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1 Introduction

In recent years, new geometric descriptions have been discovered for scattering amplitudes
such as the Amplituhedron for planar N = 4 super-Yang-Mills (SYM) [1, 2]. The earliest
hints of such a description were discovered by Hodges, who showed that 6-point NMHV
amplitudes in pure Yang-Mills theory can be described as polytopes in momentum twistor
space, making the cancellation of spurious poles completely manifest [3]. This description
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was extended to all NMHV amplitudes in N = 4 SYM in [4], where an amplitude with
k negative helicity particles is referred to as Nk−2MHV. Another important perspective
came from on-shell diagrams [5], which provide a diagrammatic representation of BCFW
recursion [6–8] and give rise to Grassmannian integral formulas. A crucial feature of this
representation is that all tree-level amplitudes and loop integrands in planar N = 4 SYM
have a so-called dlog form, which was simultaneously discovered using Wilson loops in
momentum twistor space [9, 10]. On-shell diagrams for N < 4 SYM and non-planar
N = 4 SYM were subsequently studied in [11, 12] and [13–15], respectively. Ultimately,
the tree-level amplitudes and planar integrands of N = 4 were identified with differential
forms having logarithmic singularities on the boundaries of a new mathematical object
generalising the positive Grassmannian known as the Amplituhedron. A review of the
Amplituhedron and related developments can be found in [16].

One of the most significant implications of the Amplituhedron is that physical prin-
ciples such as unitarity and locality appear to have a purely geometric origin, at least in
the context of planar N = 4 SYM. Such a description would therefore be profound in the
context of gravitational amplitudes, but has so far remained elusive despite some progress.
In particular, decorated on-shell diagrams encoding BCFW recursion relations for tree-
level N = 8 supergravity (sugra) amplitudes [17, 18] were developed in [19]. As in N = 4
SYM, these objects give rise to Grassmannian integral formulas, although they do not
generically have a dlog form and the extension to loop-level amplitudes is not known, al-
though undecorated on-shell diagrams were used to compute cuts of loop diagrams in [20].
In seminal work by Hodges [21], a BCFW recursion relation was developed for N = 7
sugra and used to obtain momentum twistor formulas for MHV amplitudes and spinor
expressions for the 6-point NMHV amplitude. This recursion relation was then used to
prove a determinant formula for gravitational MHV amplitudes [22], greatly simplifying
the previously known BGK formula [23]. The generalisation of this formula to non-MHV
amplitudes was obtained using twistor string theory [24, 25]. The relation between twistor
string and on-shell diagram diescriptions of N = 8 sugra amplitudes was explored in [26],
where a Grassmannian integral formula for the 6-point NMHV amplitude was obtained for
the first time.

In this paper, we will build on these developments with the goal of finding hints of
geometric structure in N = 7 sugra amplitudes analogous to that of N = 4 SYM. First we
recast the N = 7 recursion found by Hodges in terms of on-shell diagrams. This is similar
to the N = 8 recursion developed in [19] in that the on-shell diagrams are decorated and
give rise to Grassmannian integral formula, but exhibits a few important differences. First
of all, the N = 7 diagrams are decorated with arrows indicating helicity flow. Secondly,
for a certain choice of BCFW bridge the N = 7 recursion requires fewer diagrams. For
example, for MHV amplitudes there are (n−3)! diagrams rather than (n−2)!, so the N = 7
recursion incorporates a property of sugra amplitudes known as the bonus relations [27]
(this property of N = 7 recursion was first observed in [28]). The price to pay for having
fewer diagrams is that they generally contain more closed cycles which can become tedious
to evaluate at high multiplicity using conventional methods, so we develop a new technique
which avoids summing over closed cycles. This technique can also be applied to other
theories.
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We then convert these formulas to momentum twistor space, reproducing Hodges’ re-
sults for MHV amplitudes and obtaining new momentum twistor formulas for non-MHV
amplitudes, written in terms of N = 7 R-invariants analogous to those of N = 4 SYM.
Beyond 5-points, this requires describing different subset of on-shell diagrams using momen-
tum twistors defined with respect to different permutations of external momenta, analogous
to defining local coordinates on a manifold.1 In addition to producing R-invariants, this
way of defining momentum twistors leads to concise expressions for the spurious poles of the
6-point NMHV superamplitude, making their cancellation completely transparent. This
strongly suggests the existence of a geometric explanation for the cancellation of spurious
poles analogous to the one found in Yang-Mills amplitudes.

This paper is organised as follows. In section 2, we review spinor notation for super-
amplitudes and describe the on-shell diagram recursion for N = 7 sugra and an algorithm
for evaluating N = 7 on-shell diagrams in terms of Grassmannian integrals. In section 3
we review the basics of momentum twistor space and describe various useful formulae for
writing spinor brackets and fermionic delta functions in terms of momentum twistors. In
section 4 we use on-shell diagrams to compute MHV amplitudes in terms of Grassman-
nian integrals and momentum twistors. In section 5, we use on-shell diagrams to compute
non-MHV amplitudes, write them in terms of momentum twistor space, and analyse the
cancellation of spurious poles. In section 6 we present our conclusions and future directions.
There are also several appendices. In appendix A, we derive momentum twistor formulas
for supermomentum delta functions. In appendix B we provide additional details about
the on-shell diagrams for the 6-point NMHV superamplitude. In appendix C we derive
transition functions for momentum twistors defined with respect to different permutations
of external momenta. Finally, in appendix D we describe a new computational method for
simplifying expressions in momentum twistor space. We give an explicit realisation of this
algorithm in Mathematica, submitted as an auxilliary file with this publication.

2 On-shell diagrams

First we review some standard notation for scattering amplitudes. A null momentum in
four dimensions can be expressed in the following bi-spinor form:

pαα̇i = λαi λ̃
α̇
i , (2.1)

where α ∈ {1, 2}, α̇ ∈
{
1̇, 2̇
}
and i is a particle label. In terms of spinors, one defines the

following inner products

〈ij〉 = εαβλ
α
i λ

β
j , [ij] = εα̇β̇λ̃

α̇
i λ̃

β̇
j , (2.2)

where ε is the anti-symmetric Levi-Cevita symbol. To simplify notation, we will omit spinor
indices. A very useful identity for spinor manipulations is the Schouten identity:

〈ij〉λk + cyclic = 0. (2.3)
1This possibility was first suggested to us in 2017 by Andrew Hodges.
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In supersymmetric theories, the supermomentum is defined as

qαai = λαi η
a
i , (2.4)

where η is a Grassmann variable and a = 1, . . . ,N , where N indicates the amount of
supersymmetry, i.e. N = 4, 8 for maximal SYM and sugra, respectively. Supermomentum
conservation is imposed by the delta function δ(4|2N )(P |Q), where P = ∑

i pi andQ = ∑
i qi.

It will be convenient to factor out the supermomentum delta function from scattering
amplitudes, and we will denote the resulting quantity with a bar:

M = δ(4|14)(P |Q)M, (2.5)

where we have set N = 7.
It is convenient to define scattering amplitudes in supersymmetric theories in terms of

superfields. In N = 8 supergravity, the superfield takes the form

Φ = h+ + . . .+ h−η8, (2.6)

where h± are the two helicity states of the graviton, and the ellipsis denote the on-shell
states of lower spin bosonic and fermionic fields. Note that the superfield is expanded in
the Grassmann variable η and therefore truncates at eighth order. For N = 7, there are
two supermultiplets which contain the positive and negative helicity states of the graviton,
respectively:

Φ+ = Φ|η8=0 , Φ− =
∫
dη8Φ. (2.7)

Note that N = 7 sugra has the same field content as N = 8 and they are perturbatively
equivalent. From this, we also see that an Nk−2MHV amplitude (whose graviton component
has k negative helicity gravitons) has fermionic degree 7k. Using the relation between
superfields, it is straightforward to extract N = 7 superamplitudes from N = 8. For
example, at three points we have

MN=7
3 (−−+) =

∫
dη8

1dη
8
2 MN=8

3

∣∣∣
η8

3=0
,

MN=7
3 (+ +−) =

∫
dη8

3 M
N=8
3

∣∣∣
η8

1=η8
2=0

(2.8)

whereM3 andM3 are the 3-point MHV and MHV amplitudes ofN = 8 sugra, respectively.
An n-point MHV amplitude describes the scattering of two positive helicity gravitons and
n− 2 negative helicity gravitons.

Using three-point amplitudes, we can build all higher point tree-level amplitudes using
BCFW recursion [6, 17, 18]. In this approach, one deforms the supermomenta of two legs in
a way that preserves momentum conservation and their on-shell properties. The deformed
amplitude then develops poles in the deformation parameter, whose residues correspond
to products of deformed lower-point amplitudes. This recursion was generalised to all-loop
integrands in planar N = 4 SYM in [7]. See [29] for recent progress on loop-level recursion
in generic theories.
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On-shell diagrams provide a diagrammatic representation of BCFW recursion. They
are built out of black and white vertices denoting MHV and MHV amplitudes respectively,
which are connected by lines representing an integral over on-shell states. This was first
developed for planar N = 4 SYM [5] and later generalised to tree-level amplitudes of N = 8
sugra [19]. These can be obtained by decorating planar on-shell diagrams and summing
over permutations of unshifted legs, giving (n − 2)! terms. It is also possible to carry out
the N = 8 recursion in other ways which will generically involve non-planar diagrams.

In this paper, we will develop on-shell diagrams for N = 7 sugra. Since there are two
supermultiplets encoding the two graviton helicities, the edges of the diagrams will be la-
belled with arrows to indicate helicity flow (which should not be confused with momentum
flow). In particular, incoming arrows denote the negative helicity supermultiplet, and out-
going arrows denote the positive helicity supermultiplet. Hence, 3-point MHV amplitudes
will have two incoming arrows and one outgoing arrow, while 3-point MHV amplitudes have
two outgoing arrows and one incoming arrow. Three-point superamplitudes and edges are
given by:

1

2

3 ≡ 〈12〉δ
14(λ1η1 + λ2η2 + λ3η3)
〈12〉2〈23〉2〈31〉2 , (2.9)

1

2

3 ≡ [12]δ
7([12]η3 + [23]η1 + [31]η2)

[12]2[23]2[31]2 , (2.10)

≡
∫
d2λ d2λ̃

GL(1) d
7η. (2.11)

Momentum conservation implies that λ̃1 ∝ λ̃2 ∝ λ̃3 for an MHV vertex and λ1 ∝ λ2 ∝ λ3
for an MHV vertex.

All tree-level amplitudes can be constructed from 3-point vertices using the following
diagrammatic recursion:

Mn

1− n+

=
∑
L,R

ML MR

1− n+

, (2.12)

where

1− n+

= 1
p1 ·pn

1− n+

. (2.13)
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= = ; = =

Figure 1. Merging rules for N = 7 on-shell diagrams. The decorated edges must appear opposite.

=

Figure 2. Square move for N = 7 on-shell diagrams.

The object connecting the lower-point amplitudes on the right-hand-side of (2.12) imple-
ments a BCFW shift of legs 1 and n and is known as a BCFW bridge. The external arrows
of the bridge imply a 〈1−, n+] shift and the internal arrows are fixed by helicity flow. Choos-
ing this BCFW bridge at every step of the recursion always produces on-shell diagrams
with closed cycles and the choice also fixes their orientation. The sum in equation (2.12)
is over all partitions of particles {2, . . . , n− 1} into sets L and R. The recursion is carried
out such that we always feed the fixed legs of the subamplitudes into the recursion. Using
the BCFW bridge in (2.13), the N = 7 recursion leads to fewer diagrams than the N = 8
recursion [19]. For example, at MHV there are (n − 3)! instead of (n − 2)! terms so it
appears that the N = 7 recursion encodes bonus relations [27], as was previously observed
in [28]. In [30], the bonus relations were used to write non-MHV amplitudes in N = 8
sugra as a sum over (n−3)! terms. It would be interesting to investigate how this cmpares
to the N = 7 recursion.

Whereas N = 7 sugra amplitudes are well-behaved when the BCFW deformation is
taken to infinity, this is not the case for N < 4 SYM amplitudes [31, 32], so a different
choice of BCFW bridge should be used in those theories. A 〈1−, n+] shift was considered
in N = 3 SYM using on-shell diagrams in [5], where it was shown that the correct result
could be obtained at 4-points by summing over orientations of closed cycles, but we find
that this prescription does not work at higher points.
N = 7 on-shell diagrams enjoy a number of equivalence relations similar to those of

N = 8 sugra. In particular mergers appear with an orientation encoding helicity flow, as
shown in figure 1, and square moves are only valid for diagrams where the incoming arrows
are adjacent, shown in figure 2. We are also free to move decorations to the opposite edge
of a box, which can be seen from the definition in (2.13).

2.1 Evaluating on-shell diagrams

On-shell diagrams for n-point Nk−2MHV amplitudes naturally give rise to integrals over
the space of k planes in n dimensions, also known as the Grassmannian Gr(k, n). These
integrals are represented as an integral over a k×n matrix C modulo a left action of GL(k).
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The rows of C are associated with the external legs with a Φ− multiplet, or equivalently
legs with incoming arrows, while the columns are associated will all external legs. As we
describe below, the C matrix for a given on-shell diagram can be computed by assigning
edge variables and summing over paths through the diagram taking the product of the edge
variables encountered along each path. One then lifts the integral over edge variables to
a covariant contour integral in the Grassmannian. A detailed algorithm for evaluating on-
shell diagrams in N = 8 sugra can be found in [19] and appendix A of [26]. The algorithm
for N = 7 is very similar, so we will describe it below more schematically:

1. Label every half edge (including external edges) with an edge variable α. Set one of
the two edge variables on each internal edge to unity and set one of the remaining
edge variables associated with each vertex to unity, leaving 2n− 4 edge variables.

2. Include dα/α2 for each edge entering a black vertex or leaving a white vertex and
dα/α3 for each edge leaving a black vertex or entering a white vertex.

3. Multiply by 〈ij〉 for each black vertex and [ij] for each white vertex, where i, j are
the two incoming or outgoing legs, respectively.

4. Include a kinematic factor to each decorated edge as shown in (2.13).

5. To relate internal and external spinors, sum over paths according to

λ̃i =
∑

paths i→j

 ∏
edges in path

αe

 λ̃j , (2.14)

λi =
∑

paths j→i

 ∏
edges in path

αe

λj . (2.15)

The matrix element Cij can then be computed by summing over all paths from leg i
to leg j, taking the product of all the edge variables encountered along each path as
in (2.14).

6. If there is a closed cycle, one will need to sum an infinite series when computing
the C-matrix in the previous step. Moreover, one will need to include the factor
JN−4
C = J 3

C , where JC comes from a sum over products of disjoint cycles [20]:

JC = 1 +
∑
i

fi +
∑

disjoint i,j
fifj +

∑
disjoint i,j,k

fifjfk + . . . , (2.16)

where fi is minus the product of edge variables around the ith cycle. In section 2.2 we
will describe an alternative method which avoids summing over closed cycles when
computing the C-matrix, and automatically computes JC .

7. Include δk(2|7)(C · λ̃)δ2×(n−k)(λ · C⊥) where C⊥ is an n × (n − k) matrix satisfying
C · C⊥ = 0, whose matrix elements can be computed by summing over the reverse
paths in (2.15). The dot products appearing in the delta functions are with respect
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A

2

BαBαA

Figure 3. Vertex showing example of how to truncate geometric series. Here we take leg 2 to be
external (with the corresponding edge variable set to 1) and legs A and B to be internal.

to particle number, so for example C ·λ̃ can be written more explicitly as∑n
i=1CIj λ̃

α
j ,

where I labels the k rows. After taking into account momentum conservation, there
are 2n − 4 bosonic delta functions, which precisely matches the number of edge
variables. The argument of the fermionic delta functions is C · η, which we suppress
for brevity. The resulting integral over edge variables can be thought of as a gauge-
fixed Grassmannian integral formula, where the gauge symmetry is GL(k).

8. Covariantise the integral over edge variables to an integral over Gr(k, n) by writing
the edge variables in terms of minors of the C and C⊥ matrices. Since Gr(k, n) has
dimension k(n−k) but there are only 2n−4 edge variables, this will imply a contour
in the Grassmannian of dimension k(n− k)− (2n− 4) = (k − 2)(n− k − 2).

2.2 Closed cycles

The N = 7 recursion has fewer diagrams compared to N = 8, but the price to pay is that
they generally contain more closed cycles, which can become very cumbersome to evaluate
following step 5 of the algorithm in the previous subsection. This technical difficulty can
be overcome as follows. Instead of expanding incoming λ̃i in terms of only outgoing λ̃j ,
we instead expand in terms of all external λ̃j . In particular, when summing over paths
originating from each incoming leg as described in step 5, we truncate the path if we reach
another incoming leg and then write the last internal spinor along the path in terms of the
external spinor using the fact that all λ̃ spinors are proportional at a black vertex. For
example, in figure 3 let us suppose that A and B are internal edges while 2 is an external
edge. When computing the C-matrix according to step 5 of the algorithm, we would write
λ̃A = αAλ̃B and then continue to expand λ̃B. We instead truncate the path by writing
λ̃A = αAλ̃2. The resulting C matrix will have non-zero elements between incoming legs,
but we can find a GL(k) transformation to set the columns of the incoming legs to a unit
matrix. We will refer to the C-matrix before this gauge-fixing as C̃. This will yield the same
result as step 5 of the algorithm without having to sum over closed cycles. Moreover the
Jacobian in step 6 is given by the inverse of the determinant of the GL(k) transformation.
This method can also be applied to on-shell diagrams in other theories.
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x1 x2

x3xn

p1

p2pn
X1 X2

X3Xn

Z1

Z2

Z3Zn−1

Zn

Figure 4. Diagrams indicating the relation between momenta pi, dual variables xi and momentum
twistors Zi.

3 Momentum twistors

In this section, we review some basic properties of momentum twistors, which were first
defined in [3]. These variables are defined in terms of region momentum coordinates xi
defined by the constraints

(xi − xi+1)αα̇ = pαα̇i . (3.1)

Region momentum coordinates can be visualised as the vertices of a null polygon con-
structed by arranging the external momenta head-to-tail, as depicted in figure 4. The
conformal group in region momentum space is known as the dual conformal group, which
was shown to be a symmetry of planar N = 4 SYM [33–35] and a superconformal Chern-
Simons theory known as the ABJM theory [36–38]. Although sugra amplitudes do not enjoy
dual conformal symmetry, we will see that momentum twistors are nevertheless useful for
describing them. Momentum twistors are then defined as

ZAi =
(
λαi , µ

α̇
i

)
, (3.2)

where A ∈ {1, . . . , 4} are indices in the fundamental representation of the dual conformal
group SU(4), λi is the spinor associated with the momentum of particle i according to (2.1),
and µi is an auxiliary spinor satisfying the incidence relation µi = xi·λi. Using the incidence
relation and (3.1), one finds that

xαα̇i =
λαi µ

α̇
i−1 − λαi−1µ

α̇
i

〈i− 1i〉 , (3.3)

which implies that a point xi in region momentum space corresponds to a line in momen-
tum twistor space associated with Zi−1 and Zi. Using this correspondence, a null polygon
in momentum space can be mapped into a polygon in momentum twistor space, as de-
picted in figure 4. This mapping essentially swaps edges and vertices. From a practical
standpoint, momentum twistors are very useful because they automatically encode mo-
mentum conservation, but they also have a number of other important properties. In the
context of Yang-Mills amplitudes, they make the cancellation of spurious poles manifest
and give rise to a geometric interpretation of NMHV amplitudes in terms of the volumes
of polytopes [3, 4].
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Using momentum twistors, one can define the following invariants of the dual conformal
group:

〈ijkl〉 = εABCDZ
A
i Z

A
j Z

A
k Z

A
l , (3.4)

where ε is the Levi-Cevita symbol. We can express the linear dependence of any 5 mo-
mentum twistors using this 4-bracket, which can be thought of as a higher-dimensional
analogue of the Schouten identity in (2.3):

Zi 〈jklm〉+ cyclic = 0. (3.5)

The angle-brackets in (2.2) can be obtained from momentum twistors using

〈ij〉 = IABZ
A
i Z

B
i , IAB =

(
εαβ 0
0 0

)
, (3.6)

where IAB is called the infinity twistor and breaks dual conformal symmetry. It is also
convenient to define the following 6-brackets [39]:

〈abc|I|ijk〉 = 〈ab〉 〈cijk〉+ cyclic(a, b, c),
= 〈abci〉 〈jk〉+ cyclic(i, j, k),

(3.7)

〈a|I|ij|klm〉 = 〈ai〉 〈jklm〉 − 〈aj〉 〈iklm〉 ,
= − (〈ak〉 〈lmij〉+ cyclic(k, l,m)) ,

(3.8)

where the second lines can be obtained using (3.5). These brackets have an elegant geo-
metrical interpretation in terms of intersections of lines and planes in momentum twistor
space (for more details see [39]). Moreover, they can be used to express the square brackets
in (2.2) in terms of momentum twistors as follows:

[ij] = 〈i− 1 i i+ 1|I|j − 1 j j + 1〉
〈i− 1 i〉 〈i i+ 1〉 〈j − 1 j〉 〈j j + 1〉 . (3.9)

In general, the numerator in (3.9) has three terms but there are two cases when it simplifies:

[i i+ 1] = 〈i− 1 i i+ 1 i+ 2〉
〈i− 1 i〉 〈i i+ 1〉 〈i+ 1 i+ 2〉 , (3.10)

[i i+ 2] = 〈i− 1 i i+ 1 i+ 2〉 〈i+ 3 i+ 1〉+ 〈i− 1 i i+ 1 i+ 3〉 〈i+ 1 i+ 2〉
〈i− 1 i〉 〈i i+ 1〉 〈i+ 1 i+ 2〉 〈i+ 2 i+ 3〉 . (3.11)

Other kinematic invariants such as multi-particle factorisation poles si1...ik and spurious
poles can also be written in terms of momentum twistor 4-brackets. They likewise take
simpler forms when the momentum labels are adjacent.

Finally, we will briefly review the extension to supersymmetric theories. By analogy
to (3.1), we may define fermionic region momenta

(θi − θi+1)αa = qαai , (3.12)

where the supermomentum qi is defined in (2.4). Momentum supertwistors are then defined
as
(
ZAi , χ

a
i

)
, where χi = θi · λi. The supersymmetric extension of (3.3) is then given by

θαai =
λαi χ

a
i−1 − λαi−1χ

a
i

〈i− 1i〉 . (3.13)

– 10 –
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2 3

41

α5

α6

α7

α8D4,2 =

Figure 5. On-shell diagram for 4-point amplitude with alternating helicities.

The following identity for converting fermionic delta functions to twistor notation will be
very useful:

δ(0|N ) ([ii+ 1] ηi+2 + cyclic) = δ(0|N ) (〈i− 1 i i+ 1 i+ 2〉χi+3 + cyclic)
(〈i− 1 i〉 〈i i+ 1〉 〈i+ 1 i+ 2〉 〈i+ 2 i+ 3〉)N

, (3.14)

where N denotes the amount of supersymmetry. We prove (3.14) in appendix A. It is also
convenient to define the following object known as an R-invariant:

R
(N )
ijk = δ(0|N ) (〈i j − 1 j k − 1〉χk + cyclic)

〈i j − 1 j k − 1〉 〈j − 1 j k − 1 k〉 〈j k − 1 k i〉 〈k − 1 k i j − 1〉 〈k i j − 1 j〉 , (3.15)

which first appeared in the context of N = 4 SYM [40]. This object is invariant under the
dual conformal group SU(4) but is only projectively invariant for N = 4, in which case it
can be related to the volume of a polytope in CP4 [4]. This object will also play a role in
supergravity, although its geometrical interpretation is less clear if N 6= 4.

4 MHV examples

In this section, we will use the on-shell diagram recursion in (2.12) to compute MHV
amplitudes in N = 7 sugra up to 6-points, obtaining Grassmannian integral formulas and
expressions in momentum twistor space in agreement with [21]. We will see that only
(n−3)! diagrams contribute, in contrast to (n−2)! in the N = 8 recursion, indicating that
the N = 7 recursion automatically incorporates the bonus relations.

4.1 n = 4

At four points, only a single on-shell diagram is needed, with no sum over permutations.
For M4,2(1−, 2+, 3−, 4+), this diagram is shown in figure 5. If one requires a different
helicity arrangement, this can be obtained simply by permuting the external legs. For
example, the amplitudeM4,2(1−, 2−, 3+, 4+) can be obtained from the on-shell diagram in
figure 6. We shall denote individual on-shell diagrams contributing to an amplitude using
the symbol D. Following the algorithm in section 2.1, this can be evaluated in terms of
edge variables as

D4,2 = 1
〈41〉[14]

∫ 8∏
i=5

(
dαi
α2
i

)
1

α8α6
〈71〉[25]〈53〉[47]J 3

C δ
(4|14)(C · λ̃)δ4(λ · C⊥), (4.1)
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where

C =
(

1 −∆α8 0 −∆α8α5α6
0 −∆α6 1 −∆α6α7α8

)
,

JC = (1− α5α6α7α8) = ∆−1,

(4.2)

and the factor of ∆ comes from a geometric series associated with the closed cycle. The
rows of the C-matrix are associated with legs 1 and 3.

When uplifting to a Grassmannian integral there is a Jacobian to transform from an
integral over edge variables into one over the entries of the C-matrix:

d2×4C

GL(2) = ∆4α2
6α

2
8

8∏
i=5

dαi. (4.3)

The expression in (4.1) can then be written as follows:

D4,2 =
∫
d2×4C

GL(2)
[23]〈32〉

∆7α5α5
6α7α5

8
δ(4|14)(C · λ̃)δ4(λ · C⊥),

=
∫
d2×4C

GL(2)
[23]〈32〉

(12)(23)(34)(41)(24)2(31)
(24)(31)
(23)(41)δ

(4|14)(C · λ̃)δ4(λ · C⊥).
(4.4)

This can be simplified by noting that 〈ij〉/(ij) and [ij]/(ij)⊥ are independent of i and j,
where (ij)⊥ = εijkl(kl) is a minor of C⊥. The amplitude then simplifies to

M4,2 = D4,2 = 〈13〉
∫
d2×4C

GL(2)
[kl]

(kl)⊥
∏
i<j

1
(ij)δ

(4|14)(C · λ̃)δ4(λ · C⊥). (4.5)

The Grassmannian integral can be evaluated by choosing

C =
(
λ1 λ2 λ3 λ4

)
. (4.6)

This sets (ij)→ 〈ij〉 and we obtain

M4,2(1−, 2+, 3−, 4+) = 〈13〉 [23]
〈41〉

1∏
i<j〈ij〉

, (4.7)

where we have factored out the supermomentum delta function to give the quantityM, as
defined in (2.5). This can be converted into a momentum twistor expression by substituting
for the spinor bracket [23] in terms of a twistor 4-bracket according to (3.10):

M4,2(1−, 2+, 3−, 4+) = 〈13〉 〈1234〉∏
i〈i i+ 1〉∏ i < j〈ij〉

. (4.8)
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Figure 6. On-shell diagram for 4-point amplitude with a split helicity arrangement.

2

51

3

4
α6

α7

α8

α9

α10

α11

D5,2 =

Figure 7. On-shell diagram for a 5-point MHV amplitude. To obtain the amplitude, sum over the
exchange 2↔ 3.

4.2 n = 5

The 5-point MHV amplitude M5,2(1−, 2+, 3+, 4−, 5+) can be obtained from the on-shell
diagram in figure 7 after summing over 2↔ 3. As we explained in the previous subsection,
other helicity arrangements can be obtained by relabelling the diagrams. Because the
diagram has two closed cycles, it is slightly tedious to evaluate the C-matrix following the
algorithm in section 2.1, so we instead use the technique described in section 2.2. First we
sum over paths originating from each incoming leg, truncating the path if we reach another
incoming leg

λ̃1 = α11λ̃2 + α11α9(λ̃3 + λ̃6),
λ̃4 = α7α8α9(λ̃3 + λ̃6) + α7λ̃5 + α7λ̃10,

(4.9)

where λ̃6 and λ̃10 are internal spinors adjacent to an incoming leg, which are associated
with α6 and α10 in figure 7, respectively. We then we use the fact that all λ̃ spinors are
proportional at a black vertex to write λ̃6 = α6λ̃4 and λ̃10 = α10λ̃1. Combining these with
equation (4.9) leads to the C-matrix

C̃ =
(

1 −α11 −α11α9 −α11α9α6 0
−α7α10 0 −α7α8α9 1− α7α8α9α6 −α7

)
, (4.10)
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where the rows are associated with legs 1 and 4. To bring the matrix to a canonical form,
we apply a GL(2) transformation given by the inverse of columns 1 and 4. This gives us

Gfix = ∆1∆2

(
1− α6α7α8α9 α6α9α11

α10α7 1

)
, (4.11)

C = GfixC̃ =
(

1 −∆2α11 −∆1∆2α9α11 0 ∆1∆2α9α11α6α7
0 −∆1∆2α7α10α11 −∆1α7α9(α8 + α10α11∆1∆2) 1 −∆1∆2α7

)
,

(4.12)

where ∆1 = (1−α6α7α8α9)−1 and ∆2 = (1−∆1α9α10α11α6α7)−1. The Jacobian associated
with the closed cycles is then given by

JC = det (Gfix)−1 = 1
∆1∆2

. (4.13)

The diagram can be written as the following integral over edge variables:

D5,2 =
∫ 11∏

i=6

(
dαi
α2
i

)
1

α7α9α11

α6α8α10〈34〉[34][21]
α11

J 3
C δ

(4|14)(C · λ̃)δ6(λ · C⊥),

=
∫
d2×5C

GL(2)
〈34〉[34][21]

∆8
1∆8

2α6α6
7α8α5

9α10α7
11
δ(4|14)(C · λ̃)δ6(λ · C⊥),

where the spinor brackets from the decorations have been used to cancel those from the
adjacent vertices, and we noted that

d2×5C

GL(2) = (∆1∆2)5α3
7α

2
9α

3
11

11∏
i=6

dαi. (4.14)

To uplift this to a covariant expression, note that

(12) = −∆1∆2α7α10α11, (14) = 1,
(23) = ∆1∆2α7α8α9α11, (25) = ∆1∆2α7α11,

(34) = −∆1∆2α9α11, (35) = ∆1∆2α7α9α11,

(45) = ∆1∆2α6α7α9α11, (51) = ∆1∆2α7.

(4.15)

Some products of these are especially useful:

(∆1∆2)5α6α
4
7α8α

3
9α10α

4
11 =

5∏
i=1

(i i+ 1),

∆1∆2 = (15)(34)
(35)(14) ,

α11 = (25)
(51) ,

(∆1∆2α7α9α11)2 = (35)2

(14) .

(4.16)

Recalling that 〈ij〉/(ij) is independent of i and j, we finally get

D5,2 = 〈14〉
∫
d2×5C

GL(2) [12][34](24)(13)
∏
i<j

1
(ij)δ

(4|14)(C · λ̃)δ6(λ · C⊥). (4.17)
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The 5-point amplitude can then be recovered by summing the above formula over the
permutation 2↔ 3:

M5,2(1−, 2+, 3+, 4−, 5+)

= 〈14〉
∫
d2×5C

GL(2) ([12][34](24)(13)− [13][24](34)(12))δ
(4|14)(C · λ̃)δ6(λ · C⊥)∏

i<j(ij)
.

(4.18)

The Grassmannian integral formula in (4.18) can be evaluated by setting the columns
of C to λi giving

M5,2(1−, 2+, 3+, 4−, 5+) = 〈14〉 [12][34]〈24〉〈13〉 − [13][24]〈12〉〈34〉∏
i<j〈ij〉

. (4.19)

Note that [12][34]〈24〉〈13〉− [13][24]〈12〉〈34〉 = 4iεµνρσpµ1pν2p
ρ
3p
σ
4 is permutation-invariant on

support of momentum conservation. Hence, we can equivalently write it as [23][45]〈35〉〈24〉−
[24][35]〈23〉〈45〉. To convert the numerator to momentum twistor notation, let us consider
the following quantity, first defined in [21]:

N5 =
(
[23][45]〈35〉〈24〉 − [24][35]〈23〉〈45〉

)
〈12〉〈23〉〈34〉〈45〉〈51〉,

= 〈1234〉〈2345〉〈51〉 − 〈1234〉〈3451〉〈25〉 − 〈5123〉〈2345〉〈14〉.
(4.20)

This quantity will also play a role for non-MHV amplitudes. To prove the second equality,
use (3.10), (3.11), and (3.5):

N5 = 〈1234〉〈3451〉〈35〉〈24〉
〈34〉 − (〈1234〉〈53〉+ 〈5123〉〈43〉)(〈4512〉〈43〉+ 〈3451〉〈42〉)

〈34〉 ,

= −(〈1234〉〈4512〉〈35〉+ 〈5123〉〈4512〉〈34〉+ 〈5123〉〈3451〉〈24〉).
(4.21)

Equation (4.20) then follows from noting that N5 is invariant under cyclic permutations.
Hence, the 5-point MHV amplitude has the following form in momentum twistor space:

M5,2(1−, 2+, 3+, 4−, 5+) = 〈14〉〈1234〉〈2345〉〈51〉 − 〈1234〉〈3451〉〈25〉 − 〈2345〉〈5123〉〈14〉∏
i〈i i+ 1〉∏i<j〈ij〉

.

(4.22)

4.3 n = 6

The 6-point MHV amplitudeM6,2(1−, 2+, 3+, 4+, 5−, 6+) can be obtained by summing the
diagram shown in figure 8 over permutations of legs {2, 3, 4}. As before, other helicity
arrangements can be obtained by relabelling. Using the technique described in section 2.2,
we obtain the C-matrix

C̃ =
(

1 −α14 −α11α14 −α10α11α14 −α7α10α11α14 0
−α8α13 0 −α8α11α12 −α8α10(α9 + α11α12) 1− α7α8α10(α9 + α11α12) −α8

)
.

(4.23)
We then gauge-fix using

Gfix = ∆
(

1− α7α8α10(α9 + α11α12) α7α10α11α14
α8α13 1

)
, (4.24)
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Figure 8. On-shell diagram for a 6-point MHV amplitude. This diagram needs to be summed over
all permutations of {2, 3, 4}.

and the Jacobian associated with closed cycles is

JC = ∆−1 = (1− α10α7α8 (α9 + α11(α12 + α13α14))) . (4.25)

This leads to the C-matrix

C = GfixC̃ =
(1 −∆α14 (1− α7α8α10(α9 + α11α12)) −∆α11α14(1− α7α8α9α10)

0 −∆α8α13α14 −∆α8α11(α12 + α13α14)
−∆α10α11α14 0 −∆α7α8α10α11α14

−∆α8α10 (α9 + α11(α12 + α13α14)) 1 −∆α8

)
.

(4.26)

The bracket factors from the vertices are

[47] = α7[45],
〈75〉 = 〈45〉,

[2 15] = 1
α14

[21],

[3 16] = 1
α11α14

([31]− α14[32]) ,

= − 1
(36) ([31](16) + [32](26)) .

(4.27)
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Moreover the following expressions relating edge variables to minors are useful for obtaining
a Grassmannian integral formula:

d2×6C

GL(2) = ∆6α4
8α

2
10α

3
11α

4
14

14∏
i=7

dαi,

6∏
i=1

(i i+ 1) = ∆6α7α
5
8α9α

3
10α

4
11α12α13α

5
14,

(16) = −∆α8,

(26) = ∆α8α14,

(36) = ∆α8α11α14,

(45) = −∆α10α11α14,

(46) = ∆α8α10α11α14.

(4.28)

After collecting all the terms, the on-shell diagram in figure 8 evaluates to

D6,2 =
∫ 14∏

i=7

(
dαi
α2
i

)
α9α12α13α7
α8α10α11α2

14

[45]〈45〉[12]([31](16)+[32](26))
(36) J 3

Cδ
(4|14)(C ·λ̃)δ8(λ·C⊥),

=
∫
d2×6C

GL(2)
δ(4|14)(C ·λ̃)δ8(λ·C⊥)

∆9α7α7
8α9α5

10α
6
11α12α13α8

14

[45]〈45〉[12]([31](16)+[32](26))
(36) ,

=
∫
d2×6C

GL(2)
δ(4|14)(C ·λ̃)δ8(λ·C⊥)∏6

i=1(i i+1)
[45]〈45〉[12]([31](16)+[32](26))

(36)(45)(64)(26) .

The Grassmannian integral can then be evaluated to give the spinorial expression

D6,2 = 〈15〉
∏
i<j

1
〈ij〉

[45][12][3|1 + 2|6〉〈25〉〈35〉〈24〉〈13〉〈14〉. (4.29)

Finally, the six-point amplitude can be recovered by summing over the six permutations
of legs 2, 3 and 4:

M6,2(1−, 2+, 3+, 4+, 5−, 6+) =
∑
P(2,3,4)

D6,2, (4.30)

which is the BGK form of the MHV gravity amplitude [23].
Equation (4.30) can be simplified by using momentum conservation to eliminate the

square brackets {[23] , [34] , [42] , [56] , [61] , [15]}, and then using the Schouten identity to
eliminate the corresponding angle brackets. These are the brackets that transform into
each other (or not at all) when we carry out the permutation sum. We are left with the
following sum:

M6,2(1−, 2+, 3+, 4+, 5−, 6+) = 〈15〉
∑
P(2,3,4)

[12][53][64]〈13〉〈14〉〈52〉〈54〉〈62〉〈63〉∏
i<j〈ij〉

. (4.31)

Each of the six terms can be translated into a product of 6-brackets using (3.9). However, if
we first exchange 3↔ 6 (using the permutation symmetry of the amplitude), this removes
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all square brackets of the form [ii+2] and also ensures maximum cancellation of angle 2-
brackets between numerator and denominator. This leads to the same compact twistor
expression found in [21], which can be expressed as

M6,2(1−, 2+, 3+, 4+, 5−, 6+) = 〈15〉 N6∏
i〈i i+1〉∏i<j〈ij〉

, (4.32)

with

N6 = 〈123|I|456〉〈234|I|561〉〈345|I|612〉
+ 〈123|I|456〉〈5612〉〈2345〉〈14〉〈36〉
+ 〈234|I|561〉〈6123〉〈3456〉〈25〉〈41〉
+ 〈345|I|612〉〈1234〉〈4561〉〈36〉〈52〉
+ 〈1234〉〈3456〉〈5612〉〈14〉〈25〉〈36〉
+ 〈2345〉〈4561〉〈6123〉〈25〉〈36〉〈41〉.

In [21], Hodges conjectured that the structure of (4.32) can be extended to all gravitational
MHV amplitudes.

5 NMHV examples

In this section, we will use the on-shell diagram recursion to compute NMHV amplitudes
in N = 7 sugra. As a warm-up, we first consider the 5-point NMHV amplitude. Although
this is just the parity conjugate of an MHV amplitude, converting it to momentum twistor
space reveals interesting structure which extends to higher points, notably R-invariants
analogous to the building blocks for non-MHV amplitudes in N = 4 SYM. We then go on
to compute the 6-point NMHV amplitude. Unlike MHV amplitudes, the on-shell diagrams
for non-MHV amplitudes correspond to residues of top-forms in the Grassmannian (this
was previously observed in N = 4 SYM in [41–43] and N = 8 sugra in [26]).

Another difference compared to MHV amplitudes is that we do not use globally defined
momentum twistors to describe non-MHV amplitudes above 5-points. In particular, for
the 6-point NMHV amplitude we split the on-shell diagrams into three sets and define
momentum twistors with respect to a different ordering of external momenta in each set,
analogous to defining local coordinates on different patches of a manifold. Although this
approach is unconventional, it has two important pay-offs. Firstly, the amplitudes can
be expressed in terms of R-invariants similar to those found a 5-points. Secondly, the
cancellation of spurious poles becomes completely transparent.

5.1 n = 5

We will begin by computing the 5-point NMHV amplitudeM5,3(1−, 2+, 3−, 4−, 5+), which
can be obtained from the on-shell diagram in figure 9 by summing over 3↔ 4. Using the
technique in section 2.2 we obtain the C-matrix

C̃ =

 1 −α6 −α6α7 0 0
0 −α6α8α9 1− α6α7α8α9 −α8 0

−α10α11 0 0 1 −α10

 . (5.1)
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Figure 9. On-shell diagram for a 5-point NMHV amplitude. The full amplitude is recovered by
summing over 3↔ 4.

This can be put in canonical form using the GL(3) transformation

Gfix = ∆

 1− α6α7α8α9 α6α7 α6α7α8
α8α10α11 1 α8

α10α11(1− α6α7α8α9) α6α7α10α11 1− α6α7α8α9

 , (5.2)

where the Jacobian associated with closed cycles is

JC = ∆−1 =
(
1− α6α7α8(α9 + α10α11)

)
. (5.3)

The gauge-fixed C-matrix is then given by

C =

1 −∆α6 0 0 −∆α6α7α8α10
0 −∆α6α8(α9 + α10α11) 1 0 −∆α8α10
0 −∆α6α10α11 0 1 −∆α10(1− α6α7α8α9)

 . (5.4)

The bracket factors from the vertices are

〈13 4〉 = 1
α10
〈54〉

[27] = α7[23]
〈73〉 = 〈23〉.

(5.5)

To derive a Grassmannian integral formula the following relations are useful:

d3×5C

GL(3) = ∆5α3
6α

2
8α

3
10

11∏
i=7

αi,

5∏
i=1

(i i+ 1 i+ 2) = ∆5α6α7α
2
8α

3
10,

(145)(234)
(245) = −∆,

(235)
(234) = −α10,

(245) = −∆α6α8α10.

(5.6)
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Using these relations, the diagram in figure 9 evaluates to

D5,3 =
∫ ( 11∏

i=6

dαi
α2
i

)
δ(6|21)(C ·λ̃)δ4(λ·C⊥)

α6α8α10

α7α9α11
α10

〈54〉[23]〈23〉J 3
C ,

=
∫
d3×5C

GL(3)
〈54〉[23]〈23〉

∆8α6
6α

2
7α

5
8α9α7

10α11
δ(6|21)(C ·λ̃)δ4(λ·C⊥),

=
∫
d3×5C

GL(3) δ
(6|21)(C ·λ̃)δ4(λ·C⊥) 〈54〉[23]〈23〉∏5

i=1(i i+ 1 i+ 2)(235)(145)(245)
,

= [25]
∫
d3×5C

GL(3) δ
(6|21)(C ·λ̃|η)δ4(λ·C⊥)〈54〉〈23〉(124)(135)∏

i<j<k(ijk) ,

(5.7)

where we have used that [23]/[25] = (145)/(134). This relation can be derived by noting
that for the canonical choice

C =

 1 c12 0 0 c15
0 c32 1 0 c35
0 c42 0 1 c45

 , (5.8)

the bosonic delta functions δ6
(
C · λ̃

)
imply that ci2 = [5i] / [25] and ci5 = [i2] / [25], so

(ijk) = εijkmn[lm]/[25]. Plugging this into (5.7) and summing over 3↔ 4 finally gives

M5,3 = [25]∏
i<j [ij]

([35][24]〈23〉〈54〉 − [45][23]〈24〉〈53〉) δ(0|7)
( [51]η2 + cyclic

〈34〉

)
. (5.9)

If we pull out a helicity-dependent prefactor, (5.9) can alternatively be written as

M5,3(1−, 2+, 3−, 4−, 5+) = [25] 1
〈12〉〈23〉〈34〉〈45〉〈51〉 M̂5, (5.10)

where M̂5 is little-group invariant which has the following form in momentum twistor space:

M̂5 = N5R
(7)
135

D5
, (5.11)

where R(7) is an N = 7 R-invariant defined in (3.15), N5 is defined in (4.20), and

D5 =
5∏
i=1
〈i− 2 i− 1 i|I|i i+ 1 i+ 2〉. (5.12)

Note that D5 is proportional to the product of five spinor brackets [ii+2] using (3.9)
and (3.11). Neither R(7) nor D5 are permutation invariant but their ratio should neverthe-
less have the S5 symmetry since we pulled out the helicity-dependent part of the amplitude
in (5.10). In N = 4 SYM, R-invariants form the building blocks for all tree-level non-MHV
amplitudes, so it is interesting to see them appear in sugra amplitudes. In [44], N = 8
sugra amplitudes were constructed by squaring N = 4 R-invariants, but in this paper we
define R-invariants which are more intrinsic to sugra. Note that both R(4) and R(7) are
invariant under the dual conformal group SL(4), but R(4) have additional GL(1) symmetry
which makes them projective and leads to an elegant geometric interpretation of NMHV
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Figure 10. On-shell diagram combining a 3-point MHV amplitude with a 5-point MHV amplitude.
This diagram needs to be summed over the permutations 2↔ 4 and 3↔ 5.

amplitudes in N = 4 SYM as volumes of polytopes in CP4 [4]. Note that M̂5 in (5.11) is
also GL(4) invariant, so it would be interesting explore its geometric interpretation.

Writing the remaining spinor bracket in (5.10) in terms of a twistor bracket using (3.9),
we get

M5,3(1−, 2+, 3−, 4−, 5+) = R
(7)
135

[PT(5)]2
〈123|I|451〉〈34〉N5

D5
, (5.13)

where
[PT(n)] = Πn

i=1 〈ii+ 1〉 (5.14)

and n + 1 is identified with particle 1. We will find similar structure for 6-point NMHV
amplitudes.

5.2 n = 6

In this subsection, we will consider the amplitude with alternating helicities
M6,3(1−, 2+, 3−, 4+, 5−, 6+). Any other can then be obtained by a relabelling. Using the
recursion in (2.12), this amplitude can be obtained from four on-shell diagrams summed
over permutations to give a total of 13 terms. It is then natural to combine them into 9
terms, each with a common pole of the form sijk = (pi + pj + pk)2. In this way we obtain
a superamplitude whose graviton component is equivalent to the spinorial expression ob-
tained in [21] up to a relabelling. In the next subsection we obtain a new formula for the
6-point NMHV amplitude in terms of momentum twistors defined with respect to different
orderings of the external momenta, which reveals surprising mathematical structure and
provides a systematic understanding of spurious pole cancellation.

Since N = 7 on-shell diagrams are labelled with arrows encoding the helicities of the
superfields, we will sometimes have to use non-cyclic labels for the external legs even before
we sum over permutations. Our description of how to evaluate the on-shell diagrams will
be more schematic in this section. For more details, see appendix B.

3+5 and 5+3 diagrams. We begin with the diagrams in figures 10 and 11, which encode
factorisations into 3-point and 5-point subamplitudes. Using the methods described in
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Figure 11. On-shell diagram combining a 5-point MHV amplitude with a 3-point MHV amplitude.
This diagram needs to be summed over the permutations 2↔ 4 and 3↔ 5.

section 2, they can be written compactly as

D3+5
6,3 = Res

(612)=0

∫
d3×6Ω7

〈34〉[34]〈56〉[12]
(346)(256)(356)

(123)
(124) ,

D5+3
6,3 = Res

(234)=0

∫
d3×6Ω7

〈34〉[34]〈56〉[12]
(346)(256)(356)

(123)
(124) ,

(5.15)

where
d3×6Ω7 = d3×6C

GL(3)
δ(6|21)(C · λ̃|η)δ(6)(λ · C⊥)∏6

i=1(i i+ 1 i+ 2)
. (5.16)

These diagrams need to be summed over the permutations 2↔ 4 and 3↔ 5. In each case
it can be seen that one of these permutations only affects the integrand whilst the other
also changes which residue we take.

The Grassmannian integrals in (5.15) can be evaluated using a clever choice of gauge [5].
For example, to evaluate D3+5

6,3 we multiply by (612) and choose

C =
(
λ1 λ2 λ3 λ4 λ5 λ6
0 0 [45] [53] [34] 0

)
. (5.17)

Calculating the required minors and substituting into the first line of (5.15) then gives

D3+5
6,3 = 〈34〉〈56〉[12] δ(0|7) ([45]η3 + [53]η4 + [34]η5)

s345〈12〉[35][34]〈61〉〈26〉[3|4 + 5|6〉[4|5 + 3|6〉[5|3 + 4|6〉[5|3 + 4|2〉 , (5.18)

where [i|j+k|l〉 = [ij]〈jl〉+[ik]〈kl〉. Terms of this form correspond to spurious poles which
must cancel out in the amplitude. The full expression containing an s345 pole is obtained
by summing over the exchange 3↔ 5:

D(345)
6,3 = [12]δ(0|7) ([45]η3+[53]η4+[34]η5)

s345〈12〉〈26〉〈61〉[35][3|4+5|6〉[4|5+3|6〉[5|3+4|6〉

( 〈34〉〈56〉
[34][5|3+4|2〉−

〈54〉〈36〉
[54][3|5+4|2〉

)
,

(5.19)
where the sign which comes from exchanging of 3 ↔ 5 in the fermionic delta function is
cancelled by the sign which comes from anticommuting the corresponding Φ− superfields.
The term with an s235 pole can be obtained by applying the permutation 2↔ 4 to (5.19).
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Figure 12. On-shell diagram combining two 4-point amplitudes with alternating helicities. This
diagram needs to be summed over the permutations 2↔ 4 and 3↔ 5.

Similarly, for D5+3
6,3 , we choose

C =
(
λ1 λ2 λ3 λ4 λ5 λ6
[56] 0 0 0 [61] [15]

)
, (5.20)

which gives

D(5+3)
6,3 = [34]〈56〉[12] δ(0|7) ([56]η1 + [61]η5 + [15]η6)

s561[61][15][56]〈43〉〈24〉[1|5 + 6|2〉[1|5 + 6|3〉[1|5 + 6|4〉[5|6 + 1|2〉 . (5.21)

The full expression with an s561 pole is then obtained by summing over the permutation
2↔ 4 and is given by

D(561)
6,3 = 〈56〉δ(0|7) ([56]η1+[61]η5+[15]η6)

s561[61][15][56]〈24〉[1|5+6|2〉[1|5+6|3〉[1|5+6|4〉

( [12][34]
〈43〉[5|6+1|2〉−

[14][32]
〈23〉[5|6+1|4〉

)
.

(5.22)
The term with a pole in s361 is then obtained by applying the permutation 3↔ 5.

4+4 diagrams. These diagrams encode factorisations into 4-point subamplitudes. In
the N = 7 formalism, there are two inequivalent types in which the 4-point amplitudes
either have negative helicities opposite or adjacent to each other, as depicted in figures 12
and 13, respectively. Using the methods described in section 2, the diagram in figure 12
evaluates to

D(4+4)
6,3 = Res

(456)=0

∫
d3×6Ω7

[13][45]〈23〉〈46〉
(236)(246)2 . (5.23)

To find a spinor expression for this diagram, we choose

C =
(
λ1 λ2 λ3 λ4 λ5 λ6
[23] [31] [12] 0 0 0

)
, (5.24)

which gives

D(4+4)
6,3 ≡ D(123)

6,3 ,

= − [13][45]〈23〉〈46〉 δ(0|7) ([23]η1 + [31]η2 + [12]η3)
s123[1|2 + 3|4〉[12][45]〈56〉[23][3|1 + 2|6〉[31]2〈46〉2[1|2 + 3|6〉 ,

= 〈23〉[45] δ(0|7) ([23]η1 + [31]η2 + [12]η3)
s123[12][23][31]〈46〉〈45〉〈56〉[1|2 + 3|4〉[1|2 + 3|6〉[3|1 + 2|6〉 . (5.25)
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Figure 13. On-shell diagram combining two 4-point amplitudes with split helicities. This diagram
does not require any permutation sums since it is invariant under 2↔ 4 and 3↔ 5.

The final diagram in figure 13 is non-planar. This is a consequence of using the BCFW
bridge in (2.13) with its fixed helicity assignments . The diagram is invariant under the
permutations 2 ↔ 4 and 3 ↔ 5. Although this is not obvious from the Grassmannian
integral formula, it will be manifest in the spinorial expression. The Grassmannian integral
formula for this diagram is

D(4̃+4̃)
6,3 = Res

(356)=0

∫
d3×6Ω7

[24]〈24〉[35]〈35〉(123)(456)
(146)(245)(236)(124)(356) . (5.26)

To evaluate the Grassmannian integral, choose

C =
(
λ1 λ2 λ3 λ4 λ5 λ6
[24] [41] 0 [12] 0 0

)
, (5.27)

which gives

D(4̃+4̃)
6,3 ≡ D(124)

6,3 ,

= [35]〈24〉 δ(0|7) ([24]η1 + [41]η2 + [12]η4)
s124[12][14]〈56〉〈36〉[1|2 + 4|3〉[1|2 + 4|5〉[4|1 + 2|6〉[2|1 + 4|6〉 . (5.28)

From this spinor expression, it is clear that this term is invariant under the permutations
2↔ 4 and 3↔ 5.

The full amplitude is given by

M6,3(1−, 2+, 3−, 4+, 5−, 6+) =
∑
2↔4
3↔5

(
D3+5

6,3 +D4+4
6,3 +D5+3

6,3

)
+D4̃+4̃

6,3 . (5.29)

Combining terms with common sijk poles gives a sum over nine terms, where we denote
the term with a pole in sijk as D(ijk)

6,3 .∑
2↔4
3↔5

D3+5
6,3 = D(345)

6,3 +D(325)
6,3 ,

∑
2↔4
3↔5

D4+4
6,3 = D(123)

6,3 +D(143)
6,3 +D(125)

6,3 +D(145)
6,3 ,

∑
2↔4
3↔5

D5+3
6,3 = D(561)

6,3 +D(361)
6,3 ,

D4̃+4̃
6,3 = D(124)

6,3 .

(5.30)
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5.3 Local coordinates

We will now rewrite the expressions obtained in the previous subsection in terms of mo-
mentum twistors. For concreteness, let us first consider the formula for the twisted on-shell
diagram in (5.28). Using (3.9), (A.2), and (3.5), the fermionic delta function can be written
as follows:

δ(0|7) ([12]η4 + [41]η2 + [24]η1) =
δ(0|7)(〈34〉(〈6123〉χ5 + cyc.) + 〈53〉(〈6123〉χ4 + cyc.)

)
(〈61〉〈12〉〈23〉〈34〉〈45〉)7 .

(5.31)
Compared to the R-invariants which appear in non-MHV amplitudes of N = 4 SYM, this
expression is complicated and difficult to interpret geometrically. A more illuminating form
can be obtained by defining momentum twistors with respect to permuted momenta. Note
that we are not actually permuting momenta of the amplitude, so this should be thought
of as a passive transformation as we will spell out below. In general, this transformation
acts like a permutation of momentum labels, a linear transformation of region momenta,
and a non-linear transformation of twistors:

pi|P = pP(i),

(xi − xi+1)|P = pi|P = pP(i),

Zi|P = (λi, xi · λi)|P =
(
λP(i), xi|P · λP(i)

)
, (5.32)

where the first line is used to express the right hand side of the other two lines. For
concreteness, let P act on momentum labels as follows:

P =
(

1 2 3 4 5 6
1 2 5 6 3 4

)
. (5.33)

Using (5.32), the fermionic delta function in (5.31) takes a much simpler form

δ(0|7) ([12]η4 + [41]η2 + [24]η1) = δ(0|7) ([61]η2 + [12]η6 + [26]η1)
∣∣∣
P
,

= δ(0|7)(〈5612〉χ3 + cyc.)
(〈56〉〈61〉〈12〉〈23〉)7

∣∣∣∣∣
P
,

(5.34)

which can be written in terms of an R-invariant defined in (3.15).
Now let’s consider a spurious pole in appearing in (5.28):

[1|2 + 4|5〉 = −〈53〉(〈24〉〈6123〉+ 〈32〉〈6124〉) + 〈23〉〈34〉〈5612〉
〈61〉〈12〉〈23〉〈34〉 . (5.35)

In terms of the momentum twistors defined with respect to the permutation P above, this
also takes a much more compact and geometrical form:

[1|2 + 4|5〉 = [1|2 + 6|3〉
∣∣
P = 〈36〉〈5612〉+ 〈56〉〈6123〉

〈56〉〈61〉〈12〉
∣∣
P = 〈612|I|356〉

〈56〉〈61〉〈12〉
∣∣
P , (5.36)

Remarkably, this type of simplification occurs for all of the spurious poles we encounter in
the 6-point NMHV amplitude, which makes their cancellation much more transparent, as
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Patch Chart Patch Content Equations
1 123456 561, 345, 123 (5.22), (5.19), (5.25)
2 145236 361, 325, 145 (5.22), (5.19), (5.25)
3 125634 124, 134, 125 (5.28), (5.25), (5.25)

Table 1. An atlas for the 6-point NMHV amplitude in momentum twistor space. The permutation
associated with each chart is listed in the second column. The on-shell diagrams in each patch
are listed in the third column, and are labelled by three momenta appearing the corresponding
factorisation channel. The final column lists where the expressions in the third column can be
found (some after applying either 3↔ 5 or 2↔ 4 or both).

we show in the next subsection. In Yang-Mills theory, such cancellations were explained by
interpreting the amplitude as the volume of a polytope in momentum twistor space. We
therefore expect a similar geometric picture for gravity, although it will be more complicated
for reasons we will now explain.

The main complication is that we cannot simultaneously simplify all on-shell diagrams
using a global choice of coordinates in momentum twistor space. In order to make progress,
we will use different momentum twistor coordinates for different on-shell diagrams, analo-
gous to assigning local coordinates on a manifold. In the present context, local coordinates
refer to momentum twistors defined with respect to a certain permutation of external mo-
menta which we will refer to as a chart, and the set of on-shell diagrams described by
a given chart will be referred to as a patch.2 The transition functions between different
patches are complicated in general, but can deduced by decomposing the respective per-
mutations into adjacent transpositions, as we explain in appendix C. Finally, will refer to
the set of all charts we use to describe a scattering amplitude as an atlas.

The set of all possible charts at n = 6 is the permutation group S6, but we can
quotient by cyclic permutations and the Z2 transformation ( 1 2 3 4 5 6

6 5 4 3 2 1 ), since these permute
momentum twistors in a trivial way, leaving a total of 60 charts. Using a Python script, we
found that at least three charts are needed to describe the 6-point NMHV amplitude in such
a way that all fermionic delta functions can be described by R-invariants. This boils down to
looking for the smallest atlases whose charts contain all nine 3-tuples (i, j, k) corresponding
to the sijk poles in the amplitude.3 There are 32 such atlases. Further insisting that one
chart corresponds to the identity permutation reduces this to four. We will choose one
of these four atlases to demonstrate the relative compactness of the amplitude (the other
three atlases lead to similar results). The charts it contains and the on-shell diagrams in
each patch are summarised in table 1. We will denote the three charts by the permutations
Pi, i ∈ {1, 2, 3}. The region momentum coordinates in each patch are depicted in figure 14,
and the momentum twistors in a generic patch are depicted in figure 15.

To start, let us look at the expressions obtained for the first patch in table 1. In this
case, the momentum twistors are defined with respect to unpermuted momenta and the

2To make the analogy to a manifold more precise, we should distinguish between the amplitude and the
underlying geometric object that it describes. Hence, a patch should really be thought of as a region of the
underlying geometric object on which a set of on-shell diagrams is defined.

3Strictly speaking, the chart itself is the inverse of the permutation we need to apply.
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Figure 14. Three sets of region momentum variables for the atlas in table 1.

X1

∣∣
Pi

X2

∣∣
Pi

X3

∣∣
Pi

X4

∣∣
Pi

X5

∣∣
Pi

X6

∣∣
Pi

Z1

∣∣
Pi

Z2

∣∣
Pi

Z3

∣∣
Pi

Z4

∣∣
Pi

Z5

∣∣
Pi

Z6

∣∣
Pi

Figure 15. Definition of momentum twistors from dual variables on a given patch Pi.

three contributions from this patch are given by

D(561)
6,3 = R

(7)
251

[PT(6)]2
〈456|I|124〉〈6123〉〈2345〉+ 〈612|I|345〉〈1234〉〈4562〉
〈24〉〈612|I|456〉〈456|I|124〉〈245|I|612〉〈612|45|I|3〉 , (5.37)

D(345)
6,3 = R

(7)
246

[PT(6)]2
〈6123〉 (〈234|I|256〉〈3456〉+ 〈36〉〈2345〉〈2456〉)
〈26〉〈234|I|456〉〈345|I|236〉〈456|I|236〉〈234|I|256〉 , (5.38)

D(123)
6,3 = R

(7)
214

[PT(6)]2
〈3456〉

〈34〉〈46〉〈234|I|612〉〈346|I|612〉 . (5.39)

We can see that each term contains an R-invariant along with a squared Park-Taylor
factor in the denominator, just as we found for the 5-point NMHV amplitude in (5.13).
Furthermore, the remaining terms are written in terms of 4-brackets and 6-brackets defined
in (3.4), (3.7) and (3.8). Note that 4-bracket spurious poles are of the form 〈i j−1 j j+1〉
for i+1 6= j−1 and i−1 6= j+1, while 6-bracket spurious poles are of the form 〈a|I|bc|def〉
or 〈abc|I|def〉 where (a, b, c) or (d, e, f) are non-adjacent. In the next subsection we will
see that the structure of the terms dressing the R-invariants is required by spurious pole
cancellation. It would be interesting to have a more systematic understanding of their
structure in terms of some underlying geometric object.

The second patch in table 1 does not require any additional work. The twistor ex-
pressions are identical to those in the first patch using twistors defined with respect to a
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different ordering:

D(361)
6,3 = D(561)

6,3
∣∣
P2
, (5.40)

D(325)
6,3 = D(345)

6,3
∣∣
P2
, (5.41)

D(145)
6,3 = D(123)

6,3
∣∣
P2
. (5.42)

Finally, the third patch in table 1 has the following momentum twistor expressions:

D(124)
6,3 = R

(7)
163

[PT(6)]2
〈26〉〈456|I|234〉〈5123〉〈5613〉

〈23〉〈56〉〈612|I|325〉〈612|I|356〉〈4|I|23|561〉〈4|I|65|123〉
∣∣
P3
, (5.43)

D(134)
6,3 = R

(7)
251

[PT(6)]2
〈1234〉〈4562〉

〈24〉〈612|I|456〉〈612|I|452〉〈456|I|214〉
∣∣
P3
, (5.44)

D(125)
6,3 = R

(7)
214

[PT(6)]2
〈4561〉〈6234〉

〈46〉〈234|I|612〉〈234|I|614〉〈612|I|436〉
∣∣
P3
. (5.45)

In summary, it seems natural to describe sugra amplitudes using momentum twistor
coordinates which are defined with respect to different permutations of external momenta.
This leads to compact expressions in terms of R-invariants dressed with rational functions
of 4-brackets and 6-brackets which have geometric interpretations in terms of intersections
of lines and planes in momentum twistor space. As we will demonstrate in the next
subsection, this point of view will also make the cancellation of spurious poles in the
6-point NMHV amplitude much more transparent, suggesting a geometric interpretation
analogous to the polytope picture discovered for Yang-Mills in [3]. Given that each pole
of the 6-point NMHV amplitude can be written as either a 4-bracket or a 6-bracket, one
may ask if this property holds for all possible poles one can write down at six points. We
developed an algorithm to answer this question, which finds the simplest possible form for
all poles at six points. The algorithm is explained in appendix D, and implemented in
the attached Mathematica file. Using the algorithm, we find that some poles must be
written as a sum of terms, and cannot be written as a single 4-bracket or 6-bracket. Hence
it is non-trivial that the pole structure of the 6-point NMHV amplitude can be written in
a simple geometrical way, and we take this as further evidence that there is an underlying
geometric object which encodes gravity amplitudes.

5.4 Spurious pole cancellation

As first noted in [21], there are 18 different spurious poles in the 6-point NMHV amplitude.
Each spurious pole appears twice, giving a total of 36 occurrences. Each of the four
diagram topologies has a different set of spurious poles associated with it. These cancel
in pairs as shown in figure 16. In principle, there are 18 cancellations to check, however
the permutations used to simplify the twistor expressions can also be used to relate all the
cancellations which appear on the same edge in figure 16, leaving only six cases to check.
We label a given cancellation using the notation (j|j′), where the cancellation takes place
between two bubbles in figure 16 labelled by i× j and i′× j′. The integers i and i′ indicate
the number of times the j-type and j′-type poles occur, respectively. Note that j and j′ are
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X + Y
i× j

k

5 + 3 3 + 5

4 + 4

4̃ + 4̃

2 × 5 2 × 5̄

4 × 3

1 × 4

4 4

4 4

44

2
2

2
2

2 2

Figure 16. Spurious pole structure of the N = 7 6-point NMHV amplitude. The legend on the
lower left represents an X + Y diagram topology containing i terms in the permutation sum, each
with j spurious poles. The edge represents k pairs of spurious poles which cancel against spurious
poles appearing on the other end of the edge.

in 1-to-1 correspondence with the on-shell diagram topologies denoted X + Y in figure 16,
so these two types of labels can be used interchageably when referring to spurious poles.
The six cancellations can therefore be labelled (5|5̄), (5|3), (5|4), (3|3), (5̄|3) and (5̄|4). The
(5̄|3) and (5̄|4) cancellations can additionally be related to (5|3) and (5|4) by parity, so
there are actually only four cases to check.

We have checked the four cases (5|5̄), (5|3), (5|4), (3|3) analytically using the local co-
ordinates defined in the previous subsection, and in each case the calculation is manifestly
supersymmetric and reduces to an application of the Schouten identity, as we illustrate for
(5|5̄) below. This represents major progress, since in previous work the cancellation of spu-
rious poles was only checked numerically for the graviton component of the superamplitude
due to the complexity of the spinorial expressions [21]. The cancellations we observe are
also very reminiscent of those observed for Yang-Mills amplitudes in [3], which ultimately
lead to a new geometric interpretation for NMHV amplitudes as volumes of polytopes.
This suggests that a similar interpretation may hold for gravitational amplitudes.

We will now demonstrate the (5|5̄) spurious cancellation in figure 16 using momentum
twistors. To start with, consider the [5|3 + 4|2〉 pole shared by D(561) and D(345) given
in (5.37) and (5.38), or equivalently (5.22) and (5.19). Recall that these expressions arise
from 5 + 3 and 3 + 5 on-shell diagrams, so are associated with the corresponding bubbles
in figure 16. Using momentum twistors we can rewrite

[5|3 + 4|2〉 = − 〈4562〉
〈45〉〈56〉 , (5.46)

so it is clear that we are interested in the behaviour as 〈4562〉 → 0. This can be viewed
as the limit where Z2 approaches the plane defined by {Z4, Z5, Z6}, denoted (456). In
this limit, the remaining twistors Z1 and Z3 become proportional. To see this, consider
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expanding in the basis {Z4, Z5, Z6, Z∗}, where Z∗ is an independent reference twistor:

Z1 = a1Z4 + b1Z5 + c1Z6 + d1Z∗,

Z2 = a2Z4 + b2Z5 + c2Z6 + d2Z∗,

Z3 = a3Z4 + b3Z5 + c3Z6 + d3Z∗.

(5.47)

The limit 〈4562〉 → 0 corresponds to taking d2 → 0. In this limit, we can always write
d3〈ijk1〉 = d1〈ijk3〉 where {1, 3} /∈ {i, j, k}, since we can neglect any contribution from the
(456) plane. Computing the residue of D(561) and D(345) of the pole 〈4562〉 then gives

P ≡ Res
〈4562〉→0

(
D(561)

6,3 +D(345)
6,3

)
,

= 〈6123〉
[PT(6)]2 〈24〉〈26〉2

(
δ(0|7) (〈4561〉χ2 + 〈5612〉χ4 + 〈6124〉χ5 + 〈1245〉χ6) 〈2345〉
〈5612〉〈4612〉〈4512〉2〈4561〉2 (〈4612〉〈35〉+ 〈5612〉〈43〉)

+ δ(0|7) (〈3456〉χ2 + 〈5623〉χ4 + 〈6234〉χ5 + 〈2345〉χ6)
〈2345〉〈2346〉〈2356〉〈3456〉2 (〈2345〉〈63〉+ 〈3456〉〈23〉)

)
,

= 〈6123〉
[PT(6)]2 〈24〉〈26〉2

(
δ(0|7) (〈4563〉χ2 + 〈5632〉χ4 + 〈6324〉χ5 + 〈3245〉χ6) 〈2345〉
〈5632〉〈4632〉〈4532〉2〈4563〉2 (〈4632〉〈35〉+ 〈5632〉〈43〉)

+ δ(0|7) (〈3456〉χ2 + 〈5623〉χ4 + 〈6234〉χ5 + 〈2345〉χ6)
〈2345〉〈2346〉〈2356〉〈3456〉2 (〈2345〉〈63〉+ 〈3456〉〈23〉)

)
,

= −〈6123〉δ(0|7) (〈3456〉χ2 + 〈5623〉χ4 + 〈6234〉χ5 + 〈2345〉χ6)
[PT(6)]2 〈24〉〈26〉2〈2345〉〈2346〉〈2356〉〈3456〉2

×
( 1

(〈4632〉〈35〉+ 〈5632〉〈43〉) −
1

(〈2345〉〈63〉+ 〈3456〉〈23〉)

)
.

(5.48)

Hence we see that

P ∼ 〈2345〉〈63〉+ 〈3456〉〈23〉+ 〈6234〉〈53〉+ 〈5623〉〈43〉 = 0, (5.49)

where we used (3.5) in the last line. Conveniently, all factors of d1 and d3 cancel in the
fraction. We can therefore see that there is no singularity as 〈4562〉 → 0. The rest of the
spurious poles cancel in a similar way. In summary, we find that using momentum twistors
defined with respect to different orderings of external momenta provides a very simple and
systematic way to prove spurious poles cancelleation in the 6-point NMHV amplitude of
N = 7 sugra.

6 Conclusion

Motivated by the beautiful geometric description of scattering amplitudes in planar N = 4
SYM, we have tried to follow similar steps for sugra amplitudes. In particular, we first
developed an on-shell diagram recursion for N = 7 sugra which gives rise to formulas for
scattering amplitudes in terms of Grassmannian integrals. This is similar to the on-shell
diagram formalism for N = 8 supergravity developed in [19], but in N = 7 there are two
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supermultiplets so the diagrams have arrows to indicate helicity flow. The N = 7 recur-
sion also appears to have fewer terms than N = 8 and automatically incorporates bonus
relations for MHV amplitudes. The price to pay for having fewer diagrams is that they
contain more closed cycles which can become cumbersome to evaluate at high multiplicity,
but we develop a technique to evaluate the diagrams without summing over closed cycles
by using a non-canonical gauge-fixing of the Grassmannian integrals.

Next, we translated our results to momentum twistor space, reproducing Hodges’ re-
sults for MHV amplitudes [21] and obtaining new momentum twistor formulas for non-
MHV amplitudes. These formulas are manifestly supersymmetric and written in terms of
N = 7 R-invariants, analogous to the building blocks for non-MHV amplitudes in N = 4
SYM. For the 6-point NMHV superamplitude, this required defining momentum twistors
with respect to three different permutations of the external momenta, which can be thought
of local coordinates in three different patches. This way of defining momentum twistors was
designed to give R-invariants in each patch, but an unexpected consequence of this defini-
tion is that the spurious poles greatly simplify and their cancellation becomes very simple
to demonstrate. This strongly suggests a geometric interpretation for the cancellation of
spurious poles analogous to N = 4 SYM and is the main result of this paper.

There are a number of future directions:

• Perhaps the most urgent task is to identify the underlying geometry responsible for
cancellation of spurious poles in sugra amplitudes. In the context of gluonic ampli-
tudes, this cancellation was made manifest by interpreting 6-point NMHV amplitudes
as polytopes in momentum twistor space [3]. For sugra amplitudes, identifying the
underlying geometry is more challenging because we are only able to describe it us-
ing local momentum twistor coordinates, which hide the permutation symmetry of
the amplitude. Moreover, the Grassmannian integral formulae for sugra amplitudes
have a more complicated form than planar N = 4 SYM. It would be interesting to
adapt recent work on the geometry of differential forms with non-logarithmic singu-
larities [45] to sugra. It would also be interesting to look for geometric structure in
higher-point NMHV amplitudes. New n-point formulas recently obtained in [46] may
be useful for this purpose.

• In N = 4 SYM, planar amplitudes are dual to null polygonal Wilson loops [47–
49]. In particular, R-invariants correspond to propagators connecting edges of the
Wilson loop [50, 51]. Since R-invariants also appear to play a role in supergravity
amplitudes, it would be interesting to look for some analogue of the amplitude/Wilson
loop duality in sugra. This was previously found to hold at 4-points in [52]. Our
results suggest this should extend to 5-points, but at higher points one may need to
consider multiple Wilson loops for non-MHV amplitudes, one associated with each
momentum twistor coordinate patch (see figure 14).

• Another interesting direction would be to extend the methods developed in this paper
to loop amplitudes. When loop amplitudes of planar N = 4 SYM are represented
in momentum twistor space, they can be expressed in terms of chiral pentagon in-
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tegrals [39], which were recently proposed to be building blocks for a dual Ampli-
tuhedron [53]. It would be interesting to see if such integrals can be used to describe
sugra amplitudes. While it is not yet clear how to compute loop-level sugra am-
plitudes using on-shell diagrams, they can be used to compute leading singularities,
such as those which were recently studied at 2-loops [54].

• Finally, it would be interesting to apply the approach we have developed to sugra
and conformal sugra with N = 4 supersymmetry. Although these theories have less
supersymmetry and the latter is not unitary, their scattering amplitudes have inter-
esting properties and have been studied from various points of view such as twistor
string theory [55–59] and the double copy [60–62]. The amount of supersymmetry in
these theories should make it possible to write their amplitudes in terms of the same
R-invariants that appeared N = 4 SYM.

In summary, the study of gravitational amplitudes has revealed many surprises and it seems
likely that a more fundamental understanding of their structure remains to be found.
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A Fermionic delta functions

In this appendix, we will prove the following useful formula for converting fermionic delta
functions to momentum twistor space:

δ(0|N )([i i+1]ηi+2 + cylic) = δ(0|N ) (〈i−1 i i+1 i+2〉χi+3 + cylic)
(〈i−1i〉 〈ii+1〉 〈i+1i+2〉 〈i+2i+3〉)N

. (A.1)

This first appeared in the context of N = 4 SYM [40], but we use the N = 7 version in
this paper. The first step is to plug (3.13) into (3.12) to obtain

ηi = 〈i i+1〉χi−1 + 〈i+1 i−1〉χi + 〈i−1 i〉χi+1
〈i−1 i〉〈i i+1〉 . (A.2)

Next, using (3.10) and (3.11) we find that

[ii+1]ηi+2+cyclic

= (〈i−1ii+1i+2〉〈i+2i+3〉ηi+2+〈i+1i+2i+3|I|i−1ii+1〉ηi+1+〈ii+1i+2i+3〉〈ii+1〉ηi)
〈i−1i〉〈ii+1〉〈i+1i+2〉〈i+2i+3〉 .

(A.3)
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If we substitute (A.2) and expand the 6-bracket using (3.7) then we get

[ii+1]ηi+2+cyclic =
[

〈i−1ii+1i+2〉
〈i−1i〉〈ii+1〉〈i+1i+2〉

〈i+1i+2〉χi+3+cyclic
〈i+1i+2〉〈i+2i+3〉

+ 〈i+1i+3〉〈i−1ii+1i+2〉+〈i+2i+1〉〈i−1ii+1i+3〉
〈i−1i〉〈ii+1〉〈i+1i+2〉〈i+2i+3〉

〈ii+1〉χi+2+cyclic
〈ii+1〉〈i+1i+2〉

+ 〈ii+1i+2i+3〉
〈ii+1〉〈i+1i+2〉〈i+2i+3〉

〈i−1i〉χi+2+cyclic
〈i−1i〉〈ii+1〉

]
.

(A.4)

Collecting coefficients of the χi and factoring out an overall
(〈i−1i〉〈ii+1〉〈i+1i+2〉〈i+2i+3〉)−1 then gives

χi−1 : 〈ii+1i+2i+3〉,

χi : 1
〈ii+1〉(〈i−1ii+1i+2〉〈i+1i+3〉+ 〈i+3i−1ii+1〉〈i+1i+2〉+ 〈ii+1i+2i+3〉〈i+1i−1〉)

= 〈i+1i+2i+3i−1〉,

χi+1 : 1
〈ii+1〉〈i+1i+2〉

(
〈i−1ii+1i+2〉(〈ii+1〉〈i+2i+3〉+ 〈i+1i+3〉〈i+2i〉)

+ 〈i−1ii+1i+3〉〈i+2i+3〉〈i+2i〉+ 〈ii+1i+2i+3〉〈i+1i+2〉〈i−1i〉
)

= 1
〈ii+1〉

(
〈i−1i+1i+2〉〈i+3i〉+ 〈i+3i−1ii+1〉〈i+2i〉+ 〈ii+1i+2i+3〉〈i−1i〉

)
= 〈i+2i+3i−1i〉,

χi+2 : 〈i+3i−1ii+1〉,
χi+3 : 〈i−1ii+1i+2〉,

(A.5)

from which (A.1) follows.

B Details of 6pt NMHV

In this appendix, we provide additional details about the 6-point NMHV calculation in
section 5.2. We continue will denote ∆ = J −1

C and δ = δ(6|21)
(
C · λ̃

)
δ6
(
λ · C⊥

)
, where

JC is the Jacobian associated with closed cycles defined in section 2.1.

3+5. First we consider the 3 + 5 diagram in figure 17. This diagram gives the C-matrix
and Jacobian

C =

 1 −α14 −α7α10α14 −α10α14 0 0
0 α̃ 1− α7α8α9α10 −α8α9α10 −α8 0

−α11α13 0 −α7α10α11α12 α10α11α12 1 −α11

 ,
JC = (1− α7α8α9α10 − α7α8α10α11α12 − α7α8α10α11α13α14),

(B.1)
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61

5

34
α7

α8

α9

α10

α11

α12

α13

α14

15
16

D3+5
6,3 =

Figure 17. ‘3+5’ on-shell diagram to be summed over 2 ↔ 4 and 3 ↔ 5. Edge variables are
indicated.

where we have inserted an extra α̃ to ensure that (612) 6= 0. The brackets from the vertex
factors are

[2 15] = 1
α14

[21],

[47] = α7[43],
〈73〉 = 〈43〉,

〈16 5〉 = 1
α11
〈65〉.

(B.2)

As an integral over edge variables, the diagram is then

D3+5
6,3 = Res

(612)=0

∫ 14∏
i=7

dαi
α2
i

dα̃

α̃

δ

α8α10α11α14

J 3
CJ
J

α7α9α12α13
α11α14

〈34〉[34]〈56〉[12],

= Res
(612)=0

∫
d3×6C

GL(3)
δ 〈34〉[34]〈56〉[12]

∆9α7α5
8α9α6

10α
8
11α12α13α7

14α̃
,

= Res
(612)=0

∫
d3×6C

GL(3)
δ 〈34〉[34]〈56〉[12]

(124)(234)(345)(356)(561)(612)(456)(346)(256) ,

= Res
(612)=0

∫
dΩ3×6

7
〈34〉[34]〈56〉[12]
(256)(346)(356)

(123)
(124) .

(B.3)

5+3. We can obtain the result from (B.3) using the fact that the 3+5 and 5+3 diagrams
are parity conjugates. In particular, we need to exchange square and angle brackets,

substitute (ijk) → εijklmn(lmn) and apply the permutation P =
(

1 2 4 3 5 6
6 5 3 4 2 1

)
. This
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3 4

5

α7

α8

α9

α10

α11

α12

α13

α14

1516

17
D4+4

6,3 =

Figure 18. ‘4+4’ on-shell diagram to be summed over 2 ↔ 4 and 3 ↔ 5. Edge variables are
indicated.

gives

D5+3
6,3 = Res

(345)→0

∫
d3×6C

GL(3)
δ [34]〈34〉[56]〈12〉

(356)(561)(612)(124)(234)(345)(123)(125)(134)

∣∣∣∣
P
,

= Res
(432)→0

∫
d3×6C

GL(3) (−1) δ 〈34〉[34]〈56〉[12]
(421)(216)(165)(653)(543)(432)(654)(652)(643) ,

= Res
(432)→0

∫
dΩ3×6

7
〈34〉[34]〈56〉[12]
(256)(346)(356)

(123)
(124) .

(B.4)

4+4. Next, we consider the 4 + 4 diagram in figure 18. This gives the C-matrix and
Jacobian

C =

 1 −α8 −α8α9 0 0 α̃

−α10 0 1 −α11α12 −α11α12α13 0
−α7α14 0 0 −α12α14 1− α12α13α14 α14

 ,
JC = (1− α8α9α10 − α12α13α14 − α7α8α9α11α12α13α14 + α8α9α10α12α13α14).

(B.5)

This diagram corresponds to a residue around the pole (456) = 0. The bracket factors for
the diagram are

〈10 16〉 = 1
α8
〈10 2〉 = 1

α8
〈32〉,

[11 10] = α10[31],

〈17 11〉 = 〈6 11〉 = 1
α11α12

〈64〉,

[15 17] = 1
α14

[5 17] = α12
α14

[54].

(B.6)

The diagram then evaluates to

D(4+4)
6,3 = Res

(456)=0

∫ 14∏
i=7

dαi
α2
i

dα̃

α̃

δ

α8α12α14

J 3
CJ
J

α7α9α10α13
α8α11α14

[13][45]〈23〉〈46〉,

= Res
(456)=0

∫
d3×6C

GL(3)
δ [13][45]〈23〉〈46〉

∆9α7α7
8α9α10α5

11α
6
12α13α7

14α̃
,

=
∫
d3×6Ω7

[13][45]〈23〉〈46〉
(236)(246)2 .

(B.7)
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Figure 19. ‘4̃+4̃’ on-shell diagram with edge variables indicated.

4̃ + 4̃. Finally, we compute the non-planar 4̃ + 4̃ diagram in figure 19. The C-matrix and
Jacobian are given by

C =

1− α8α9α10 −α8 0 −α8α9 α̃

−α10α13 0 1− α13 −α13α14 0
−α7α11 0 −α11α12 0 1 −α11

 ,
JC = (∆1∆2)−1 ≡ (1− α8α9α10)(1− α11α12α13α14).

(B.8)

Moreover, the bracket factors are

〈10 16〉 = 1
α8
〈2 16〉 = 1

α8
〈24〉,

[10 4] = ∆1α8α10[24],
〈3 12〉 = ∆2α11〈35〉,

[15 12] = α12[15 3] = α12
α11

[53].

(B.9)

Putting it all together, we obtain

D(4̃+4̃)
6,3 = Res

(356)=0

∫ 14∏
i=7

dαi
α2
i

dα̃

α̃

J 3
CJ
J

δ

α8α11α13
∆1∆2α7α9α10α12α14〈24〉[24]〈35〉[53],

= Res
(356)=0

∫
d3×6C

GL(3)
δ 〈24〉[24]〈35〉[53]

∆8
1∆7

2α7α6
8α9α10α6

11α12α6
13α14α̃

,

= Res
(356)=0

∫
d3×6C

GL(3)
δ 〈24〉[24]〈35〉[35]

(124)(234)(345)(356)(561)(612)(146)(236)(245) ,

= D(4̃+4̃)
6,3 = Res

(356)=0

∫
d3×6Ω7

[24]〈24〉[35]〈35〉(123)(456)
(146)(245)(236)(124)(356) .

(B.10)

C Momentum twistor transition functions

In this appendix, we will explain how to relate momentum twistors which are defined with
respect to different permutations of momenta, which arise in section 5.3. First note that
cyclic permutations (i→ i+ 1) and reflections (i→ n− i) simply permute the momentum
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twistors in a trivial way. The first non-trivial case is a permutation which exchanges two
legs. For concreteness, let us consider the case

P =
(

1 2 . . . n−1 n

1 2 . . . n n−1

)
, (C.1)

where we have swapped the final two momenta. We will denote the transformed momenta as
pn
∣∣
P = pn−1 and vice versa. We can then consider new region momentum and momentum

twistor coordinates defined via (5.32). In particular, this permutation only changes a single
xi so we can write

xi
∣∣
P =

{
xi , i 6= n,

xn−1 − pn , i = n.
(C.2)

This means only two twistor variables transform:

Zi
∣∣
P = Zi, i < n−1

Zn−1
∣∣
P =

(
λn

λnxn−1

)
,

Zn
∣∣
P =

(
λn−1

λn−1(xn−1 − pn)

)
,

(C.3)

which we can rewrite to put both new twistors on an equal footing:

Zn−1
∣∣
P = Zn − 〈n−1n〉

(
0

λ̃n−1

)
= Zn − 〈n−1n〉IZn−1

Zn
∣∣
P = Zn−1 − 〈n−1n〉

(
0
λ̃n

)
= Zn−1 − 〈n−1n〉IZn,

(C.4)

where IZi is the infinity twistor contracted with Zi.
Now let’s consider how twistor brackets transform. Using the rules derived above, we

find that

〈a b c n−1〉
∣∣
P = εABCDZ

A
a Z

B
b Z

C
c ZDn−1

∣∣∣
P
,

= 〈abcn〉+ 〈n−1n〉

−εABCDZAa ZBb ZCc
(

0
λ̃n−1

)D ,
= 〈abcn〉+ 〈n−1n〉

(
−εABCDZAa ZBb ZCc IDE

ZFn−2Z
G
n−1Z

H
n εEFGH

〈n−2n−1〉〈n−1n〉

)
,

= 〈abcn〉 − 1
〈n−2n−1〉〈abc|I|n−2n−1n〉.

(C.5)

Using analogous methods, we also find that

〈a b c n〉
∣∣
P = 〈a b c n−1〉 − 1

〈n1〉〈abc|I|n−1n 1〉, (C.6)
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and

〈a b n−1n〉
∣∣
P =−

(
〈a b n−1n〉+ 〈abn|I|n−2n−1n〉

〈n−2n−1〉

− 〈ab n−1|I|n−1n 1〉
〈n1〉 + 〈ab〉〈n−1n〉〈n−2n−1n 1〉

〈n−2n−1〉〈n1〉

)
.

(C.7)

The transformation rules for 6-brackets can then be deduced from the above rules us-
ing (3.7) and (3.8). Transition functions for more general permutations can be deduced
from repeated composition of the above rules.

The extension to supertwistors is straightforward. Note that the fermionic components

χi = 〈i θi〉 = 〈i θi+1〉, (C.8)

transform analogously to the µ̃ components of the momentum twistors since the fermionic
dual variables θi transform analogously to the xi in (C.2). We therefore obtain

θi
∣∣
P =

{
θi , i 6= n,

θn−1 − qn , i = n.
(C.9)

so that

χi
∣∣
P =


χi , i < n− 1,

χn − 〈n−1n〉ηn−1 , i = n−1,
χn−1 − 〈n−1n〉ηn , i = n.

(C.10)

D Simplifying momentum twistor expressions algorithmically

In this appendix we develop a new computational method for simplifying expressions in
momentum twistor space. These expressions generally have many equivalent forms, related
by Schouten identities in the 4-brackets as in equation (3.5), and it is a non-trivial problem
to find the most simple form.

In general the question of simplifying algebraic expressions is complicated, partly as it
is not always clear how to define what simple means for a given expression. We consider a
subset of expressions in momentum twistor space, and make a definition of what it means
for one expression to be more simple than another. Based on this, we outline an algorithm
to find the simplest form of a given expression. We provide an explicit realisation of the
algorithm in mathematica, submitted as an auxilliary file with this publication. Some of
the routines in the attached file are based on those from [63].

We start by defining the form of the functions in momentum twistor space that our
algorithm will consider. We then generate and check many possible ansatze to see which
are able to match an input spinor or twistor expression. We will work with the set of
functions which are polynomial in 4-brackets, and whose coefficients are monomials in angle
2-brackets, with integer powers. All polynomial expressions in 4-brackets in momentum
twistor space must be homogeneous, such that each term has the same number of 4-bracket
factors. Any equivalent forms of such expressions will also be homogenous polynomials in
4-brackets, with the same degree as in the original expression. Note that 6-brackets can be
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expressed as a linear function of 4-brackets with angle 2-bracket factors as the coefficients
as in equations (3.7) and (3.8), so we can interchange 6-brackets for 4-brackets and the
degree of the polynomial remains the same. We will refer to the input function of the
algorithm as f(λ, µ).

The input function which we want to simplify and all ansatz that we check it against
must have the following form:

f(λ, µ) =
N∑
i=0

ai(λ)bi(λ, µ), (D.1)

where bi are monomials of 4-brackets and 6-brackets (for example, 〈1234〉 or
〈1247〉 〈123|I|457〉), and ai(λ) have the form

ai(λ) = ci
∏

1≤x<y≤n
〈xy〉βixy , (D.2)

for ci ∈ Q, βixy ∈ Z, and N an integer determined by the form of f(λ, µ). The input
functions we consider may be expressed explicitly in this form, or as functions of spinor
brackets which would have this form when converting to momentum twistor space. In this
appendix we consider λ and µ both to be 2 × n matrices, and we always suppress the
particle and spinor indices.

For such functions in momentum twistor space, we make the definition that simpler
expressions have smaller N . Hence we ask the question; what is the smallest N such
that f(λ, µ) can be written in the form in equation (D.1), for some choice of ai(λ) and
bi(λ, µ)? The algorithm for answering this question consists of three different parts. The
first is an exhaustive scan over all possible ansatze, and is explained in section D.1. For
each ansatz, the second part of the algorithm checks numerically to see if the ansatz
could match the expression provided, and is explained in section D.2. The final part
uses a functional reconstruction method to give the complete simplified expression, and is
explained in section D.3.

D.1 Scanning over different ansatze

We minimise N for a given input function f(λ, µ) by constructing all possible sets of ansatze
for N , and checking numerically if the input function f(λ, µ) is equal to any of the ansatze.
We then increase N until an ansatz which matches f(λ, µ) is found. Note that as our input
function f(λ, µ) always has an expression of the form in equation (D.1), we always know
an upper bound on N . We explain this exhaustive search part of the algorithm by way of
an example.

Consider the input function f(λ, µ) = s124 at six points. Expanding this expression out
naively in terms of angle 2-brackets and 4-brackets using equation (3.9) gives an expression
of the form given in equation (D.1), where N is not minimal. We know this is a polynomial
of degree one in 4-brackets, so we can consider ansatze with terms of the form either 〈abcd〉,
or 〈abc|I|def〉. For this example, consider 4-bracket ansatze. There are 6C4 = 15 different
4-brackets; denote the set of these to be X6,4.
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Start with N = 1. Construct all different possible ansatze of the form given in equa-
tion (D.1), where b1(λ, µ) ∈ X6,4, and a1(λ) is an arbitrary function of λ. There are 15
such ansatze. For each ansatz of the form a1(λ)b1(λ, µ), check whether it is equal to s124
using the method in section D.2. If there are any ansatze which satisfy (D.1), stop the
search and reconstruct a1 using the methods in section D.3. If there are no solutions for
N = 1, increase to N = 2. Now choose all possible combinations of b1(λ, µ) and b2(λ, µ)
from X6,4; there are a total of 15C2 = 105 such ansatze. Check if any of these b1(λ, µ) and
b2(λ, µ) give a combination such that

s124 = a1(λ)b1(λ, µ) + a2(λ)b2(λ, µ), (D.3)

stopping the algorithm and reconstructing a1(λ) and a2(λ) if there are, and continuing to
N = 3 if not.

The algorithm stops either when a simplified form for f(λ, µ) is found, or we when
return the form given in the input function. Note that in general, there may be more
than one form for f(λ, µ) with a given value of N , and this algorithm will return all such
equivalent (equally simple) forms. In the example using f(λ, µ) = s124, we could instead
have tried to match a 6-bracket ansatz. In that case, we would have used the set X6,6
containing all 6C3

6C2 = 300 distinct 6-brackets at 6 points.

D.2 Checking the ansatze

We check if each ansatz is equal to the input function f(λ, µ) numerically as follows. First,
randomly generate one set of numerical λ ∈ R2×n. Then generate 2N sets of numerical µ,
and call them µci , where c runs over 1 and 2. Note that these indices are unrelated to the
standard spinor and particle indices on µ, and each component of µci is a numerical matrix
in R2×n. Then evaluate the input function f(λ, µ), and each term bi(λ, µ) from the ansatz,
on each of the numerical points (λ, µci ), and make the following definitions for the results
of those evaluations:

f cj := f(λ, µcj), bcij := bi(λ, µcj), ai := ai(λ). (D.4)

We consider f1
j and f2

j as two separate numerical vectors in RN , and similary b1ij and b2ij as
two numerical matrices in RN×N , and ai are as yet undetermined. a(λ) does not depend
on µ, so ai has no c index.

Using these definitions we derive a condition to check whether a given ansatz is false.
Starting from equation (D.1), we see that

f(λ, µ) =
N∑
i=0

ai(λ)bi(λ, µ) =⇒ f cj =
N∑
i=0

aib
c
ij =⇒

N∑
i=0

(
bcij

)−1
f cj = aj ,

(D.5)
so long as det (bij) 6= 0, which we comment on shortly. Now equate the two terms for c = 1
and c = 2 to eliminate ai to see that

N∑
i=0

(
b1ij

)−1
f1
j =

N∑
i=0

(
b2ij

)−1
f2
j , (D.6)
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is a necessary condition for the ansatz to match the input function. Hence if equation (D.6)
is not satisfied for a given ansatz, we know that this ansatz is not correct. To check if the
ansatz is true, it is sufficient to check whether (D.6) holds for a number of different ran-
domly generated momentum twistor points (µ, λ). Treating the expression as a polynomial
in the (spinor and particle) components of µ and λ, we must check the same number of
times as there are terms in this polynomial to prove that the ansatz being checked is equal
to the input function. As our algorithm relies on an exhaustive scan over all possible
ansatze, efficiency is crucial; we therefore check only once and discard ansatz that return
false. We can then run repeated checks on any ansatz that did not return false to see if
they equal to the input function.

There is one final subtlety to address, which is what happens when det (bij) = 0. There
are two cases which can lead to this happening. The first is where two or more rows of bij
are collinear. This can only occur by a random chance where two sets of numerical µci are
the same, and is very unlikely to happen. The other case is where two or more columns of
bij are collinear. This happens when an ansatz is degenerate, for example when a Schouten
identity exists between five 4-brackets chosen as the bi(λ, µ). In this case, the check does
not return true or false, but rather returns a message stating that det (bij) = 0, and that
the ansatz is almost certainly degenerate.

D.3 Reconstructing the coefficients

From the previous steps in our algorithm, we have found at least one ansatz of the form∑N
i=1 ai(λ)bi(λ, µ) which we know to be equal to the input function f(λ, µ), in terms of

undetermined functions ai of the angle 2-brackets, and we know that these functions will
always be of the form given in equation (D.2). In this section, we outline an algorithm for
finding each ai(λ) by numerical functional reconstruction. To simplify the notation, we will
define a new label K which runs over all nC2 ordered pairs of x, y, as in equation (D.2).
We will also suppress the i index on ai(λ) and consider only a single function a(λ) to
be reconstructed. To complete the full reconstruction of ∑i aibi for a given ansatz, the
algorithm in this section must be run N times for each value of the i index.

We then solve the following problem; we are given an a(λ) which we can evaluate
numerically for different values of λ, but do not know analytically. Using the streamlined
notation, a(λ) has the following form

a(λ) = c

nC2∏
K=1
〈K〉βK . (D.7)

We want to find the nC2 coefficients βK ∈ Z, and the overall constant c ∈ Q.
We will take the logarithm of equation (D.7) to produce a linear system to solve for

the βK . This requires that we must have that 〈K〉 > 0 for all K. To give this condition
on λ, we then use the projective scaling on each individual momentum twistor to fix λ

to the form
( 1 1 ... 1
x1 x2 ... xn

)
. We generate random numbers for the xi and sort them so that

x1 < x2 < . . . < xn; this ensures that all 〈K〉 > 0. Under this construction, we see that λ
is a positroid [64].
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We will solve for nC2 + 1 coefficients βK and c, so we randomly generate nC2 + 1 sets
of numerical positroid λ; we will label these λK and λe (e for extra). We then evaluate
a(λ) and 〈K〉 at each of these numerical values of λ, and make the following definitions for
these numerical quantities:

aK := a(λK) ae := a(λe) 〈K〉J := 〈K〉
∣∣∣∣
λ=λJ

〈K〉e := 〈K〉
∣∣∣∣
λ=λe

.

(D.8)
Taking logarithms of equation (D.7) we arrive at the following numerical linear system,
which gives nC2 equations for the nC2 undetermined variables βK :

log
(
aK
ae

)
=

nC2∑
K=1

βK log
(
〈K〉J
〈K〉e

)
. (D.9)

The quantity log
(
〈K〉J
〈K〉e

)
is a numerical matrix in RnC2×nC2 with indices K and J . We

invert this matrix to arrive at

βJ =
nC2∑
K=1

(
log

(
〈K〉J
〈K〉e

))−1

log
(
aK
ae

)
. (D.10)

Now that we have the βJ it is simple to extract c, for example using

c = ae

nC2∏
K=1
〈K〉−βK

e . (D.11)

Finally we rationalize βJ and c, using a tolerance of 10−8. At this step we can check to see
if we got an answer that matches the form of the expressions in momentum twistor space
that we are working with. We know that generally βJ ∈ Z, and c is normally expected to
be 1 or -1, but could also be a small integer, or rational number with a small denominator.
If the βJ and c returned are not of this form, then we conclude that a(λ) was not of the
form specified in equation (D.7).

We now have all of the necessary components to fully reconstruct a simplified analytical
form for f(λ, µ). We run the algorithm from section D.2 nC2 + 1 times with numerical
positroid λK and λe to generate the nC2+1 numerical values aiK and aie, for each value of i.
We then run the algorithm from this subsection N times, one for each value of i, generating
ci and βiK . Finally, we substitute ci and βiK = βixy back into equation (D.2), and then
substitute the ai(λ) and bi(λ, µ) found into equation (D.1) to give a fully simplified form
of the input function f(λ, µ).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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