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Appendix A: Further Simulation Details

In this work, two types of binding model are employed to describe two common interactions observed within mem-
braneless organelles: isotropic binding (representing generic non-specific attraction) and directional binding (repre-
senting binding at mutually specific sites on the two species) [1]. In general, the interaction energy between two beads,
i and j, is given by:

Eij = δijεij , (A.1)

where εij is the interaction strength between beads i and j. For a client–receptor pair, εij takes the value −f , with
f > 0 corresponding to attractive interactions. For other combinations of bead types, εij = 0. The Kronecker delta
δij determines whether or not the two beads are bound. When isotropic bonds are activated, all beads on adjacent
lattice sites are automatically bound, and therefore δij is 1 for all adjacent beads and 0 for any pair of beads separated
by more than one step on the lattice. In contrast, when directional bonding is applied, each bead can only form one
bond. Thus, the calculation of δij requires MC moves for bond breaking and bond formation. The bond formation
move involves randomly selecting a client bead neighboring a receptor and attempting a bond formation with an
acceptance probability of

P acc = min
[
1, ωe−∆E/kT

]
. (A.2)

∆E is the change in energy of the move. The weighting factor ω = Nu/(Nb + 1) is needed to ensure the move
obeys detailed balance, where Nu and Nb are the number of unbound and bound client–receptor pairs, respectively.
For the bond-breaking move, we can also use a similar method. However, in this case, client–receptor bonds are
selected randomly and the weighting factor in the acceptance probability for the selected bond to be broken becomes
ω = Nb/(Nu + 1) [2].

In the simulations, the client is able to explore the system by reptation, individual bead displacement and teleport
moves. In the reptation move, the end bead is deleted and a bead is randomly positioned, within the linker range, at
the other end of the chain. Individual bead displacements correspond to moves in which a bead is randomly selected
and moved to a new position. Teleport moves involve the deletion of the client and the regrowth from a randomly
selected lattice site. This regrowth involves sequentially positioning client beads a random displacement from the
previous bead. All these moves are immediately rejected if they result in two beads occupying the same lattice site
or the implicit linkers becoming broken. If the move is not limited by either one of these two constraints, it is then
accepted with a probability of

P acc = min
[
1, e−∆E/kT

]
. (A.3)

As before, ∆E is the change in energy of the trial move [2]. We also note that, in the directional binding case, all
chain moves that involve a bond being broken are rejected and no bonds are formed in bead displacement moves, in
order to obey detailed balance.

To ensure that the system is fully explored by the client, we typically use 108 MC moves for the directional binding
case and 5 × 108 for the isotropic binding case. The ability of the client to explore the system fully was monitored
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FIG. S1: Simulation results for a decavalent client with linker length l = 5 exploring a system of crowders (at
density of 0.4) and receptors in the directional binding case, for an interaction strength between the client beads and

receptors ranging from −1kT to 4kT . (A) Client binding probability θ as a function of scaled receptor density γ.
(B) Superselectivity parameter α = d ln θ/d lnnR against scaled receptor density γ = nRe

−f/kT .

FIG. S2: Simulation results for a decavalent client with linker length l = 5 exploring a system of receptors in the
absence of crowders. The strength of the directional interaction between the client and receptor beads range from
0.01kT to 4kT . (A) Client binding probability θ as a function of receptor density γ. Superselectivity parameter

α = d ln θ/d lnnR against (B) receptor density nR and (C) scaled receptor density γ = nRe
−f/kT .

throughout this work, to ensure that the binding occurred all the way through the slab and not predominantly at the
interface. Sampling only became an issue when the combined packing fraction of receptors and crowders in the scaffold
was 0.8 or greater. In all cases studied, the binding transition had already occurred at lower densities. Therefore the
inability of the client to penetrate the scaffold at extremely high densities had no impact on the findings in the paper.

Appendix B: Varying interaction strength and linker length in the directional binding case

In this section we provide additional results for the directional binding case. Here we have set the scaffold to free
volume ratio to 1:1. Variation in the volume ratio will be further explored in the next section. Figure S1 shows
how superselectivity depends on the interaction strength f for the directional binding case. Increasing the interaction
strength lowers the receptor density at which binding starts. This enthalpic effect can be accounted for by plotting the
probability θ of binding as a function of the parameter γ = nRe

−f/kT [3], where nR is the density of binding beads,
defined as the fraction of lattice sites in the scaffold region that the binding beads occupy. As panel (A) of Fig. S1
shows, when plotted in this way, the binding curves overlap for sufficiently strong binding strengths (f ≥ 2kT ).

As the interaction strength weakens below f = 2kT , the onset of binding is shifted to higher receptor densities.
However, the combination of the crowder beads and the increased number of receptor beads then makes the overall
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FIG. S3: Simulation results for a single decavalent client, with interaction strength of 2kT , in a system containing
crowders at density 0.4, for several linker lengths

density of the scaffold region very high, thereby increasing the entropic cost for the client to enter the scaffold.
Superselectivity is therefore suppressed by the reduced enthalpic gain and higher entropic penalty for multivalent
binding. This effect is quantified in Fig. S1(B), which shows the superselectivity parameter α = d ln θ/d lnnR as a
function of the scaled receptor density γ. The peak α > 1 is unchanged over a wide range of f but is systematically
reduced and eventually eliminated when f becomes too small.

To provide additional evidence on the importance of crowders for superselectivity in 3D, we have also carried out
simulations for a wide range of interaction strengths in the absence of crowders, from f = 0.01kT to 4kT . The
results are presented in Fig. S2. When the volumes of the scaffold and free regions are comparable, we never find
superselective binding. Lower interaction strengths do shift the binding transition to higher nR values, but this shift
does not change the steepness of the binding transition. In fact, the binding curves collapse onto a master curve when
the receptor density is rescaled through γ.

We have also studied the impact of varying linker length between the client binding beads. The results are shown in
Fig. S3, where it can be seen there is some anti-correlation between superselectivity and the length of the linkers. Recall
that the linkers are represented implicitly as a maximum tether length between binding beads [4], so conformations of
the linker sections are not captured explicitly. The implicit linker representation also means that the total excluded
volume of a client depends only on the valency (the number of binding beads) and not on the linker length. However,
for short linkers, the volume-occupying beads are more concentrated in space. Hence, binding of even a single bead
to a scaffold receptor site places severe constraints on the conformation that the whole client may adopt.

Appendix C: Varying the free volume

The majority of results in this article are for a scaffold system adjacent to an empty cytosol region of equal volume.
However, as we have seen in the main text, superselectivity can be observed in the absence of crowders at sufficiently
large volume ratio between the free space and the scaffold.

To probe the entropic origins of this effect, we return to our analysis of multivalent client binding compared to that
of monovalent clients. Here, we use a system of scaffold to free volume ratio of 1:10, and study the binding behaviour
without and with crowders as a function of the receptor density. The results are shown in Fig. S4(A) and Fig. S4(B),
respectively. In both cases, a signature of superselective binding is the compression of the binding response into a
narrower range of receptor density, due to a suppression at low receptor density and an increase of binding probability
at high receptor density. Comparing Fig. S4(A) and Fig. S4(B), we can further conclude that this effect is much
stronger in the case with crowders.

Our direct computer simulations have a practical limitation on the ratio of free space to scaffold volume of O(1000).
To demonstrate the dominant effect of crowders in superselective binding for even larger volume ratio, we use a
statistical mechanical argument to extrapolate from the binding curve measured in simulations at a computationally
accessible volume ratio. First, we split the partition function of the client molecule into three terms:

Q = Qb +Qref + (V − Vref)Qu. (A.4)
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FIG. S4: Probability of m beads being bound in a system of parameters l = 5, f = 2kT and with scaffold to free
volume ratio of 1:10. The dashed lines are for ten monovalent clients and the solid lines are for a single decavalent

client. These plots are for systems (A) without crowders and (B) with crowders at density d = 0.4.

Here, Qb, the partition function for bound configurations in the scaffold and Qref is the partition function of unbound
configurations for a reference volume Vref of free space. Both these contributions are affected by the presence of the
scaffold, since steric interactions between the client and the scaffold will restrict the conformations that the client
can adopt, even if the client is not bound to the scaffold. The only requirement on Vref is that it is large enough to
include all unbound conformations of the client that do involve steric interactions with the scaffold. Finally, Qu is the
partition function per unit volume of unbound configurations in the bulk cytosol, far away from any interfaces. This
term captures the internal configurations of the client for a fixed center of mass. Given this decomposition of Q, the
probability of binding is

Pb =
Qb

Qb +Qref + (V − Vref)Qu
. (A.5)

The contributions Qb and Qref do not depend on the actual volume V of the system, while the free-volume term
scales linearly with the volume. Eq. (A.5) can be rearranged to give

1

Pb
= 1 +

Qref

Qb
+ (V − Vref)

Qu

Qb
. (A.6)

Fitting 1/Pb a function of V from available simulation data at a given receptor density, we can readily infer the values
of (1 +QrefQ

−1
b −VrefQuQ

−1
b ) and QuQ

−1
b for that receptor density. This, in turn allows us to extrapolate a point on

a binding curve to arbitrarily large volume ratio without carrying out prohibitively expensive simulations. Repeating
the process for each receptor density in a binding curve allows the entire curve to be mapped to a different volume
ratio, as shown in Fig. S5 for ratios up to 1:10000. The perfect agreement of the explicit simulations and extrapolated
predictions for volume ratios 1:50 and 1:1000 demonstrate the reliability of the calculation. Importantly, the effect
of the crowders remains pronounced and continues to enhance superselectivity even in the limit of large volume ratio
between the free space and the scaffold domain.

Appendix D: Simulations with multiple clients

Throughout this paper, we have presented results using only a single client. Here we demonstrate that these results
are representative of the dilute regime in which the clients are at significantly lower concentrations than the scaffold,
as has been studied experimentally by Banani et al. [5] and Jo and Jung [6], among others. Typically, the client
concentrations are several orders of magnitude lower than the scaffold concentrations.

Fig. S6 compares the simulation results using 1 and 50 decavalent clients for the directional binding case, corre-
sponding to a client volume fraction of φ = 8 × 10−5 and φ = 4 × 10−3 respectively. The fraction of bound clients



5

FIG. S5: Superselectivity parameter α for a single client in simulation systems with various ratios of scaffold volume
to free space, for a scaffold (A) without and (B) with crowders at density d = 0.4. Dashed lines are simulation

results, and solid lines are predicted curves from Eq. A.6. The clients were decavalent with linker length l = 5 and
interaction strength of f = 2kT .

FIG. S6: Results for simulations of 50 clients within the system, where (A) shows the probability of binding at
various receptor densities and (B) shows the variation in α with γ.

and the superselectivity behaviour observed are essentially identical. We only start seeing significant deviation for
100 clients, corresponding to a client fraction of φ = 8 × 10−3.

The structure and composition of membranelles organelles remain a very active area of research, and the proportions
of client and scaffold molecules that form stable droplets depend strongly on the types of membranelles organelles
[7, 8]. We expect higher client concentrations to alter the scaffold structure [9], and this is an interesting and important
area for future work.

Appendix E: Isotropic binding

The results for the isotropic binding case align well with those of the directional binding case, as can be seen in
Fig. S7. We observe that superselectivity increases with increasing crowder density and client valency in panels (A)
and (B), respectively. However, deviations from the directional binding case can be observed for variations in linker
length and binding strength, as illustrated in panels (C) and (D). The key new effect for isotropic binding is due to
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FIG. S7: The superselectivity parameter α as a function of nR for a variety of parameters: (A) the density d of
crowders in the receptor slab, (B) the valency of the client v, (C) the linker length of the client l, and (D) the
interaction strength between the client and receptors f . In each of these plots the variables are v = 10, l = 5,
f = 2kT and d = 0.4, unless stated otherwise. All results in this figure are for the case of isotropic binding.

the possibility of forming bonds between multiple beads of the client and a single receptor bead, which is not allowed
in the directional model.

By forming multiple bonds, the effective density of receptor sites is increased and the client can more easily overcome
the entropic cost of entering the 3D host. An extreme case is shown in Fig. S7(C) for l = 2, where the receptor beads
are surrounded by a client, resulting in the peak in α at very low nR. Such behavior requires the client to adopt a
compact structure. Correspondingly, as further shown in Fig. S7(C), we can delay the peak in α by increasing the
entropic barrier by using longer linker length, or by decreasing the enthalpic gain by employing weaker interaction
strength (comparing f = 2 kT and f = 1 kT for l = 2).

Similar behavior is also observed in Fig. S7(D) for l = 5 when we vary f from 1 kT to 3 kT . These shifts in nR

values for the peaks of α differentiate the isotropic from the directional binding case. For the latter, the shifts are
not observed upon variation in linker length. The shifts for variations in interaction strength also cannot be captured
by the parameter γ introduced in the previous section. In fact, since the client can form multiple bonds, the use of γ
instead of θ for the binding probability plots is generally not helpful.

Figure S8 shows the probability of m beads being bound for the isotropic binding case, in systems both with and
without crowders. As with the directional binding case, the probability of one bead being bound is greatly suppressed
for a multivalent client compared to monomers in a system with crowders, but not when crowders are absent. The
main difference between the directional and isotropic binding cases is that the cooperative effect sets in at lower nR.
This can be seen by comparing the lines corresponding to 5 beads being bound, for the decavalent and monovalent
clients. This is likely a result of the client being able to form many more bonds in the isotropic binding case, compared



7

FIG. S8: Probability of m beads being bound in a system of parameters l = 5 and f = 2kT . The dashed lines are
for ten monovalent clients and the solid lines are for a single decavalent client. These plots are for systems (A)

without crowders, (B) with crowders at density d = 0.4.

to directional binding. Isotropic binding also reduces the competition for binding to a given receptor as multiple client
beads can bind to the same receptor, unlike in the directional binding case.

Overall, the earlier onset of cooperativity strengthens superselective effect where crowders are present. This can
be observed by comparing the magnitude of the peaks in Fig. S7 and Fig. 4 of the main text. However, this change
in cooperativity is not sufficient to introduce superselective binding in the case where crowders are absent. We also
emphasize that the possibility for a client to form multiple bonds with a receptor bead differentiate the isotropic
binding case from the directional binding scenario. These two cases cannot be mapped onto each other through
a simple rescaling of the interaction energies. Nevertheless, the trends in superselective behavior with respect to
crowder density are analogous for the two binding models, demonstrating that the introduction or enhancement of
superselectivity by crowders does not depend on the details of the bonding.
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