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Abstract

Historical maps present a unique depiction of past landscapes, providing evidence for

a wide range of information such as settlement distribution, past land use, natural

resources, transport networks, toponymy and other natural and cultural data within

an explicitly spatial context. Maps produced before the expansion of large-scale

mechanized agriculture reflect a landscape that is lost today. Of particular interest to

us is the great quantity of archaeologically relevant information that these maps

recorded, both deliberately and incidentally. Despite the importance of the informa-

tion they contain, researchers have only recently begun to automatically digitize and

extract data from such maps as coherent information, rather than manually examine

a raster image. However, these new approaches have focused on specific types of

information that cannot be used directly for archaeological or heritage purposes. This

paper provides a proof of concept of the application of deep learning techniques to

extract archaeological information from historical maps in an automated manner.

Early twentieth century colonial map series have been chosen, as they provide

enough time depth to avoid many recent large-scale landscape modifications and

cover very large areas (comprising several countries). The use of common symbology

and conventions enhance the applicability of the method. The results show deep

learning to be an efficient tool for the recovery of georeferenced, archaeologically

relevant information that is represented as conventional signs, line-drawings and text

in historical maps. The method can provide excellent results when an adequate train-

ing dataset has been gathered and is therefore at its best when applied to the large

map series that can supply such information. The deep learning approaches described

here open up the possibility to map sites and features across entire map series much

more quickly and coherently than other available methods, opening up the potential

to reconstruct archaeological landscapes at continental scales.
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1 | INTRODUCTION

The use of historical maps has a long tradition in archaeological

research and has played an important role in a wide array of scientific

disciplines (Chiang, Duan, Leyk, Uhl, & Knoblock, 2020). As a ‘frozen’
image of a territory, maps provide information about the landscape

and society of the period in which they were created. Beyond that,

they are also useful for analysing aspects of the landscape which have

since been truncated or destroyed by the types of large-scale trans-

formations conducted over the last century, in particular, mechanized

agriculture and urban expansion. Archaeologists have been using

these sources for a long time in order to carry out regressive analysis

and reconstruct successive landscape phases through time employing

old maps for the study of historical patterns in settlement, road net-

works and field systems (Bevan & Conolly, 2002; Chouquer, 1996;

Crawford, 1926; Hoskins, 1955; Orengo & Palet, 2009; Vermeulen,

Antrop, Hageman, & Wiedemann, 2001; Vion, 1989). Historical maps

can also be used to identify archaeological sites or features which

were reported, on purpose or accidentally, by the surveyors

(Lape, 2002; Orengo & Fiz, 2008; Panich, Schneider, & Byram, 2018;

Petrie et al., 2019; Rondelli, Stride, & García-Granero, 2013).

Systematic survey and mapping have been an essential and

widely used instrument of statecraft for centuries, used to conquer,

control, manage, tax, exploit, divide and protect areas. Since the late

eighteenth century, the development of survey techniques on one

side and political and ideological interests on the other pushed several

European states to undertake systematic mapping of their own terri-

tories at an unprecedented scale and extension (Kent, Vervust,

Demhardt, & Millea, 2020). This step change in European map produc-

tion was almost immediately applied in their colonial dominions,

starting during the nineteenth century, thereby reaching large parts of

the world, as an inseparable companion of enlightenment, imperialism,

agricultural intensification and the industrial revolution. In the after-

math of the First World War, imperial dominions extended through

large parts of the Middle East and marked the beginning in the use of

aerial survey techniques for large scale mapping.

The Cassini Carte of France, the British Ordnance Survey and the

Russian mapping of Siberia and Central Asia are examples of grand

projects that are well known and employed within archaeological

research. In this context can be placed the two series used in this

work: the Survey of India (SoI), which was initially developed in paral-

lel with the expansion of British control in India during the nineteenth

century (Edney, 2009; Sarkar, 2020), and the 1:50.000 series derived

from the works performed by the Bureau Topographique du Levant

(BTL, later renamed Service Géographique des Forces Française Libres

du Levant) created in 1918 under the authority of the Service

Géographique de l'Armée (Le Douarin, 2020). Despite significant dif-

ferences in technical apparatus, many of these maps were produced

to a very high standard, with a spatial accuracy which is almost com-

parable to that of modern maps at similar scales.

The vast amount of information resulting from the continuous

systematic mapping projects conducted between the late eighteenth

century and the middle of the twentieth century remains in physical

archives. Many institutions are currently developing digitizing pro-

grams to make these maps more readily available. Maps have been

digitized on demand for research purposes, and digital repositories are

becoming available. However, the number of digital historical maps is

still relatively small in comparison to the total coverage, and to collect

the maps necessary to ensure coverage of a large study area usually

requires access to several repositories and the digitization of archive-

stored originals often hosted in multiple institutions.

These map series offer considerable potential for archaeological

and historical research and also heritage protection and manage-

ment as they often record archaeological sites, historical monuments

and other features of archaeological interest, either deliberately or

incidentally through features such as place names, specific symbol-

ogy or topographic expressions (Petrie et al., 2019). These colonial

map series were produced intensively during the nineteenth and

early twentieth centuries, and they depict landscapes that have

been substantially modified since their production. During the last

half century, the adoption of mechanized agriculture, intensive irri-

gation, urban development and in some areas conflict and large-

scale looting has dramatically changed the landscapes reflected in

these maps, making them much more valuable for archaeologists

and historians. In many cases, they include archaeological features

which are difficult to identify today and may be entirely destroyed.

Associated information such as toponyms is also very valuable, as

they document historic knowledge that might also be lost today. In

many regions, the quality and importance of the information con-

tained in these map series should qualify them as one of the basic,

most relevant sources for archaeological, historical and heritage

research. However, this has rarely been the case, and, although

many projects make use of these historical maps, there have been

few systematic attempts to extract information as large-scale quan-

tifiable georeferenced data.

Up to now, most uses of historical map collections have relied on

the digitization of maps as raster image files and their more or less

systematic georeferencing in GIS environments (Orengo,

Krahtopoulou, Garcia-Molsosa, Palaiochoritis, & Stamati, 2015; Petrie

et al., 2019). However, the most time-consuming part, the extraction

of features of historic-archaeological interest, has had to be done

using manual approaches. This process has involved the visual identifi-

cation/location of features and their digitization using vector formats

that could correspond to points (the fastest of the methods), lines or

polygons (which provide extra information such as shape and area but

require a higher investment of labour). There has been a recent

increase in the development of approaches directed to the automatic

vectorization of maps (Chiang et al., 2020; Shbita et al., 2020; Uhl,

Leyk, Chiang, Duan, & Knoblock, 2020). Those cases take advantage

of current developments in machine learning (ML) and deep learning

(DL) approaches to computer vision (CV), with neural networks (NNs)

having a prominent role. These approaches largely remain experimen-

tal and complex and do not categorize elements of archaeological

interest. Notably, the archaeologically relevant information is included

within other categories of data such as topography, toponymy or spe-

cific map symbology and still requires manual extraction and analysis.
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In this paper, we provide a first proof of concept for the auto-

matic extraction of features of archaeological interest from large

series of historical maps using DL approaches. For this purpose, we

have selected two map series depicting areas of high archaeological

potential that were produced by two different colonial governments:

the SoI during the period of British control of South Asia (Figure 1)

and the ‘Armée Du Levant. Service Géographique’ series during the

period of the French Mandate in Syria and Lebanon (Figure 2). For the

latter, we have used a series of copies made during World War 2 and

its aftermath, as these were readily available. The projection system

and information depicted are the same in the copies, though they

have a narrower range of colours than the original series. These map

series offer enough variability to test the identification and extraction

of different types of features with different levels of detection com-

plexity and archaeological interest.

2 | METHODS: DL-BASED
SEGMENTATION

ML, a subfield of artificial intelligence, has only recently begun to

be exploited in archaeological research, but applications are rapidly

increasing. The field developed significantly during the second half

of the 2010s when archaeologists started to take advantage of

easy access to ML algorithms and cloud computing resources. Most

of these applications have focused on the detection of archaeologi-

cal sites, usually employing remote sensing data (Davis, 2020).

They include examples of the use of LiDAR (Davis, Lipo, &

Sanger, 2019; Gallwey, Eyre, Tonkins, & Coggan, 2019; Somrak,

Džeroski, & Kokalj, 2020; Trier, Cowley, & Waldeland, 2019;

Verschoof-van der Vaart, Lambers, Kowalczyk, & Bourgeois, 2020),

multispectral satellite imagery (Menze & Ur, 2012; Orengo

F IGURE 1 (1) Location of the area used for testing the survey of India collections and (2) sheets used in this paper. Examples of
archaeological sites (locations obtained from Mughal, Khan, Iqbal, Hassan, & Afzal Khan, 1996) drawn as mounds in pre-WWI editions (3–5) and
interwars editions (6–8) [Colour figure can be viewed at wileyonlinelibrary.com]
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et al., 2020; Thabeng, Merlo, & Adam, 2019; Trier, Larsen, &

Solberg, 2009) and/or drone-based imagery (Orengo & Garcia-

Molsosa, 2019; S�ar�aşan et al., 2020). Successful approaches have

been tested, but the use of these technologies is still very limited out-

side research groups dedicated to experimentation on computational

applications in archaeology. ML approaches require computational

skills that are not routinely taught in archaeological training. Where

archaeologists have taken the plunge, the complex alignment of

sources, technical capacities and research questions required can

produce disappointing outcomes. As a result, there is some

understandable scepticism towards its practical utility (Casana, 2014;

Palmer, 2020).

Despite their potential, historical maps have been left outside this

approach. This is likely due to several factors:

1. A certain amount of preprocessing is necessary to apply ML

methods, such as digitization and georeferencing.

2. Maps are not always easy to access, and there are few complete

historical map series that can be freely accessed and downloaded

in digital form.

F IGURE 2 (1 and 2) location of the area of Syria covered by the maps used in this test. Different examples to represent potential
archaeological mounds (3–5) and the presence of settlement ruins (6–8). Note that ‘tell’ (Arabic for settlement mound) may appear as the name
of a mound feature or a toponym in the absence of an obvious topographic feature. This convention may be due to the placement of the names
on the map, or a real difference in the location of the named village and the tell site, or because the tell has been destroyed in advance of the
mapping of the region [Colour figure can be viewed at wileyonlinelibrary.com]
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3. Maps are subjective sources made by surveyors whose interest

was rarely the recording of archaeological sites. As such, they

often lack strict, systematic parameters that can be used to iden-

tify archaeological sites. Sites can be represented through its

topography but also conventional signs, both intended and

unintended. That means that the same type of cultural element

might be represented by different symbology in the same collec-

tion or even the same map. Also, the inclusion or not of a site mark

in a map is highly dependent on the surveyor perception.

4. In contrast with current DL archaeological applications, which usu-

ally focus on simple shapes such as mounds visible in lidar-derived

topographic data, features of interest in historical maps, even

within the same object class, present inconsistent and irregular

shapes. Their detection requires a much larger quantity of training

data and the use of data augmentation techniques.

The first two factors that have influenced the use of historical maps

can be at least partially overcome by choosing appropriate map series

and working across multiple institutions. We might also expect acces-

sibility of map series to increase over time as more institutions digitize

their collections. Importantly, the age of many of the map series

means they are no longer subject to copyright and it is possible to

make them publicly available with limited restrictions on reuse. The

last two factors are more challenging to overcome, but we believe

that a systematic extraction of archaeological and heritage features

from historical maps is not just possible but beneficial under certain

circumstances.

It is important not to overlook the fact that many of the identified

features need to be verified in the field. This presents additional prob-

lems because landscape change and inaccuracies in the recording,

georeferencing and placement of tags can make the ground checking

of map-recorded features complicated.

Our approach to implementing ML on historical maps is based on

two separate steps.

2.1 | Georeferencing of high-resolution digitized
historical maps

For the SoI map series, a detailed description of the georeferencing

procedures that have been developed and implemented can be found

in Petrie et al. (2019) and Green et al. (2019). A short summary is

offered here.

Both ESRI's ArcMap (ESRI, 2020) and QGIS georeferencing tools

(a plugin using GDAL in the case of QGIS; QGIS, 2020) were

employed for the georeferencing process using WGS84 as the geo-

detic datum. Ground control points (GCPs) were obtained in ArcGIS

through its basemap service and QGIS using high-resolution Bing and

Google imagery services imported as XYZ tiles.

Because the maps were digitized using either a photographic

camera or a barrel scanner and their preservation state was not ideal,

we employed a minimum of 20 clearly identifiable GCPs distributed

evenly across each map. These consisted mostly of canal, road, and

railroad intersections, which were some of the few landscape ele-

ments that have been preserved since the early twentieth century.

GCPs for each map were evaluated using their RMSE values, and

unreliable GCPs were eliminated to achieve the best possible result.

The rectified maps provided maximum RMSE values of 26.8 m.

The French mandate Levant series were georeferenced using

ESRI's ArcMap georeferencing tool. Eight figure grid references on the

French-British Levant Lambert projection grid (equivalent to the mod-

ern Deir ez Zor/Syrian Lambert system which uses the Deir ez Zor

geographic 2D CRS) and the Syria Lambert (Lambert Conic Conformal

1SP as its projection) are printed in the corner of each map sheet, giv-

ing a precision to the nearest 100 m. These were used as control

points. Rectified maps provided maximum RMSE values of 65.5

m. For comparison with other datasets, the maps were then

reprojected in the WGS84 UTM coordinate system.

2.2 | CNN-based DL segmentation of features of
interest in digitized historical maps

Although mounded shapes characterize many of the archaeological

sites in our two test areas, these features do not follow a unique or

standard form of representation. Mounds and other features of inter-

est can be represented using a variety of symbols and toponymy (see

Petrie et al., 2019). In this work, we test three different types of rep-

resentation of features of archaeological interest: topographic ele-

ments to represent mounds, complex conventional signs for the

representation of ‘ruins’ and toponyms linked to archaeological fea-

tures. The first is tested on the SoI collection (Figure 1: 3–8) and the

latter two on the Levant series (Figure 2: 6–8 for conventional signs

and 3–5 for toponyms).

The strategy adopted here makes use of segmentation

approaches as, besides site location, we were interested in the shape

and size of the features of interest, in particular mound representa-

tions. Rather than employing a single detector to classify the whole

map series, we developed different detectors focusing on specific ele-

ments of interest. This strategy allowed us to have a more focused

training process in which only a particular element per detector was

tagged, avoiding confusion between classes.

Given the number of classifiers required to detect all objects of

archaeological interest, we employed Picterra, an online ML platform

that provides a simple and intuitive graphical interface for the selec-

tion of training data. Picterra uses a U-Net-based architecture

(Ronneberger, Fischer, & Brox, 2015) for the ML object instance seg-

mentation. Convolutional neural networks (CNN) are DL architec-

tures that, among other uses, can identify and outline predefined

objects classes from raster images through the patterns in pixel rela-

tions. This approach is well suited for identifying individual objects

not necessarily identical but that share a similar representation on

the maps.

Typical DL methods combine object detection to classify individ-

ual objects and locate each of these within a bounding box, and

semantic segmentation, which classifies each image pixel into a
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category and instance segmentation, in order to differentiate between

object instances. Picterra implementation uses a CNN architecture

based on U-Net. The algorithm automatically performs a series of

preprocessing steps including data augmentation, which aims at pro-

viding well-balanced and effective training data for the development

of the model. The training of the models uses cloud-based distributed

computing, which greatly speeds the process. In addition, by using

proprietary postprocessing techniques on the output of the U-Net

model, it separates the per-pixel classification results into separate

objects, effectively outputting Mask R-CNN-like instance segmenta-

tion results without the overhead of a large and overly complex net-

work that requires an abundance of data to be trained on. In this way,

the training and testing of detectors can be achieved very quickly

without the need to gather large amounts of annotated images. There

are two other reasons why Picterra was considered an adequate plat-

form for this research instead of developing our own open access

detectors: (a) the research aim was to test the potential of DL for the

detection of multiple map features, and therefore, a fast and efficient

method allowed us to experiment until an adequate detector for each

feature was achieved; (b) the symbology and representation of

archaeological features can vary greatly between series and between

maps in individual series, meaning other researchers will have to train

their own algorithm that fits the specific features and symbology of

the maps they are using.

2.3 | Map series and training of the algorithm

The maps were analysed by experts in the archaeology of each study

area in order to select relevant features that were indicative of

archaeological sites.

The historical series of the SoI is composed of hundreds of

sheets and covers much of modern Pakistan, India, Bangladesh and

Sri Lanka. The 100 to 1-mile series (1:63,360) of SoI maps is the most

detailed scale commonly available, and detailed four-colour sheets

were issued between 1905 and 1936, with much of the data being

based on late nineteenth and early twentieth century surveys (Petrie

et al., 2019). Consistent guidelines for the representation of differ-

ent features were followed, though variations can be found in the

different published series, and sometimes in various maps of the

same series. Although the SoI is a government institution, maps

were made available to libraries and the public from the moment of

their publication and copies circulated widely outside military circles.

We have worked with the collection stored in the Map Room of the

Cambridge University Library which, as a copyright library, received

copies of most of the maps that reached Britain and now holds one

of the more complete collections in the United Kingdom. The British

Library and the Bodleian Library also hold substantial collections of

the 100 to 1-mile series, and although there is much overlap, these

collections also complement each other. The US Army produced

copies of the SoI maps, and these copies have been digitized by the

University of Texas (US Army Service, 1955), which has made them

publicly available.

In the case of the SoI maps, these have been previously employed

to support archaeological survey in South Asia (Petrie et al., 2019) in

particular in the Indian State of Haryana (Green et al., 2019) and the

Pakistani Province of Punjab (Garcia, Orengo, Conesa, Green, &

Petrie, 2019). These previous survey campaigns have been focused on

mounds represented in the maps, which in many cases correspond to

the remains of ancient settlements and also evidence for river courses

and river migration. To some extent all the cultural phases that have

seen settlement in the Indus River basin, from the time of the Indus

civilization up to the British period, are represented in the rich archae-

ological record displayed in these maps. Field ground-truthing in

Haryana has confirmed the strong correlation between certain types

of mound representations and the presence of surface archaeological

material (Green et al., 2019). In a specific part of Haryana alone,

199 previously unknown archaeological sites have been detected and

confirmed by ground assessment. This previous experience was

important in selecting training data for the algorithm. Three different

detectors were trained, each corresponding to a different type of

mound representation (see Figure 3: 1–2 and 17). The test area corre-

sponds to the current district of Multan in the Pakistani province of

Punjab. The maps had been previously georeferenced, and the fea-

tures extracted manually, providing the basis for testing of the results

at a large scale.

The SoI maps used for this study (Figure 1: 2) correspond to two

temporal series: 13 maps from the early 1900s editions, published

between 1907 and 1909, and 34 maps from the 1930s editions, publi-

shed between 1933 and 1936. In each edition, mounds are represen-

ted differently: in the 1900s editions, mounds typically appear as

contours (Figure 1: 3 and 4) or hachures, a type of old topographical

depiction similar to hillshading formed by roughly parallel lines, their

closeness and density indicating steepness of gradient. They usually

become thinner or display triangulated shapes as they point towards

downhill direction (Figure 1: 5). In the 1930s editions, mounds are

almost exclusively depicted as simple form lines (Figure 1: 6–8),

though this type of representations may have also been used from the

early 1910s (see Petrie et al., 2019). Thus, we have created a detector

for each of the map series, as a way to obtain more accurate results:

• Detector 1a (Figure 3: 1 and 2) targets both ways of representing

mounds in early 1900s maps: as contours and hachures. We have

employed 26 training areas in eight of the maps, containing 71 fea-

tures previously identified as mounds.

• Detector 1b (Figure 3: 1) is a second version of the early 1900s

detector, which focuses only on contours. It was trained to test to

what degree specialized detectors might improve the results within

each map series. For this detector, we used 19 areas in five maps

containing 66 features.

• Detector 2 (Figure 3: 17) targets simple discontinuous form lines

and was applied to the 1930s maps. We employed 122 features

recorded from 11 areas distributed in six maps.

A size-based threshold was later applied to the results. In our experi-

ence in Haryana using SoI maps for field survey (Green et al., 2019),
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we have observed that features of a relatively larger size on the maps

(from around 200 m diameter) are much more likely to correspond to

archaeological sites confirmed by the presence of artefacts on the

field. Conversely, smaller features (around 100 m or less in diameter;

see example in Figure 3: 19) typically provided negative results during

the fieldwork and likely indicated natural features, small dunes or

modern spoil from pond excavation. As a result, we have divided the

results into a high-probability (>2 ha) category and a low-probability

(<2 ha) category and considered only the first group here. This thresh-

old, however, presented a minor problem in the high-probability

group. In few cases, the detector identified larger features as several

smaller features instead of a single larger one. The threshold, there-

fore, categorized these as low probability sites. On the contrary,

groups of small features were often joined by the detector into larger

single areas, which the threshold incorporated in the high-probability

range.

The case of the Levant map series of Syria is rather different.

These were created during the 1930s, but most of the maps available,

including those employed in this study, are British copies made during

the Second World War. The Syria and Lebanon map series inherited

models and practices from the North African French map series as

their production was centralized by the Service Géographique de

l'Armée, which dispatched the experienced officials who were in

charge of the 1:50.000 series (Le Douarin, 2020). The French maps

incorporate direct references to archaeological sites and some other

representations that are indirectly related. The features/objects to be

located included toponyms such as tell (mound in Arabic) and khirba

(ruin in Arabic), which are indirectly related to archaeological sites,

and also some text that can be directly associated with archaeological

occurrences such as ‘R.R.’ (Ruines Romaines), and ‘Ruines’ (ruins in

French). The maps also include symbols marking ruins (Figure 2: 6–8)

and some hachure symbology that can be related to mounded ‘tells’
(Figure 2: 5).

The maps of the French Levant 1:50,000 series have been used

as a reference by archaeological surveys for many decades

(Braemer, 1984, 1988). However, their use became widespread in

archaeology only following easy digitization and accessible GIS-

software (Mantellini, Micale, & Peyronel, 2013).

F IGURE 3 Detectors trained for the mounds represented at the (1–2) early 1900s and (17) 1930s editions of the SoI maps. The processing
(3–4 and 18–19) included the use of a 2 ha threshold to discriminate the features with a higher probability of corresponding to archaeological
sites. Examples of features successfully detected (5–8 and 20–23), false positives (9–12 and 24–27) and missed by the detector but manually
detected (13–16 and 28) are illustrated [Colour figure can be viewed at wileyonlinelibrary.com]
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Two detectors developed for the Syria series have been trained

on a small group of maps as a first test for the use of this methodol-

ogy in the series:

• Detector 3 (Figure 4: 1) targeting the word ‘Tell’ in Latin characters

was trained using eight training areas containing 39 features from

three of the seven maps available for this preliminary work, as only

three maps employed Latin characters. In the future, a similar

detector for Arabic characters could be developed.

• Detector 4 (Figure 4: 14) focuses on the conventional symbol

referring to ruins. It resembles a grouping of ‘L’-shaped marks,

perhaps indicating walls. Rather than using the single ‘L’ shape,

which would have resulted in the detection of a large number of

false positives given the simplicity of the symbol and its common

appearance in other map features unrelated to ruins, the algorithm

was trained using the ensemble of signs used to represent a single

site. This is a complex type of symbolic representation. Although

single symbols (such as red triangles) would have presented a

much easier target, these composite symbols are challenging

because of (1) the simplicity of the ‘L’ shape, which forms a part

of many other symbols including letters and (2) the variable and

changing way in which they are employed to represent sites. We

used eight training areas from four different maps which contain

235 features in total.

3 | RESULTS

Within the 47 maps of the SoI analysed, 13,130 features were identi-

fied through the DL process before using the size threshold, 322 fea-

tures in the early 1900s maps and 12,808 in the 1930s maps.

Applying the size threshold resulted in 638 high probability features

(162 in the early 1900s maps and 476 in the 1930s maps).

Comparing the results with the systematic manual identification,

all detectors employed have managed to detect at least 90% of the

features identified through the manual identification (Table 1). In the

case of the SoI, the detectors missed only seven features in total

(Figure 3: 13–16 and 28), with the nuance that in a few cases the area

identified is not large enough and, thus, once the threshold of 2 ha is

F IGURE 4 Detectors trained for the detection of ‘tell’ toponyms (1–2) and conventional sign for ruins (14–15) on French Levant maps.
Examples of features successfully detected (3–6 and 16–19), false positives (7–10 and 20–23) and manually detected but missed by the detector
(11–13 and 24–27) [Colour figure can be viewed at wileyonlinelibrary.com]
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applied the missing percentages increase to 10% in the early 1900a

detectors tested (D1a and D1b) and 6% in D2.

In the SoI maps, the number of false positives is relatively small. It

is significantly higher in D1a (12%) compared to the other two (4%

D1b and 3% D2). Because most of the false positives in early 1900s

editions were related to the hachured and form-line features

(Figure 3: 9 and 10), using a specific detector (D1b) that only con-

siders contours increased the effectiveness. The limited number of

hachures used in the maps analysed here makes it impossible to effec-

tively train an algorithm for this type of feature, at least until more

maps are incorporated. It is important to note that 15 out of 16 false

positives identified by Detector 2 are located in a specific area in

which the surveyor employed form lines to represent other topo-

graphic elements as well (Figure 3: 25–27).

On the three Levant series maps used for the Tell toponym iden-

tification, the DL process identified 121 features. On the seven sheets

used for the Ruins symbols, Detector 4 identified 325 features. This

finding represents a considerable increase compared to the manual

identification (71 ‘Tell’ toponyms in three maps and 213 Ruin symbols

in seven maps). As in the SoI, the detectors missed some of the manu-

ally identified features. The performance of Detector 3 was better

(4%) than Detector 4 (10%). The test dataset for the Levant map

series was a shapefile, which included all these symbols that had been

identified by a manual survey of these maps undertaken some years

ago as part of the Vanishing Landscape of Syria project.

In the Levant series, false positives represent around 40% of the

total features identified. In the analysed series, the same type of con-

tinuous black lines is used for the letters and the ruins symbol, but

also many other types of feature. Even so, most false positives

obtained by the toponym detector correspond to similar letters or

combinations of letters. For the ruins, the different combinations of

L-shape lines are very simple, and as a result, they are similar to other

features.

In terms of time invested, once the researcher is familiarized with

the platform and the maps, the process of training and obtaining the

results can be done in a single work-day (8 h for the 53 maps analysed

here). Manually assessing this dataset would represent several weeks

of work for an experienced operator. Increasing the number of maps

would further reduce the time dedicated per map. The preprocessing

of the maps, which include georeferencing and the assessment of the

type of features, represented the most significant amount of time in

the processing stage of the work.

4 | DISCUSSION

The CNN-based automated detection and instance segmentation

method presented here is able to produce a reliable approximation of

mounds and other features in both the SoI and Levant map series.

These processes allow the production of digitized and geolocated

areas of archaeological interest that can be used in the design of gro-

und truth survey strategies and cultural heritage protection. It consti-

tutes a quick and effective approach to develop preliminary

information and initial hypotheses on the location, distribution and

patterning of archaeological sites over large areas. These results could

be combined with the analysis of remote sensing datasets to provide

further support for interpretations made from map sources. Ulti-

mately, however, field validation is still needed to confirm that a loca-

tion is of archaeological interest.

Compared with the manual approaches commonly used, the auto-

mated detection results for the SoI maps are particularly effective in

the identification of large mounds, which are strongly associated with

archaeological sites. Of the 135 known archaeological sites depicted

as mounds within the study area (Mughal et al., 1996), all but three

were identified by the algorithm. Nonetheless, it has a less discrimi-

nant and interpretative capability than detailed human visual inspec-

tion. That limitation adds more noise to the dataset due to the

existence of other types of small roughly circular features that are

represented on the maps in a very similar way to settlement mounds,

increasing the number of false positives. Size thresholds clearly have

some potential for allowing us to overcome this problem but at the

cost of missing some points of archaeological interest. A larger train-

ing dataset might help to identify better the shape of the features,

which could increase the effectivity of the threshold.

However, the SoI-focused detectors offer more coherent results

than those resulting from manual extraction made by a group of

TABLE 1 Summary of the accuracy obtained by the different detectors (see also Figures 3 and 4)

Automatic detected features Manual identification

Detector/feature type Number of maps used Features detected False positives Features detecteda Missed

D1a/mounds (SoI) 13 162b 12% (n. 19) 143 5% (n. 6)

D1b/mounds (SoI) 125b 4% (n. 5) 120 n. 0

D2/mounds (SoI) 34 476b 3% (n. 16) 469 n. 1

D3/toponyms (Levant) 3 121 44% (n. 53) 71 4% (n. 3)

D4/complex symbols (Levant) 7 325 40% (n. 132) 213 10% (n. 21)

aManual identification does not correspond exactly to automated detected features plus missed features—variation ranges from 0 (D1b and D3) to 8 (D2)

cases for several reasons: missed during the manual inspection, features close to each other joined by the detectors or small features that fall under the

threshold.
bThe numbers given here for the SoI maps are the result of applying a 2 ha threshold (see Figure 3).
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analysts, particularly if they are not experienced or an effort has not

been made to uniformize interpretations between team members.

The detectors tested in the Levant series have provided a first

insight into two different types of archaeological information con-

tained in historical maps: the toponymic reference and the conven-

tional signs. Despite using a limited number of maps for the training,

three for toponyms and four for complex site symbols, the results

obtained show that the detectors missed relatively few of the

targeted symbols and characters but did introduce a significant per-

centage of false positives. Thus, further work is still needed for these

detectors to be employed effectively. The relatively small training

dataset used for these maps and the much better performance pro-

vided by the SoI maps strongly suggests that the performance of the

detectors can be significantly improved with a larger training dataset

involving a more significant quantity of maps. Other editions of the

Levant series, which incorporate colours and higher-quality represen-

tations, could also provide better results than the Second World War

editions of the Syria maps used in this first test.

Besides field validation, some strategies can be employed to ana-

lyse and interpret the data gathered. The use of other segmentation

approaches in conjunction with remote sensing information on land

use can help to filter data according to their landscape context. For

example, in the Punjab study area, areas represented as barren land or

active floodplains, which are less likely to contain archaeological

mounds, can be automatically segmented from the maps after remote

sensing validation. This step allows for a further assessment of the

likelihood of the features identified being of archaeological interest

and facilitates the development of thresholds to exclude lower levels

of probability. The same approach could be applied to the Levant

series maps, which represent different land uses patterns using

hachures, a pattern which the detector occasionally mistakes for ruins

signs. Besides obtaining information on land-use history, these

methods can be used to create masks that can help in reducing false

positives in those maps as well.

Our results are provided as polygons rather than single points,

providing information about the shape and area of the map features

with much more detail than the point data typically produced using a

visual assessment. The degree of accuracy is high, but some features

are identified only partially, or small features close to one another are

joined in a single feature. Much more accurate details could be

obtained manually but would require a significant increase in time and

labour. In any case, the relation of the feature on the map and the

extension of the potential archaeological sites is merely indicative,

because the number of factors involved makes a literal translation of

the map features into real extents of archaeological sites on the gro-

und extremely unlikely. This limitation is particularly true of the topo-

nymic detection results.

The polygons enable the calculation of site areas, allowing, for

example, experimentation on different levels of thresholds and

degrees of probability and archaeological interest. They also facilitate

the incorporation of these data in larger raster-based geodatasets

such as DEM-derivates or vegetation indices (Orengo et al., 2019),

which would be useful not just to validate features but also to assess

the degree of preservation and to provide important training data to

develop other types of ML-based detection. Given the subjective

nature of archaeological sites as depicted or indirectly reflected in

these maps, the presence of false positives, and the possible disap-

pearance of a part of these sites since their initial recording, it is worth

considering this approach as part of a larger strategy. Geolocated

detection results have enormous potential to be combined with not

just ML detection from satellite data, but also existing site location

data, traditional photointerpretation, survey, topographic analysis,

crowd-sourced locations and other site detection methods in a single

probabilistic framework. A probabilistic approach would also give the

opportunity to evaluate and cross-validate the different sources and

methods, alongside the information necessary to interpret their signif-

icance. This is particularly relevant when large areas are being studied,

and expert-led approaches or field validation are not possible or

require major investment.

The method presents a significant scale factor. The larger the

number of maps analysed and the quantity of features on each map,

the more useful the approach tested in this study. The results

obtained for the 1930s editions of the SoI, the only test in which we

have employed a large number of maps, have proved particularly suc-

cessful in terms of performance and time invested. That outcome sug-

gests significant potential in scaling up the detectors to entire map

series covering hundreds or thousands of individual sheets and across

entire countries.

The use of computing platforms like Picterra provides a useful

avenue for the implementation of automated detection to archaeolog-

ical research. It is unreasonable to expect that all those archaeologists

that could benefit from these approaches in academia, commercial

archaeology or heritage management agencies will be able to build

and train their own algorithms, especially given the computational

capacity required. In that sense, the possibility to access ready-made

instruments and platforms can be beneficial in terms of testing differ-

ent approaches and sources but also offers the chance to involve

more traditional archaeologists in the development of their own

detectors and help them understand the potential of the application

of these technologies in our discipline. In that regard, automatic

detection is in a position now to start making a practical contribution

to the discipline and to be implemented as another instrument in the

archaeologists' toolkit, in a similar way in which GIS was assimilated

over the last 20 years (Wheatley & Gillings, 2013).

Applications of automated detection similar to the ones we have

presented here have the potential to add significant value to the large

collections of historical maps available on paper and in digital archives

all over the world. Their potential for historical research in general is

well known, but the information that they contain has been up to now

hard to extract and quantify. Combining different ML techniques to

speed up the vectorization process has genuinely transformative

potential, particularly in large collections like the two analysed here.

Just in this test study, we have identified 911 potential archaeological

sites and have been able to assign probabilities relating to how far

these are likely to correspond to actual sites. This is just a small sam-

ple of the potential data that can be extracted. The maps contain
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other information relevant for cultural heritage documentation,

including forts, monuments, religious buildings and cemeteries. They

are also some of the most important documents available for under-

standing environmental and landscape transformations during the

early twentieth century, which were massive in the case of the areas

of Haryana and Punjab (Agnihotri, 1996; Gilmartin, 2015) and Syria

analysed here.

5 | CONCLUSIONS

Automatic detection and instance segmentation of objects in digitized

historical maps using ML CNN-based approaches offer an efficient

way forward for the retrieval of unique information of archaeological

interest. However, the use of these approaches needs to take into

account:

• The quality of the maps in terms of surveying (survey accuracy,

original scale and to what extent the features of interest have been

systematically recorded), preservation (deformations and general

state), digitization (type of scanning method, resolution and quality)

and georeferencing (method employed, resulting RMSE values,

number and distribution of GCPs).

• The detection and masking capacity of the detector in terms of

counting precision and recall and shape accuracy. Some features

will be more easily and unequivocally detected than others, and

this limitation must be taken into account when using these data

for archaeological analysis and interpretation. Sites themselves are

rarely detected, but proxies that can be used to extract information

about sites can be documented. Given the variations in map quality

discussed above, this information can only be considered an

approximation of the true number, size, form and location of the

features of interest.

• The possibility of incorporating further datasets, both from other

remote sources, such as satellite imagery, and through field-based

ground checking. Given the inexact nature of counts, locations and

shapes, the presence of a small percentage of false positives and

the difference in accuracy and recording practices between individ-

ual surveyors, we argue that the best way to conceive of the

results is through a probabilistic framework. This is particularly true

of large-scale approaches where cross-referencing of information

obtained through different methods and sources can be used to

weight possible sites. The use of complementary approaches and

sources has enormous potential to obtain probabilistic site distribu-

tion maps across large areas.

• The range and scale of the map series available. These approaches

are most useful when applied to large map series where objects

from many maps can be employed to train the different detectors

and the time invested in training them will be compensated by

their application to several hundred maps. Colonial map series, in

particular, show similar symbology and survey approaches, and

they extend across very large areas, often spanning several modern

countries. These are factors that can make the development of

multiple object-focused detectors worth the time invested in train-

ing them, particularly in comparison to manual approaches. The

use of these techniques for small areas composed by a few maps is

not recommended as it will be difficult to obtain enough training

data to develop an efficient detector and the time required to do

this may exceed that which would be needed for expert-led man-

ual detection.

The positive results of this first application of object segmentation

using the SoI and French Levant maps opens up the possibility of scal-

ing up our analysis to larger areas covered by these colonial map

series. Other large map series, such as those produced by Soviet car-

tographers across the USSR and parts of Europe and Asia (Davies &

Kent, 2017), offer similar potential. We hope that in time, colonial

map series can be used for the understanding and protection of cul-

tural heritage and local cultures instead of the direct and indirect

exploitation for which they were originally intended.
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extraction of features of archaeological interest form historical map

series. The paper's results confirm the potential of DL-based segmenta-

tion. Future research will gear towards the development of effective

open-source detectors trained using larger collections of diverse fea-

ture types that will significantly improve the results presented in this

paper.
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