the 5% level). #t represents the number of portfolios with statistically significant alphas
(at the 5% level). R2

C is the cross-sectional constrained R2 and the numbers in parentheses represent the
respective empirical p-values to test the null that the explanatory ratio is zero (obtained from a bootstrap
simulation). SR2 represents the difference in R2

C between APT6 and the single-factor statistical model
(APT1), with the respective empirical p-values presented in parenthesis. The sample is 1973:01–2016:12.

A. All deciles B. Extreme deciles
APT1 APT6 APT1 APT6

MAA(%) 0.13 0.08 0.16 0.08
#GRS 13 32 12 26

#t 122 42 95 29
R2

C −0.58 0.50 −0.60 0.58
(1.000) (0.000) (1.000) (0.000)

SR2 1.09 1.18
(0.000) (0.000)
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Table 7: Time-series tests for empirical models
This table reports the evaluation results for the empirical multifactor models. The empirical method is
time-series regressions applied to each testing portfolio. The testing assets represent 420 portfolios associated
with 42 portfolio sorts (Panel A). See Table 1 for a description of the different portfolio sorts. In Panel B, the
testing assets are the extreme three deciles (on each leg) for each group. R2

C is the cross-sectional constrained
R2 and the numbers in parentheses represent the respective empirical p-values to test the null that the
explanatory ratio is zero (obtained from a bootstrap simulation). SR2 represents the difference in R2

C between
the 6-factor APT model (APT6) and each multifactor model, with the respective empirical p-values presented
in parenthesis. “Ratio” denotes the ratio in R2

C between a given empirical model and APT6. This measure is
not computed for the BS6 model, as such model produces a negative R2

C estimate. The multifactor models
are the Carhart 4-factor model (C4), Hou–Xue–Zhang 4-factor model (HXZ4), Hou–Mo–Xue–Zhang 5-factor
model (HMXZ5), Fama–French 5-factor model (FF5), Fama–French 6-factor model (FF6), Barillas–Shanken
6-factor model (BS6), and the Stambaugh–Yuan 4-factor model (SY4). The sample is 1973:01–2016:12.

APT6 C4 HXZ4 HMXZ5 FF5 FF6 BS6 SY4
A. All deciles

R2
C 0.50 0.14 0.14 0.22 0.04 0.21 −0.41 0.18

(0.000) (0.007) (0.016) (0.004) (0.127) (0.002) (0.990) (0.007)
SR2 0.36 0.36 0.28 0.46 0.30 0.91 0.33

(0.001) (0.010) (0.076) (0.000) (0.013) (0.000) (0.025)
Ratio 0.28 0.28 0.44 0.08 0.42 NA 0.36

B. Extreme deciles
R2

C 0.58 0.18 0.25 0.32 0.11 0.29 −0.28 0.25
(0.000) (0.004) (0.001) (0.001) (0.030) (0.000) (0.945) (0.002)

SR2 0.40 0.33 0.25 0.47 0.29 0.86 0.33
(0.001) (0.014) (0.103) (0.001) (0.019) (0.000) (0.027)

Ratio 0.31 0.43 0.55 0.19 0.50 NA 0.43
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