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Abstract

Historical maps present a unique depiction of past landscapes, providing evidence for
a wide range of information such as settlement distribution, past land use, natural
resources, transport networks, toponymy and other natural and cultural data within
an explicitly spatial context. Maps produced before the expansion of large-scale
mechanized agriculture reflect a landscape that is lost today. Of particular interest to
us is the great quantity of archaeologically relevant information that these maps
recorded, both deliberately and incidentally. Despite the importance of the informa-
tion they contain, researchers have only recently begun to automatically digitize and
extract data from such maps as coherent information, rather than manually examine
a raster image. However, these new approaches have focused on specific types of
information that cannot be used directly for archaeological or heritage purposes. This
paper provides a proof of concept of the application of deep learning techniques to
extract archaeological information from historical maps in an automated manner.
Early twentieth century colonial map series have been chosen, as they provide
enough time depth to avoid many recent large-scale landscape modifications and
cover very large areas (comprising several countries). The use of common symbology
and conventions enhance the applicability of the method. The results show deep
learning to be an efficient tool for the recovery of georeferenced, archaeologically
relevant information that is represented as conventional signs, line-drawings and text
in historical maps. The method can provide excellent results when an adequate train-
ing dataset has been gathered and is therefore at its best when applied to the large
map series that can supply such information. The deep learning approaches described
here open up the possibility to map sites and features across entire map series much
more quickly and coherently than other available methods, opening up the potential

to reconstruct archaeological landscapes at continental scales.
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1 | INTRODUCTION

The use of historical maps has a long tradition in archaeological
research and has played an important role in a wide array of scientific
disciplines (Chiang, Duan, Leyk, Uhl, & Knoblock, 2020). As a ‘frozen’
image of a territory, maps provide information about the landscape
and society of the period in which they were created. Beyond that,
they are also useful for analysing aspects of the landscape which have
since been truncated or destroyed by the types of large-scale trans-
formations conducted over the last century, in particular, mechanized
agriculture and urban expansion. Archaeologists have been using
these sources for a long time in order to carry out regressive analysis
and reconstruct successive landscape phases through time employing
old maps for the study of historical patterns in settlement, road net-
works and field systems (Bevan & Conolly, 2002; Chouquer, 1996;
Crawford, 1926; Hoskins, 1955; Orengo & Palet, 2009; Vermeulen,
Antrop, Hageman, & Wiedemann, 2001; Vion, 1989). Historical maps
can also be used to identify archaeological sites or features which
were reported, on purpose or accidentally, by the surveyors
(Lape, 2002; Orengo & Fiz, 2008; Panich, Schneider, & Byram, 2018;
Petrie et al., 2019; Rondelli, Stride, & Garcia-Granero, 2013).

Systematic survey and mapping have been an essential and
widely used instrument of statecraft for centuries, used to conquer,
control, manage, tax, exploit, divide and protect areas. Since the late
eighteenth century, the development of survey techniques on one
side and political and ideological interests on the other pushed several
European states to undertake systematic mapping of their own terri-
tories at an unprecedented scale and extension (Kent, Vervust,
Dembhardt, & Millea, 2020). This step change in European map produc-
tion was almost immediately applied in their colonial dominions,
starting during the nineteenth century, thereby reaching large parts of
the world, as an inseparable companion of enlightenment, imperialism,
agricultural intensification and the industrial revolution. In the after-
math of the First World War, imperial dominions extended through
large parts of the Middle East and marked the beginning in the use of
aerial survey techniques for large scale mapping.

The Cassini Carte of France, the British Ordnance Survey and the
Russian mapping of Siberia and Central Asia are examples of grand
projects that are well known and employed within archaeological
research. In this context can be placed the two series used in this
work: the Survey of India (Sol), which was initially developed in paral-
lel with the expansion of British control in India during the nineteenth
century (Edney, 2009; Sarkar, 2020), and the 1:50.000 series derived
from the works performed by the Bureau Topographique du Levant
(BTL, later renamed Service Géographique des Forces Francaise Libres
du Levant) created in 1918 under the authority of the Service
Géographique de I'Armée (Le Douarin, 2020). Despite significant dif-
ferences in technical apparatus, many of these maps were produced
to a very high standard, with a spatial accuracy which is almost com-
parable to that of modern maps at similar scales.

The vast amount of information resulting from the continuous
systematic mapping projects conducted between the late eighteenth

century and the middle of the twentieth century remains in physical

archives. Many institutions are currently developing digitizing pro-
grams to make these maps more readily available. Maps have been
digitized on demand for research purposes, and digital repositories are
becoming available. However, the number of digital historical maps is
still relatively small in comparison to the total coverage, and to collect
the maps necessary to ensure coverage of a large study area usually
requires access to several repositories and the digitization of archive-
stored originals often hosted in multiple institutions.

These map series offer considerable potential for archaeological
and historical research and also heritage protection and manage-
ment as they often record archaeological sites, historical monuments
and other features of archaeological interest, either deliberately or
incidentally through features such as place names, specific symbol-
ogy or topographic expressions (Petrie et al.,, 2019). These colonial
map series were produced intensively during the nineteenth and
early twentieth centuries, and they depict landscapes that have
been substantially modified since their production. During the last
half century, the adoption of mechanized agriculture, intensive irri-
gation, urban development and in some areas conflict and large-
scale looting has dramatically changed the landscapes reflected in
these maps, making them much more valuable for archaeologists
and historians. In many cases, they include archaeological features
which are difficult to identify today and may be entirely destroyed.
Associated information such as toponyms is also very valuable, as
they document historic knowledge that might also be lost today. In
many regions, the quality and importance of the information con-
tained in these map series should qualify them as one of the basic,
most relevant sources for archaeological, historical and heritage
research. However, this has rarely been the case, and, although
many projects make use of these historical maps, there have been
few systematic attempts to extract information as large-scale quan-
tifiable georeferenced data.

Up to now, most uses of historical map collections have relied on
the digitization of maps as raster image files and their more or less
systematic  georeferencing in GIS environments (Orengo,
Krahtopoulou, Garcia-Molsosa, Palaiochoritis, & Stamati, 2015; Petrie
et al,, 2019). However, the most time-consuming part, the extraction
of features of historic-archaeological interest, has had to be done
using manual approaches. This process has involved the visual identifi-
cation/location of features and their digitization using vector formats
that could correspond to points (the fastest of the methods), lines or
polygons (which provide extra information such as shape and area but
require a higher investment of labour). There has been a recent
increase in the development of approaches directed to the automatic
vectorization of maps (Chiang et al., 2020; Shbita et al., 2020; Uhl,
Leyk, Chiang, Duan, & Knoblock, 2020). Those cases take advantage
of current developments in machine learning (ML) and deep learning
(DL) approaches to computer vision (CV), with neural networks (NNs)
having a prominent role. These approaches largely remain experimen-
tal and complex and do not categorize elements of archaeological
interest. Notably, the archaeologically relevant information is included
within other categories of data such as topography, toponymy or spe-

cific map symbology and still requires manual extraction and analysis.
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(1) Location of the area used for testing the survey of India collections and (2) sheets used in this paper. Examples of

archaeological sites (locations obtained from Mughal, Khan, Igbal, Hassan, & Afzal Khan, 1996) drawn as mounds in pre-WWI editions (3-5) and

interwars editions (6-8)

In this paper, we provide a first proof of concept for the auto-
matic extraction of features of archaeological interest from large
series of historical maps using DL approaches. For this purpose, we
have selected two map series depicting areas of high archaeological
potential that were produced by two different colonial governments:
the Sol during the period of British control of South Asia (Figure 1)
and the ‘Armée Du Levant. Service Géographique’ series during the
period of the French Mandate in Syria and Lebanon (Figure 2). For the
latter, we have used a series of copies made during World War 2 and
its aftermath, as these were readily available. The projection system
and information depicted are the same in the copies, though they
have a narrower range of colours than the original series. These map
series offer enough variability to test the identification and extraction
of different types of features with different levels of detection com-

plexity and archaeological interest.

2 | METHODS: DL-BASED
SEGMENTATION

ML, a subfield of artificial intelligence, has only recently begun to
be exploited in archaeological research, but applications are rapidly
increasing. The field developed significantly during the second half
of the 2010s when archaeologists started to take advantage of
easy access to ML algorithms and cloud computing resources. Most
of these applications have focused on the detection of archaeologi-
cal sites, usually employing remote sensing data (Davis, 2020).
They include examples of the use of LIDAR (Davis, Lipo, &
Sanger, 2019; Gallwey, Eyre, Tonkins, & Coggan, 2019; Somrak,
Dzeroski, & Kokalj, 2020; Trier, Cowley, & Woaldeland, 2019;
Verschoof-van der Vaart, Lambers, Kowalczyk, & Bourgeois, 2020),

multispectral satellite imagery (Menze & Ur, 2012; Orengo
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archaeological mounds (3-5) and the presence of settlement ruins (6-8). Note that ‘tell’ (Arabic for settlement mound) may appear as the name
of a mound feature or a toponym in the absence of an obvious topographic feature. This convention may be due to the placement of the names
on the map, or a real difference in the location of the named village and the tell site, or because the tell has been destroyed in advance of the

mapping of the region

et al., 2020; Thabeng, Merlo, & Adam, 2019; Trier, Larsen, &
Solberg, 2009) and/or drone-based imagery (Orengo & Garcia-
Molsosa, 2019; Sarasan et al., 2020). Successful approaches have
been tested, but the use of these technologies is still very limited out-
side research groups dedicated to experimentation on computational
applications in archaeology. ML approaches require computational
skills that are not routinely taught in archaeological training. Where
archaeologists have taken the plunge, the complex alignment of
sources, technical capacities and research questions required can

produce disappointing outcomes. As a result, there is some

understandable scepticism towards its practical utility (Casana, 2014;
Palmer, 2020).

Despite their potential, historical maps have been left outside this
approach. This is likely due to several factors:

1. A certain amount of preprocessing is necessary to apply ML
methods, such as digitization and georeferencing.

2. Maps are not always easy to access, and there are few complete
historical map series that can be freely accessed and downloaded
in digital form.
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3. Maps are subjective sources made by surveyors whose interest
was rarely the recording of archaeological sites. As such, they
often lack strict, systematic parameters that can be used to iden-
tify archaeological sites. Sites can be represented through its
topography but also conventional signs, both intended and
unintended. That means that the same type of cultural element
might be represented by different symbology in the same collec-
tion or even the same map. Also, the inclusion or not of a site mark
in a map is highly dependent on the surveyor perception.

4. In contrast with current DL archaeological applications, which usu-
ally focus on simple shapes such as mounds visible in lidar-derived
topographic data, features of interest in historical maps, even
within the same object class, present inconsistent and irregular
shapes. Their detection requires a much larger quantity of training

data and the use of data augmentation techniques.

The first two factors that have influenced the use of historical maps
can be at least partially overcome by choosing appropriate map series
and working across multiple institutions. We might also expect acces-
sibility of map series to increase over time as more institutions digitize
their collections. Importantly, the age of many of the map series
means they are no longer subject to copyright and it is possible to
make them publicly available with limited restrictions on reuse. The
last two factors are more challenging to overcome, but we believe
that a systematic extraction of archaeological and heritage features
from historical maps is not just possible but beneficial under certain
circumstances.

It is important not to overlook the fact that many of the identified
features need to be verified in the field. This presents additional prob-
lems because landscape change and inaccuracies in the recording,
georeferencing and placement of tags can make the ground checking
of map-recorded features complicated.

Our approach to implementing ML on historical maps is based on

two separate steps.

21 | Georeferencing of high-resolution digitized
historical maps

For the Sol map series, a detailed description of the georeferencing
procedures that have been developed and implemented can be found
in Petrie et al. (2019) and Green et al. (2019). A short summary is
offered here.

Both ESRI's ArcMap (ESRI, 2020) and QGIS georeferencing tools
(a plugin using GDAL in the case of QGIS; QGIS, 2020) were
employed for the georeferencing process using WGS84 as the geo-
detic datum. Ground control points (GCPs) were obtained in ArcGIS
through its basemap service and QGIS using high-resolution Bing and
Google imagery services imported as XYZ tiles.

Because the maps were digitized using either a photographic
camera or a barrel scanner and their preservation state was not ideal,
we employed a minimum of 20 clearly identifiable GCPs distributed

evenly across each map. These consisted mostly of canal, road, and

railroad intersections, which were some of the few landscape ele-
ments that have been preserved since the early twentieth century.
GCPs for each map were evaluated using their RMSE values, and
unreliable GCPs were eliminated to achieve the best possible result.
The rectified maps provided maximum RMSE values of 26.8 m.

The French mandate Levant series were georeferenced using
ESRI's ArcMap georeferencing tool. Eight figure grid references on the
French-British Levant Lambert projection grid (equivalent to the mod-
ern Deir ez Zor/Syrian Lambert system which uses the Deir ez Zor
geographic 2D CRS) and the Syria Lambert (Lambert Conic Conformal
1SP as its projection) are printed in the corner of each map sheet, giv-
ing a precision to the nearest 100 m. These were used as control
points. Rectified maps provided maximum RMSE values of 65.5
m. For comparison with other datasets, the maps were then
reprojected in the WGS84 UTM coordinate system.

2.2 | CNN-based DL segmentation of features of
interest in digitized historical maps

Although mounded shapes characterize many of the archaeological
sites in our two test areas, these features do not follow a unique or
standard form of representation. Mounds and other features of inter-
est can be represented using a variety of symbols and toponymy (see
Petrie et al., 2019). In this work, we test three different types of rep-
resentation of features of archaeological interest: topographic ele-
ments to represent mounds, complex conventional signs for the
representation of ‘ruins’ and toponyms linked to archaeological fea-
tures. The first is tested on the Sol collection (Figure 1: 3-8) and the
latter two on the Levant series (Figure 2: 6-8 for conventional signs
and 3-5 for toponyms).

The strategy adopted here makes use of segmentation
approaches as, besides site location, we were interested in the shape
and size of the features of interest, in particular mound representa-
tions. Rather than employing a single detector to classify the whole
map series, we developed different detectors focusing on specific ele-
ments of interest. This strategy allowed us to have a more focused
training process in which only a particular element per detector was
tagged, avoiding confusion between classes.

Given the number of classifiers required to detect all objects of
archaeological interest, we employed Picterra, an online ML platform
that provides a simple and intuitive graphical interface for the selec-
tion of training data. Picterra uses a U-Net-based architecture
(Ronneberger, Fischer, & Brox, 2015) for the ML object instance seg-
mentation. Convolutional neural networks (CNN) are DL architec-
tures that, among other uses, can identify and outline predefined
objects classes from raster images through the patterns in pixel rela-
tions. This approach is well suited for identifying individual objects
not necessarily identical but that share a similar representation on
the maps.

Typical DL methods combine object detection to classify individ-
ual objects and locate each of these within a bounding box, and

semantic segmentation, which classifies each image pixel into a
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category and instance segmentation, in order to differentiate between
object instances. Picterra implementation uses a CNN architecture
based on U-Net. The algorithm automatically performs a series of
preprocessing steps including data augmentation, which aims at pro-
viding well-balanced and effective training data for the development
of the model. The training of the models uses cloud-based distributed
computing, which greatly speeds the process. In addition, by using
proprietary postprocessing techniques on the output of the U-Net
model, it separates the per-pixel classification results into separate
objects, effectively outputting Mask R-CNN-like instance segmenta-
tion results without the overhead of a large and overly complex net-
work that requires an abundance of data to be trained on. In this way,
the training and testing of detectors can be achieved very quickly
without the need to gather large amounts of annotated images. There
are two other reasons why Picterra was considered an adequate plat-
form for this research instead of developing our own open access
detectors: (a) the research aim was to test the potential of DL for the
detection of multiple map features, and therefore, a fast and efficient
method allowed us to experiment until an adequate detector for each
feature was achieved; (b) the symbology and representation of
archaeological features can vary greatly between series and between
maps in individual series, meaning other researchers will have to train
their own algorithm that fits the specific features and symbology of
the maps they are using.

2.3 | Map series and training of the algorithm

The maps were analysed by experts in the archaeology of each study
area in order to select relevant features that were indicative of
archaeological sites.

The historical series of the Sol is composed of hundreds of
sheets and covers much of modern Pakistan, India, Bangladesh and
Sri Lanka. The 1” to 1-mile series (1:63,360) of Sol maps is the most
detailed scale commonly available, and detailed four-colour sheets
were issued between 1905 and 1936, with much of the data being
based on late nineteenth and early twentieth century surveys (Petrie
et al., 2019). Consistent guidelines for the representation of differ-
ent features were followed, though variations can be found in the
different published series, and sometimes in various maps of the
same series. Although the Sol is a government institution, maps
were made available to libraries and the public from the moment of
their publication and copies circulated widely outside military circles.
We have worked with the collection stored in the Map Room of the
Cambridge University Library which, as a copyright library, received
copies of most of the maps that reached Britain and now holds one
of the more complete collections in the United Kingdom. The British
Library and the Bodleian Library also hold substantial collections of
the 1” to 1-mile series, and although there is much overlap, these
collections also complement each other. The US Army produced
copies of the Sol maps, and these copies have been digitized by the
University of Texas (US Army Service, 1955), which has made them
publicly available.

In the case of the Sol maps, these have been previously employed
to support archaeological survey in South Asia (Petrie et al., 2019) in
particular in the Indian State of Haryana (Green et al., 2019) and the
Pakistani Province of Punjab (Garcia, Orengo, Conesa, Green, &
Petrie, 2019). These previous survey campaigns have been focused on
mounds represented in the maps, which in many cases correspond to
the remains of ancient settlements and also evidence for river courses
and river migration. To some extent all the cultural phases that have
seen settlement in the Indus River basin, from the time of the Indus
civilization up to the British period, are represented in the rich archae-
ological record displayed in these maps. Field ground-truthing in
Haryana has confirmed the strong correlation between certain types
of mound representations and the presence of surface archaeological
material (Green et al.,, 2019). In a specific part of Haryana alone,
199 previously unknown archaeological sites have been detected and
confirmed by ground assessment. This previous experience was
important in selecting training data for the algorithm. Three different
detectors were trained, each corresponding to a different type of
mound representation (see Figure 3: 1-2 and 17). The test area corre-
sponds to the current district of Multan in the Pakistani province of
Punjab. The maps had been previously georeferenced, and the fea-
tures extracted manually, providing the basis for testing of the results
at a large scale.

The Sol maps used for this study (Figure 1: 2) correspond to two
temporal series: 13 maps from the early 1900s editions, published
between 1907 and 1909, and 34 maps from the 1930s editions, publi-
shed between 1933 and 1936. In each edition, mounds are represen-
ted differently: in the 1900s editions, mounds typically appear as
contours (Figure 1: 3 and 4) or hachures, a type of old topographical
depiction similar to hillshading formed by roughly parallel lines, their
closeness and density indicating steepness of gradient. They usually
become thinner or display triangulated shapes as they point towards
downbhill direction (Figure 1: 5). In the 1930s editions, mounds are
almost exclusively depicted as simple form lines (Figure 1: 6-8),
though this type of representations may have also been used from the
early 1910s (see Petrie et al., 2019). Thus, we have created a detector
for each of the map series, as a way to obtain more accurate results:

e Detector 1a (Figure 3: 1 and 2) targets both ways of representing
mounds in early 1900s maps: as contours and hachures. We have
employed 26 training areas in eight of the maps, containing 71 fea-
tures previously identified as mounds.

e Detector 1b (Figure 3: 1) is a second version of the early 1900s
detector, which focuses only on contours. It was trained to test to
what degree specialized detectors might improve the results within
each map series. For this detector, we used 19 areas in five maps
containing 66 features.

e Detector 2 (Figure 3: 17) targets simple discontinuous form lines
and was applied to the 1930s maps. We employed 122 features

recorded from 11 areas distributed in six maps.

A size-based threshold was later applied to the results. In our experi-

ence in Haryana using Sol maps for field survey (Green et al., 2019),
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detected (13-16 and 28) are illustrated

we have observed that features of a relatively larger size on the maps
(from around 200 m diameter) are much more likely to correspond to
archaeological sites confirmed by the presence of artefacts on the
field. Conversely, smaller features (around 100 m or less in diameter;
see example in Figure 3: 19) typically provided negative results during
the fieldwork and likely indicated natural features, small dunes or
modern spoil from pond excavation. As a result, we have divided the
results into a high-probability (>2 ha) category and a low-probability
(<2 ha) category and considered only the first group here. This thresh-
old, however, presented a minor problem in the high-probability
group. In few cases, the detector identified larger features as several
smaller features instead of a single larger one. The threshold, there-
fore, categorized these as low probability sites. On the contrary,
groups of small features were often joined by the detector into larger
single areas, which the threshold incorporated in the high-probability
range.

The case of the Levant map series of Syria is rather different.
These were created during the 1930s, but most of the maps available,

including those employed in this study, are British copies made during

the Second World War. The Syria and Lebanon map series inherited
models and practices from the North African French map series as
their production was centralized by the Service Géographique de
I'Armée, which dispatched the experienced officials who were in
charge of the 1:50.000 series (Le Douarin, 2020). The French maps
incorporate direct references to archaeological sites and some other
representations that are indirectly related. The features/objects to be
located included toponyms such as tell (mound in Arabic) and khirba
(ruin in Arabic), which are indirectly related to archaeological sites,
and also some text that can be directly associated with archaeological
occurrences such as ‘R.R.” (Ruines Romaines), and ‘Ruines’ (ruins in
French). The maps also include symbols marking ruins (Figure 2: 6-8)
and some hachure symbology that can be related to mounded ‘tells’
(Figure 2: 5).

The maps of the French Levant 1:50,000 series have been used
as a reference by archaeological surveys for many decades
(Braemer, 1984, 1988). However, their use became widespread in
archaeology only following easy digitization and accessible GIS-

software (Mantellini, Micale, & Peyronel, 2013).
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FIGURE 4 Detectors trained for the detection of ‘tell’ toponyms (1-2) and conventional sign for ruins (14-15) on French Levant maps.
Examples of features successfully detected (3-6 and 16-19), false positives (7-10 and 20-23) and manually detected but missed by the detector

(11-13 and 24-27)

Two detectors developed for the Syria series have been trained
on a small group of maps as a first test for the use of this methodol-
ogy in the series:

e Detector 3 (Figure 4: 1) targeting the word ‘Tell’ in Latin characters
was trained using eight training areas containing 39 features from
three of the seven maps available for this preliminary work, as only
three maps employed Latin characters. In the future, a similar
detector for Arabic characters could be developed.

e Detector 4 (Figure 4: 14) focuses on the conventional symbol
referring to ruins. It resembles a grouping of ‘L’-shaped marks,
perhaps indicating walls. Rather than using the single ‘L’ shape,
which would have resulted in the detection of a large number of
false positives given the simplicity of the symbol and its common
appearance in other map features unrelated to ruins, the algorithm
was trained using the ensemble of signs used to represent a single
site. This is a complex type of symbolic representation. Although
single symbols (such as red triangles) would have presented a
much easier target, these composite symbols are challenging
because of (1) the simplicity of the ‘L’ shape, which forms a part

of many other symbols including letters and (2) the variable and
changing way in which they are employed to represent sites. We
used eight training areas from four different maps which contain
235 features in total.

3 | RESULTS

Within the 47 maps of the Sol analysed, 13,130 features were identi-
fied through the DL process before using the size threshold, 322 fea-
tures in the early 1900s maps and 12,808 in the 1930s maps.
Applying the size threshold resulted in 638 high probability features
(162 in the early 1900s maps and 476 in the 1930s maps).

Comparing the results with the systematic manual identification,
all detectors employed have managed to detect at least 90% of the
features identified through the manual identification (Table 1). In the
case of the Sol, the detectors missed only seven features in total
(Figure 3: 13-16 and 28), with the nuance that in a few cases the area

identified is not large enough and, thus, once the threshold of 2 ha is
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TABLE 1

Automatic detected features

Summary of the accuracy obtained by the different detectors (see also Figures 3 and 4)

Manual identification

Detector/feature type Number of maps used Features detected False positives Features detected® Missed
D1a/mounds (Sol) 13 162° 12% (n. 19) 143 5% (n. 6)
D1b/mounds (Sol) 125P 4% (n. 5) 120 n.0
D2/mounds (Sol) 34 476° 3% (n. 16) 469 n.1
D3/toponyms (Levant) 3 121 44% (n. 53) 71 4% (n. 3)
D4/complex symbols (Levant) 7 325 40% (n. 132) 213 10% (n. 21)

®Manual identification does not correspond exactly to automated detected features plus missed features—variation ranges from 0 (D1b and D3) to 8 (D2)
cases for several reasons: missed during the manual inspection, features close to each other joined by the detectors or small features that fall under the

threshold.

The numbers given here for the Sol maps are the result of applying a 2 ha threshold (see Figure 3).

applied the missing percentages increase to 10% in the early 1900a
detectors tested (D1a and D1b) and 6% in D2.

In the Sol maps, the number of false positives is relatively small. It
is significantly higher in D1a (12%) compared to the other two (4%
D1b and 3% D2). Because most of the false positives in early 1900s
editions were related to the hachured and form-line features
(Figure 3: 9 and 10), using a specific detector (D1b) that only con-
siders contours increased the effectiveness. The limited number of
hachures used in the maps analysed here makes it impossible to effec-
tively train an algorithm for this type of feature, at least until more
maps are incorporated. It is important to note that 15 out of 16 false
positives identified by Detector 2 are located in a specific area in
which the surveyor employed form lines to represent other topo-
graphic elements as well (Figure 3: 25-27).

On the three Levant series maps used for the Tell toponym iden-
tification, the DL process identified 121 features. On the seven sheets
used for the Ruins symbols, Detector 4 identified 325 features. This
finding represents a considerable increase compared to the manual
identification (71 ‘Tell’ toponyms in three maps and 213 Ruin symbols
in seven maps). As in the Sol, the detectors missed some of the manu-
ally identified features. The performance of Detector 3 was better
(4%) than Detector 4 (10%). The test dataset for the Levant map
series was a shapefile, which included all these symbols that had been
identified by a manual survey of these maps undertaken some years
ago as part of the Vanishing Landscape of Syria project.

In the Levant series, false positives represent around 40% of the
total features identified. In the analysed series, the same type of con-
tinuous black lines is used for the letters and the ruins symbol, but
also many other types of feature. Even so, most false positives
obtained by the toponym detector correspond to similar letters or
combinations of letters. For the ruins, the different combinations of
L-shape lines are very simple, and as a result, they are similar to other
features.

In terms of time invested, once the researcher is familiarized with
the platform and the maps, the process of training and obtaining the
results can be done in a single work-day (8 h for the 53 maps analysed
here). Manually assessing this dataset would represent several weeks

of work for an experienced operator. Increasing the number of maps

would further reduce the time dedicated per map. The preprocessing
of the maps, which include georeferencing and the assessment of the
type of features, represented the most significant amount of time in
the processing stage of the work.

4 | DISCUSSION

The CNN-based automated detection and instance segmentation
method presented here is able to produce a reliable approximation of
mounds and other features in both the Sol and Levant map series.
These processes allow the production of digitized and geolocated
areas of archaeological interest that can be used in the design of gro-
und truth survey strategies and cultural heritage protection. It consti-
tutes a quick and effective approach to develop preliminary
information and initial hypotheses on the location, distribution and
patterning of archaeological sites over large areas. These results could
be combined with the analysis of remote sensing datasets to provide
further support for interpretations made from map sources. Ulti-
mately, however, field validation is still needed to confirm that a loca-
tion is of archaeological interest.

Compared with the manual approaches commonly used, the auto-
mated detection results for the Sol maps are particularly effective in
the identification of large mounds, which are strongly associated with
archaeological sites. Of the 135 known archaeological sites depicted
as mounds within the study area (Mughal et al., 1996), all but three
were identified by the algorithm. Nonetheless, it has a less discrimi-
nant and interpretative capability than detailed human visual inspec-
tion. That limitation adds more noise to the dataset due to the
existence of other types of small roughly circular features that are
represented on the maps in a very similar way to settlement mounds,
increasing the number of false positives. Size thresholds clearly have
some potential for allowing us to overcome this problem but at the
cost of missing some points of archaeological interest. A larger train-
ing dataset might help to identify better the shape of the features,
which could increase the effectivity of the threshold.

However, the Sol-focused detectors offer more coherent results

than those resulting from manual extraction made by a group of
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analysts, particularly if they are not experienced or an effort has not
been made to uniformize interpretations between team members.

The detectors tested in the Levant series have provided a first
insight into two different types of archaeological information con-
tained in historical maps: the toponymic reference and the conven-
tional signs. Despite using a limited number of maps for the training,
three for toponyms and four for complex site symbols, the results
obtained show that the detectors missed relatively few of the
targeted symbols and characters but did introduce a significant per-
centage of false positives. Thus, further work is still needed for these
detectors to be employed effectively. The relatively small training
dataset used for these maps and the much better performance pro-
vided by the Sol maps strongly suggests that the performance of the
detectors can be significantly improved with a larger training dataset
involving a more significant quantity of maps. Other editions of the
Levant series, which incorporate colours and higher-quality represen-
tations, could also provide better results than the Second World War
editions of the Syria maps used in this first test.

Besides field validation, some strategies can be employed to ana-
lyse and interpret the data gathered. The use of other segmentation
approaches in conjunction with remote sensing information on land
use can help to filter data according to their landscape context. For
example, in the Punjab study area, areas represented as barren land or
active floodplains, which are less likely to contain archaeological
mounds, can be automatically segmented from the maps after remote
sensing validation. This step allows for a further assessment of the
likelihood of the features identified being of archaeological interest
and facilitates the development of thresholds to exclude lower levels
of probability. The same approach could be applied to the Levant
series maps, which represent different land uses patterns using
hachures, a pattern which the detector occasionally mistakes for ruins
signs. Besides obtaining information on land-use history, these
methods can be used to create masks that can help in reducing false
positives in those maps as well.

Our results are provided as polygons rather than single points,
providing information about the shape and area of the map features
with much more detail than the point data typically produced using a
visual assessment. The degree of accuracy is high, but some features
are identified only partially, or small features close to one another are
joined in a single feature. Much more accurate details could be
obtained manually but would require a significant increase in time and
labour. In any case, the relation of the feature on the map and the
extension of the potential archaeological sites is merely indicative,
because the number of factors involved makes a literal translation of
the map features into real extents of archaeological sites on the gro-
und extremely unlikely. This limitation is particularly true of the topo-
nymic detection results.

The polygons enable the calculation of site areas, allowing, for
example, experimentation on different levels of thresholds and
degrees of probability and archaeological interest. They also facilitate
the incorporation of these data in larger raster-based geodatasets
such as DEM-derivates or vegetation indices (Orengo et al., 2019),

which would be useful not just to validate features but also to assess

the degree of preservation and to provide important training data to
develop other types of ML-based detection. Given the subjective
nature of archaeological sites as depicted or indirectly reflected in
these maps, the presence of false positives, and the possible disap-
pearance of a part of these sites since their initial recording, it is worth
considering this approach as part of a larger strategy. Geolocated
detection results have enormous potential to be combined with not
just ML detection from satellite data, but also existing site location
data, traditional photointerpretation, survey, topographic analysis,
crowd-sourced locations and other site detection methods in a single
probabilistic framework. A probabilistic approach would also give the
opportunity to evaluate and cross-validate the different sources and
methods, alongside the information necessary to interpret their signif-
icance. This is particularly relevant when large areas are being studied,
and expert-led approaches or field validation are not possible or
require major investment.

The method presents a significant scale factor. The larger the
number of maps analysed and the quantity of features on each map,
the more useful the approach tested in this study. The results
obtained for the 1930s editions of the Sol, the only test in which we
have employed a large number of maps, have proved particularly suc-
cessful in terms of performance and time invested. That outcome sug-
gests significant potential in scaling up the detectors to entire map
series covering hundreds or thousands of individual sheets and across
entire countries.

The use of computing platforms like Picterra provides a useful
avenue for the implementation of automated detection to archaeolog-
ical research. It is unreasonable to expect that all those archaeologists
that could benefit from these approaches in academia, commercial
archaeology or heritage management agencies will be able to build
and train their own algorithms, especially given the computational
capacity required. In that sense, the possibility to access ready-made
instruments and platforms can be beneficial in terms of testing differ-
ent approaches and sources but also offers the chance to involve
more traditional archaeologists in the development of their own
detectors and help them understand the potential of the application
of these technologies in our discipline. In that regard, automatic
detection is in a position now to start making a practical contribution
to the discipline and to be implemented as another instrument in the
archaeologists' toolkit, in a similar way in which GIS was assimilated
over the last 20 years (Wheatley & Gillings, 2013).

Applications of automated detection similar to the ones we have
presented here have the potential to add significant value to the large
collections of historical maps available on paper and in digital archives
all over the world. Their potential for historical research in general is
well known, but the information that they contain has been up to now
hard to extract and quantify. Combining different ML techniques to
speed up the vectorization process has genuinely transformative
potential, particularly in large collections like the two analysed here.
Just in this test study, we have identified 911 potential archaeological
sites and have been able to assign probabilities relating to how far
these are likely to correspond to actual sites. This is just a small sam-

ple of the potential data that can be extracted. The maps contain
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other information relevant for cultural heritage documentation,
including forts, monuments, religious buildings and cemeteries. They
are also some of the most important documents available for under-
standing environmental and landscape transformations during the
early twentieth century, which were massive in the case of the areas
of Haryana and Punjab (Agnihotri, 1996; Gilmartin, 2015) and Syria

analysed here.

5 | CONCLUSIONS

Automatic detection and instance segmentation of objects in digitized
historical maps using ML CNN-based approaches offer an efficient
way forward for the retrieval of unique information of archaeological
interest. However, the use of these approaches needs to take into

account:

e The quality of the maps in terms of surveying (survey accuracy,
original scale and to what extent the features of interest have been
systematically recorded), preservation (deformations and general
state), digitization (type of scanning method, resolution and quality)
and georeferencing (method employed, resulting RMSE values,
number and distribution of GCPs).

e The detection and masking capacity of the detector in terms of
counting precision and recall and shape accuracy. Some features
will be more easily and unequivocally detected than others, and
this limitation must be taken into account when using these data
for archaeological analysis and interpretation. Sites themselves are
rarely detected, but proxies that can be used to extract information
about sites can be documented. Given the variations in map quality
discussed above, this information can only be considered an
approximation of the true number, size, form and location of the
features of interest.

e The possibility of incorporating further datasets, both from other
remote sources, such as satellite imagery, and through field-based
ground checking. Given the inexact nature of counts, locations and
shapes, the presence of a small percentage of false positives and
the difference in accuracy and recording practices between individ-
ual surveyors, we argue that the best way to conceive of the
results is through a probabilistic framework. This is particularly true
of large-scale approaches where cross-referencing of information
obtained through different methods and sources can be used to
weight possible sites. The use of complementary approaches and
sources has enormous potential to obtain probabilistic site distribu-
tion maps across large areas.

e The range and scale of the map series available. These approaches
are most useful when applied to large map series where objects
from many maps can be employed to train the different detectors
and the time invested in training them will be compensated by
their application to several hundred maps. Colonial map series, in
particular, show similar symbology and survey approaches, and
they extend across very large areas, often spanning several modern

countries. These are factors that can make the development of

multiple object-focused detectors worth the time invested in train-
ing them, particularly in comparison to manual approaches. The
use of these techniques for small areas composed by a few maps is
not recommended as it will be difficult to obtain enough training
data to develop an efficient detector and the time required to do
this may exceed that which would be needed for expert-led man-
ual detection.

The positive results of this first application of object segmentation
using the Sol and French Levant maps opens up the possibility of scal-
ing up our analysis to larger areas covered by these colonial map
series. Other large map series, such as those produced by Soviet car-
tographers across the USSR and parts of Europe and Asia (Davies &
Kent, 2017), offer similar potential. We hope that in time, colonial
map series can be used for the understanding and protection of cul-
tural heritage and local cultures instead of the direct and indirect

exploitation for which they were originally intended.

ACKNOWLEDGEMENTS

A. G. M. is a Beatriu de Pin6s fellow (2018 BP 00208) funded by the
AGAUR and the MSCA Co-Fund programme (BP3-801370). H. A. O.
is a Ramoén y Cajal Researcher (RYC-2016-19637) funded by the
Spanish Ministry of Science, Innovation and Universities. Initial work
on the Sol maps from Haryana in India took place as part of the Land,
Water and Settlement and TwoRains projects (funded by the ERC
under the European Union's Horizon 2020 research and innovation
programme, grant agreement 648609). These were both collaborative
endeavours involving researchers from the University of Cambridge
and the Department of AIHC and Archaeology at Banaras Hindu Uni-
versity, under the direction of C. A. P. and Prof. R. N. Singh. A. G. M.
collaborated with the TwoRains project while he was an MSCA fellow
on the WaMStrim project (MSCA grant agreement No. 746446,
https://wamstrin.wordpress.com/). We would especially like to thank
the staff of the Map Room and Imaging Services at the University
Library at the University of Cambridge for providing access to and
high-resolution copies of the Sol 1” to 1-mile maps in their collection.
We would also like to thank Leo Rocher from Picterra for his availabil-
ity and willingness to discuss several aspects of Picterra's technical
processes. The manual extraction of data from the Levant map series
covering Syria was undertaken as part of the Vanishing Landscape of
Syria Project, which was funded by the Leverhulme Trust, Grant
FO0128/AR, and directed by Graham Philip, University of Durham.

CONFLICT OF INTEREST

The authors declare that no conflict of interest exist.

DATA AVAILABILITY STATEMENT

Though the code used in this paper cannot be shared given the use of a
proprietary cloud computing platform to train and run the detection
process, readers can access the training data and results obtained for
each of the detectors, following this link, which requires a free
Picterra's account (https://forms.gle/L8YngAd87eckYSDQA). This
proof of concept aimed to test the use of DL approaches to the


https://wamstrin.wordpress.com/
https://forms.gle/L8YngAd87eckYSDQA

2 | WILEY

GARCIA-MOLSOSA ET AL

extraction of features of archaeological interest form historical map
series. The paper's results confirm the potential of DL-based segmenta-
tion. Future research will gear towards the development of effective
open-source detectors trained using larger collections of diverse fea-
ture types that will significantly improve the results presented in this
paper.
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