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This paper solves an approximate form of conservation of mass and momentum for a turbine in a

wind farm array. The solution is a fairly simple explicit relationship that predicts the streamwise

velocity distribution within a wind farm with an arbitrary layout. As this model is obtained by

solving flow governing equations directly for a turbine that is subject to upwind turbine wakes,

no ad hoc superposition technique is needed to predict wind farm flows. A suite of large-eddy

simulations (LES) of wind farm arrays is used to examine self-similarity as well as validity of the

so-called conservation of momentum deficit for turbine wakes in wind farms. The simulations

are performed with and without the presence of some specific turbines in the wind farm. This

allows us to systematically study some of the assumptions made to develop the analytical model.

A modified version of the conservation of momentum deficit is also proposed to provide slightly

better results at short downwind distances, as well as in the far wake of turbines deep inside a

wind farm. Model predictions are validated against the LES data for turbines in both full-wake

and partial-wake conditions. While our results highlight the limitation in capturing the flow

speed-up between adjacent turbine columns, the model is overall able to acceptably predict flow

distributions for a moderately sized wind farm. Finally, the paper employs the new model to

provide insights on the accuracy of common wake superposition methods.

Key words:

1. Introduction

Fast running engineering (i.e., control-oriented) wake models are arguably still the most popular

tools in the wind energy industry for the design and active control of wind farms due to their

simplicity and low computational cost (Stevens & Meneveau 2017; Porté-Agel et al. 2020). In

order to improve wind farm flow modelling without increasing computational costs, we need

to develop a better theoretical understanding of wind flow physics in wind farms (Meneveau

2019). Modelling of wind farm flows based on engineering wake models often consists of two

steps: (i) modelling wakes of each individual wind turbine separately and then (ii) using wake

superposition techniques to take into account cumulative wake effects in wind farms. The most

common superposition techniques are linear (Lissaman 1979) and root-sum-square (Katić et al.

1987), denoted by A.I and A.II in table 1, respectively. For each method, the table shows how the

total velocity deficit Δ* at a given position depends on the velocity deficit Δ*8 caused by the iCℎ

wind turbine (WT8), where 8 changes from 1 to =, and = is the number of wind turbines upstream
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A. Superposition method B. Incoming velocity

A.I. Linear A.II. Root-sum-square B.I. Global B.II. Local

Δ* =
=∑
8=1

Δ*8 Δ* =

√
=∑
8=1

Δ*2
8

Δ*8 = *0 −*8 Δ*8 = *8=,8 −*8

Table 1: Wake superposition methods commonly used in the literature to estimate
cumulative wake effects in wind farms.

of that position in a wind farm. In addition, different methods are used in the literature to compute

Δ*8 , as shown in table 1. By definition, the velocity deficit for WT8 is equal to the difference

between the incoming velocity and the wake velocity denoted by *8 . The incoming velocity,

however, can be defined either based on (i) the velocity at the inlet of the wind farm denoted by

*0 (method B.I) (Lissaman 1979; Katić et al. 1987), or (ii) the local incoming velocity for WT8

denoted by *8=,8 (Voutsinas et al. 1990; Niayifar & Porté-Agel 2016).

These different superposition methods are often claimed to conserve flow properties. For

instance, the linear superposition method (A.I) is perceived to conserve momentum deficit

(Lissaman 1979), while the root-sum-square method (A.II) is thought to conserve the energy

deficit (Katić et al. 1987). However, as described later in §7, the validity of these relationships

has not been proven, and so these superposition methods should be viewed as empirical

relationships. A result-driven approach was mostly adopted to develop such methods. For instance,

a superposition method consisting of methods A.I and B.I used by Lissaman (1979) is known to

result in negative velocity values in large wind farms. Katić et al. (1987) overcame this issue by

proposing a new method including A.II in conjunction with B.I. More recently, Zong & Porté-Agel

(2020) have developed a more physics-based superposition method based on the mean convection

velocity for each turbine wake. The convection velocity for the combined wake is obtained through

an iterative approach. Other recent studies have examined the accuracy of existing superposition

models (e.g., Vogel & Willden 2020; Gunn et al. 2016, among others). Overall, there is not

unanimous agreement in the literature on which method is most accurate over the wide variety of

operating conditions of wind farms.

In this study, an approach that does not rely on the superposition of single turbine wake models

is adapted based on a holistic view of turbines in a wind farm. Unlike prior studies that assume

each turbine can be treated as a single turbine and separated from the rest of the wind farm,

we directly solve governing equations for wind turbines within a wind farm. This eliminates the

need to introduce any superposition method. In the following, §2 develops the integral form of

governing equations for turbine wake flows in wind farms. The large eddy simulation (LES) setup

is described in §3. §4 derives the analytical solution of conservation of momentum deficit for a

turbine within a wind farm. Model predictions are presented in §5. A modified version of the

conservation of momentum deficit is proposed and solved in §6. In §7, we examine common wake

superposition techniques in the literature. Finally, a summary and a discussion about possible

future research directions are provided in §8.

2. Integral form of governing equations for turbine wakes within a wind farm

Let us assume a wind farm with an arbitrary layout of = wind turbines (WT1,WT2, ... WT8 , ...

WT=) immersed in a turbulent boundary layer flow with a velocity profile denoted by *0. The

position of WT8 is denoted by X8 = (G8 , H8 , I8), where G, H and I are the streamwise, spanwise,
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and vertical directions in the coordinate system, respectively. Turbines are labelled with respect

to their streamwise positions such that G8 > G8−1, where 8 = {2, 3, ... =}. The Reynolds-averaged

Navier-Stokes (RANS) equation in the streamwise direction at high Reynolds numbers (neglecting

viscosity effects) is given by (Shapiro et al. 2018, 2019b)

*
m*

mG
++ m*

mH
+,

m*

mI
= − 1

d

m%

mG
− mD2

mG
− mDE

mH
− mDF

mI
+

=∑
8=1

58 , (2.1)

where *, + and , are the time-averaged streamwise (G), lateral (H) and vertical (I) velocity

components, respectively. Turbulent velocity fluctuations are represented by D, E and F and the

overbar denotes time averaging. Also, % is the time-averaged static pressure and d is the air

density. The term 58 represents the effect of the thrust force of WT8 on the horizontal momentum

and is given by

58 = −)8/(dc'2)X (G − G8) �
(
'2 −

[
(H − H8)2 + (I − I8)2

] )
, (2.2)

where )8 is the magnitude of the thrust force of WT8 in the streamwise direction, ' is the turbine

radius, X(G) is the Dirac delta function, and � (G) is the Heaviside step function. Using the

incoming boundary-layer profile*0 (I), (2.1) can be written as

*
m (*0 −*)

mG
++ m (*0 −*)

mH
+, m (*0 −*)

mI
=

1

d

m%

mG
+ mD2

mG
+ mDE

mH
+ mDF

mI
+, d*0

dI
−

=∑
8=1

58 .

(2.3)

From the continuity equation, we know

m*

mG
+ m+

mH
+ m,

mI
= 0. (2.4)

Multiplying (2.4) by (*0 −*) and adding the product to the left-hand side of (2.3) yields

m* (*0 −*)
mG

+ m+ (*0 −*)
mH

+ m, (*0 −*)
mI

=
1

d

m%

mG
+ mD2

mG
+ mDE

mH
+ mDF

mI
+, d*0

dI
−

=∑
8=1

58 .

(2.5)

Next, (2.5) is integrated from G0 to G1 with respect to G, from H0 to H1 with respect to H and from

I0 to I1 with respect to I, where G0 ≪ G= < G1 , H0 ≪ H= ≪ H1 and 0 ≪ I0 < I= ≪ I1 . Note

that I0 ≫ 0 to ensure that the assumption of negligible viscous forces is valid. The value of I0
can be equal to zero only if the Reynolds shear stresses in (2.5) are replaced with the total shear

stresses (i.e., sum of turbulent and viscous shear stresses). Without loss of generality, we assume

that the integration box includes WT= and an arbitrary number of upwind turbines as shown in

figure 1. Integrating (2.5) yields

∑
8∈�

)8

d
=

∫
*= (*0 −*=)d�

����
G=G1

G=G0

− 1

d

∫
%=d�

����
G=G1

G=G0

−
∫

D2
=d�

����
G=G1

G=G0

−
∫

DF=dGdH

����
I=I1

I=I0

−
∫

d*0

dI
,=d+, (2.6)

where 8 is a member of set � if WT8 is inside the integration box. Also d� is dHdI and d+ is

dGdHdI. In (2.6) and hereafter, any velocity or pressure term with a subscript 8 denotes the value

of the given variable in the presence of WT1,WT2, ... WT8 . Now, we perform the same integration
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Figure 1: Schematic of a wind farm with an arbitrary layout consisting of = wind turbines
(WT1,WT2, ... WT=) immersed in a turbulent boundary layer flow. The momentum

equation (2.5) is integrated over the shown box. The integration is performed with and
without WT=, shown in the figure by the red colour.

once more but this time in the absence of WT=. This leads to

∑
8∈�′

)8

d
=

∫
*=−1 (*0 −*=−1)d�

����
G=G1

G=G0

− 1

d

∫
%=−1d�

����
G=G1

G=G0

−
∫

D2
=−1

d�

����
G=G1

G=G0

−
∫

DF=−1dGdH

����
I=I1

I=I0

−
∫

d*0

dI
,=−1d+, (2.7)

where set �′ is equal to set � excluding = (i.e., � \ {=} = {8 : 8 ∈ � and 8 ∉ {=}}). As G0 ≪ G=,

surface integrals at G = G0 provide the same results in both (2.6) and (2.7). By subtracting (2.7)

from (2.6), we obtain

)=

d︸︷︷︸
Thrust

=

[∫
*= (*0 −*=)d� −

∫
*=−1 (*0 −*=−1)d�

]
︸                                                           ︷︷                                                           ︸

Momentum deficit

− 1

d

∫
(%= − %=−1) d�

︸                        ︷︷                        ︸
Pressure

−
∫ (

D2
= − D2

=−1

)
d�︸                     ︷︷                     ︸

Reynolds normal stress

−
∫

(DF= − DF=−1)
����
I=I1

I=I0

dGdH

︸                                   ︷︷                                   ︸
Reynolds shear stress

−
∫

d*0

dI
(,= −,=−1) d+︸                             ︷︷                             ︸

Mean flow shear

, (2.8)

where d� in (2.8) is dHdI at G = G1 . Note that the convective terms, which include cross-

stream velocity components, as well as the lateral Reynolds shear stress term in (2.5), vanish

in equations written after (2.5), according to the fundamental theorem of calculus. For instance,∫ H1

H0

m+ (*0−* )
mH

dH = + (*0 − *)
��H=H1
H=H0

, and therefore the difference in this term with and without

WT= is expected to be zero for H0 ≪ H= ≪ H1 (Tennekes & Lumley 1972; Pope 2000). However,

the term including DF is kept due to the presence of the boundary-layer flow. LES data are used

in the next section to quantify the value of each term in (2.8) for wind turbines in a wind farm.

3. Large eddy simulation (LES) setup

We use results from LES to compare against predictions of the analytical model presented

in this paper. The LES is performed using the Simulator fOr Applications (SOWFA). SOWFA

solves the incompressible filtered Navier-Stokes equations using a finite-volume formulation

(Churchfield et al. 2012). A precursor simulation is first performed to generate the inflow

boundary conditions for the simulation with the turbines. The precursor simulation uses a 5

[km] by 5 [km] by 1 [km] domain with 10 [m] resolution in all directions. The desired velocity

of 8 [m/s] at turbine hub height (Iℎ = 90 [m]) is achieved by adjusting the pressure gradient at

every time-step (Churchfield et al. 2012). A neutral boundary layer is simulated with a capping

inversion at 750 [m]. A wall-stress model with a roughness height of I0 = 0.15 [m] was used
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Figure 2: Spanwise-averaged vertical profiles of inflow characteristics obtained from
precursor simulations: (a) the normalised streamwise velocity *0/*ℎ , where

*ℎ = *0 (I = Iℎ), in a linear scale, (b) the normalised streamwise velocity *0/*ℎ in a

semi-logarithmic scale, (c) the normalised Reynolds shear stress −DF/*2
ℎ
, and (d) the

incoming turbulence intensity �0 = fD/*ℎ .

to represent the shear stresses at the wall (Schumann 1975; Grötzbach 1987). The simulation is

run for 20,000 [s] of simulated time for the turbulence to develop and then data on a boundary

is sampled for 5,000 [s] to use in the simulation with the turbines as inflow. Figure 2 shows

the spanwise averaged velocity and turbulence profiles as a function of height for the precursor

simulation. All simulations presented use the same precursor simulation. A slight logarithmic

layer mismatch is observed in the surface layer shown in figure 2b, which is common in LES of

atmospheric boundary layers (ABLs) (Brasseur & Wei 2010).

The simulations with the turbines use the precursor as an inflow boundary condition and

initial condition. The boundary conditions on the sides are periodic, and the outflow boundary

condition adjusts the velocity field to conserve mass. The domain is a sub-sample of the precursor

domain with 5 [km] by 1.8 [km] by 1 [km] and 10 [m] grid resolution in all directions. The

turbines are modelled using an actuator disk with rotation (Martínez-Tossas et al. 2015). The

blade aerodynamic properties are from the NREL 5MW wind turbine (Jonkman et al. 2009).

A conventional variable-speed and variable blade-pitch-to-feather control system is used to

control the turbine (Jonkman et al. 2009). The power and thrust coefficients for the turbine

were determined by running a set of simulations with uniform inflow at different wind speeds.

Figure 3 shows the thrust and power coefficients for the turbine model used in the simulations.

We simulate cases of aligned wind farm array with streamwise inter-turbine spacing of (G = 5�

and spanwise inter-turbine spacing of (H = 3�, where � is the rotor diameter. The inter-turbine

spacing is intentionally chosen to be small to create strong turbine interactions within wind farms

and thereby make it easier to examine capabilities and limitations of the developed analytical

model. All simulated aligned wind farms consist of three turbine columns, but the number of

turbine rows in simulations varies from one to five. For each case, the simulations are performed

with and without the turbine located in the last row and the middle column, shown by the red

colour in figure 4a (e.g., WT6 for the 3× 2 array or WT15 for the 3× 5 array). Removing turbines

from the domain allows us to systematically study the magnitude of different terms in (2.8). We

simulate another wind farm array with a slanted layout as shown in figure 4b. This wind farm,

hereafter called slanted wind farm, is chosen to study model predictions in partial wake conditions.

The slanted wind farm was constructed from the aligned wind farm by laterally shifting each row

by 0.75� with respect to the upstream row. Unlike the aligned wind farm, the simulations for the
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Figure 3: Thrust and power coefficient of the NREL 5MW actuator disk model with
rotation.
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Aligned wind farm

(full wake)

Slanted wind farm

(partial wake)
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(b)
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Figure 4: Schematic top view of the simulated (a) aligned wind farm cases with the
number of rows varying from one to five, and (b) the slanted wind farm with five rows. For
each case, simulations were performed with and without the last middle turbine shown by
the red colour (e.g., WT6 for the 3 × 2 aligned wind farm or WT15 for the 3 × 5 slanted

wind farm).

slanted wind farm are only performed for the 3 × 5 array with and without WT15 shown by the

red colour in figure 4b.

4. Derivation of wind farm analytical solution

The results from LES of the aligned wind farms are used to compute the integral quantities of

(2.8) in a cubic box surrounding WT=. The width of the box (H1 − H0) is 500 [m], which is wide

enough to ensure that the wake of WT= is included. The vertical extent goes from I0 = 20 [m] to

I1 = 300 [m]. The streamwise extent of the integration box is from G0 = G= − 2� to G1 = G > G=.

The first three terms on the right-hand side of (2.8) are surface integrals on a H−I plane at G = G1 .

The Reynolds shear stress term is a surface integral over horizontal planes at I = I1 and I0, while

the mean flow shear term is the only volume integral in the equation.
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We note that the filtered variables from LES are similar to those derived in (2.8), however,

there are some differences present, for example:

- the LES velocities are spatially filtered quantities,

- the unresolved part of the Reynolds stresses is neglected,

- the pressure includes the deviatoric part of the Reynolds stress tensor.

These differences are expected to cause a small difference in the momentum balance, which is

captured in the residual term. See Sullivan et al. (1994); Juneja & Brasseur (1999); Ghate et al.

(2018) among others for a detailed discussion on the differences between pressure and velocity

modelled by LES and their true values. Figure 5 shows the integral terms in (2.8) computed from

the LES of the aligned wind farm cases with different numbers of rows. For each case, the results

are shown for the last turbine in the middle column shown by the red colour in figure 4a (e.g.,

WT6 for Row 2 (= = 6)). All terms are normalised by the value of the thrust force term.

Figure 5 shows that the pressure term is the dominant term in the near wake, which is expected,

as the sudden change in pressure at the rotor generates the turbine thrust force. The value of the

momentum deficit term is clearly smaller than the thrust force in the near wake region. However,

it increases with an increase of downstream distance and becomes comparable to the thrust force

in the far wake region, especially for turbines in the first three rows. This is consistent with recent

laboratory results reported by Hulsman et al. (2020). The next important term in the momentum

equation is the Reynolds normal stress. This term is expected to be non-negligible for any wake

flows, as also shown in prior studies of bluff-body wakes (Terra et al. 2017). Next, we examine

the two terms that are introduced by the incoming boundary layer. The value of the Reynolds

shear stress term is relatively small for turbines in the first and second rows. It seems that its

value slightly increases for the one in the last row, although it is still smaller than other dominant

terms. Note that values of the terms, including DF= in (2.6) and DF=−1 in (2.7), are expected to be

significant due to the presence of the boundary layer (Cal et al. 2010; Bastankhah & Porté-Agel

2017). However, our LES data suggest that the difference in their values does not seem to be

large, at least for a finite-size wind farm with five rows of wind turbines. The mean flow shear

term is the last term on the right-hand side of (2.8). This term is the product of the vertical mean

incoming flow shear and the vertical velocity component, mainly induced by the wake rotation.

Figure 5 shows that this term is small but not negligible and its variation is relatively similar

for turbines at different rows. We note that the effect of incoming wind veer is neglected in this

analysis, given that its effect on the balance of momentum in the streamwise direction is expected

to be insignificant. Indeed, veer becomes more important for the balance of momentum in the

spanwise direction, which is not considered here. In the case of strong veer, the shape of the wake

cross-section is skewed (Abkar et al. 2018), which is out of the scope of the current study.

It is important to note that for a very large wind farm that asymptotes to a so-called fully

developed flow regime, changes in the streamwise direction can be almost neglected. In this

case, the energy is mainly transported vertically from the top of the wind farm (Calaf et al.

2010; Abkar & Porté-Agel 2013; Meneveau 2012). However, even for this asymptotic case, the

momentum deficit term in (2.8) is far from being negligible as this term is the difference of the

momentum deficit flux, with and without the turbine at the same downwind position, not the

difference of the one before and after a turbine. Future work is indeed needed to systematically

examine the significance of different terms in (2.8) (especially the momentum deficit, pressure

and Reynolds shear stress terms) for very large wind farms.

Based on the above discussion on the magnitude of different terms in (2.8), the below equation

seems to be a reasonable approximation in the far wake of WT= (at least for moderate values of

=):

d

∫
*= (*0 −*=) d� − d

∫
*=−1 (*0 −*=−1) d� ≈ )= . (4.1)
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Figure 5: Variation of different terms in (2.8), normalised by the thrust force term, for the
last turbine in the middle column of aligned wind farms with different number of rows.

The modified momentum deficit term is discussed later in §6.

Equation (4.1) can be loosely named as conservation of momentum deficit. It states that the

presence of a turbine induces a rise in the value of momentum deficit flux, and the magnitude of

this rise is equal to the turbine thrust force. It is important to bear in mind that the conservation of

momentum deficit is not an intrinsic flow governing equation like those for mass and momentum

that should always hold true. As shown earlier, (4.1) is just an approximate relation deduced from

conservation of mass and momentum (2.8). Also note that (4.1) is not the same as the one used

for single turbine wakes (e.g., Bastankhah & Porté-Agel 2014). See §7 for further discussion.

In the following, we aim to determine *= by solving (4.1). To achieve this goal, we need to

use the assumption of self-similarity for velocity-deficit profiles in turbine wakes. Unlike single

isolated turbines, the definition of velocity deficit with respect to the incoming flow (i.e., *8=,=)

is not suitable for turbines within wind farms. This definition can even lead to negative values

of velocity deficit at the centre of the wake for very large downwind distances, where the wake

velocity becomes greater than the incoming flow (i.e., as (G − G=) → ∞, *= → *0 > *8=,= ).

Instead, we define the velocity deficit at a given position X = (G, H, I) downwind of WT= as the

difference of the streamwise velocity in the absence and presence of WT= at X; i.e.,

Δ*= (X) = *=−1 (X) −*= (X). (4.2)

Figure 6 shows that with this definition of velocity deficit, the wake of a turbine in a wind

farm exhibits a good degree of self-similarity, akin to a stand-alone turbine. As seen in the figure,

velocity-deficit profiles collapse to a single curve for different downwind positions if the velocity

deficit is normalised by the maximum velocity deficit �= and the distance from the wake centre

is normalised by the characteristic wake half width f=. The results are shown in figure 6 for

wakes of three turbines: (a) a stand-alone wind turbine, (b) the middle turbine in the last row of

the aligned wind farm (i.e., ,)15), and (c) the middle turbine in the last row of the slanted wind

farm (i.e., ,)15). It is also worth mentioning that a slight lateral wake deflection observed in the

figure for the LES data is likely due to the interaction of rotating wake with the vertical inflow

shear discussed by prior studies (e.g., Fleming et al. 2014; Gebraad et al. 2014). The developed

analytical model in this paper does not take into account this slight wake deflection for zero-yawed
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(a) Single turbine (n=1) (b) Aligned wind farm (n=15) (c) Slanted wind farm (n=15)

Figure 6: Self-similar profiles of velocity deficit at different locations downwind of WT=

for the LES data for (a) a single turbine (= = 1), (b) the turbine in the fifth row (middle
column) of the aligned wind farm (= = 15) and (c) the turbine in the fifth row (middle

column) of the slanted wind farm (= = 15).

turbines. As (*=−1 −*=) is self-similar, we can write

*=−1 −*= = �= (G) 5=
(

H

f= (G)
,

I

f= (G)

)
, (4.3)

where 5= is the self-similar function. Shifting the index = in (4.3) to = − 1, = − 2, ... 1 leads to a

set of equations as follows:

*=−2 −*=−1 = �=−1 5=−1,

*=−3 −*=−2 = �=−2 5=−2,

.

.

.

*0 −*1 = �1 51.

(4.4)

Adding (4.3) and (4.4) results in

*0 −*= =

=∑
8=1

�8 58 . (4.5)

Using (4.3) and (4.5) to rearrange (4.1), we obtain∫
�= 5=

(
*0 − �= 5= − 2

=−1∑
8=1

�8 58

)
d� =

)=

d
. (4.6)

To solve the above equation and find�=, a mathematical relation should be used to express 58 . The

boundary-free shear flow theory suggests a self-similar Gaussian solution for 58 based on thin-

shear simplification of RANS equations (Tennekes & Lumley 1972). A Gaussian profile is shown

in figure 6a in comparison with the LES data for a stand-alone wind turbine. As seen in the figure,

this can acceptably estimate self-similar velocity-deficit profiles for most of the wake, except

for at the wake edges. A Gaussian profile is known to often overestimate the velocity deficit

at wake boundaries (Bastankhah & Porté-Agel 2014; Abkar & Porté-Agel 2015; Xie & Archer

2015; Bastankhah & Porté-Agel 2016). This velocity-deficit overprediction at wake edges can

be explained by the fact that based on a Gaussian distribution, the velocity deficit decreases

gradually by moving away laterally and vertically from the centre of the turbine, and it goes to

zero at infinity. However, the tangential vorticity shedding from the edge of the rotor induces
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a positive axial velocity in the outer region (Branlard & Gaunaa 2016; Shapiro et al. 2019a;

Bontempo & Manna 2019), which leads to a slight flow speed-up, especially at short downwind

distances. This flow speed-up can cause lower than expected or even negative values of velocity

deficit at the wake edges for a stand-alone turbine as shown in figure 6a. In a wind farm, a more

pronounced flow speed-up may occur between adjacent turbine columns due to flow blockage

effects. For instance, this is the case for the simulated aligned wind farm as shown in figure 6b.

On the other hand, our results suggest that the flow speed-up for the last turbine in the slanted

wind farm (figure 6c) seems to be less significant. The magnitude of flow speed-up around wind

turbines may depend on several factors such as turbine and inflow properties as well as wind farm

layout geometries (Garrett & Cummins 2007; Nishino & Draper 2015). The accurate estimation

of flow speed-up is out of the scope of this study and so we use a Gaussian distribution for its

simplicity. However, we acknowledge that this assumption can introduce errors in flow prediction

at wake edges. See §5 for more discussion. With an assumption of the Gaussian distribution for

the wake velocity deficit,

58 = 4
− (H−H8 )2

2f2
8 4

− (I−I8 )2

2f2
8 . (4.7)

Note that although the focus of this paper is turbines with no yaw angles, the developed model

can be extended to cases with yawed turbines by replacing H8 and I8 in (4.7) with lateral and

vertical positions of the wake centre at each streamwise position, respectively.

Inserting (4.7) into (4.6), computing the surface integral with respect to H and I (from −∞ to

+∞, neglecting ground effects) and approximating*0 with *ℎ = *0 (I = Iℎ) leads to

�2
= − 2

(
*ℎ −

=−1∑
8=1

_=8�8

)
�= +

)=

dcf2
=

= 0, (4.8)

where _=8 is

_=8 =
2f2

8 e
− (H=−H8 )2

2(f2
=+f2

8 ) e
− (I=−I8 )2

2(f2
=+f2

8 )

f2
= + f2

8

. (4.9)

Note that for simplicity we assume in this work that the wake width is the same in both lateral and

vertical directions. However, different values of lateral (fH) and vertical (fI) wake half widths

can be used in (4.7). In this case, any f2 in (4.8) and hereafter should be replaced with the product

of fH and fI . The quadratic (4.8) has two solutions for �=. The physically acceptable solution

that decays with an increase of f= is

�=

*ℎ

=

(
1 −

=−1∑
8=1

_=8
�8

*ℎ

) ©­­­
«
1 −

√√√√√√√
1 −

2C ,=

(
<*=−1>=,G=

*ℎ

)2

8 (f=/�)2
(
1 − ∑=−1

8=1 _=8
�8

*ℎ

)2

ª®®®¬
, (4.10)

where <> (8,G 9 ) denotes spatial averaging over the frontal projected area of WT8 at G = G 9 , and

the thrust coefficient of WT= is given by

2C ,= =
8)=

cd�2 <*=−1>
2
(=,G=)

. (4.11)

Values of�1,�2, ...�= determined from (4.10) are inserted into (4.5) to evaluate*=. While we use

<*=−1>=,G= to relate 2C ,= to)= in (4.11), one may approximate<*=−1>=,G= with*=−1 (G=, H=, I=)
in (4.10) and (4.11) for simplicity. Note that (4.10) is a recursive sequence, so�= can be explicitly

computed as a function of �8 (for 8 = 1, ... = − 1). To compute �1 (i.e., = = 1), by setting _ = 0,
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(4.10) is reduced to the one developed by Bastankhah & Porté-Agel (2014) for a stand-alone

turbine.

The dimensionless coefficient of _=8 in (4.10) has an interesting physical interpretation. It

quantifies the contribution of WT8 on the value of �= (i.e., the velocity deficit associated with

WT=). From (4.9), _=8 depends on the wind farm layout and inflow conditions, and its value can

vary from 0 to 2. As |H8 − H= | tends to infinity, _=8 tends to zero. This means that if the turbines

are laterally distant from one another, they do not have any interaction, so (4.10) is reduced to

the solution derived for a single turbine. As H8 approaches H= (i.e, partial-wake conditions), the

value of _=8 increases. Ultimately, at H8 = H= (i.e., full-wake conditions) and assuming I8 = I=,

_=8 becomes equal to 2f2
8 /(f2

8 + f2
=), which can take any value between one and two. In these

conditions, _=8 tends to 2 if f8 goes to infinity, which occurs when the turbine is immersed

in a reasonably large upwind wake. On the other hand, the value of _=8 tends to unity if the

upwind turbine wake has a size comparable to that of the turbine wake (i.e., f8 ≈ f=). The

inflow properties also affect the value of _. An increase in the level of atmospheric turbulence

enhances the wake recovery rate, which in turn leads to an increase in the value of _. This occurs

particularly for turbines in front rows. Therefore, the coefficient _ obtained purely based on an

analytical approach is analogous to empirical methods used in the literature to quantify the effects

of upwind turbine wakes, such as finding the areas of wake overlap with each turbine. For instance,

see the so-called ‘mosaic-tile’ approach used by Rathmann et al. (2006), among others.

The second exponential term in the right-hand side of (4.9) is equal to unity for I8 = I= . This

is the common case in wind farms given that the turbines usually have the same hub height. We,

however, leave this term in its original form because of (i) its potential use in imaging techniques

to simulate ground effects (Crespo et al. 1999) as well as (ii) its potential application in studying

wind farms with variable hub heights (i.e., vertical staggering) (Zhang et al. 2019).

It is also worth mentioning that in the case of *0 = *0(G, H, I), *ℎ in (4.10) is substituted

with *0 (G=, H=, I=). However, note that the developed solution is expected to provide acceptable

estimations as long as values of d*0/dG and d*0/dH are not significant. Otherwise, the incoming

flow heterogeneity induces non-negligible additional terms in (2.8), akin to the vertical mean

flow shear term.

5. Model predictions

In this section, the developed model is used to predict the flow distribution in each of the

two wind farms shown in figure 4, and the results are compared with the LES data. In order

to compute predictions using the analytical model, an estimation of the wake recovery rate :

is required as the only empirical input of the model. Prior studies have suggested that the wake

recovery rate for a single turbine is directly proportional to the turbulence intensity of the incoming

flow (Niayifar & Porté-Agel 2016; Carbajo Fuertes et al. 2018; Shapiro et al. 2019b; Zhan et al.

2020). In the following, we examine the validity of this assumption for turbines of the aligned

wind farm, for which LES were performed in the presence and absence of turbines at different

rows.

The lateral velocity deficit profiles at different downstream distances of the middle turbine

in each row are analysed using the definition of velocity deficit stated earlier as Δ*= (X) =

*=−1 (X) −*= (X) for WT= (i.e., the difference between the flow with and without the presence of

WT=). A Gaussian distribution (4.7) is fitted to each velocity deficit profile in the horizontal plane

at hub height in order to estimate the corresponding wake half width f= for each downstream

position. Figure 7a shows the variation of wake half width with downwind distance for the aligned

wind farms with different number of rows. Results show that the wake width is clearly smaller for

the turbine in the first row, which is expected because of the lower level of turbulence intensity in

the incoming flow. Most of the turbine wakes appear to have a linear expansion. The results for
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Figure 7: (a) Variation of the normalised wake half width with the streamwise distance for
the last turbine in the middle column of aligned wind farms with different number of rows.
(b) The ratio of wake recovery rate : to the incoming turbulence intensity �8= for turbines
at different rows based on the LES data. (c) Comparison of incoming added turbulence
intensity predicted by the Crespo model (Crespo & Hernández 1996) and the suggested

modified Crespo model with the LES data for turbines at different rows.

the third and fifth rows appear slightly less linear, which may be due to some uncertainty in the

estimation of the wake width using a Gaussian curve fitting as discussed in prior studies (e.g.,

Quon et al. 2020). However, a linear curve still provides satisfactory agreement. Subsequently,

the value of : for WT= is determined by fitting a linear curve with

f= (G)/� = : (G − G=) /� + n, (5.1)

where n is the normalised initial wake half width given by 0.2
√
V and V =

(
1 +

√
1 − 2C ,=)

)
/
(
2
√

1 − 2C ,=

)
(Bastankhah & Porté-Agel 2014). Fitting the curve in this way ensures that the initial wake width

is consistent throughout the model to give values of : that are a fair representation of the wake

recovery rate.

Following this, the proportionality of : in relation to the incoming turbulence intensity �8= is

investigated. For ,)=, the value of �8= is defined as the value of turbulence intensity at the rotor

position in the absence of the rotor, i.e.,
√
< DD > (=−1,G=)/<*> (0,G=) . Figure 7b shows that :/�8=

is not exactly identical for all turbines. However, the deviation of this ratio between different

rows is not significant, and so the mean value of :/�8= = 0.31 can be taken to approximate the

relationship between the wake recovery rate : and the incoming turbulence intensity �8= . This

value is lower than those suggested in previous works, such as 0.38 in Niayifar & Porté-Agel

(2016), 0.35 in Carbajo Fuertes et al. (2018) and 0.34 in Zhan et al. (2020). The discrepancy in

the coefficient that relates �8= to : may be due to the wake recovery rate having some weak

dependencies on incoming flow characteristics other than the incoming turbulence intensity (e.g.,

the integral length scale). It is not in the scope of this work to establish a complete relationship

between the wake recovery rate and incoming turbulence intensity, as well as potentially other
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important factors. Nevertheless, this is an important topic and needs to be studied more rigorously

in future research. This is further discussed in §8.

The final step in estimating the wake recovery rate for the analytical model requires an

estimation of the incoming turbulence intensity for each turbine in a wind farm. The empirical

relationship suggested by Crespo & Hernández (1996) is used here for simplicity, although

other, more detailed, empirical relations could be used instead, such as the one proposed by

Ishihara & Qian (2018). The magnitude of incoming turbulence intensity �8= for each turbine is

taken as

√
�0

2 + Δ�2
8=

, where �0 is the ambient turbulence intensity, and Δ�8= is the turbulence

intensity added by upwind turbines . The value of Δ�8= for WT= due to the upwind turbine

WT8 , where 8 < =, is estimated with the relationship proposed by Crespo & Hernández (1996)

(hereafter referred to as the Crespo model):Δ�8= = 0.7300.83
8 �0.03

0
[(G= − G8)/�]−0.32, where 08 is

the induction factor of WT8 given by 0.5(1 −
√

1 − 2C ,8). This relationship is used in conjunction

with the geometric method suggested by Niayifar & Porté-Agel (2016). This involves finding

the fraction of overlap area between the turbine rotor and upstream wakes to determine the

added turbulence intensity due to each upstream turbine, followed by taking the maximum value

of Δ�8= (i.e., the upstream turbine with the largest impact on the incoming flow). By using

this method, predictions show that turbines in the second row and subsequent rows experience

the same incoming turbulence intensity. However, this is not completely valid for this wind

farm case as the LES data show that the value of incoming turbulence intensity for the second

row is less than that of subsequent rows. Additionally, this method slightly overestimates �8=
for turbines deep inside a wind farm. In order to account for this offset, the Crespo model is

employed for the analytical model with a slightly modified constant term to obtain the relationship

Δ�8= = 0.6600.83
8

�0.03
0

[(G= − G8)/�]−0.32. As demonstrated in Figure 7c, this modified version

gives closer predictions of �8= relative to the LES data.

Next, the wind farm flow distribution is estimated using (4.5), (4.9) and (4.10). Note that

the model can only provide reliable predictions in the far-wake region of wind turbines, where

velocity-deficit profiles are self-similar, and also the assumptions made to develop the approximate

relation of (4.1) are acceptable. At very short downwind distances, the term under the square root

in (4.10) becomes negative and, as a result of this, (4.10) provides complex values. Prediction

of the flow in the near wake region is not the objective of this work because it is unlikely

for a turbine to be in the near wake of another turbine in realistic situations. However, the

complex output of (4.10) might pose a practical issue in implementing the model to determine

the incoming velocity for downwind turbines in some cases, where two turbines are laterally

far from each other but have similar streamwise locations. In order to address this issue, any

value of �= predicted by (4.10), which is either complex or bigger than �=0 is replaced by �=0,

where �=0 is the maximum theoretical velocity deficit based on the Betz theory and is given by

20=<*=−1> (=,G=) (Manwell et al. 2010). We adopt this approach for its simplicity, but if the goal

is to realistically capture the near-wake region, recent models in the literature (e.g., Shapiro et al.

2019b; Schreiber et al. 2020; Blondel & Cathelain 2020, among others) can be consulted.

Finally, we discuss model predictions against the LES data. Figures 8a and b show contours

of (*ℎ − *), normalised by the inflow velocity at hub height *ℎ for the 3 × 5 aligned wind

farm (i.e., the full-wake case). A different colourscale is used for negative values of (*ℎ − *)

to indicate the speed-up region between adjacent turbine columns. This speed-up region appears

to be evident between the primary rows of the wind farm, diminishing after roughly three rows

of wind turbines. As mentioned earlier in §4, this speed-up region is not accounted for in the

developed model due to the assumption that the wake velocity deficit profile is Gaussian. For the

aligned wind farm, the speed-up region does not largely interact with downwind turbines, so its

impact is expected to be insignificant. However, this is not always the case, as discussed later for

the case of the slanted wind farm.
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Figure 8: Contours of (* −*ℎ), normalised by the incoming velocity at hub height *ℎ , at
a horizontal plane at hub height for the aligned wind farm (full-wake case) based on (a)

LES and (b) analytical model predictions. (c) Vertical profiles of the normalised
streamwise velocity predicted by the LES (circles), and the analytical model (solid lines)
at various distances downwind of WT15: G − G15 = 4D (black), 6D (blue), 8D (red), and
12D (green). The dashed line shows the incoming velocity profile. (d) Efficiency [ of

turbines in the middle column, where [ for each turbine is defined as %/(0.5d�*3
ℎ
).

Overall, figure 8b shows that the model predictions of velocity in the far-wake region are in

good agreement with the LES data. This is also confirmed in figure 8c showing vertical profiles of

normalised streamwise velocity at different positions downwind of the middle turbine in the last

row (i.e., WT15). Although the results show good agreement for the far-wake region, the figure

shows that the model slightly underpredicts the velocity in the lower half of the wake, which

becomes more apparent at short downwind distances (e.g., at G − G15 = 4�). This discrepancy

may be due to the uncertainty in the estimation of the wake recovery rate, as discussed earlier, or

due to other terms being neglected in the right-hand side of the momentum equation (2.8). For

cases where the momentum deficit term is less than the thrust force, assuming equality between

these two terms will result in an overestimate of velocity deficit, which occurs particularly at short

downwind distances. This is further discussed in §6. Additionally, it was assumed for simplicity

that the wake recovery rate is the same in both the lateral and vertical directions. However, in

the vertical direction, the wake flow may be affected by the mean shear of the incoming flow

and presence of the ground resulting in a different value of :, as suggested by prior studies

(Abkar & Porté-Agel 2015; Xie & Archer 2015).

Finally, figure 8d shows the efficiency of each middle turbine at different rows for both the

LES data and predictions from the analytical solution. The efficiency [ of WT= is defined as

%=/(0.5d*3
ℎ
�), where %= is the power extracted by WT= and � is the area swept by the turbine

blades. The turbine efficiency can be rewritten as �? <* >3
(=−1,G=) /*

3
ℎ
, where �? is the power



15

0 5 10 15 20 25 30

-3

-1.5

0

1.5

3

4.5

0

0.2

0.4

0.6

0 5 10 15 20 25 30

-3

-1.5

0

1.5

3

4.5

0

0.2

0.4

0.6

0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

0.2

0.4

0.6

Figure 9: Contours of (* −*ℎ), normalised by the incoming velocity at hub height *ℎ , at
a horizontal plane at hub height for the slanted wind farm (partial-wake case) based on (a)

LES and (b) analytical model predictions. (c) Vertical profiles of the normalised
streamwise velocity predicted by the LES (circles), and the analytical model (solid lines)
at various distances downwind of WT15: G − G15 = 4D (black), 6D (blue), 8D (red), and
12D (green). The dashed line shows the incoming velocity profile. (d) Efficiency [ of

turbines in the middle column, where [ for each turbine is defined as %/(0.5d�*3
ℎ
).

coefficient of the turbine. For analytical model predictions, the value of <*> (=−1,G=) is estimated

by the model, whereas �? for each turbine is estimated from figure 3. Overall, there is a good

agreement between the efficiency predicted by the analytical model and the LES data, despite a

slight underprediction of the efficiency for turbines in the last two rows. One possible explanation

for this underprediction is the assumption of equality in (4.1), as discussed previously. As shown

in figure 5, this assumption is less accurate for turbines at the end of the wind farm, compared to

those in primary rows.

For the case of the slanted wind farm, figures 9a and b show contours of (*ℎ −*), normalised

by *ℎ , in the horizontal plane at hub height for LES data and the analytical model predictions,

respectively. From figure 9c, model predictions show fairly good agreement with the LES data in

the far wake of the turbine in the last row (i.e., WT15), but it underpredicts the velocity at short

downwind distances. Figure 9d shows the comparison between predictions of turbine efficiency

from the analytical model and the LES. Model predictions for turbines in rows 4 and 5 show more

satisfactory agreement than those for rows 2 and 3. The observed discrepancy in efficiency for

rows 2 and 3 are most likely due to the flow speed-up demonstrated in figure 9a. As discussed in

§4, the analytical model does not capture flow speed-up between adjacent turbine columns due to

the assumption of Gaussian distribution for velocity-deficit profiles. This leads to underprediction

of efficiency for turbines in the second and third rows, as shown in figure 9d. The turbines in

the last two rows do not seem to considerably benefit from the flow speed-up because they are
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in wakes of adjacent column. A similar observation is made in figure 6c showing self-similar

profiles for the turbine in the last row.

These results highlight the limitation of this model (and essentially most other existing

engineering wake models in the literature) for estimating the incoming flow of turbines that

are subject to the speed-up between neighbouring columns. However, our LES data suggest that

this speed-up effect appears to be important mostly at primary rows of wind farms and becomes

less significant deep inside a wind farm. Moreover, the speed-up effect is expected to have less of

an impact for wind farms with larger inter-turbine spacing. An important area of future research

would be to evaluate the impact of flow speed-up on the power production for wind farms with

various inflow conditions and layout configurations.

6. A modified version of the conservation of momentum deficit

As shown in figure 5, the magnitude of the momentum deficit term in (2.8) is clearly less

than the thrust force in the near wake for all turbines. In the far wake, its value is closer to the

turbine’s thrust force. However, for turbines deep inside the wind farm (i.e., rows 4 and 5), the

momentum deficit term is still slightly smaller than the thrust force even in the far wake region.

This section attemps to modify the momentum deficit term such that this term’s value would be

more comparable to the thrust force magnitude over a broader range of streamwise distances and

turbine rows. We start with rewriting the left-hand side of (4.1), so we obtain∫
*= (*0 −*=) d� −

∫
*=−1 (*0 −*=−1) d� =∫

*= (*=−1 −*=) d� −
∫

(*=−1 −*=) (*0 −*=−1) d�. (6.1)

The second term on the right-hand side of (6.1) is negative as *= < *=−1 and *=−1 6 *0.

Therefore, one can write[∫
*= (*0 −*=) d� −

∫
*=−1 (*0 −*=−1) d�

]
︸                                                             ︷︷                                                             ︸

Original Momentum Deficit Term

6

∫
*= (*=−1 −*=) d�.︸                        ︷︷                        ︸

Modified Momentum Deficit Term

(6.2)

The equality in (6.2) holds everywhere for = = 1. For = > 1, the equality holds only at large

downwind distances where *= → *=−1 → *0, while the difference between the two sides of

inequality is larger at shorter downwind distances. Figure 5 shows the variation of the modified

momentum deficit term with the streamwise distance for turbines at different rows. While the

value of this modified term is bigger than the thrust force in the far wake of turbines in primary

rows (i.e., rows 2 and 3), its value in the far wake of those in rows 4 and 5 is closer to the

thrust force than the original relation. Moreover, the modified term is closer to the thrust force

at short downwind distances for all turbines. Therefore, we introduce a modified version of the

conservation of momentum deficit as follows:

d

∫
*= (*=−1 −*=) d� ≈ )= . (6.3)

Based on the LES data presented in figure 5, this equation is expected to better hold the equality

between the thrust and momentum deficit term at short downwind distances for all turbines and

at long downwind distances for those deep inside a wind farm.

Equation (6.3) can be solved in the same way that we earlier solved (4.1) in §4 to find *=. By

doing so, we find that the solution of (6.3) is the same as (4.10). The only difference with the

original solution is that _=8 , based on the modified version, is half of the one obtained for the
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Figure 10: (a) Variation of the centreline (*ℎ −*)/*ℎ for the middle column of the 3 × 5
aligned wind farm. Turbines are located at G/� = 0, 5, 10, 15 and 20. (b) Efficiency [ of

turbines in the middle column, where [ for each turbine is defined as %/(0.5d�*3
ℎ
). More

details about STW superposition methods shown in the figure can be found in table 1.

original equation. Therefore, using (4.10) in conjunction with (4.5) and the modified definition of

_modified
=8 =

f2
8 e

− (H=−H8)2

2(f2
=+f2

8 ) e
− (I=−I8 )2

2(f2
=+f2

8 )

f2
= + f2

8

, (6.4)

forms the solution of the modified version of conservation of momentum deficit (6.3). Figure 10a

shows the variation of the centreline (*ℎ−*)/*ℎ for turbines in the middle column of the aligned

wind farm, while figure 10b shows the efficiency of these turbines. It is worth remembering that

model predictions in the upwind induction region and immediately behind the turbines are not

valid. The figure shows that far-wake predictions, based on the original and modified versions,

do not largely deviate from each other (e.g., compare flow predictions downwind of the last

turbine at (G − G15 > 5�). This is a good sign showing that model predictions are not highly

sensitive to inaccuracies arising from using the approximate form of (2.8). However, a closer

inspection of figure 10 confirms what we inferred earlier based on the results of figure 5. The

original momentum deficit works better in the far wake of turbines at primary rows (e.g., see [

for row 3 in figure 10b). On the other hand, the modified version provides better predictions at

short downwind distances for all turbines. It can also better predict the efficiency of turbines deep

inside a wind farm (e.g., see [ for row 5 in figure 10b). This comparison suggests that, overall,

the modified version of the conservation of momentum deficit might be a slightly better choice,

at least for turbines deep inside a wind farm. Future studies can perform similar analyses using

more numerical and experimental data for larger wind farms to examine the accuracy of this

conclusion.
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7. Superposition of single turbine wake (STW) models

In this section, we examine the validity of wake superposition techniques commonly used in the

literature. To achieve this goal, we discuss approximations and assumptions that need to be made

in order to derive superposition of STW models from the solution of conservation of momentum

deficit derived in §4 for a wind turbine in a wind farm.

As discussed in §1, the common approach in existing superposition techniques is to treat each

turbine separately and find the value of its wake velocity deficit at a given location. The values of

velocity deficit caused by all turbines at that given location are then combined (either linearly or

non-linearly) to find the total velocity deficit. By doing this, it is inadvertently assumed that the

wind velocity downwind of a turbine subtracted from the one at the same location in the absence

of the turbine can be expressed in a form similar to (4.3). As shown in figure 6, this is a valid

assumption for a turbine within a wind farm. Next, we try to develop the STW model from the

modified version of the conservation of momentum deficit (6.3). If we approximate*=−1 in this

equation with <*=−1> (=,G) at each G, (4.3), (4.7) and (4.11) can be used to obtain

�= =<*=−1> (=,G)
©­
«
1 −

√√√
1 − 2C ,=

8(f=/�)2

<*=−1 >
2
(=,G=)

<*=−1 >
2
(=,G)

ª®
¬
. (7.1)

Next, we neglect the velocity ratio under the square root on the right-hand side of (7.1).

Moreover, <*=−1> (=,G) (i.e., the first term on the right-hand side of (7.1)) is substituted with*ℎ .

This leads to

�= = *ℎ

(
1 −

√
1 − 2C ,=

8(f=/�)2

)
, (7.2)

which is the original STW model proposed by Bastankhah & Porté-Agel (2014). The velocity

ratio of
(
<*=−1 > (=,G=)/<*=−1 > (=,G)

)
tends to unity only as (G − G=) → 0 and is less than one at

positive values of (G−G=) in most cases. On the other hand, the velocity ratio of
(
<*=−1 > (=,G)/*ℎ

)
tends to unity only as (G − G=) → ∞ and is less than one at definite values of (G − G=). Therefore,

the two approximations made to develop (7.2) from (7.1) lead to an overprediction of velocity

deficit. Flow predictions based on (7.2) and the linear superposition method (i.e., A.I in table

1) are shown in figure 10. One can observe that using this STW superposition model clearly

leads to overpredictions of velocity deficit (see figure 10a) and, consequently, underprediction

of turbine efficiency (see figure 10b). Similar observations were made by prior studies (e.g.,

Niayifar & Porté-Agel 2016; Zong & Porté-Agel 2020).

In (7.2), �= is proportional to *0, which is equivalent to the superposition method B.I shown

in table 1. To develop the method B.II in table 1, we follow the same approach to derive (7.2)

from (7.1), except <*=−1> (=,G) in (7.1) is now replaced with <*=−1> (=,G=) (i.e., local incoming

velocity), so we obtain

�= =<*=−1> (=,G=)

(
1 −

√
1 − 2C ,=

8(f=/�)2

)
. (7.3)

As often
(
<*=−1> (=,G=)

)
6

(
<*=−1> (=,G)

)
6*ℎ for G>G=, the magnitude of velocity-deficit

overprediction from (7.3) is significantly less than that from (7.2), which is also seen in figure 10.

In comparison with the solution of the original conservation of momentum deficit (4.10), (7.3)

underpredicts the velocity deficit at short downwind distances and overpredicts it at large ones,

but overall its predictions do not largely deviate from those of (4.10). However, it is important to

note that this is not because (7.3) is based on flow physics for the wake of a turbine within a wind

farm. Several approximations made to develop (7.3) from the original solution have opposing

effects on the prediction of wake velocity deficit, so their effects are cancelled out by each other

to some extent. Figure 10b shows that using (7.3) in conjunction with the linear superposition
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Figure 11: Variation of centreline (*ℎ −*2)/*ℎ downwind of a turbine operating in full
wake of another turbine.

method induces an error of about 3% − 4% in predictions of turbine efficiency for the studied

wind farm. Zong & Porté-Agel (2020) stated that the error of this superposition model might be

more significant for larger wind farms. Therefore, the use of the analytical wind farm solution

(4.10) is recommended because it is not computationally more expensive than empirical STW

superposition models. Nevertheless, if one tends to use superposition of STW models, (7.3)

certainly provides more acceptable estimations than (7.2).

Another important aspect of superposition techniques is the method used to superpose the

velocity deficit caused by each turbine. Bearing in mind (4.5), it is evident that the linear

superposition method (i.e., A.I in table 1) is in better agreement with the analytical solution.

However, the root-sum-square method (A.II in table 1) is more likely to provide better predictions

if the velocity deficit caused by each single turbine is overestimated. Overestimation of velocity

deficit for turbine wakes in wind farms mainly occurs for two reasons: (i) using the global incoming

velocity *ℎ as the reference velocity to compute the velocity deficit for each turbine (7.2), and

(ii) estimating the wake recovery rate based only on inflow atmospheric conditions. The latter

is expected to underestimate the wake recovery rate and thereby overpredict the velocity deficit,

because it does not take into account a faster wake recovery due to the turbulence added by upwind

turbines. This may explain why the root-sum-square method has been customarily popular in the

literature as either one or both of the above-mentioned assumptions can be commonly found in

prior wake modelling studies (e.g, Katić et al. 1987, among others).

Finally, we discuss the recent model developed by Zong & Porté-Agel (2020). This model is

based more on wake flow physics than other common superposition methods discussed earlier.

They developed an iterative method to satisfy the following two equations:

d

∫
*8

(
*8=,8 −*8

)
d� = )8 , 8 = {1, 2, ... =}, (7.4)

d

∫
*= (*0 −*=) d� =

=∑
8=1

)8 . (7.5)

While (7.5) satisfies the conservation of momentum deficit for the whole wind farm, strictly

speaking, (7.4) is not equal to the conservation of momentum deficit (4.1) for a turbine within a

wind farm. In fact, one can show that

∫
*8 (*0 −*8) d� −

∫
*8−1 (*0 −*8−1) d�

︸                                                         ︷︷                                                         ︸
Original Momentum Deficit

≈
∫

*8 (*0 −*8) d�−
∫

*8=,8

(
*0 −*8=,8

)
d� =

∫
*8

(
*8=,8 −*8

)
d� −

∫ (
*8=,8 −*8

) (
*0 −*8=,8

)
d�. (7.6)

The second term on the right-hand side of (7.6) is not negligible for a turbine that experiences
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wakes of upwind turbines. However, this discrepancy does not seem to cause a noteworthy error

in model predictions in the far wake. Figure 11 shows variation of the centreline (1 − *2/*ℎ)
with downwind distance for a turbine that is subject to the full wake of another turbine. For

a fair comparison, the same value of : obtained from figure 7 is used for all results shown

in figure 11. The figure shows that Zong & Porté-Agel (2020)’s model provides good far-wake

predictions, which lie between results of the original and modified versions of conservation of

momentum deficit. However, a drawback of this model could be the fact that it is not represented

in an explicit form. To use this model, one needs to compute surface integrals of wake velocity

deficit multiple times at each downstream location in order to obtain converged results through an

iterative process. This may increase the computational cost of this superposition model compared

with simpler superposition models as well as the explicit wind farm solution developed in the

current study.

8. Summary and future research

The main aim of this paper is to address the puzzling question of ‘how should one estimate

cumulative wake effects in wind farms based on engineering wake models?’, given the abundance

of wake superposition methods in the literature. This aim is achieved by directly solving flow

governing equations for a turbine that experiences upwind turbine wakes. The developed model

can therefore predict the flow distribution in a wind farm without the need for any specific

superposition method. The LES data for wind farms with different number of rows are used to

perform a budget analysis of the integral form of the mass and momentum equations for turbine

wakes in wind farms. Results show that there are important non-negligible terms (e.g., pressure

and Reynolds normal and shear stress terms) other than the momentum deficit and thrust force

in this equation. However, the so-called conservation of momentum deficit (i.e., the equality of

the momentum deficit term and thrust force) seems to be fairly valid in the far wake, at least for a

moderately sized wind farm. A modified version of the conservation of momentum deficit is also

introduced in an attempt to provide slightly better results at short downwind distances as well as in

the far wake of turbines deep inside a wind farm. Performing LES with and without the presence

of turbines allows us to properly examine some model assumptions. The data for both full-wake

and partial-wake conditions show that wake velocity-deficit profiles are self-similar if they are

defined with respect to the wind flow at the same position but in the absence of the turbine. While

a Gaussian profile can successfully represent the self-similar profile of the wake at the centre, it

falls short in capturing the flow speed-up at wake edges. This results in an underprediction of

efficiency for certain turbines in primary rows that experience flow speed-up between adjacent

columns.

To quantify the wind farm flow distribution using this analytical model, the only necessary

empirical input is the wake recovery rate. Provided that this is properly estimated for turbines

within wind farms, our results show, overall, that the proposed model is able to provide acceptable

predictions. Based on this model, the velocity distribution downwind of a wind farm consisting

of = wind turbines (WT1,WT2, ... WT=) is given by

*= = *0 −
=∑
8=1

�8exp

(
− (H − H8)2 + (I − I8)2

2f2
8

)
, (8.1)

where the wake half width f8 for WT8 is estimated from (5.1). The value of �8 (i.e., wake-centre
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velocity deficit associated with WT8) is determined by

�8

*ℎ

=
©­
«
1 −

8−1∑
9=1

_8 9
� 9

*ℎ

ª®
¬
©­­­«
1 −

√√√√√√√
1 −

2C ,8

(
<*8−1>8,G8

*ℎ

)2

8 (f8/�)2
(
1 −∑8−1

9=1 _8 9
� 9

*ℎ

)2

ª®®®
¬
, (8.2)

where 2C ,8 is the thrust coefficient of WT8 . For 8 = 1, the equation is reduced to the one for the

single turbine wake by setting
∑
_8 9� 9/*ℎ equal to zero. For 8 > 1, the value of _8 9 in (8.2) is

given by

_8 9 =
Uf2

9 e
− (H8−H 9)

2

2
(
f2
8
+f2

9

)
e
− (I8−I 9)

2

2
(
f2
8
+f2

9

)

f2
8
+ f2

9

, (8.3)

where U is equal to 2 for the original equation of conservation of momentum deficit (4.1) and

is equal to 1 for its modified version (6.4). The value of _ depends on wind farm turbine layout

and inflow conditions. This coefficient, obtained analytically, functions similarly to empirical

models (e.g., the ‘mosaic-tile’ approach) that aim to quantify the net contribution of overlapping

wakes. The validity of the common single turbine wake (STW) superposition models is also

analysed in this study. It is shown that common superposition models can be derived by making

approximations to the analytical wind farm flow solution presented in this work.

There are still some important limitations that need to be better understood and addressed in

future research if we want to successfully implement engineering wake models for a variety of

inflow conditions and wind farm layout configurations:

– Neglected terms of the governing equation (2.8): The applicability of the so-called conserva-

tion of momentum deficit (4.1) (and its modified version (6.3)) should be examined for wind farm

arrays with various inflow conditions and layout geometries. Of special interest is to investigate

the significance of different terms in (2.8) for a very large wind farm that asymptotes to a so-called

fully developed case.

– Turbine blockage effects: One of the limitations of the proposed model is its inability to

capture speed-up effects between adjacent turbine columns caused by turbine flow blockage.

Future research can aim at using a more realistic relation (instead of Gaussian) to represent

the self-similar velocity-deficit profiles. Furthermore, several recent studies (Bleeg et al. 2018;

Segalini & Dahlberg 2020) have demonstrated another important aspect of flow blockage in wind

farms. These studies, among others, have shown that flow blockage caused by wind turbines

within wind farms can decrease the efficiency of upstream turbines by reducing their effective

incoming velocity. For more accurate prediction of power production in large wind farms, the

effect of downwind turbines on their upwind counterparts needs to be included in wind farm flow

engineering models.

– Wake recovery rate :: Model predictions are quite sensitive to the value of :. Therefore,

accurate estimation and modelling of : is of great importance. To achieve this goal, a better

understanding of the turbulence distribution in wind farms and how this affects the turbine wake

recovery rate is essential. Moreover, additional research is needed on the possible effects of any

inflow and turbine operating conditions on wake recovery, other than the incoming turbulence

intensity.
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