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1 Introduction

The Standard Model (SM) of particle physics has been the most successful theory to
describe the dynamics and interactions of sub-atomic particles. Every prediction that could
be made based on the SM Lagrangian has been substantiated by different experiments,
while the converse is not true. Several observations can not be satisfactorily explained
within the Standard Model framework. Thus, the SM appears to be a theory of fundamental
particles — but not the complete one, i.e. its validity does not extend to arbitrarily high
energy scales. There have been several efforts to extend the SM by extending its gauge
groups and (or) by adding new particles. It is believed that at very high energies, near
the Planck scale, there is a unified gauge group from where all the low energy physics,
including the SM, have descended. The region between the unified and electroweak scales
is potentially populated with many particles of different mass scales. However, to this day,
we are not confident about the exact nature of the theories beyond the SM (BSM), as we
do not have sufficient experimental data that can help us to isolate a specific BSM scenario.
A plethora of BSM proposals [1, 2] exist and each of them has its own merits.
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For future and ongoing searches of new physics, for example at the LHC, an important
question is whether it is possible to capture the essence of the new unknown physics using
our knowledge about the symmetries and the particle content. Indeed, this is the underlying
idea of an Effective Field theory (EFT) where the complete Lagrangian is written as:

L = Lrenorm +
n∑
i=5

Ni∑
j=1

C(i)
j

Λi−4O
(i)
j . (1.1)

Here, (
∑
j) denotes the sum over effective operators (Ni) each having mass dimension

i. Λ is the scale of new physics and thus possesses mass dimension 1. The dimensionless
coefficients C(i)

j are the so-called Wilson coefficients. The second term in the above equation
is the effective Lagrangian (LEFT) [3–9]. The origin of these effective operators can be
understood through two possible mechanisms. First, if we have prior knowledge about the
new physics Lagrangian then we can suitably integrate out the heavy modes from the UV
theory while retaining the light ones, i.e. infrared (IR) degrees of freedom (DOF). The
impact of heavy DOFs is captured by the effective interactions and their respective WCs.
Second, to capture their effects, we can add the gauge invariant effective operators in a
consistent way. In this case we need to rely only on the on-shell DOFs and the associated
symmetries. It is interesting to note that even when the exact nature of the UV theory is
unknown, this formalism can be very useful in sensing the integrated out new physics. In
this work, we will focus on this aspect of EFTs [3–9].

Recognising that the SM may only be valid up to a certain high energy scale beyond
which the effects of new physics may become noticeable, the last decade has seen tremen-
dous progress towards the study of SM physics as an EFT (or SMEFT) [10–15]. More pre-
cisely, the study of higher dimensional operators (of mass dimension ≥ 5) has attracted a lot
of attention. And these operators have been found to introduce many novel and interesting
predictions. For instance, the only dimension 5 operator shows lepton number violation
and generates a Majorana mass term for the neutrino. Going to even higher dimensions
we even come across predictions of processes as rare as proton decay [16, 17]. SMEFT also
encompasses the two paradigms of EFT — the first being the top-down approach which
actually comes about through an interplay of a particular minimal extension of the SM
and through a subset of higher dimension SMEFT operators. These assume the existence
of the minimal extension at some high energy scale and after integrating out the heavy
degree of freedom yields SMEFT effective operators [18–23]. A number of computational
tools such as CoDeX [24], Wilson [25], DsixTools [26], WCxf [27], MatchingTools [28] have
been developed to automatise this procedure. The second one, i.e., the bottom-up approach
is concerned with the construction of complete and independent operator sets at various
mass dimensions based on group-theoretic ideas [29–33]. Complete and independent sets
of SMEFT operators have been constructed for mass dimensions 6 [34], 7 [35], 8 [36, 37],
and 9 [38, 39]. Several ingeniously built modern tools such as GrIP [40], BasisGen [41],
Sym2Int [42], ECO [43], and DEFT [44] have made the construction of higher dimensional
operators straightforward and convenient. The operators obtained by integrating out the
heavy fields from several different SM extensions turn out to be overlapping subsets of this
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complete set. Thus, SMEFT provides a common ground to encode the predictions of differ-
ent new physics models. At the same time, some of the higher dimensional operators also
provide non-leading order contributions to the predictions of the SM itself, thus enhancing
the precision of theoretical calculations [45–47].

It is worth noting that the SMEFT construction assumes that new physics appears at
a particular scale and all the non-SM particles are degenerate. A completely degenerate
spectrum in the UV regime of a new theory, however, is very unlikely. Instead, for a
non-degenerate spectrum, there will be a non-SM degree of freedom with a small mass. If
such a BSM particle is light enough to be kinematically accessible, and couples strongly
to the SM DOFs, it may be counted as an IR DOF along with the SM ones, while the
rest of the new particles would be heavy enough to be integrated out. SMEFT is not
designed to capture such a scenario. As the on-shell IR DOFs are now extended, one has
to compute the new set of effective operators in addition to the SMEFT ones, thus leading to
a new effective operator basis which can be referred to as BSMEFT. This is the underlying
principle behind the Effective Field Theoretic reformulation of several popular scenarios.
Higher mass dimension operators have been constructed for diverse scenarios such as the
extension of SM by a doubly charged scalar [48], the Two Higgs Doublet Model [49–53],
and the Minimal Left Right Symmetric Model [49]. Neutrino mass models are now being
studied under the framework of νSMEFT and operators of mass dimensions 6 [54, 55] and
7 [56, 57] have been constructed for the same. The same ideas have also been applied to
low energy (below electroweak scale) models within the framework of LEFT [58–60] where
operators up to mass dimension 7 have been constructed [61]. These find great utility in
B-physics [62] and dark matter studies [63].

To conduct a procedural analysis we must start by investigating possible minimal
extensions of the SM, which are mostly phenomenologically motivated. To capture the
interplay of the SM electroweak sector with the new physics models, one must address a
variety of scenarios starting from SM-singlet real scalar fields [64–66] to higher dimensional
color singlet multiplets. One must also consider the extensions of the strong sector using
colored scalars and fermions [67]. These minimal extensions have been introduced in an
attempt to rationalize very specific observations. It is worth mentioning that there exist
multiple UV complete theories that may end up leading to the same set of IR DOFs
after suitably and partially integrating out heavy DOFs. So, looking into these minimal
extensions, it is indeed difficult to identify the unique parent theory. For example, if the
SM spectrum is extended by a doubly charged scalar then its UV root will be difficult to
ascertain. It can appear either as an SU(2)L singlet but non-zero hyper-charged complex
scalar field or as a part of higher dimensional representations of the electroweak gauge group
SU(2)L ⊗ U(1)Y . In such cases, the natural possibility is that there exists a hierarchy of
masses between the doubly charged scalar and the other components of the multiplet. It
is also possible that the whole multiplet is lighter than the other non-SM fields. Then that
should be counted as the IR DOF while constructing the effective operators.

BSMEFT can be considered to be the first stride in the step by step process of unrav-
eling a full BSM model. Collision experiments are expected to detect few non-SM particles
first, rather than unveiling the complete spectrum of an extension to the SM at once. The
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first reaction after observing a new resonance will be to build a BSMEFT theory around
this particle — as evidenced in previous occasions of eventually unconfirmed experimental
excesses (see e.g. [68–70]). Thus, the BSMEFT models we provide can serve as a com-
pendium for complete operator bases after a new resonance is observed.

To promulgate the idea of BSMEFT our study must encompass several varieties of
models, which is precisely the purpose of this work. We have organized the paper as fol-
lows. First, we have meticulously described a general procedure to construct invariant
operators in section 2. We have highlighted the various subtleties associated with it by
giving suitable example operators. In this work, we have carefully selected the BSM scenar-
ios to capture the possible impact of the effective operators on the electroweak and strong
sectors. Thus we have worked with models where SM is extended by additional color sin-
glet complex scalars and fermions that transform as different SU(2)L representations and
also phenomenologically motivated Lepto-Quark scenarios. We have further adopted an
abelian extension of the gauge sector of the SM, motivated by a gauge-boson dark matter
scenario. In section 3 we have enlisted the complete and independent sets of operators of
mass dimensions 5 and 6 for all these models. We have arranged the operators on the basis
of their constituents and we have specifically highlighted the operators that violate baryon
and lepton numbers. This will help to analyze and pin down which of the rare processes are
more likely to occur for a given BSM scenario. We have showcased the flavour structures
of each class of operators for each such model.

2 Roadmap of invariant operator construction

In calculating the invariant operators, underlying symmetries play a crucial role. The
quantum fields transform under these symmetries according to their assigned charges. The
goal is to find all invariants under these symmetries, i.e., singlet configurations containing
any number of those quantum fields. The Lagrangian consists of all such configurations.
We classify the symmetries as follows: (i) space-time and (ii) gauge symmetries. In addition
to that we can have certain kinds of imposed and (or) accidental global symmetries. The
requirement of their violation or conservation driven by phenomenological needs determines
the presence or absence of rare operators. In principle, the Lagrangian (L) can contain
an infinite number of such singlet terms. But not all of them are phenomenologically
important. Thus it is preferred to write down L as a polynomial of the invariant operators
and the mass dimension is chosen to be the order of that polynomial. This allows one
to keep the terms up to a mass dimension based on the experimental precision possibly
achieved in the ongoing and (or) future experiments. In the following subsections we will
demonstrate the role of individual symmetries and the issues related to the dynamical
nature of these fields, e.g., equation of motions and integration by parts.

2.1 Tackling space-time symmetry: Lorentz invariance

The quantum fields under consideration have different spins, which are determined by their
transformation properties under the (3+1)-dimensional space-time symmetry, dictated here
by the Lorentz group SO(3, 1). In this work, our primary focus is on the scalar, vector and
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spinorial representations of the Lorentz group. The scalars, spin-0 fields, transform trivially,
i.e. they are singlets under the Lorentz group. While the vectors, i.e. spin-1 and spinors,
i.e. spin-1/2 are non-singlet representations under SO(3, 1). We must recall, here, that our
prescription for computing the invariant operators deals with finite-dimensional unitary
representations. The Lorentz group being non-compact does not have finite-dimensional
unitary representations. Hence, we will realize the representations of SO(3, 1) in terms of
unitary finite-dimensional representations of its compact form SU(2)L × SU(2)R, and we
will work within the Weyl basis where the gamma matrices take the following forms:

γµ =

 0 σµ
αβ̇

σµα̇β 0

 , γ5 =
(
−I 0
0 I

)
. (2.1)

Here, σµ = (I, σi), σµ = (I,−σi), with σi being the Pauli spin-matrices and I is a 2×2
identity matrix. In this basis, the non-zero spin fields possess definite chirality. In the case
of fermions, we will work with Weyl spinors ΨL and ΨR instead of the Dirac spinors Ψ and
Ψ which are defined as [71]:

Ψ =

χα
ξ†α̇

 , Ψ = Ψ†γ0 =
(
ξα χ†α̇

)
. (2.2)

We can define the two component Weyl spinors ΨL and ΨR as four component ones in the
following manner:1

ΨL =
(
χα

0

)
, ΨL = Ψ†Lγ

0 =
(

0 χ†α̇
)
, ΨR =

 0
ξ†α̇

 , ΨR = Ψ†Rγ
0 =

(
ξα 0

)
. (2.3)

Following a similar principle, the field strength tensor Xµν and its dual X̃µν = 1
2εµνρσX

ρσ,
transforming under SO(3, 1), must be written in terms of representations of SU(2)L ×
SU(2)R, i.e., XL,µν and XR,µν as:

XL,µν = 1
2
(
Xµν − iX̃µν

)
, (XL)αβ = σµ

αβ̇
σνβ̇κ εκβ XL,µν ,

XR,µν = 1
2
(
Xµν + iX̃µν

)
, (XR)α̇β̇ = σµα̇κ σνκκ̇ ε

κ̇β̇ XR,µν . (2.4)

To proceed further, we have identified the quantum fields2 as the representations of
SU(2)L × SU(2)R and demarcated them by their respective spin values (jL, jR) as:

Φ ≡ (0, 0) , ΨL ≡
(1

2 , 0
)
, ΨR ≡

(
0, 1

2

)
, D ≡

(1
2 ,

1
2

)
, XL ≡ (1, 0) , XR ≡ (0, 1) . (2.5)

Here, Φ refers to a scalar, and ΨL,R, XL,R are defined in eqs. (2.3) and (2.4) respectively.

1ΨL,R are obtained from Ψ using the projection operators 1∓γ5

2 , i.e., ΨL = 1−γ5

2 Ψ, and ΨR = 1+γ5

2 Ψ.
2In our analysis, we have put the covariant derivative (D) on an equal footing as the quantum fields.
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As mentioned earlier, our primary aim is to construct a set of Lorentz invariant oper-
ators (O) using these fields and that can be mathematically framed as follows:

O ≡ Φp ×Ψq1
L ×Ψq2

R ×D
r ×Xs1

L ×X
s2
R , (2.6)

=⇒ (0, 0) ≡ (0, 0)p ×
(1

2 , 0
)q1

×
(

0, 1
2

)q2

×
(1

2 ,
1
2

)r
× (1, 0)s1 × (0, 1)s2 . (2.7)

Here p, q1, q2, r, s1, s2 are the number of times the different fields appear in the operator.
All these are non-negative integers. The equivalent relation in terms of mass dimension
can be written as:

[M ]d ≡ [M ]p × [M ]3q1/2 × [M ]3q2/2 × [M ]r × [M ]2s1 × [M ]2s2 , (2.8)

and equating mass dimensions on both sides we find

d = p+ 3
2(q1 + q2) + r + 2(s1 + s2). (2.9)

Here, d is the mass dimension of the Lorentz invariant operator and that for fermionic
and bosonic fields, and field strength tensors are 3/2, 1, and 2 respectively.3 Similarly, the
relation derived from eq. (2.7) can be expressed in terms of the spin (j) as:

0 ≡ [0]p ⊕ [1/2]q1 ⊕ [0]q2 ⊕ [1/2]r ⊕ [1]s1 ⊕ [0]s2 ,

0 ≡ [0]p ⊕ [0]q1 ⊕ [1/2]q2 ⊕ [1/2]r ⊕ [0]s1 ⊕ [1]s2 , (2.10)

or equivalently in terms of SU(2) representations (2j + 1) as:

1 ≡ [1]p ⊗ [2]q1 ⊗ [1]q2 ⊗ [2]r ⊗ [3]s1 ⊗ [1]s2 ,

1 ≡ [1]p ⊗ [1]q1 ⊗ [2]q2 ⊗ [2]r ⊗ [1]s1 ⊗ [3]s2 . (2.11)

Here, [1/2]q in eq. (2.10) and [2]q in eq. (2.11) imply ~12 + · · ·+ ~1
2︸ ︷︷ ︸

q

and 2⊗ · · · ⊗ 2︸ ︷︷ ︸
q

respec-

tively. Now simultaneously solving eqs. (2.9), (2.10), and (2.11) we can find Lorentz invari-
ant operators.4 The number of possible operator classes keeps on increasing as the mass
dimension increases. In table 1 we have listed all possible operator classes up to dimension
6 consisting of Φ, ΨL, ΨR, XL, XR, and D. But they are not written in covariant forms
which are necessary for further analysis. Below, we have explicitly shown how the Lorentz
indices must be assigned to the constituent fields to write down the invariant operator in
a covariant form:

• Total derivative terms: the Lorentz invariant total derivative operators that appear
up to dimension 6 are of the following forms:

D2 → DµDµ, ΦD2 → Dµ(DµΦ), D4 → (DµDµ)2,

(D2XL +D2XR) → (DµDνXµν +DµDνX̃µν),
ΦD4 → DµDνDν(DµΦ), Φ2D4 → DµDµ(DνΦ)(DνΦ). (2.12)

3The covariant derivative D has mass dimension 1.
4These are also the operator classes at a given mass dimension.
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dim — (d) p q1 q2 r s1 s2 Class dim — (d) p q1 q2 r s1 s2 Class

1 1 0 0 0 0 0 Φ

3

3 0 0 0 0 0 Φ3

2
2 0 0 0 0 0 Φ2 0 2 0 0 0 0 Ψ2

L

0 0 0 2 0 0 D2 0 0 2 0 0 0 Ψ2
R

1 0 0 2 0 0 ΦD2

4

4 0 0 0 0 0 Φ4

4

0 0 0 4 0 0 D4

1 2 0 0 0 0 Ψ2
L Φ 1 0 2 0 0 0 Ψ2

R Φ

0 1 1 1 0 0 ΨL ΨRD 2 0 0 2 0 0 Φ2D2

0 0 0 0 2 0 X2
L 0 0 0 0 0 2 X2

R

0 0 0 2 1 0 D2XL 0 0 0 2 0 1 D2XR

5

2 2 0 0 0 0 Ψ2
L Φ2

5

2 0 2 0 0 0 Ψ2
R Φ2

5 0 0 0 0 0 Φ5 1 1 1 1 0 0 ΨL ΨR ΦD
0 2 0 2 0 0 Ψ2

LD2 0 0 2 2 0 0 Ψ2
RD2

1 0 0 0 2 0 ΦX2
L 1 0 0 0 0 2 ΦX2

R

0 2 0 0 1 0 Ψ2
LXL 0 0 2 0 0 1 Ψ2

RXR

1 0 0 4 0 0 ΦD4 3 0 0 2 0 0 Φ3D2

1 0 0 2 1 0 ΦXLD2 1 0 0 2 0 1 ΦXRD2

6

6 0 0 0 0 0 Φ6

6

4 0 0 2 0 0 Φ4D2

2 0 0 0 2 0 Φ2X2
L 2 0 0 0 0 2 Φ2X2

R

1 2 0 0 1 0 Ψ2
L ΦXL 1 0 2 0 0 1 Ψ2

R ΦXR

0 0 0 0 3 0 X3
L 0 0 0 0 0 3 X3

R

3 2 0 0 0 0 Ψ2
L Φ3 3 0 2 0 0 0 Ψ2

R Φ3

0 4 0 0 0 0 Ψ4
L 0 0 4 0 0 0 Ψ4

R

0 2 2 0 0 0 Ψ2
L Ψ2

R 2 1 1 1 0 0 ΨL ΨR Φ2D

0 0 0 2 2 0 D2X2
L 0 0 0 2 0 2 D2X2

R

2 0 0 2 1 0 Φ2XLD2 2 0 0 2 0 1 Φ2XRD2

1 2 0 2 0 0 Ψ2
L ΦD2 1 0 2 2 0 0 Ψ2

R ΦD2

2 0 0 4 0 0 Φ2D4 0 0 0 2 1 1 D2XLXR

0 1 1 1 1 0 ΨL ΨRXLD 0 1 1 1 0 1 ΨL ΨRXRD

Table 1. Lorentz Invariant Operator classes (in Weyl representation) upto mass dimension 6. For
the case of dimensions 5 and 6, only the operator classes above the dashed line appear in SMEFT.
The terms in red are total derivative terms and are therefore excluded from the Lagrangian. These
operator classes are not all independent.

But being total derivatives, they do not leave any impact. Thus they are suitably
removed from the Lagrangian density.
• Operators containing only scalar fields: spin-0 field (Φ) is a Lorentz scalar. Therefore
the operators

Φ, Φ2, Φ3, Φ4, Φ5, Φ6, · · · (2.13)

which consist of Φ only are Lorentz invariant.
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• Operators containing fermion bi-linears: in the Weyl basis, there exist three different
fermion bi-linears: Ψ2

L, Ψ2
R, ΨLΨR. The first two terms can form Lorentz invariant

operators of mass dimension three. The last one appears only as a constituent of
higher dimensional operators, since it transforms as the

(
1
2 ,

1
2

)
representation of

SU(2)L × SU(2)R. These fermion bi-linears can be written in multiple covariant
forms:

Ψ2
L,R → ΨT

L,R C ΨL,R, ΨR,L ΨL,R, ΨT
L,R C σ

µν ΨL,R, ΨR,L σ
µν ΨL,R,

ΨLΨR → ΨL γ
µ ΨL, ΨR γ

µ ΨR. (2.14)

Here, σµν = i
4 [γµ, γν ] and C is the charge conjugation operator. In the above equation

only underlined terms are Lorentz invariant. The remaining structures combine with
other Lorentz non-singlet terms to form higher dimensional operators. Some of those
invariant structures have been listed below:

ΨL γ
µ ΨL × Dµ ≡ ΨLΨRD, ΨL γ

µ ΨL × ΦDµ Φ ≡ ΨLΨR Φ2D,
ΨL γ

µ ΨL × ΨR γ
µ ΨR ≡ Ψ2

LΨ2
R, ΨR σ

µν ΨL × Xµν ≡ Ψ2
LXL,

ΨR ΨL × Φ ≡ Ψ2
LΦ, ΨR ΨL × ΨR ΨL ≡ Ψ4

L. (2.15)

• Operators containing Field strength tensors: as XL, XR transform as (1, 0), (0, 1)
respectively under SU(2)L × SU(2)R, they form the following Lorentz scalars: X2

L,
X2
R, X

3
L, X

3
R up to dimension 6. They can be expressed in terms of Xµν , X̃µν ∈

SO(3, 1) as:

X2
L + X2

R → XµνX
µν + X̃µνX

µν ,

X3
L + X3

R → Xµ
νX

ν
κX

κ
µ + X̃µ

νX
ν
κX

κ
µ. (2.16)

The tri-linear terms being overall traces of the combination of three antisymmet-
ric tensors vanish. This method can be adopted to construct higher dimensional
operators, e.g., at dimension 8 we will have:

X4
L+X2

LX
2
R+X4

R → (XµνX
µν) (XκλX

κλ)+(X̃µνX
µν) (XκλX

κλ)+(X̃µνX
µν) (X̃κλX

κλ).

The field strength tensor XL/R may combine with other Lorentz non-singlet objects
to form an invariant operator class, e.g.,

D2X2
L,R ≡ (DµXµν)2, XL,RΦ2D2 ≡ (DµXµν)(ΦDνΦ), D2XLXR ≡ (DνDµXµκX̃ν

κ).

2.2 Role of gauge symmetry

So far we have discussed the possible structures of the operators which are constituted
of quantum fields with spin 0, 1/2, 1 only and taking only the space-time symmetry into
account. In a realistic particle physics model, there are additional local and (or) global
internal symmetries. As a result of this, there could be particles of different internal
quantum numbers but possessing the same spin. Such fields will be equivalent to each other
with respect to the Lorentz symmetry. But based on their internal charges, these fields
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will combine in a variety of ways leading to different sub-categories of operators within the
same class. Thus, while Lorentz invariance provides us a list of possible operator classes,
it is the internal symmetry which ultimately decides which combinations are permitted
and which ones are not. This can be elucidated through the most popular example: the
Standard Model gauge symmetry. Looking into its particle content and their quantum
numbers in table 29, it is evident that many of the operator classes in table 1 do not
respect the SM gauge symmetry. Thus they are excluded from the operator basis. Here,
we have systematically explained the impact of internal gauge symmetries:

• Φn operator class with integer n: the SM Higgs transforms under SU(3)C ⊗SU(2)L⊗
U(1)Y as (1, 2, 1/2). Thus, the operators containing an odd number of H fields violate
both SU(2) and U(1) symmetries. If n is an even integer then all the operators of the
forms Hn, (H†)n, and H

n
2 (H†)

n
2 are SU(2) invariant. But only the (H†H) and its

powers are SM singlets. In BSM scenarios that contain multiple scalars, we may end
up with more intricate structures. For example, if we add an SU(2) triplet scalar ∆
with hypercharge of +1, there will be an invariant operator HT ∆†H ∈ Φ3-class.

• Operators involving field strength tensors: lorentz invariance allows us to construct
terms containing an even number of field strength tensors. But the internal symmetry
prevents their mixing, e.g., in SM there are no cross-terms between Bµν ,W I

µν andGAµν .
But this need not be true for certain BSM scenarios. For example, if there are multi-
ple abelian symmetries, then we can expect some mixing in the gauge kinetic sector.
Looking into the Lorentz symmetry only, the term involving tri-linear field strengths
vanishes due to its anti-symmetric structure. But internal non-abelian gauge sym-
metries allow such terms at the dimension 6 level. Within the SM, Bµ

νB
ν
κB

κ
µ is

absent but fABC GAµν GBνκ GCκµ and εIJKW Iµ
ν W Jν

κ WKκ
µ possess non-vanishing con-

tributions. Here, the anti-symmetric tensors fABC and εIJK are SU(3) and SU(2)
structure constants respectively.

• Operators containing of bi-linear fermion fields: Lorentz invariance allows fermion
mass terms of the forms Ψ2

L (Majorana) and ΨL ΨR (Dirac). But in the SM, left
and right chiral fermions are on a different footing. Hence, these terms are for-
bidden by the internal symmetries. Further, the quantum numbers of the fields
allow the couplings of fermion bi-linears with the Higgs scalar in the form of the
Yukawa interactions — LeH, QdH and Qu iτ2H

∗. In addition, the SU(3) symme-
try prevents the appearance of terms like Lu, Ld and Qe.5 Also, the operator class
(ΨL σµν ΨR) ΦXµν appears at mass dimension 6. The choice of Xµν and Ψ’s is fixed
by the internal symmetries. There are fermion bi-linears which are not Lorentz scalar
but may appear in higher mass dimensional operator class (Ψ γµ Ψ) (Ψ′ γµ Ψ′).6

2.3 Removal of redundancies and forming operator basis

So far we have learnt how to compute the invariant operators of any mass dimension
based on the space-time and internal symmetries. But we must keep in mind the fact

5These terms appear as constituents of certain dimension 9 operators.
6The fermion fields Ψ and Ψ′ need not be same always.
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that these operators need to satisfy another criteria to be phenomenologically relevant.
The operators at each mass dimension must form a basis, i.e., they must be mutually
independent. Thus it is necessary to remove all the redundancies, if any, to compute
the operator basis. In this construction, we have noted three different ways in which
the operators can be interrelated: (i) integration by parts (IBP), (ii) equation of motion
(EOM), and (iii) identities of symmetry generators. Here, we have discussed these sources
of redundancies briefly with examples based on SMEFT and beyond.

Integration by parts (IBP): in our prescription, the covariant derivative (Dµ) par-
ticipates in the operator construction in a similar way as the quantum fields. Due to the
distributive property of Dµ and incorporating integration by parts (IBPs), two or more
invariant operators may be related to each other by a total derivative. As we know such a
term in the Lagrangian has no role to play, thus it can be removed. Therefore the multiple
operators can not be treated independently and only one of them should be included in the
operator basis. This duplication due to IBP occurs among different operators belonging to
the same operator class. For example, at mass dimension 6, the operator ΨLΨR Φ2D can
be recast in the following form:

iDµ (ΨL,R γ
µ ΨL,R Φ†Φ) = ΨL,R γ

µiDµ ΨL,R Φ†Φ−ΨL,R γ
µi
←−
Dµ ΨL,R Φ†Φ

+ΨL,R γ
µ ΨL,R Φ†iDµΦ−ΨL,R γ

µ ΨL,R Φ†i←−DµΦ
= (ΨL,R γ

µi
←→
D µ ΨL,R) Φ†Φ + ΨL,R γ

µ ΨL,R (Φ†i←→D µ Φ).
(2.17)

Here, i←→D µ ≡ iDµ − i
←−
Dµ has been introduced to combine the first two and the last two

operators to form (ΨL,R γ
µi
←→
D µ ΨL,R) Φ†Φ and ΨL,R γ

µ ΨL,R (Φ†i←→D µ Φ) which are self-
hermitian. It is evident from eq. (2.17), that these operators are related to each other by
a total derivative term Dµ (ΨL,R γ

µ ΨL,R Φ†Φ). So, in the operator basis we will include
only one of them. Here, our choice of the independent operator will be the one where the
derivative acts on the scalar field. This is because the latter structure where the derivative
acts on the fermions is related to other operators through equations of motion. We will
justify this choice in the following section.

Equation of motion (EOM): the quantum fields representing the particles are dynam-
ical in nature and each of them satisfies their respective equation of motion. It has been
noted that two or more operators may be related to each other through the EOMs of the
involved fields along with the IBPs [30, 34]. Unlike the previous case, the EOMs can relate
operators belonging to different classes. We have explained how EOM leads to redundancy
using a few examples:

• ΨLΨR Φ2D : in the Weyl basis we can have two possible covariant structures for this
operator: (ΨL,R γ

µi
←→
D µ ΨL,R) Φ†Φ and ΨL,R γ

µ ΨL,R (Φ†i←→D µ Φ). We have already
noted that these two operators differ from each other by a total derivative. There
we have further mentioned that we have selected the operator where the derivative
is acting on the scalars. The reason behind that choice is that after incorporating
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the EOMs of Ψ or its conjugate Ψ, this operator reduces to an operator belonging to
Ψ2
L,RΦ3 class:

(ΨL,R γ
µi
←→
D µ ΨL,R) Φ†Φ ∝ ΨL,R ΨR,L Φ (Φ†Φ) ≡ Ψ2

L,R Φ3. (2.18)

• Ψ2
L,R ΦD2 : the unique covariant form of this operator is (ΨL ΨR)D2 Φ. After im-

plementing the EOM of the scalar field: D2 Φ = c1 Φ + c2 Φ (Φ†Φ) + c3 ΨR ΨL, this
operator can be reduced in the following form:

(ΨLΨR)D2 Φ = c1 (ΨLΨR Φ)︸ ︷︷ ︸
dim-4 term

+c2 (ΨLΨR Φ) (Φ†Φ) + c3 (ΨLΨR) (ΨRΨL), (2.19)

with c1, c2 and c3 being complex numbers. Thus, the operator class Ψ2
L,R ΦD2 can

be expressed as a linear combination of two other dimension 6 classes Ψ2
L,RΦ3 and

Ψ2
LΨ2

R, and therefore is excluded from the set of independent operators.

• D2X2
L,R, D2XLXR : the possible covariant form of the operators are (i) (DµXµν)2,

(ii) (DµXµν)(DµX̃µν), and (iii) (DµX̃µν)2. It is interesting to note that after imple-
menting the EOM of field strength tensors:

DµX̃µν = 0, DµXµν = ΨL,Rγ
ν ΨL,R + Φ†i←→D νΦ, (2.20)

the last two structures (ii) and (iii) identically vanish. The very first operator can be
rewritten either as:

(DµXµν)2 = a1(ΨL,R γν ΨL,R)(DµXµν) + a2(Φ†i←→D νΦ)(DµXµν), (2.21)

or as:

(DµXµν)2 = b1 (ΨL,R γ
ν ΨL,R)2 + b2 (Φ†i←→D νΦ)2 + b3(Φ†i←→D νΦ)(ΨL,R γ

ν ΨL,R).
(2.22)

Here, ai, bi are complex numbers. Thus we can generate operators belonging to
Φ4D2, Ψ4, Φ2Ψ2D starting from D2X2 class of operators and thus it is redundant
and can not be a part of the operator basis.

Alternatively, using the notion of integration by parts (IBP) we have the following
relation:

(DµXµν)2, (DµXµν)(Dµ X̃µν) IBP==⇒ [Dµ, Dν ]X [µκXν]
κ , [Dµ, Dν ]X [µκ X̃ν]

κ

≡ XµνX
µκXν

κ , XµνX
µκX̃ν

κ . (2.23)

Here, [Dµ, Dν ] is suitably replaced byXµν and we have obtainedX3 class of operators.
So, we conclude that with the help of EOMs and IBPs, the operators belonging to
D2X2

L,R and D2XLXR classes can always be recast into operators of other classes.
Thus these two are excluded from the operator basis.
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• Φ2XL,RD2 : the covariant form of this operator (Φ†i←→D ν Φ)DµXµν can be rewritten
using eq. (2.20) as:

(Φ†i←→D ν Φ)DµXµν = a′ (ΨL,R γν ΨL,R)(Φ† i←→D ν Φ) + b′ (Φ† i←→D ν Φ)(Φ† i←→D ν Φ),
(2.24)

where a′, b′ are complex numbers. Similar to the previous case, Φ2X D2 can be
rewritten in terms of operator classes ΨLΨR Φ2D and Φ4D2. This justifies the absence
of Φ2XL,RD2 class from the independent operator set.

• ΨL ΨRXL,RD : we find two different covariant forms Xµν (ΨL,R γµDν ΨL,R) and
(DµXµν)(ΨL,R γν ΨL,R). These operators can be further reduced with the help of
suitable EOMs as:

Xµν (ΨL,R γµDν ΨL,R) = Xµν (ΨL,R γµ γν /DΨL,R) = Xµν (ΨL,R γ[µ γν] /DΨL,R)
= Xµν (ΨL,R σµν ΨR,L) Φ ≡ Ψ2 ΦX, (2.25)

(DµXµν)(ΨL,R γν ΨL,R) = c′1 (Ψ γν Ψ) (ΨL,R γν ΨL,R)+c′2 (Φ† i←→D ν Φ) (ΨL,R γν ΨL,R)
≡ Ψ4

L,R /Ψ2
L Ψ2

R+ΨL ΨR Φ2D. (2.26)

Thus it is quite evident why this class is also counted as redundant.

In summary, the symmetries of the theory play a crucial role in constructing the
invariant operator set. But it is not guaranteed that all of them are independent and thus
the set of operators is always over-complete. To be a part of the Lagrangian the operators of
any mass dimension must form a basis, i.e., the operators should be independent. To ensure
that we have shown through some toy examples how the EOMs and IBPs relate different
operators and thus can be used as constraints in this computation. In the latter part of
this paper, we have computed the dimension 6 operator basis for a plethora of models. As
the “Warsaw” is the only known complete operator basis, we have tabulated our results in
this basis only. There is another popular choice — the SILH (Strongly Interacting Light
Higgs) basis which trades away the fermion rich operator classes Ψ4, Ψ2ΦX, Ψ2Φ2D from
the Warsaw one and includes D2X2, Φ2XD2, see figure 1.

Symmetry generators and their identities: the quantum fields that are the building
blocks of the operators transform under the assigned space-time and internal symmetries.
The symmetry generators (specifically for the non-abelian case) respect the pre-fixed al-
gebras and satisfy a few identities. For example, the Lorentz symmetry generators σµ, σµ

together form the σµν , σµν matrices, defined in eq. (2.27):

(σµν)βα = (σµ)αβ̇(σν)β̇β , (σµν)β̇α̇ = (σµ)β̇β(σν)βα̇ . (2.27)

They also satisfy the following identities [71]:

(σµ)αα̇(σµ)ββ̇ = 2εαβεα̇β̇ , (2.28)

(σµ)αα̇(σµ)β̇β = 2δβαδ
β̇
α̇ , (2.29)

(σµ)α̇α(σµ)β̇β = 2εαβεα̇β̇ , (2.30)
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S ILH WARSAW

All possible dimension 6 
operators

(3)

(1)

(2)

(4)

(5)

(6)

Figure 1. All possible Lorentz invariant dimension 6 operator classes shown as part of the Warsaw
and SILH bases for SMEFT. The arrows depict relations among the classes based on the equations
of motion (EOMs) of various fields.

[σµσν + σνσµ]βα = 2gµνδβα . (2.31)

The internal symmetry generators respect their algebra as well as some related identities.
For example, the SU(2) and SU(3) generators, Pauli matrices τ I(I = 1, 2, 3) and the Gell-
Mann matrices TA(A = 1, 2, · · · , 8) respectively satisfy the following identities:

τ Iijτ
I
kl = 2δilδjk − δijδkl , (2.32)

TAij T
A
kl = 1

2δilδjk −
1
6δijδkl . (2.33)
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While constructing the covariant form of the operators we may encounter two different
structures with the same field content. But they need not be two independent operators
and may be related to each other through these identities eqs. (2.28)–(2.33). Here, we
have demonstrated how the utilisation of these identities could help us to relate different
covariant-structured dimension 6 operators with a few examples.7

• Ψ4 : we have considered two dimension 6 operators (d γµ TA d)(Qγµ TAQ) and
(d γµ d)(QγµQ) from this class. Using the identities in eqs. (2.28)–(2.32), these
operators can be expressed as:

(dγµTAd)(QTAγµQ) = (dασµαα̇TAdα̇)(Qβ̇T
Aσµβ̇βQβ) = 2dαTAQβQβ̇T

Adα̇δβαδ
β̇
α̇

= 2(d TAQ) (QTA d) = 2(da [TA]ab Qb)(Qc [TA]ce de)

= (d d) (QQ)− 1
3(dQ)(Qd) . (2.34)

(dγµd)(QγµQ) = (dασµαα̇dα̇)(Qβ̇σ
µβ̇βQβ) = 2dαQβQβ̇d

α̇δβαδ
β̇
α̇

= 2(dQ)(Qd). (2.35)

It is quite evident from eqs. (2.34) and (2.35), that with the fields d, d̄, Q, and Q̄

we can only have two independent operators that should be included in SMEFT
dimension 6 operator basis. Similarly, with fields e, L̄, u, and Q̄ we have following
relation

(L̄σµνe)(Q̄σµνu) = ((L̄)α(σµν)βα(e)β)((Q̄)ρ(σµν)θρ(u)θ)

= ((L̄)α(σµ)αβ̇(σν)β̇β(e)β)((L̄)ρ(σµ)ρθ̇(σ
ν)θ̇θ(u)θ)

= 4(L̄e)(Q̄u)− 8(L̄u)(Q̄e) . (2.36)

Thus, only (L̄σµνe)(Q̄σµνu) and (L̄ e)(Q̄ u) are included in the operator set.

• Φ6 : here, we are looking into the quartic subpart of the dimension 6 operator
(H†H)3. It is interesting to note using eq. (2.32) that inclusion of SU(2) genera-
tors does not lead to an independent operator in the SMEFT basis [34]:

(H†τ IH)(H†τ IH) = (H†i τ
I
ijHj)(H†kτ

I
klHl) = H†iHjH

†
kHl(2δilδjk − δijδkl)

= 2(H†H)2 − (H†H)2 = (H†H)2 . (2.37)

• Φ4D2 : to illustrate the redundancy in this class of operators, we have considered an
operator involving a scalar Lepto-Quark (χ1) transforming as (3, 2, 1/6) under the
SM gauge group.

(H†i←→D I
µH)(χ†1i

←→
D µIχ1) = (H†(τ I iDµ−i

←−
Dµτ I)H)(χ†1(τ I iDµ−i←−Dµτ I)χ1)

= (H†i τ
I
ij(iDµH)j−(iDµH)†kτ

I
klHl)(χ†1aτ

I
ab(iDµχ1)b−(iDµχ1)†cτ Icdχ1d)

= −(H†i←→D µH)(χ1
†i
←→
D µχ1)+2 (H†b i

←→
D µH

a)(χ†1ai
←→
D µχb1). (2.38)

7Here, we work with four component Weyl-spinors.
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As three operators are related through the above relation, only two of these can be
independent and we may include (H†i←→D I

µH)(χ†1i
←→
D µIχ1) and (H†i←→D µH)(χ†1i

←→
D µχ1)

in the operator basis for this scenario.

• Ψ2Φ2D : in this class we can have following three operators involving the Lepto-
Quark χ1:

(Qτ IγµQ) (χ†1i
←→
D I
µχ1) = (Qτ IγµQ)[χ†1τ

I(iDµχ1)+(iDµχ1)†τ Iχ1]

= 2(Qγµ(iDµχ1))(Qχ†1)−(QγµQ)(χ†1(iDµχ1))

+2(Qγµχ1)(Q(iDµχ1)†)−(QγµQ)((iDµχ1)†χ1), (2.39)

(QTAγµQ) (χ†1i
←→
D A
µχ1) = (QTAγµQ)[χ†1T

A(iDµχ1)+(iDµχ1)†TAχ1]

= 1
2(Qγµ(iDµχ1))(Qχ†1)−1

6(QγµQ)(χ†1(iDµχ1))

+1
2(Qγµχ1)(Q(iDµχ1)†)−1

6(QγµQ)((iDµχ1)†χ1), (2.40)

(QTA τ I γµQ) (χ†1 T
A i
←→
D I
µ χ1) = (QTAτ IγµQ)[χ†1T

Aτ I(iDµχ1)+(iDµχ1)†TAτ Iχ1]

= 1
2 [(Qτ Iγµ(iDµχ1))(Qτ Iχ†1)]−1

6 [(Qτ IγµQ)(χ†1τ
I(iDµχ1))]

+1
2 [(Qτ Iγµχ1)(Qτ I(iDµχ1)†)]−1

6 [(Qτ IγµQ)((iDµχ1)†τ Iχ1)]

= [(Qγµχ†1)((iDµχ1)Q)−1
2((Qγµ(iDµχ1))(Qχ†1))]

−1
6 [(Qγµ(iDµχ1))(Qχ†1)−(QγµQ)(χ†1(iDµχ1))]

+[(Qγµ(iDµχ1)†)(χ1Q)−1
2(Qγµχ1)(Q(iDµχ1)†)]

−1
6 [(Qγµχ1)(Q(iDµχ1)†)−(QγµQ)((iDµχ1)†χ1)]. (2.41)

Thus, it is evident that the three operators in the l.h.s. of the above equation along
with (QγµQ) (χ†1i

←→
D µχ1), comprise a set of four independent operators and qualify

to be in the operator basis.

2.4 Additional impacts of the global (accidental) symmetries

The effect of global symmetries is very similar to the gauge ones in the construction of
invariant operators. But, unlike the gauge symmetry, the global symmetry need not be
strictly imposed and it may be allowed to be broken softly in specific interactions as de-
manded by the phenomenology. This leads to the appearance of global charge violating
effective operators that induce rare processes.

Baryon (B) and lepton (L) numbers appear as accidental global symmetries in the tree-
level SM Lagrangian, see eq. (A.1). But they may be violated through higher dimensional
operators. If we assign the leptons an L charge of −1 unit and the quarks a B charge of 1/3
units respectively, then we can generate a Majorana neutrino mass for the SM neutrinos
through dimension 5 H2L2 operator. As this operator is suppressed by a high scale, the
smallness of neutrino masses can be explained. Similarly within the SMEFT framework,
we find operators violating B and L by (0,−2), (1,−1), (1, 1) units at mass dimensions 5,
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6 and 7. Recently it has been noted [72] that a similar violation by (1,−3) units appears at
dimension 9 and this can induce a new decay mode of the proton to three charged leptons.

In the case of BSM scenarios, there could be additional global symmetries and the
amount of their breaking would be completely phenomenologically driven. This controls
the appearance of certain kinds of operators at different mass dimensions.

3 BSMEFT operator bases

The spectrum of the UV complete theory that is expected to explain all shortcomings of the
SM is non-degenerate. This implies the existence of a multitude of scales associated with
BSM fields of different masses. Thus even if all the non-SM particles are integrated out, all
the higher dimensional operators will not be suppressed by a single cut-off scale (Λ). The
natural scenario would be the presence of a tower of effective operators involving different
Λ’s lying between the electroweak and the unknown UV scales. Unless the BSM spectrum
is really compressed, the lightest non-SM particle is expected to be within the reach of the
ongoing experiments (≤ O(TeV)) where the rest of the new particles are heavy enough to
be successfully integrated out. In this framework, that lightest non-SM particle should be
treated as an IR-DOF along with the SM ones and we must compute the effective operators
involving them to capture the effects of the full UV theory. This has been the motivation
of our BSMEFT construction.8 The most generic choices for non-SM IR-DOFs are real and
complex scalar and fermion multiplets, vector like fermions, and Lepto-Quark bosons under
the SM gauge symmetry. There may be additional gauge bosons as well. The choice of these
fields is motivated from the fact that most of the phenomenologically interesting scenarios
contain these DOFs in their (non)minimal versions. We have schematically demonstrated
the idea using some example scenarios in figure 2 where it is quite evident that there could
be multiple parent UV theories which may lead to the same set of lighter particles. Thus
one BSMEFT operator basis qualifies to encapsulate the features of all such UV theories
treating them degenerate. To discriminate between them, we need to identify the subset
of that BSMEFT operator basis corresponding to each of the UV theories. This is beyond
the goal of this paper and will be discussed in our upcoming article.

Based on the previous discussion, we have considered three different extensions of
the SM and for each such scenario we have included multiple examples to encompass
the most popular choices. For each example model, we have constructed the complete
and independent BSMEFT operator bases up to mass dimension 6. We have verified the
number of independent operators using the Mathematica based package GrIP [40]. Here,
we have tabulated only the additional effective operators beyond SMEFT. For the sake
of completeness the SMEFT dimension 6 operators are noted in the appendix. We have
expressed the fermions as four component Weyl-spinors. Here, we have suppressed the
chirality indices (L,R) in the covariant forms of the operators for most of the scenarios,
except the vector-like fermions, to keep their form compact.

8The physics around the electroweak scale can still be described by the SMEFT if the new resonance is
observed far away from the electroweak scale and can be successfully integrated out.
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Figure 2. An elucidation of the inter-connectedness of several BSM scenarios: paving the path to
BSMEFT.

3.1 Standard Model extended by uncolored particles

To start with, we have considered the scenarios where the SM is extended by suitable
addition of extra uncolored particle(s), e.g., SU(2)L complex singlets and higher multiplets
with fermionic and bosonic degrees of freedom. These particles can be part of an SU(2)L
multiplet as well. The electromagnetic charges of the singlet fields are solely determined by
their assigned hypercharges.9 We have summarized the quantum numbers of the non-SM
fields in table 2.

SM + singly charged scalar (δ+): we have considered the extension of SM by an
SU(2)L singlet complex scalar field (δ+) of hypercharge 1, see table 2. After the spontaneous
electroweak symmetry breaking this field emerges as a singly charged physical scalar field.10

It is interesting to note that when the SM is embedded in an extended gauge symmetry,
e.g., Left Right Symmetric Model (LRSM), then the appearance of singly charged scalar(s)
is unavoidable once the additional symmetry is broken to the SM. There are attempts to
generate neutrino masses either radiatively or through higher dimensional operators where
the SM is extended by mutiple SU(2) singlet complex scalars, e.g., see refs. [73–76]. This
motivates us to construct an effective theory with this simplest non-trivial extension of
the SM. We have categorized the effective operators involving δ+ of dimensions 5 and 6 in
tables 3 and 4. The operators with distinct hermitian conjugates have been coloured blue.

9Our working formula is Q = T3 +Y where Q,T3, Y are electromagnetic charge, 3rd component of isospin
and hypercharge respectively.

10Although these particles are added to the unbroken SM gauge symmetry, but looking into this feature
we will identify this and other fields by their electromagnetic charges.
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Model No. Non-SM IR DOFs SU(3)C SU(2)L U(1)Y Spin
(Color Singlets)

1 δ+ 1 1 1 0
2 ρ++ 1 1 2 0
3 ∆ 1 3 1 0
4 Σ 1 3 0 1/2

5
VL,R 1 2 −1/2 1/2

EL,R 1 1 −1 1/2

NL,R 1 1 0 1/2

Table 2. Additional IR DOFs (Color Singlets) as representations of the SM gauge groups along
with their spin quantum numbers.

Ψ2Φ2

ÕQdHδ (N2
f ) εij (Qpαi dαq ) (H̃j δ) ÕuQHδ (N2

f ) (upαQαiq ) (H̃i δ)

ÕLeHδ (N2
f ) εij (Lpi eq) (H̃j δ) Õeδ 1

2(N2
f +Nf ) (eTp C eq) δ2

Table 3. SM extended by Singly Charged Scalar (δ): additional operators of dimension 5. δ, δ†
represent δ+ and δ− respectively. Here i, j and α are the SU(2) and SU(3) indices respectively.
p, q = 1, 2, · · · , Nf are the flavour indices. The operator in red violates lepton number.

Features of the additional operators:

• Here, we have noted two types of dimension 5 operators — i) B,L conserving ÕQdHδ,
ÕuQHδ, ÕLeHδ, and ii) L violating Õeδ which are highlighted in red colour in table 3.

• The additional dimension 6 operators of class Φ6 and Φ4D2 mimic their SM counter-
parts.

• Since, δ+ is an SU(2)L singlet there is no mixing between Bµν and W I
µν in the Φ2X2

class nor do we obtain higher tensor products in the Ψ2Φ2D class.

• The operators, highlighted in red colour in table 4, violate lepton number by two
units in the Ψ2Φ2D, Ψ2Φ3 and Ψ2ΦX classes.

SM + doubly charged scalar (ρ++): similar to the earlier case, when the SM is
emerged from LRSM gauge theory, the right handed complex triplet may lead to an addi-
tional scalar of hypercharge 2 which is further identified as a doubly charged scalar (ρ++),
see table 2. Also scenarios like in refs. [73–79] contain a single doubly charged scalar. Here,
our primary concern is to construct the effective operators involving the additional doubly
charged scalar and thus mimic the concept of refs. [48, 80]. We have provided the effective
operators involving ρ++ up to dimension 6 in table 5. Operators with distinct hermitian
conjugates have been coloured blue.
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Φ6 Φ4D2

Oδ (δ† δ)3 Oδ� (δ† δ)� (δ† δ)

OH2δ4 (H†H) (δ† δ)2 O(1)
HδD (δ† δ)

[
(DµH)†(DµH)

]
OH4δ2 (H†H)2 (δ† δ) O(2)

HδD (H†H)
[
(Dµ δ)†(Dµ δ)

]
Φ2X2 Ψ2Φ2D

OBδ Bµν B
µν (δ† δ) OQδD (N2

f )(Qpαi γµQαiq ) (δ† i←→D µ δ)

OB̃δ B̃µν B
µν (δ† δ) OLδD (N2

f )(Lpi γµ Liq) (δ† i←→D µ δ)

OGδ GAµν G
Aµν (δ† δ) OuδD (N2

f )(upα γµ uαq ) (δ† i←→D µ δ)

OG̃δ G̃Aµν G
Aµν (δ† δ) OdδD (N2

f )( dpα γµ dαq ) (δ† i←→D µ δ)

OWδ W I
µνW

Iµν (δ† δ) OeδD (N2
f )( ep γµ eq) (δ† i←→D µ δ)

OW̃ δ W̃ I
µνW

Iµν (δ† δ) OLeHδD (N2
f ) ((Lip)T γµ eq) (H̃†i iDµδ)

Ψ2Φ3

OLeHδ (N2
f ) (Lpi eq)H i (δ† δ) OLHδ (N2

f ) εij ((Lip)T C Lkq ) δ (H†kHj)

OQuHδ (N2
f ) εij (Qpαi uαq ) H̃j (δ† δ) OLδ 1

2(N2
f −Nf ) εij ((Lip)T C Ljq) δ (δ† δ)

OQdHδ (N2
f ) (Qpαi dαq )H i (δ† δ)

Ψ2ΦX

OBLδ 1
2(N2

f +Nf ) εij Bµν ((Lip)T C σµν Ljq) δ OWLδ
1
2(N2

f −Nf ) εijW I
µν ((Lip)T C σµν τ I Ljq) δ

Table 4. SM extended by Singly Charged Scalar (δ): additional operators of dimension 6. Boxed
operators vanish for single flavour. δ, δ† represent δ+ and δ− respectively. Here i, j and α are
the SU(2) and SU(3) indices respectively. τ I is SU(2) generator. A = 1, 2, · · · , 8 and I = 1, 2, 3.
p, q = 1, 2, · · · , Nf are the flavour indices. Operators in red violate lepton number.

Features of the additional operators:

• One of the differences between the operator sets containing δ+ and ρ++ is the absence
of dimension 5 operators in the latter case.

• Similar to the earlier case, at dimension 6 there is no mixing between Bµν and W I
µν

within the Φ2X2 class and there are no higher tensor products in the Ψ2Φ2D class,
on account of ρ++ being an SU(2)L singlet.

• We have found new operators that violate lepton number by two units in the Ψ2Φ2D,
Ψ2Φ3 and Ψ2ΦX classes. These operators have been highlighted in red colour in
table 5.

SM + complex triplet scalar (∆): here, we have explored other possible scenarios
where electroweak multiplets are assumed to be the lighter DOFs. First, we have con-
sidered a complex SU(2)L triplet scalar (∆) having hypercharge of +1, table 2. After the
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Φ6 Φ4D2

Oρ (ρ† ρ)3 Oρ� (ρ† ρ)� (ρ† ρ)

OH2ρ4 (H†H) (ρ† ρ)2 O(1)
HρD (ρ† ρ)

[
(DµH)†(DµH)

]
OH4ρ2 (H†H)2 (ρ† ρ) O(2)

HρD (H†H)
[
(Dµ ρ)†(Dµ ρ)

]
Φ2X2 Ψ2Φ2D

OBρ Bµν B
µν (ρ† ρ) OQρD (N2

f ) (Qpαi γµQαiq ) (ρ† i←→D µ ρ)

OB̃ρ B̃µν B
µν (ρ† ρ) OLρD (N2

f ) (Lpi γµ Liq) (ρ† i←→D µ ρ)

OGρ GAµν G
Aµν (ρ† ρ) OuρD (N2

f ) (upα γµ uαq ) (ρ† i←→D µ ρ)

OG̃ρ G̃Aµν G
Aµν (ρ† ρ) OdρD (N2

f ) (dpα γµ dαq ) (ρ† i←→D µ ρ)

OWρ W I
µνW

Iµν (ρ† ρ) OeρD (N2
f ) (ep γµ eq) (ρ† i←→D µ ρ)

OW̃ρ W̃ I
µνW

Iµν (ρ† ρ) OLeHρD (N2
f ) ((Lip)T γµ eq) (H†i iDµρ)

Ψ2Φ3

OLeHρ (N2
f ) (Lpi eq)H i (ρ† ρ) OLHρ 1

2(N2
f +Nf ) ((Lip)T C Ljq) ρ (H̃i H̃j)

OQuHρ (N2
f ) εij (Qpαi uαq ) H̃j (ρ† ρ) Oeρ 1

2(N2
f +Nf ) (eTp C eq) ρ (ρ† ρ)

OQdHρ (N2
f ) (Qpαi dαq )H i (ρ† ρ) OeHρ 1

2(N2
f +Nf ) (eTp C eq) ρ (H†H)

Ψ2ΦX

OBeρ 1
2(N2

f −Nf )Bµν (eTp C σµν eq) ρ

Table 5. SM extended by Doubly Charged Scalar (ρ): additional operators of dimension 6. Boxed
operators vanish for single flavour. ρ, ρ† represent ρ++ and ρ−− respectively. Here i, j and α are
the SU(2) and SU(3) indices respectively. A = 1, 2, · · · , 8 and I = 1, 2, 3. p, q = 1, 2, · · · , Nf are the
flavour indices. Operators in red violate lepton number.

spontaneous breaking of electroweak symmetry its components can be assigned definite elec-
tromagnetic charges11 (∆++, ∆+, ∆0). The complex triplet is instrumental in mediating
lepton number and flavour violating processes [81–83], interesting collider signatures [80],
and also facilitates the generation of neutrino mass [73, 84–87]. These observables may
get affected by the interactions between the heavier particles and this complex triplet,
which can be captured through the effective operators involving ∆. A complex SU(2)L
triplet can descend from an LRSM once it is spontaneously broken to the SM, see figure 2.
There are many phenomenological models [88–93] where the SM is extended by a complex
triplet accompanied by multiple scalars and fermions. In that case if the other particles

11An SU(2) triplet has T3 values (+1, 0, −1). So, using Q = T3 + Y , we obtain the electromagnetic
charges (+2, +1, 0) since Y = 1.
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Ψ2Φ2 Φ5

ÕLeH∆ N2
f (Lpi eq ∆ H̃i) Õ(1)

H2∆3 (HT∆†H) Tr[(∆†∆)]

ÕQdH∆ N2
f (Qpαi dαq ∆ H̃i) Õ(2)

H2∆3 (HT∆†∆†∆H)

ÕQuH∆ N2
f (Qpαi uαq ∆† H̃i) ÕH4∆ (HT ∆†H) (H†H)

Õe∆ 1
2(N2

f +Nf ) (eTp C eq) Tr[ ∆ ∆]

Table 6. SM extended by Complex Triplet Scalar (∆): additional operators of dimension 5. Here
i and α are SU(2) and SU(3) indices respectively. p, q = 1, 2, · · · , Nf are the flavour indices. The
operator in red violates lepton number.

are sufficiently heavier than the ∆, then they can be integrated out leading to an effective
Lagrangian with IR DOFs as SM ones and the complex triplet.

Here, We have listed the complete set of effective operators involving ∆, see tables 6
and 7 for dimension 5 and 6 respectively. The operators with distinct hermitian conjugates
have been coloured blue. While writing the operators, ∆ has been expressed as a 2 × 2
matrix ∆I · τ I with I = 1, 2, 3 and τ I being the Pauli matrices.

Features of the additional operators:

• Contrary to δ+ and ρ++, ∆ transforms as an SU(2)L triplet. This offers multiple
ways to contract its indices to form invariant operators, e.g., within O(1),(2),(3)

H2∆4 class
we have noted the following partitions:

O(1)
H2∆4 ≡ H† (∆†∆) (∆†∆)H → (2⊗ 3⊗ 3⊗ 3⊗ 3⊗ 2),

O(2)
H2∆4 ≡ Tr[(∆†∆) (∆†∆)] (H†H) → (3⊗ 3⊗ 3⊗ 3)⊗ (2⊗ 2),

O(3)
H2∆4 ≡ Tr[(∆†∆)] (H†∆†∆H) → (3⊗ 3)⊗ (2⊗ 3⊗ 3⊗ 2).

Here, we pick a singlet representation from the tensor product within a parenthesis.

• At dimension 5 in addition to the Ψ2Φ2 class, there are new operators of the Φ5 class
unlike the previous cases.

• Since ∆ transforms as an SU(2)L triplet the Ψ2Φ2D class has operators constituted
of higher tensor products O(2)

L∆D and O(2)
Q∆D unlike the previous models.

• Lepton number violation too is observed within the Ψ2Φ2D, Ψ2Φ3 and Ψ2ΦX classes.
These operators are highlighted in red colour.

SM + left-handed triplet fermion (Σ): the extra IR DOF can be fermionic in nature
instead of scalar. To demonstrate the feature of such cases, we have considered a specific
example, where the SM is extended by an SU(2)L real triplet fermion Σ = (Σ1, Σ2, Σ3).
This additional DOF plays a central role in the generation of neutrino masses and mix-
ing [87, 94–100], lepton flavour violating decays [101–107], explaining dark matter [108–
111], and CP & matter-antimatter asymmetry [112–115]. In most of these scenarios, this
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Φ6 Φ4D2

O(1)
∆ Tr[(∆†∆)]3 O∆� Tr[(∆†∆)� (∆†∆)]

O(2)
∆ Tr[(∆†∆) (∆†∆)] Tr[(∆†∆)] O(1)

∆D Tr[(∆† i←→Dµ ∆)(∆† i←→D µ ∆)]

O(1)
H2∆4 H† (∆†∆) (∆†∆)H O(2)

∆D Tr[(∆†∆)] Tr[(Dµ ∆†) (Dµ∆)]

O(2)
H2∆4 Tr[(∆†∆) (∆†∆)] (H†H) O(1)

H∆D [H† (Dµ∆)] [(Dµ ∆)†H]

O(3)
H2∆4 Tr[(∆†∆)] (H†∆†∆H) O(2)

H∆D [(DµH)†∆] [∆† (DµH)]

O(1)
H4∆2 (H†∆†H) (H†∆H) O(3)

H∆D Tr[(∆†∆)] (DµH)† (DµH)

O(2)
H4∆2 (H†∆†∆ H) (H†H) O(4)

H∆D (H†H) Tr[(Dµ∆)† (Dµ∆)]

O(3)
H4∆2 Tr[(∆†∆)] (H†H)2

OH∆H (HT ∆†H)2

Φ2X2 Ψ2Φ2D

OB∆ Bµν B
µν Tr[(∆†∆)] O(1)

Q∆D (N2
f ) (Qpαi γµQαiq ) Tr[(∆† i←→D µ ∆)]

OB̃∆ B̃µν B
µν Tr[(∆†∆)] O(2)

Q∆D (N2
f ) (Qpαi γµ τ I Qαiq ) Tr[(∆† i←→D I

µ ∆)]

OG∆ GAµν G
Aµν Tr[(∆†∆)] O(1)

L∆D (N2
f ) (Lpi γµ Liq) Tr[(∆† i←→D µ ∆)]

OG̃∆ G̃Aµν G
Aµν Tr[(∆†∆)] O(2)

L∆D (N2
f ) (Lpi γµ τ I Liq) Tr[(∆† i←→D I

µ ∆)]

O(1)
W∆ W I

µνW
Iµν Tr[(∆†∆)] Ou∆D (N2

f ) (upα γµ uαq ) Tr[(∆† i←→D µ ∆)]

O(2)
W∆ Tr[∆†Wµν ∆Wµν ] Od∆D (N2

f ) (dpα γµ dαq ) Tr[(∆† i←→D µ ∆)]

O(1)
W̃∆ W̃ I

µνW
Iµν Tr[(∆†∆)] Oe∆D (N2

f ) (ep γµ eq) Tr[(∆† i←→D µ ∆)]

O(2)
W̃∆ Tr[∆†Wµν ∆ W̃µν ] OLeH∆D (N2

f ) Tr[LTp C iτ2 (γµDµ ∆)H eq]

OBW∆ Tr[∆†Wµν ∆]Bµν

OBW̃∆ Tr[∆† W̃µν ∆]Bµν

Ψ2Φ3

O(1)
LeH∆ (N2

f ) (Lpi eq)H i Tr[(∆†∆)] O(2)
LeH∆ (N2

f ) (Lpi eq) ∆†∆H i

O(1)
QdH∆ (N2

f ) (Qpαi dαq )H i Tr[(∆†∆)] O(2)
QdH∆ (N2

f ) (Qpαi dαq ) ∆†∆H i

O(1)
QuH∆ (N2

f ) εij (Qpαi uαq ) H̃j Tr[(∆†∆)] O(2)
QuH∆ (N2

f ) (Qpαi uαq ) ∆†∆ H̃i

O(1)
L∆

1
2(N2

f +Nf ) (LTp C iτ2 ∆Lq) Tr[(∆†∆)] O(2)
L∆

1
2(N2

f +Nf ) (LTp C iτ2 ∆ ∆†∆Lq)

O(1)
LH∆

1
2(N2

f +Nf ) (LTp C iτ2 ∆Lq) (H†H) O(2)
LH∆ (N2

f ) (LTpiC iτ2 ∆H iH†j L
j
q)

Oe∆ 1
2(N2

f +Nf ) (eTp C eq) (HT ∆H)

Ψ2ΦX

OWL∆ (N2
f ) Tr[(LTp C iτ2 ∆σµν Lq)Wµν ] OBL∆

1
2(N2

f −Nf ) (LTp C iτ2 ∆σµν Lq)Bµν

Table 7. SM extended by Complex Triplet Scalar (∆): additional operators of dimension 6. Here
i, j and α are the SU(2) and SU(3) indices respectively. τ I are the SU(2) generators. A = 1, 2, · · · , 8
and I = 1, 2, 3. p, q = 1, 2, · · · , Nf are the flavour indices. Also, ∆ = ∆I · τ I and Wµν = W I

µν · τ I .
Operators in red violate lepton number.
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Ψ2Φ2 Ψ2X

ÕΣH (N2
f ) ((ΣI

p)T C ΣI
q) (H†H) ÕBΣ

1
2(N2

f −Nf )Bµν ((ΣI
p)T C σµν ΣI

q)

ÕeΣH (N2
f ) εij (ΣI

p eq) (H i τ IHj) ÕWΣ
1
2(N2

f +Nf ) εIJKW I
µν ((ΣJ

p )T C σµν ΣK
q )

Table 8. SM extended by Left-Handed Triplet Fermion (Σ): additional operators of dimension 5.
Here i, j are the SU(2) indices. τ I is the SU(2) generator. I = 1, 2, 3 and p, q = 1, 2, · · · , Nf are
the flavour indices. The operator in red violates lepton number.

Ψ2ΦX Ψ2Φ2D

OBLΣH (N2
f ) εij Bµν ((Lip)T C σµν ΣI

q) τ I Hj O(1)
ΣH (N2

f ) (ΣI
pγ
µΣI

q) (H† i←→D µH)

O(1)
WLΣH (N2

f ) εijW I
µν ((Lip)T C σµν ΣI

q)Hj O(2)
ΣH (N2

f ) εIJK (ΣI
p γ

µ ΣJ
q ) (H† τK i←→D µH)

O(2)
WLΣH (N2

f ) εIJK εijW I
µν ((Lip)T C σµν ΣJ

q ) τK Hj

Ψ4

OuΣ (N4
f ) (upα γµ uαq ) (ΣI

r γ
µ ΣI

s) OdΣ (N4
f ) (dpα γµ dαq ) (ΣI

r γ
µ ΣI

s)

OeΣ (N4
f ) (ep γµ eq) (ΣI

r γ
µ ΣI

s) OΣΣ (3
4N

4
f + 1

2N
3
f + 3

4N
2
f ) (ΣI

p γµ ΣI
q) (ΣJ

r γ
µ ΣJ

s )

O(1)
QΣ (N4

f ) (Qpαi γµQαiq ) (ΣI
r γ

µ ΣI
s) O(2)

QΣ (N4
f ) εIJK (Qpαi γµ τ I Qjαq ) (ΣJ

r γ
µ ΣK

s )

O(1)
LΣ (N4

f ) (Lpi γµ Liq) (ΣI
r γ

µ ΣI
s) O(2)

LΣ (N4
f ) εIJK (Lpi γµ τ I Liq) (ΣJ

r γ
µ ΣK

s )

OeLΣ (N4
f ) εij ((Lip)T C τ I Ljq) (er ΣI

s) OΣ2
1
4(N4

f + 3N2
f ) ((ΣI

p)T C ΣI
q) ((ΣI

r)T C ΣI
s)

O(1)
QLdΣ (N4

f ) εij ((Lip)T C τ I Qαjq ) (drα ΣI
s) O(2)

QLdΣ (N4
f ) εij ((Lip)T C σµν τ I Qαjq ) (drα σµν ΣI

s)

OQLuΣ (N4
f ) (Qpαi uαq ) [τ I ]ij ((Ljr)T C ΣI

s) OQdΣ
1
2N

3
f (Nf − 1) εαβγ εij (ΣI

p d
α
q ) ((Qβir )T C τ I Qγjs )

Ψ2Φ3

O(1)
LΣHH (N2

f ) εij ((Lip)T C ΣI
q) τ I Hj (H†H) O(2)

LΣHH (N2
f ) εIJK εij ((Lip)T C ΣI

q) τJ Hj (H† τK H)

Table 9. SM extended by Left-Handed Triplet Fermion (Σ): additional operators of dimension 6.
Here i, j and α, β, γ are the SU(2) and SU(3) indices respectively. τ I are the SU(2) generators.
I, J,K = 1, 2, 3. p, q, r, s = 1, 2, · · · , Nf are the flavour indices. Operators in red violate lepton and
baryon numbers.

triplet fermion is accompanied by other particles which can be integrated out to construct
an effective Lagrangian described by SM DOFs and Σ. This motivates us to compute a
complete set of effective operators which will capture all such extended BSM scenarios.
Here, we have classified the effective operators of dimensions 5 and 6 containing Σ in ta-
bles 8 and 9 respectively. The operators with distinct hermitian conjugates have been
coloured blue.

Features of the additional operators:

• Since Σ has zero hypercharge, in addition to the Ψ2Φ2 operators, we also obtain
operators of the class Ψ2X at dimension 5.
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Ψ2Φ2

ÕHELER (N2
f ) (H†i H i) (ERpELq) ÕHNLNR (N2

f ) (H†i H i) (NLpNRq)

Õ(1)
HLVR

(N2
f ) (H†i H i) (Lpj V j

Rq) Õ(1)
HVLVR

(N2
f ) (H†i H i) (V Lpj V

j
Rq)

Õ(2)
HLVR

(N2
f ) (H†i τ I H i) (Lpj τ I V j

Rq) Õ(2)
HVLVR

(N2
f ) (H†i τ I H i) (V Lpj τ

I V j
Rq)

ÕHeEL (N2
f ) (H†i H i) (epELq) ÕHNR 1

2Nf (Nf + 1) (H†i H i) (NT
RpC NRq)

ÕHVL 1
2Nf (Nf + 1)εij εmnH iHm (V j

Lp)TC V n
Lq ÕHVR 1

2Nf (Nf + 1)εij εmnH iHm (V j
Rp)TC V n

Rq

ÕHLVL (N2
f )εij εmnH iHm (Ljp)TC V n

Lq ÕHNL 1
2Nf (Nf + 1) (H†i H i) (NT

LpC NLq)

Ψ2X

ÕBeEL (N2
f )Bµν(ep σµν ELq) ÕBELER (N2

f )Bµν(ERp σµν ELq)

ÕBLVR (N2
f )Bµν(V Rpi σµν L

i
q) ÕWLVR (N2

f )W I
µν (V Rpi τ

Iσµν Liq)

ÕBVLVR (N2
f )Bµν(V Rpi σµν V

i
Lq) ÕWVLVR (N2

f )W I
µν (V Rpi τ

Iσµν V i
Lq)

ÕBNLNR (N2
f )Bµν(NRp σµν NLq) ÕBNR 1

2Nf (Nf − 1)Bµν (NT
RpC σ

µνNRq)

ÕBNL 1
2Nf (Nf − 1)Bµν (NT

LpC σ
µνNLq)

Table 10. SM extended by Vector-like Leptons (VL,R, EL,R, NL,R): additional operators of dimen-
sion 5. i, j,m, n are the SU(2) indices and p, q = 1, 2, · · · , Nf are the flavour indices. τ I (I = 1, 2, 3)
is the SU(2) generator. Operators in red violate lepton and baryon numbers.

• On account of Σ being an SU(2)L triplet we obtain multiple operators of similar
structure whenever the other doublets L,Q,H or the triplet W I

µν are involved.
• We obtain lepton and baryon number violation among operators of the class Ψ4,

Ψ2ΦX and Ψ2Φ3. These operators have been coloured red.

SM + vector-like leptons (VL,R, EL,R, NL,R): it may be possible that the SM is ex-
tended by a set of lighter degrees of freedom. To discuss that kind of scenario, here, we have
considered an example model where the IR DOFs are vector like leptons: lepton doublets
(VL,R) with hypercharge 1

2 , singlets with hypercharge −1 (EL,R), and 0 (NL,R). This subset
of particles can be embedded in a rather complete scenario where parity is respected, e.g.,
Pati-Salam, LRSM etc. The vector like fermions may induce first order Electroweak Phase
Transition (EWPT) and explain the origin of baryon asymmetry [20, 116–119]. They also
affect low energy observables [120–122]. The effects of parity conserving complete theories
can be captured through the effective operators involving these vector like fermions. In
that case, it would be important to note how the tree-level predictions get affected in the
presence of the higher dimensional operators. Here, we have listed the dimension 5 opera-
tors in table 10. We have catalogued the set of dimension 6 operators in tables 11–17. The
operators with distinct hermitian conjugates are depicted in blue colour.

Features of the additional operators:

• At dimension 5, we have both B,L conserving and L violating operators within the
Ψ2Φ2 and Ψ2X classes.
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Ψ2Φ3

OHVLe (N2
f ) (V Lpi eqH

i) (H†j Hj) OHVREL (N2
f )(V RpiELqH

i) (H†j Hj)

OHVLER (N2
f ) (V LpiERqH

i) (H†j Hj) OHLER (N2
f ) (LpiERqH i) (H†j Hj)

OHVLNR (N2
f ) εij (NRp V

i
LqH

j) (H†kHk) OHLNR (N2
f ) εij (NRp L

i
qH

j) (H†kHk)

OHVRNL (N2
f ) εij (NLp V

i
RqH

j) (H†kHk) OHLNL (N2
f ) εij ((Lip)T C NLqH

j) (H†kHk)

OHVLNL (N2
f ) εij ((V i

Lp)T C NLqH
j) (H†kHk) OHVRNR (N2

f ) εij ((V i
Rp)T C NRqH

j) (H†kHk)

Ψ2ΦX
OBHVLe (N2

f )Bµν (V Lpi σ
µν eq)H i OWHVLe (N2

f )W I
µν (V Lpi σ

µν eq) τ I H i

OBHLER (N2
f )Bµν (Lpi σµν ERq)H i OWHLER (N2

f )W I
µν (Lpi σµν ERq) τ I H i

OBHLNR (N2
f )Bµν (Lpi σµν NRq) H̃i OWHLNR (N2

f )W I
µν (Lpi σµν NRq) τ I H̃i

OBHVLER (N2
f )Bµν (V Lpi σ

µν ERq)H i OWHVLER (N2
f )W I

µν (V Lpi σ
µν ERq) τ I H i

OBHVLNR (N2
f ) εij Bµν (NRpi σ

µν V i
Lq)Hj OWHVLe (N2

f )W I
µν (V Lpi σ

µν eq) τ I H i

OWHVLNR (N2
f ) εijW I

µν (NRpi σ
µν V i

Lq) τ I Hj OBHVLER (N2
f )Bµν (V Lpi σ

µν ERq)H i

OWHVREL (N2
f )W I

µν (V Rpi σ
µν ELq) τ I H i OBHVRNL (N2

f )Bµν (V Rpi σ
µν NLq) H̃i

OWHVRNL (N2
f )W I

µν (V Rpi σ
µν NLq) τ I H̃i OBHVREL (N2

f ) εij Bµν (V Rpi σ
µν ELq)H i

OBHLNL (N2
f ) εij Bµν (NT

LpC σ
µν Liq)Hj OBHVLNL (N2

f ) εij Bµν (NT
LpC σ

µν V i
Lq)Hj

OBHVRNR (N2
f ) εij Bµν (NT

RpC σ
µν V i

Rq)Hj OWHLNL (N2
f ) εijW I

µν (NT
LpC σ

µν Liq) τ I Hj

OWHVRNR (N2
f ) εijW I

µν (NT
RpC σ

µν V i
Rq) τ I Hj OWHVLNL (N2

f ) εijW I
µν (NT

LpC σ
µν V i

Lq) τ I Hj

Ψ2Φ2D

O(1)
HVRD (N2

f ) (V Rpi γ
µ V i

Rq) (H†i i
←→
D µH

i) O(1)
HVLD (N2

f ) (V Lpi γ
µ V i

Lq) (H†j i
←→
D µH

j)

O(2)
HVRD (N2

f ) (V Rpi γ
µ τ IV i

Rq) (H†i i
←→
D I
µH

i) O(2)
HVLiD (N2

f ) (V Lpi γ
µ τ IV i

Lq) (H†j i
←→
D µH

j)

OHNLD (N2
f ) (NLp γ

µNLq) (H†i i
←→
D µH

i) OHNRD (N2
f ) (NRp γ

µNRq) (H†i i
←→
D µH

i)

OHELD (N2
f ) (ELp γµELq) (H†i i

←→
D µH

i) OHERD (N2
f ) (ERp γµERq) (H†i i

←→
D µH

i)

OHeERD (N2
f ) (ep γµERq) (H†i iDµH i) OHeNRD (N2

f ) (NRp γ
µ eq) (H̃†i iDµH i)

OHELNLD (N2
f ) εij (NLp γ

µELq) (H̃†i iDµH i) O(1)
HLVLD (N2

f ) (Lpi γµ V i
Lq) (H†j iDµHj)

OHERNRD (N2
f ) (NRp γ

µERq) (H̃†i iDµH i) O(2)
HLVLD (N2

f ) (Lpi γµ τ IV i
Lq) (H†j iDIµHj)

OHLVRD (N2
f ) εij εmn ((V i

Rp)T C γµ Lmq ) (H̃†n iDµHj) OHVLVRD (N2
f ) εij εmn ((V i

Rp)T C γµ V m
Lq) (H̃†n iDµHj)

OHeNLD (N2
f ) (eTp C γµNLq) (H̃†i iDµH i) OHERNLD (N2

f ) (ETRpC γµNLq) (H̃†i iDµH i)

OHELNRD (N2
f ) (ETLpC γµNRq) (H̃†i iDµH i) OHNLNRD (N2

f ) (NT
LpC γ

µNRq) (H†i iDµH i)

Table 11. SM extended by Vector-like Leptons (VL,R, EL,R, NL,R): additional operators of dimen-
sion 6. i, j,m, n are the SU(2) indices and p, q = 1, 2, · · · , Nf are the flavour indices. τ I (I = 1, 2, 3)
is the SU(2) generator. Operators in red violate lepton number.
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Ψ4

OdEL (N4
f ) (ELp γµELq) (drα γµ dαs ) OeEL (N4

f ) (ELp γµELq) (er γµ es)

OeER (N4
f ) (ep γµ eq) (ERr γµERs) OĒLĒR (N4

f ) (ELp γµELq) (ERr γµERs)

OER 1
4N

2
f (Nf + 1)2 (ERp γµERq)(ERr γµERs) OEL 1

4N
2
f (Nf + 1)2 (ELp γµELq)(ELr γµELs)

OLEL (N4
f ) (Lpi γµ Liq)(ELr γµELs) OLER (N4

f ) (Lpi γµ Liq)(ERr γµERs)

O(1)
LVL

(N4
f ) (V Lpi γ

µ V i
Lq) (Lrj γµLjs) OVLEL (N4

f ) (ELp γµELq) (V Lri γµ V
i
Ls)

O(2)
LVL

(N4
f ) (V Lpi γ

µ τ I V i
Lq) (Lrj γµ τ I Ljs) OVLER (N4

f ) (ERp γµERq) (V Lri γµ V
i
Ls)

OdVL (N4
f ) (dpα γµ dαq )(V Lri γµ V

i
Ls) OVLe (N4

f )(ep γµ eq) (V Lri γµ V
i
Ls)

OVL 1
2N

2
f (N2

f + 1) (V Lpi γ
µ V i

Lq )(V Lrj γµ V
j
Ls) OdVR (N4

f ) (dpα γµ dαq )(V Rri γµ V
i
Rs)

OVREL (N4
f ) (ELp γµELq) (V Rri γµ V

i
Rs) OeVR (N4

f ) (ep γµ eq) (V Rri γµ V
i
Rs)

OVRER (N4
f ) (ERp γµERq) (V Rri γµ V

i
Rs) OVR 1

2N
2
f (N2

f + 1) (V Rpi γ
µ V i

Rq )(V Rrj γµ V
j
Rs)

O(1)
LVR

(N4
f ) (V Rpi γ

µ V i
Rq) (Lrj γµ Ljs) O(1)

VLVR
(N4

f ) (V Rpi γ
µ V i

Rq) (V Lrj γµ V
j
Ls)

O(2)
LVR

(N4
f ) (V Rpi γ

µ τ I V i
Rq) (Lrj γµ τ I Ljs) O(2)

VLVR
(N4

f ) (V Rpi γ
µ τ I V i

Rq) (V Lrj γ
µ τ I V j

Ls)

OdNL (N4
f ) (dpα γµ dαq )(NLr γµNLs) OeNL (N4

f ) (ep γµ eq) (NLr γµNLs)

OELNL (N4
f ) (ELp γµELq) (NLr γµNLs) OERNL (N4

f ) (ERp γµERq) (NLr γµNLs)

OLNL (N4
f ) (Lpi γµ Liq)(NLr γµNLs) OVLNL (N4

f ) (V Lpi γ
µ V i

Lq)(NLr γµNLs)

OVRNL (N4
f ) (V Rpi γ

µ V i
Rq)(NLr γµNLs) ONL 1

4N
2
f (Nf + 1)2 (NLp γ

µNLq)(NLr γµNLs)

OdNR (N4
f ) (dpα γµ dαq )(NRr γµNRs) OeNR (N4

f ) (ep γµ eq) (NRr γµNRs)

OELNR (N4
f ) (ELp γµELq) (NRr γµNRs) OERNR (N4

f ) (ERp γµERq) (NRr γµNRs)

OLNR (N4
f ) (Lpi γµ Liq)(NRr γµNRs) OVLNR (N4

f ) (V Lpi γ
µ V i

Lq)(NRr γµNRs)

OVRNR (N4
f ) (V Rpi γ

µ V i
Rq)(NRr γµNRs) ONLNR (N4

f ) (NLp γ
µNLq) (NRr γµNRs)

ONR 1
4N

2
f (Nf + 1)2(NRp γ

µNRq)(NRr γµNRs) OQEL (N4
f ) (Qαp γµQαq )(ELr γµELs)

OQNL (N4
f ) (Qαp γµQαq )(NLr γµNLs) OQER (N4

f ) (Qαp γµQαq )(ERr γµERs)

O(1)
QVL

(N4
f ) (V Lpi γµ V

i
Lq) (Qrαj γµQαjs ) O(1)

QVR
(N4

f ) (V Rpi γµ V
i
Rq) (Qrjα γµQjαs )

O(2)
QVL

(N4
f ) (V Lpi γµ τ

I V i
Lq) (Qrjα γµ τ I Qjαs ) O(2)

QVR
(N4

f ) (V Rpi γµ τ
I V i

Rq) (Qrjα γµ τ I Qjαs )

OQNR (N4
f ) (Qpα γµQαq )(NRr γµNRs) OuEL (N4

f ) (upα γµ uαq ) (ELr γµELs)

OuVL (N4
f ) (upα γµ uαq ) (V Lr γµ VLs) OuER (N4

f ) (upα γµ uαq ) (ERr γµERs)

OuVR (N4
f ) (upα γµ uαq ) (V Rri γµ V

i
Rs) OuNR (N4

f ) (upα γµ uαq ) (NRr γµNRs)

OuNL (N4
f ) (upα γµ uαq ) (NLr γµNLs) OdER (N4

f ) (dpα γµ dαq )(ERr γµERs)

Table 12. SM extended by Vector-like Leptons (VL,R, EL,R, NL,R): additional operators of di-
mension 6. i, j and α are the SU(2) and SU(3) indices respectively. p, q, r, s = 1, 2, · · · , Nf are the
flavour indices. τ I (I = 1, 2, 3) is the SU(2) generator. All the operators in this table conserve the
lepton and baryon numbers (∆B = 0,∆L = 0).
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Ψ4

O(1)
VLVReEL

(N4
f ) (V Lpi V

i
Rq) (ELr es) O(1)

VLVRELER
(N4

f ) (V Lpi V
i
Rq) (ELr ERs)

O(2)
VLVReEL

(N4
f ) (V Lpi σ

µν V i
Rq) (ELr σµν es) O(2)

VLVRELER
(N4

f ) (V Lpi σ
µν V i

Rq) (ELr σµν ERs)

O(1)
LVLeNR

(N4
f ) εij (V Lpi eq) (Lrj γµNRs) O(1)

LVLERNR
(N4

f ) εij (V LpiERq) (Lrj NRs)

O(2)
LVLeNR

(N4
f ) εij (V Lpi σ

µν eq) (Lrj σµν NRs) O(2)
LVLERNR

(N4
f ) εij (V Lpi σ

µν ERq) (Lrj σµν NRs)

O(1)
LVReEL

(N4
f ) (Lpi V i

Rq) (ELr es) O(1)
LVRELER

(N4
f ) (Lpi V i

Rq) (ELr ERs)

O(2)
LVReEL

(N4
f ) (Lpi σµν V i

Rq) (ELr σµν es) O(2)
LVRELER

(N4
f ) (Lpi σµν V i

Rq) (ELr σµν ERs)

O(1)
L̄V̄LVR

(N4
f ) (V Lpi V

i
Rq) (Lrj V j

Rs) O(1)
QdVREL

(N4
f ) (dαpQiαq) (V RriELs)

O(2)
L̄V̄LVR

(N4
f ) (V Lpi σ

µν V i
Rq) (Lrj σµν V j

Rs) O(2)
QdVREL

(N4
f ) (dαp σµν Qiαq) (V Rri σµν ELs)

O(1)
LVRNLNR

(N4
f ) (Lpi V i

Rq) (NLrNRs) O(1)
LVLV R

(N4
f ) (V Rpi V

i
Lq) (Lrj V j

Rs)

O(2)
LVRNLNR

(N4
f ) (Lpi σµν V i

Rq) (NLr σµν NRs) O(2)
LVLV R

(N4
f ) (V Rpi σ

µν V i
Lq) (Lrj σµν V j

Rs)

O(1)
eELNLNR

(N4
f ) (NLpNRq) (ELr es) O(1)

NLVRELER
(N4

f ) (NLpNRq) (ELr ERs)

O(2)
eELNLNR

(N4
f ) (NLp σ

µν N i
Rq) (ELr σµν es) O(2)

NLNRELER
(N4

f ) (NLpi σ
µν N i

Rq) (ELr σµν ERs)

O(1)
VLVRNLNR

(N4
f ) (V Lpi V

i
Rq) (NLrNRs) O(1)

QdLNR
(N4

f ) εij (Qαpi dαq) (Lrj NRs)

O(2)
VLVRNLNR

(N4
f ) (V Lpi σ

µν V i
Rq) (NLr σµν NRs) O(2)

QdLNR
(N4

f ) εij (Qαpi σµν dαq) (Lrj σµν NRs)

O(1)
QLVL

(N4
f ) (Qαpi γµQiαq) (Lrj γµ V j

Ls) O(1)
QdVLNR

(N4
f ) εij (Qαpi dαq) (V Lrj NRs)

O(2)
QLVL

(N4
f ) (Qαpi γµ τ I Qiαq) (Lrj γµ τ I V j

Ls) O(2)
QdVLNR

(N4
f ) εij (Qαpi σµν dαq) (V Lrj σµν NRs)

O(1)
QuLER

(N4
f ) εij (QαpERq) (Lrj uαs) O(1)

QuVLER
(N4

f ) εij (QαpERq) (V Lrj uαs)

O(2)
QuLER

(N4
f ) εij (Qαp σµν ERq) (Lrj σµν uαs) O(2)

QuVLER
(N4

f ) εij (Qαp σµν ERq) (V Lrj σµν uαs)

O(1)
QuVLe

(N4
f ) εij (Qαp uαq) (V Lrj es) O(1)

QuVRNL
(N4

f ) (Qαpi uαq ) (NLr V
i
Rs)

O(2)
QuVLe

(N4
f ) εij (Qαp σµν uαq) (V Lrj σµν es) O(2)

QuVRNL
(N4

f ) (Qαpi σµν uαq ) (NLr σµν V
i
Rs)

OQdVLe (N4
f ) (dpα γµ eq )(V Lir γµQ

αi
s ) OQdLER (N4

f ) (Lpi γµQαiq ) (dirα γµERs)

OQeER (N4
f ) (Qαpi γµQαiq ) (er γµERs) OQdVLER (N4

f ) (dαp γµERq) (V Lir γµQ
αi
Rs)

OQuVREL (N4
f ) εij (Qαpi γµELq) (V Rir γµ u

α
s ) OQeER (N4

f ) (Qαpi γµQαiq ) (ERr γµ es)

OQuLNR (N4
f ) (Qαpi γµ Liq) (NRr γµ u

α
s ) OQuVLNR (N4

f ) (Qαpi γµ V i
Lq) (NRr γµ u

α
s )

OQdVRNL (N4
f ) εij (Qαpi γµ dαq ) (V Rrj γµNLs) OudELNL (N4

f ) (dαp γµ uαq ) (NLr γµELs)

Table 13. Table 12 continued.
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OdeER (N4
f ) (ep γµERq) (drα γµ dαs ) OdLVL (N4

f ) (dpα γµ dαq )(Lpi γµ V i
Lq )

OdueNR (N4
f ) (dαp γµ uαq ) (NRr γµ es) OduERNR (N4

f ) (dαp γµ uαq ) (NRr γµERs)

OuLVL (N4
f ) (upα γµ uαq ) (Lpi γµ V i

Lq) OueER (N4
f ) (upα γµ uαq ) (er γµERs)

OVLeER (N4
f ) (ep γµERq) (V Lri γµ V

i
Ls) OLeER (N4

f ) (Lpi γµ Liq) (er γµERs)

OLVLEL (N4
f ) (Lpi γµ V i

Lq)(ELr γµELs) OLVLeER (N4
f ) (Lpi γµ V i

Lq)(er γµERs)

OLeER (N4
f ) (Lpi γµ Liq) (er γµERs) OLVLe (N4

f ) (Lpi γµ V i
Lq) (er γµ es)

OLVLER (N4
f ) (Lpi γµ V i

Lq)(ERr γµERs) OLVRELER (N4
f ) (Lpi γµELq)(ERr γµ V i

Rs)

OLVR N2
f (N2

f + 1) (Lpi V i
Rq) (Lrj V j

Rs) OLELNL 1
2N

3
f (Nf − 1) εij (Lpi γµELq) (Lrj γµNLs)

OLeNR (N4
f ) εij (LpiNRq) (Lrj es) OLERNR (N4

f ) εij (LpiNRq) (Lrj ERs)

OLVLe (N4
f ) (V Lpi γ

µ Liq) (er γµ es) OLV LeER (N4
f ) (V Lpi γ

µ Liq) (er γµERs)

OLV̄ReĒL (N4
f ) (ELp γµ Liq) (V Rri γµ es) OLV̄RĒLER (N4

f ) (ELp γµ Liq) (V Rri γµERs)

OVLV̄ReĒL (N4
f ) (ELp γµ V i

Lq) (V Rri γµ es) OVLV̄RĒLER (N4
f ) (ELp γµ V i

Lq) (V Rri γµERs)

OLLVL (N4
f ) (V Lpi γ

µ Liq) (Lrj γµ Ljs) OLVLEL (N4
f ) (ELp γµELq) (V Lri γµ L

i
s)

OLVLVL (N4
f ) (V Lpi γ

µ V i
Lq) (Lrj γµ V j

Ls) OLVLELNL (N4
f ) εij (V Lpi γ

µELq) (Lrj γµNLs)

OLVLNR (N4
f ) (V Lpi γ

µ Liq)(NRr γµNRs) OLVL 1
2N

2
f (N2

f + 1) (Lpi γµ V i
Lq) (Lrj γµ V j

Ls)

OVLeNR (N4
f ) εij (V Lpi eq) (V Lrj NRs) OVLNLEL 1

2N
3
f (Nf − 1) εij (V Lpi γ

µELq) (V Lrj γµNLs)

OVLERNR (N4
f ) εij (V LpiERq) (V Lrj NRs) OVReER (N4

f ) (ep γµERq) (V Rri γµ V
i
Rs)

OLVReNL (N4
f ) εij (Lpi γµNLq) (V Rrj γµ es) OLVRERNL (N4

f ) εij (Lpi γµNLq) (V Rrj γµERs)

OVLVReNL (N4
f ) εij (V Lpi γ

µNLq) (V Rrj γµ es) OVLVRERNL (N4
f ) εij (V Lpi γ

µNLq) (V Rrj γµERs)

OVLVRELNR (N4
f ) εij (V Lpi γ

µELq) (V Rrj γµNRs) OVLVR N2
f (N2

f + 1) (V Lpi V
i
Rq) (V Lrj V

j
Rs)

OLVRNLNR (N4
f ) (V Rpi γ

µNRq) (NLr γµL
i
s) OVLVRNLNR (N4

f ) (V Rpi γ
µNRq) (NLr γµ V

i
Ls)

OVRERNR 1
2N

3
f (Nf − 1) (V Rpi γ

µERq) (V Rrj γµNRs) OVReNR 1
2N

3
f (Nf − 1) (V Rpi γ

µ eq) (V Rrj γµNRs)

OLVRELNR (N4
f ) εij (Lpi γµELq) (V Rrj γµNRs) OVRELNL (N4

f ) εij (V RpiELq) (V Rrj NLs)

OLVLNL (N4
f ) (V Lpi γ

µ Liq)(NLr γµNLs) ONLNR 1
2N

2
f (N2

f + 1) (NLrNRs) (NLrNRs)

OeERNR (N4
f ) (ep γµERq) (NRr γµNRs) OeĒRER

1
2N

3
f (Nf + 1) (ep γµERq )(ERr γµERs)

OēeER 1
2N

3
f (Nf + 1) (ep γµERq)(er γµ es) OeER 1

4N
2
f (Nf + 1)2 (ep γµERq)(er γµERs)

OeELER (N4
f ) (ep γµERq) (ELr γµELs) OeELĒR (N4

f ) (ERp γµELq) (ELr γµ es)

OeEL 1
2N

2
f (N2

f + 1) (ep γµELq)(er γµELs) OeELER (N4
f ) (ELp γµERq)(ELr γµ es)

OELERNLNR (N4
f ) (ERp γµNRq) (NLr γµELs) OeERNL (N4

f ) (ep γµERq) (NLr γµNLs)

OeELNRNL (N4
f ) (ep γµNRq) (NLr γµELs) OELERNRNL (N4

f ) (ERp γµNRq) (NLr γµELs)

OeERNL (N4
f ) (ERp γµ eq) (NLr γµNLs) OELER

1
2N

2
f (N2

f + 1) (ELp γµERq)(ELr γµERs)

Table 14. Table 13 continued.
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OduNR (N4
f ) εαβγ [(dαp )T C dβq ] [(uγr )T C NRs] OQdNR 1

2N
3
f (Nf + 1)εαβγ εij [(Qiαp )T C Qjγq ] [(dβr )T C NRs]

OQduVL (N4
f ) εαβγ εij [(Qiαp )T C V j

Lq] [(dβr )T C uγs ] OQVL 1
3N

2
f (2N2

f + 1)εαβγ εjn εkm [(Qjαp )T C Qkβq ] [(Qmγr )T C V n
Ls]

OuddNL (N4
f ) εαβγ [NLp u

α
q ] [(dβr )T C dγs ] OQuER 1

2N
3
f (Nf + 1) εαβγ εij [(Qiαp )T C Qjβq ] [(uγr )T C ERs]

OuudER (N4
f ) εαβγ [(uαp )T C uβq ] [(dγr )T C ERs] OdEL 1

3N
2
f (N2

f − 1) εαβγ ((dαp )T C dβq ) (ELr dγs )

OQdVR 1
2N

3
f (Nf − 1)εαβγ [V RpiQ

iα
q ] [(dβr )T C dγr ] OQdNL 1

2N
3
f (Nf + 1)εαβγ εij [NLp d

α
q ] [(Qiβr )T C Qjγr ]

ONL 1
12N

2
f (N2

f − 1)(NT
LpC NLq) (NT

Lr C NLs) ONLNR 1
4N

2
f (Nf + 1)2(NT

LpC NLq) (NT
Rr C NRs)

ONR 1
12N

2
f (N2

f − 1)(NT
RpC NRq) (NT

Rr C NRs)

Table 15. SM extended by Vector-like Leptons (VL,R, EL,R, NL,R): additional operators of dimen-
sion 6. i, j,m, n and α, β, γ are the SU(2) and SU(3) indices respectively. p, q, r, s = 1, 2, · · · , Nf
are the flavour indices. The operators above the dashed line violate the baryon and lepton number
(∆B = 1,∆L = ±1) and below the dashed line violate only the lepton number (∆B = 0,∆L = −4).

Ψ4

O(1)
QdLNL

(N4
f ) εij (dpαQiαq ) ((Ljr)T C NLs) O(1)

QdVLNL
(N4

f ) εij (dpαQiαq ) ((V j
Lr)T C NLs)

O(2)
QdLNL

(N4
f ) εij (dpα σµν Qiαq ) ((Ljr)T C σµν NLs) O(2)

QdVLNL
(N4

f ) εij (dpα σµν Qiαq ) ((V j
Lr)T C σµν NLs)

OQNLNR (N4
f ) (QpαiNRq) ((Qiαr )T C NLs) OQuLNL (N4

f ) (Qpαi uαq ) ((Lir)T C NLs)

OQuVLNL (N4
f ) (Qpαi uαq ) ((V i

Lr)T C NLs) O(1)
QuVRNR

(N4
f ) (Qpαi uαq ) ((V i

Rr)T C NRs)

OQdVRNR (N4
f ) εij (dpαQiαq ) ((V j

Rr)T C NRs) O(2)
QuVRNR

(N4
f ) (Qpαi σµν uαq ) ((V i

Rr)T C σµν NRs)

OudVLVR (N4
f ) εij (dpα V i

Lq) ((ujαr )T C V j
Rs) OudLVR (N4

f ) εij (dpα Liq) ((uαr )T C V j
Rs)

OudeNL (N4
f ) (dpαNLq) ((uαr )T C es) OudERNL (N4

f ) (dpαNLq) ((uαr )T C ERs)

OudELNR (N4
f ) (dpαELq) ((uαr )T C NRs) OdNLNR (N4

f ) (dpαNLq) ((dαr )T C NRs)

Table 16. SM extended by Vector-like Leptons (VL,R, EL,R, NL,R): additional operators of di-
mension 6. i, j and α are the SU(2) and SU(3) indices respectively. p, q, r, s = 1, 2, · · · , Nf are the
flavour indices. All the operators violate only the lepton number (∆B = 0,∆L = −2).

• At dimension 6, we have the freedom to write down multiple covariant forms corre-
sponding to a particular operator. But not all of them are independent. For example,
the operator OVLVRNLNR in table 14 can be written in a covariant form as either
(V Rpi V

i
Lq) (NLrNRq) or (V Rpi γ

µNRq) (NLr γµ V
i
Ls). But these two structures are

related to each other through the identities mentioned in subsection 2.3. Therefore,
we have included only one of them to avoid any redundancy in the operator set.

• This model offers the violation of baryon and lepton numbers of different amount
unlike other scenarios discussed in this paper. We have noted the (∆B,∆L) of
following amounts: (0,±2), (0,±4). (±1,±1) and (±1,∓1) within the Ψ4, Ψ2Φ3,
Ψ2Φ2D, and Ψ2ΦX classes.
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Ψ4

OLeNL (N4
f ) εij [epNLq] [(Lir)T C Ljs] OVReNL 1

2N
3
f (Nf − 1)εij [epNLq] [(V i

Rr)T C V
j
Rs]

O(1)
LVLeNL

(N4
f ) εij [ep Liq] [(V j

Lr)T C NLs] OVLeNL (N4
f ) εij [ep V i

Lq] [(V j
Lr)T C NLs]

O(2)
LVLeNL

(N4
f ) εij [ep σµν Liq] [(V j

Lr)T C σµνNLs] OeELNL (N4
f ) (epELq) (NT

Rr C NRs)

OLVReNR (N4
f ) εij [ep Liq] [(V j

Rr)T C NRs] OVLVReNR (N4
f ) εij [ep V i

Lq] [(V j
Rr)T C NRs]

OeNLNR (N4
f )(epNLq) (eTr C NRs) OeERNLNR (N4

f )(epNLq) (ETRr C NRs)

OLVRELNL (N4
f ) εij [ELp V i

Rq] [(Ljr)T C NLs] OeELNR 1
2N

3
f (Nf + 1)(epELq) (NT

Rr C NRs)

OVLVRELNL (N4
f ) εij [ELp V i

Rq] [(V j
Lr)T C NLs] OeELNL

1
2N

3
f (Nf + 1)(ELp eq) (NT

Lr C NLs)

OELERNL
1
2N

3
f (Nf + 1)(ELpERq) (NT

Lr C NLs) OLELNR 1
2N

3
f (Nf − 1) εij [ELpNRq] [(Lir)T C Ljs]

OLVLELNR (N4
f ) εij [ELpNRq] [(Lir)T C V

j
Ls] OVLELNR 1

2N
3
f (Nf − 1) εij [ELpNRq] [(V i

Lr)T C V
j
Ls]

OVRELNR (N4
f ) εij [ELp V i

Rq] [(V j
Rr)T C NRs] OELNLNR (N4

f ) (ELpNRq) (ETLr C NLs)

OeELNR (N4
f ) (ELpNRq) (eTr C NRs) OELERNR (N4

f ) (ELpNRq) (ETRr C NRs)

OLERNL (N4
f ) εij [ERp Liq] [(Ljr)T C NLs] OVRERNL 1

2N
3
f (Nf − 1) εij [ERpNLq] [(V i

Rr)T C V
j
Rs]

O(1)
LVLERNL

(N4
f ) εij [ERp Liq] [(V j

Lr)T C NLs] OVLERNL (N4
f ) εij [ERp V i

Lq] [(V j
Lr)T C NLs]

O(2)
LVLERNL

(N4
f ) εij [ERp σµν Liq] [(V j

Lr)T C σµν NLs] OELERNL (N4
f ) [ERpNLq] [(ELr)T C NLs]

OLVRERNR (N4
f ) εij [ERp Liq] [(V j

Rr)T C NRs] OVLVRERNR (N4
f ) εij [ERp V i

Lq] [(V j
Rr)T C NRs]

OeERNLNR (N4
f ) (ERpNLq ) (eTr C NRs) OERNLNR (N4

f ) (ERpNLq ) (ETRr C NRs)

OLVRNL
1
2N

3
f (Nf + 1) (Lpi V i

Rq )(NT
Lr C NLs) OELERNR

1
2N

3
f (Nf + 1) (ERpELq )(NT

Rr C NRs)

OLNLNR (N4
f ) (LpiNRq) ((Lir)T C NLs) OLVLNRNL (N4

f ) (LpiNRq) ((V i
Lr)T C NLs)

OLVRNR (N4
f ) (LpiNRq) ((V i

Rr)T C NRs) OV LVRNL
1
2N

3
f (Nf + 1) (V Lpi V

i
Rq )(NT

Lr C NLs)

OLV lNLNR (N4
f ) (V LpiNRq) ((Lir)T C NLs) OVLNLNR (N4

f ) (V LpiNRq) ((V i
Lr)T C NLs)

OV LVRNR (N4
f ) (V Lpi V

i
Rq ) (NT

Rr C NRs) OV RVLNL (N4
f ) (V Rpi V

i
Lq ) (NT

Lr C NLs)

OVRNLNR (N4
f ) (V RpiNLq) ((V i

Rr)T C NRs) OLV RNL (N4
f ) (V Rpi L

i
q )(NT

Lr C NLs)

OLV RNR
1
2N

3
f (Nf + 1) (V Rpi L

i
q) (NT

Rr C NRs) OVLV RNR
1
2N

3
f (Nf + 1) (V Rpi V

i
Lq) (NT

Rr C NRs)

ONLNLNR
1
2N

3
f (Nf + 1) (NLpiN

i
Rq) (NT

Lr C NLs) ONLNRNR
1
3N

2
f (N2

f − 1) (NLpiN
i
Rq) (NT

Rr C NRs)

ONRNLNL
1
3N

2
f (N2

f − 1) (NRpNLq) (NT
Lr C NLs) ONLNRNR

1
2N

3
f (Nf + 1) (NRpNLq) (NT

Rr C NRs)

OuNLNR (N4
f ) (upαNLq) ((uαr )T C NRs)

Table 17. Table 16 continued.
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Model No. Non-SM IR DOFs SU(3)C SU(2)L U(1)Y Spin Baryon No. Lepton No.
(Lepto-Quarks)

1 χ1 3 2 1/6 0 1/3 −1

2 ϕ1 3 1 2/3 0 1/3 −1

Table 18. Additional IR DOFs (Lepto-Quarks) as representations of the SM gauge groups along
with their spin and baryon and lepton numbers.

3.2 Standard Model extended by colored particles

So far we have discussed the possible choices of lighter DOFs which are color singlets. Next,
we have considered a few cases where the light BSM particles are Lepto-Quark scalars that
transform non-trivially under SU(3)C , see table 18. These particles possess attractive
phenomenological features due to their participation in color interactions [123–129] and to
be precise for their role in explaining the B-physics anomalies [130, 131]. The Lepto-Quarks
may belong to multiplets of a rather complete theory, e.g., Pati-Salam model [132, 133],
unified scenarios [134–136]12 etc. In most of the UV complete theories, the colored scalars
are accompanied by other particles. To capture their impact in low energy predictions, it is
suggestive to consider the effective operators involving these colored scalars. To encapsulate
that, we have constructed the effective operator basis beyond SMEFT including these
Lepto-Quarks.

We would like to mention that due to their non-trivial transformation properties under
SU(3)C , while computing the effective operators in covariant forms we may require following
tensors fABC and dABC , defined as:

[TA, TB] =
8∑

C=1
fABC TC , {TA, TB} = 1

3δ
AB I3 +

8∑
C=1

dABC TC . (3.1)

Here, δAB is the Kronecker delta and I3 is the 3×3 unit matrix. We have also used specific
forms of the derivatives as:

i
←→
D I
µ = τ I iDµ − i

←−
Dµ τ

I and i
←→
D A
µ = TA iDµ − i

←−
Dµ T

A. (3.2)

SM + lepto-quark (χ1): to start with, we have considered a color triplet, iso-spin
doublet scalar with hypercharge 1/6, and specific baryon and lepton numbers, see table 18.
This particle possesses similar gauge charges as the SM quark doublet and allows mixing
between quarks and leptons. The effective operators of dimensions 5 and 6 containing χ1
have been catalogued in tables 19 and 20–21 respectively. The operators with distinct
hermitian conjugates have been highlighted in blue colour.

Features of the additional operators:

• We have noted the presence of lepton and baryon number conserving as well as
violating operators in the Ψ2Φ2 class only. The mixing between quark and lepton
sectors is induced through operators like Õ(1),(2)

QLHχ1
, ÕueHχ1 , Õueχ1 and ÕQLχ1 .

12Supersymmetric theories also naturally contain colored scalars very similar to this IR DOF.
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Ψ2Φ2

Õ(1)
QLHχ1

(N2
f ) εij ((Qαip )T C Ljq)Hk χ†1,αk Õ(2)

QLHχ1
(N2

f ) εij ((Qαip )T C τ I Ljq) (Hk τ I χ†1,αk)

ÕueHχ1 (N2
f ) ((uαp )T C eq) (H i χ†1,αi) Õ(1)

Qχ1
1
2(N2

f +Nf ) ((Qαip )T C Qβjq ) (χ†1,αi χ
†
1,βj)

Õudχ1 (N2
f ) εij (I(uαp )T C dβq ) (χ†1,αi χ

†
1,βj) Õ(2)

Qχ1
1
2(N2

f +Nf ) ((Qαip )T C TAQβjq ) (χ†1,αi TA χ
†
1,βj)

ÕudHχ1 (N2
f ) εαβγ ((uαp )T C dβq ) (H̃i χ

γi
1 ) ÕQHχ1 (N2

f ) εαβγ εij ((Qαip )T C Qβjq ) (H̃k χ
γk
1 )

ÕQLχ1 (N2
f ) εαβγ εij εkl ((Qαip )T C Ljq) (χβk1 χγl1 ) Õueχ1 (N2

f ) εαβγ εij ((uαp )T C eq) (χβi1 χγj1 )

ÕdHχ1
1
2(N2

f −Nf ) εαβγ εij ((dαp )T C dβq ) (H i χγj1 )

Table 19. SM extended by Lepto-Quark (χ1): additional operators of dimension 5. Here i, j, k, l
and α, β, γ are the SU(2) and SU(3) indices respectively. TA and τ I are SU(3) and SU(2) generators
respectively. A = 1, 2, · · · , 8 and I = 1, 2, 3. p, q = 1, 2, · · · , Nf are the flavour indices. Operators
in red violate lepton and baryon numbers.

• As χ1 transforms non-trivially under all three gauge groups, there exist multiple
operators with similar structures belonging to the Φ6, Φ4D2, Ψ2Φ2D, and Ψ2Φ3

classes. In addition, χ1 offers multiple ways to contract the gauge indices to form
the invariant operators. Thus a naive construction may lead to erroneous results
and one may end up with an overcomplete set of operators. To avoid this, we have
suitably taken care of the constraints and identities discussed in section 2 to get rid of
the redundant operators. For example, the set O(1)

Qχ1D — O(4)
Qχ1D exhausts the list of

independent operators. All other structures are related to these operators as shown
in eqs. (2.39)–(2.41).

• There are new lepton and baryon number violating operators (in red colour) in the
Φ4D2, Ψ2Φ2D, Ψ2Φ3 and Ψ2ΦX classes. There is notable mixing between the quark
and lepton sectors within the Ψ2Φ2D, Ψ2Φ3, and Ψ2ΦX classes.

• Within the Φ2X2 class, we have observed the mixing of color field strength tensor
(GAµν) with the electroweak ones (W I

µν , Bµν). This feature is specific to this particular
model.

SM + lepto-quark (ϕ1): we have considered another example of a Lepto-Quark that
has similar gauge quantum numbers as the up-type SU(2) singlet quark within SM, see
table 18. Here, we have computed the effective operators to grab the features of full theories
containing ϕ1 for reasons similar to those discussed in the previous section. The operators
of dimensions 5 and 6 containing ϕ1 have been collected in tables 22 and 23 respectively.
The operators with distinct hermitian conjugates have been coloured blue.

Features of the additional operators:

• At dimension 5, ϕ1 offers only baryon and lepton number violating operators belong-
ing to Ψ2Φ2 class, unlike the previous (χ1) case.

• Although there is mixing between Bµν and GAµν within the Φ2X2 class, there is no
mixing between W I

µν and GAµν on account of ϕ1 being an SU(2)L singlet.
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Φ4D2 Φ6

O(1)
χ1� (χ†1 χ1)� (χ†1 χ1) O(1)

χ1 (χ†1 χ1)3

O(2)
χ1� (χ†1 TA χ1)� (χ†1 TA χ1) O(2)

χ1 (χ†1 TA χ1) (χ†1 TA χ1) (χ†1 χ1)

O(1)
χ1D (χ†1

←→
D µ χ1) (χ†1

←→
D µ χ1) O(1)

H2χ4
1

(χ†1 χ1)2 (H†H)

O(2)
χ1D (χ†1

←→
D A
µ χ1) (χ†1

←→
D µA χ1) O(2)

H2χ4
1

(χ†1 TA χ1) (χ†1 TA χ1) (H†H)

OHχ1� (χ†1 χ1)� (H†H) O(3)
H2χ4

1
(χ†1 χ1) (χ†1 τ I χ1) (H† τ I H)

O(1)
Hχ1D (χ†1

←→
D I
µ χ1) (H†←→D µI H) O(1)

H4χ2
1

(χ†1 χ1) (H†H)2

O(2)
Hχ1D (H†H) [(Dµ χ1)† (Dµ χ1)] O(2)

H4χ2
1

(χ†1 τ I χ1) (H† τ I H) (H†H)

O(3)
Hχ1D (χ†1 χ1) [(DµH)† (DµH)]

OHχ3
1D

εαβγ εij (χαi1 χβj1 ) [(DµHk)† (Dµ χγk1 )]

Ψ2Φ2D

O(1)
Qχ1D (N2

f ) (Qpαi γµQαiq ) (χ†1 i
←→
D µ χ1) O(2)

Qχ1D (N2
f ) (Qpαi TA γµQαiq ) (χ†1 i

←→
D A
µ χ1)

O(3)
Qχ1D (N2

f ) (Qpαi τ I γµQαiq ) (χ†1 i
←→
D I
µ χ1) O(4)

Qχ1D (N2
f ) (Qpαi TA τ I γµQαii ) (χ†1 TA i

←→
D I
µ χ1)

O(1)
Lχ1D (N2

f ) (Lpi γµ Liq) (χ†1 i
←→
D µ χ1) O(2)

Lχ1D (N2
f ) (Lpi τ I γµ Liq) (χ†1 i

←→
D I
µ χ1)

O(1)
uχ1D (N2

f ) (upα γµ uαq ) (χ†1 i
←→
D µ χ1) O(2)

uχ1D (N2
f ) (upα TA γµ uαq ) (χ†1 i

←→
D A
µ χ1)

O(1)
dχ1D (N2

f ) (dpα γµ dαq ) (χ†1 i
←→
D µ χ1) O(2)

dχ1D (N2
f ) (dpα TA γµ dαq ) (χ†1 i

←→
D A
µ χ1)

Oeχ1D (N2
f ) (ep γµ eq) (χ†1 i

←→
D µ χ1) OdeHχ1D (N2

f ) (dpα γµ eq) (H̃†i iDµχi1,α)

O(1)
QLHχ1D (N2

f ) (Qpαi γµ Liq) (H̃†j iDµχ
αj
1 ) O(2)

QLHχ1D (N2
f ) (Qpαi τ I γµ Liq) (H̃†j iDIµχ

αj
1 )

Φ2X2

OBχ1 Bµν B
µν (χ†1 χ1) OB̃χ1

B̃µν B
µν (χ†1 χ1)

O(1)
Gχ1

GAµν G
Aµν (χ†1 χ1) O(2)

Gχ1
dABC G

A
µν G

Bµν (χ†1 TC χ1)

O(1)
G̃χ1

G̃Aµν G
Aµν (χ†1 χ1) O(2)

G̃χ1
dABC G̃

A
µν G

Bµν (χ†1 TC χ1)

OWχ1 W I
µνW

Iµν (χ†1 χ1) OW̃χ1
W̃ I
µνW

Iµν (χ†1 χ1)

OBGχ1 Bµν G
Aµν (χ†1 TA χ1) OBG̃χ1

Bµν G̃
Aµν (χ†1 TA χ1)

OBWχ1 BµνW
Iµν (χ†1 τ I χ1) OBW̃χ1

Bµν W̃
Iµν (χ†1 τ I χ1)

OWGχ1 W I
µν G

Aµν (χ†1 TA τ I χ1) OWG̃χ1
W I
µν G̃

Aµν (χ†1 TA τ I χ1)

Ψ2ΦX

OBLdχ1 (N2
f ) εij Bµν (dpα σµν Liq)χ

αj
1 OGLdχ1 (N2

f ) εij GAµν (dpα σµν Liq)TA χ
αj
1

OWLdχ1 (N2
f ) εijW I

µν (dpα σµν Liq) τ I χ
αj
1

Table 20. SM extended by Lepto-Quark (χ1): additional operators of dimension 6. Here i, j and
α, β, γ are the SU(2) and SU(3) indices respectively. TA and τ I are SU(3) and SU(2) generators
respectively. A,B,C = 1, 2, · · · , 8 and I = 1, 2, 3. p, q = 1, 2, · · · , Nf are the flavour indices.
Operators in red violate lepton and baryon numbers.
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Ψ2Φ3

O(1)
QdHχ1

(N2
f ) (Qpαi dαq )H i (χ†1 χ1) O(2)

QdHχ1
(N2

f ) (Qpαi TA dαq )H i (χ†1 TA χ1)

O(3)
QdHχ1

(N2
f ) (Qpαi dαq ) τ I H i (χ†1 τ I χ1) O(4)

QdHχ1
(N2

f ) (Qpαi TA dαq ) τ I H i (χ†1 TA τ I χ1)

O(1)
QuHχ1

(N2
f ) εij (Qpαi uαq ) H̃j (χ†1 χ1) O(2)

QuHχ1
(N2

f ) εij (Qpαi TA uαq ) H̃j (χ†1 TA χ1)

O(3)
QuHχ1

(N2
f ) εij (Qpαi uαq ) τ I H̃j (χ†1 τ I χ1) O(4)

QuHχ1
(N2

f ) εij (Qpαi TA uαq ) τ I H̃j (χ†1 TA τ I χ1)

O(1)
LeHχ1

(N2
f ) (Lpi eq)Hi (χ†1 χ1) O(2)

LeHχ1
(N2

f ) (Lpi eq) τ I Hi (χ†1 τ I χ1)

OQdχ1 (N2
f ) εαβγ εkl (Qpδi dαq )χδi1 (χβk1 χγl1 ) OQuχ1 (N2

f ) εαβγ εij εkl (upδ Qαiq )χjδ1 (χβk1 χγl1 )

OQeHχ1 (N2
f ) εkl (Qpαi eq)χkα1 (HiH

l) OLdHχ2
1

(N2
f ) εαβγ (Lpi dαq ) H̃j (χβi1 χγj1 )

O(1)
LdH2χ1

(N2
f ) εij (dpα Liq)χ

αj
1 (H†H) O(2)

LdH2χ1
(N2

f ) εij (dpα Liq) τ I χ
αj
1 (H† τ I H)

O(1)
Ldχ1

(N2
f ) εij (dpα Liq)χ

αj
1 (χ†1 χ1) O(2)

Ldχ1
(N2

f ) εij (dpα Liq) τ I χ
αj
1 (χ†1 τ I χ1)

OLuHχ1 (N2
f ) εij εkl (upα Liq)χαk1 (Hj H l)

Table 21. Table 20 continued.

Ψ2Φ2

Õuϕ1
1
2(N2

f +Nf ) ((uαp )T C uβq ) (ϕ†1,α ϕ
†
1,β) ÕLdHϕ1 (N2

f ) (dpα Lqi) (H̃i ϕ
α
1 )

ÕQeHϕ1 (N2
f ) (Qpαi eq) (H i ϕα1 ) ÕLuHϕ1 (N2

f ) εij (upα Liq) (Hj ϕα1 )

Table 22. SM extended by Lepto-Quark (ϕ1): additional operators of dimension 5. Here i, j and
α, β are the SU(2) and SU(3) indices respectively. p, q = 1, 2, · · · , Nf are the flavour indices. All
the operators of this class violate lepton number.

• For the same reason, ϕ1 allows fewer possible ways to construct invariant operators
than the SU(2)L doublet χ1. This is quite evident from the number of operators
listed in table 23.

3.3 Standard Model extended by abelian gauge symmetries

It is believed that at a very high scale there is a unified gauge theory (GUT) and from
there the SM is originated through a cascade of symmetry breaking. As the rank of the
viable unified gauge groups are larger than that of the SM, in the process of symmetry
breaking the desert region between the electroweak and unified scales may be filled up with
multiple intermediate symmetries. Most of the consistent GUT breaking chains lead to the
presence of multiple abelian (U(1)) gauge symmetries around the electroweak scale, i.e.,
the SM [99, 137–139]. In addition, there are many phenomenological attempts to extend
the SM using multiple additional abelian gauge symmetries, e.g., U(1)B ⊗ U(1)L [140],
U(1)B−L ⊗ U(1)Lµ−Lτ (Lα denotes lepton flavour number) [141–143]. All such scenarios
are expected to be effective ones. Thus we need to compute the complete set of effective
operators to encapsulate the footprints of the heavier modes which are already integrated
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Φ4D2 Φ6

O(1)
ϕ1D (ϕ†1 ϕ1)� (ϕ†1 ϕ1) Oϕ1 (ϕ†1 ϕ1)3

O(2)
ϕ1D (ϕ†1

←→
D µ ϕ1) (ϕ†1

←→
D µ ϕ1) OH2ϕ4

1
(ϕ†1 ϕ1)2 (H†H)

O(1)
Hϕ1D (ϕ†1 ϕ1)

[
(DµH)†(DµH)

]
OH4ϕ2

1
(ϕ†1 ϕ1) (H†H)2

O(2)
Hϕ1D (H†H)

[
(Dµ ϕ1)†(Dµ ϕ1)

]
Ψ2Φ2D

O(1)
Qϕ1D (N2

f ) (Qpαi γµQαiq ) (ϕ†1 i
←→
D µ ϕ1) O(2)

Qϕ1D (N2
f ) (Qpαi TA γµQαiq ) (ϕ†1 i

←→
D A
µ ϕ1)

OLϕ1D (N2
f ) (Lpi γµ Liq) (ϕ†1 i

←→
D µ ϕ1) O(1)

uϕ1D (N2
f ) (upα γµ uαq ) (ϕ†1 i

←→
D µ ϕ1)

O(2)
uϕ1D (N2

f ) (upα TA γµ uαq ) (ϕ†1 i
←→
D A
µ ϕ1) O(1)

dϕ1D (N2
f ) (dpα γµ dαq ) (ϕ†1 i

←→
D µ ϕ1)

O(2)
dϕ1D (N2

f ) (dpα TA γµ dαq ) (ϕ†1 i
←→
D A
µ ϕ1) Oeϕ1D (N2

f ) (ep γµ eq) (ϕ†1 i
←→
D µ ϕ1)

OQdHϕ1D (N2
f ) εαβγ ((Qαip )T C γµ dβq ) (H†i iDµϕ

γ
1) OLuHϕ1D (N2

f ) εij ((Lip)T C γµ uαq ) (ϕ†1,α iDµHj)

Φ2X2

OBϕ1 Bµν B
µν (ϕ†1 ϕ1) OB̃ϕ1

B̃µν B
µν (ϕ†1 ϕ1)

O(1)
Gϕ1

GAµν G
Aµν (ϕ†1 ϕ1) O(2)

Gϕ1
dABC G

A
µν G

Bµν (ϕ†1 TC ϕ1)

O(1)
G̃ϕ1

G̃Aµν G
Aµν (ϕ†1 ϕ1) O(2)

G̃ϕ1
dABC G̃

A
µν G

Bµν (ϕ†1 TC ϕ1)

OWϕ1 W I
µνW

Iµν (ϕ†1 ϕ1) OW̃ϕ1
W̃ I
µνW

Iµν (ϕ†1 ϕ1)

OBGϕ1 Bµν G
Aµν (ϕ†1 TA ϕ1) OBG̃ϕ1

Bµν G̃
Aµν (ϕ†1 TA ϕ1)

Ψ2ΦX
OBdϕ1

1
2(N2

f +Nf ) εαβγ Bµν ((dαp )T C σµν dβq )ϕγ1 OGdϕ1 (N2
f ) εαβγ GAµν ((dαp )T C σµν dβq )TA ϕγ1

Ψ2Φ3

O(1)
QdHϕ1

(N2
f ) (Qpαi dαq )H i (ϕ†1 ϕ1) O(2)

QdHϕ1
(N2

f ) (Qpαi TA dαq )H i (ϕ†1 TA ϕ1)

O(1)
QuHϕ1

(N2
f ) εij (Qpαi uαq ) H̃j (ϕ†1ϕ1) O(2)

QuHϕ1
(N2

f ) εij (Qpαi TA uαq ) H̃j (ϕ†1 TA ϕ1)

OLeHϕ1 (N2
f ) (Lpi eq)H i (ϕ†1 ϕ1) OQLHϕ1 (N2

f ) εij εkl ((Qpαi)T C Lkq ) (Hj H l)ϕ†1,α

Odϕ1
1
2(N2

f −Nf ) εαβγ ((dαp )T C dβq )ϕγ1 (ϕ†1 ϕ1) OdHϕ1
1
2(N2

f −Nf ) εαβγ ((dαp )T C dβq )ϕγ1 (H†H)

OQHϕ1
1
2(N2

f −Nf ) εαβγ ((Qαip )T C Qβjq ) (H̃i H̃j)ϕγ1

Table 23. SM extended by Lepto-Quark (ϕ1): additional operators of dimension 6. Here i, j
and α, β, γ are the SU(2) and SU(3) indices respectively. TA are the SU(3) generators. A,B,C =
1, 2, · · · , 8 and I = 1, 2, 3. p, q = 1, 2, · · · , Nf are the flavour indices. Operators in red violate lepton
and baryon numbers.

out. Instead of considering all such possible scenarios, we have worked out a specific
example model, see table 24. The other possible cases can be addressed in a similar spirit
and using the same methodology. We have listed all the operators of mass dimension 6 in
table 25. The operators with distinct hermitian conjugates have been coloured blue.
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Field SU(3)C SU(2)L U(1)Y U(1)′ U(1)′′ Baryon No. Lepton No. Spin

H 1 2 1/2 0 0 0 0 0

QpL 3 2 1/6 0 0 1/3 0 1/2

upR 3 1 2/3 0 0 1/3 0 1/2

dpR 3 1 −1/3 0 0 1/3 0 1/2

LpL 1 2 −1/2 0 0 0 −1 1/2

epR 1 1 −1 0 0 0 −1 1/2

GAµ 8 1 0 0 0 0 0 1

W I
µ 1 3 0 0 0 0 0 1

Bµ 1 1 0 0 0 0 0 1
Xµ 1 1 0 0 0 0 0 1
Yµ 1 1 0 0 0 0 0 1

Table 24. SM extended by two abelian gauge symmetries: quantum numbers of the fields.

Φ2X2

OWXH W I
µν X

µν (H† τ I H) OW̃XH W̃ I
µν X

µν (H†τ IH)

OBXH Bµν X
µν (H†H) OB̃XH B̃µν X

µν (H†H)

OXH Xµν X
µν (H†H) OX̃XH X̃µν X

µν (H†H)

OWYH W I
µν Y

µν (H†τ IH) OW̃Y H W̃ I
µν Y

µν (H†τ IH)

OBYH Bµν Y
µν (H†H) OB̃Y H B̃µν Y

µν (H†H)

OY H Yµν Y
µν (H†H) OỸ Y H Ỹµν Y

µν (H†H)

OXYH Xµν Y
µν (H†H) OX̃Y H X̃µν Y

µν (H†H)

Ψ2ΦX
OXQdH (N2

f )Xµν (dpα σµν Qαiq )H̃i OY QdH (N2
f )Yµν (dpα σµν Qαiq )H̃i

OXLeH (N2
f )Xµν (ep σµν Liq)H̃i OY LeH (N2

f )Yµν (ep σµν Liq)H̃i

OXQuH (N2
f ) εij Xµν (upα σµν Qαiq )Hj OY QuH (N2

f ) εij Yµν (upα σµν Qαiq )Hj

X3

OBXY Bρ
µX

ν
ρY

µ
ν OB̃XY B̃ρ

µX
ν
ρY

µ
ν

Table 25. SM extended by two abelian gauge groups: additional operators of dimension 6. Here
i, j and α are the SU(2) and SU(3) indices respectively. τ I is the SU(2) generator, I = 1, 2, 3.
p, q = 1, 2, · · · , Nf are the flavour indices.
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Features of the additional operators:

• There is no dimension 5 operator unlike the previous cases.

• Abelian mixing among Bµν , Xµν and Yµν has been noted in Φ2X2 and X3 classes.
These operators can generate kinetic mixing even if it is switched off at tree-level.

• There are no additional baryon and (or) lepton number violating operators as ex-
pected.

3.4 Flavour (Nf) dependence and B, L, CP violating operators

In the SM, fermions appear in three flavours:

L1 ≡
(
νeL

eL

)
, L2 ≡

νµL
µL

 , L3 ≡
(
ντL

τL

)
, Q1 ≡

uL
dL

 , Q2 ≡
(
cL

sL

)
, Q3 ≡

tL
bL

 ,
(3.3)

and analogously for the right chiral singlets. In the unbroken SM, all flavours are in the
same footing. The distinction is visible only after the symmetry breaking, once they acquire
different masses. At the tree-level, there is a clear absence of lepton flavour violation while
the same is induced in the quark sector through CKM mixing. But the insertion of effective
operators certainly alters this observation. Here, we have presented our results in terms of
Nf flavour fermions. The operators corresponding to different example BSMEFT scenarios
are classified into the following categories based on their fermion contents:

• No fermion: at dimensions 5 and 6 we have the Φ5 and Φ6, Φ4D2, X3, Φ2X2 classes
which do not contain any fermion fields. Thus the number of operators belonging to
these classes are independent of Nf as expected.

• Bi-linear fermions: we have found Ψ2X, Ψ2Φ2 and Ψ2Φ2D, Ψ2ΦX, Ψ2Φ3 classes at
dimensions 5 and 6 respectively. The number of operators belonging to these classes
are of the following forms: 1

2Nf (Nf − 1), 1
2Nf (Nf + 1), and N2

f which correspond to
overall anti-symmetric, symmetric and a combination of the two respectively. The
similar tensorial structures under internal and space-time symmetries also play pivotal
roles to determine flavour (Nf ) dependent coefficients.

• Quartic fermions: there exists only Ψ4 class at dimension 6 which contains four
fermion fields. Here, the number of operators is a function of the product of any
two elements belonging to the set

{
1
2Nf (Nf − 1), 1

2Nf (Nf + 1), N2
f

}
. But depending

on the symmetry structure and fermion representation we may find more intricate
combinations and those need to be analysed carefully, see ref. [40] for a detailed
discussion.

We have summarized the number of operators for each class for all the scenarios. We have
listed the number of additional dimension 5 operators in table 28. The same information
for dimension 6 operators has been collected in tables 26 and 27. We have also highlighted
the number of B, L and CP violating operators for clarity.
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BSM Field Operator Class Number of Operators as f(Nf )

Total Number (CPV Bosonic Ops.) B, L Violating Ops.

δ+

Φ6 3 0
Φ4D2 3 0
Φ2X2 6 (3) 0

Ψ2Φ2D 7N2
f 2N2

f

Ψ2Φ3 9N2
f −Nf 3N2

f −Nf

Ψ2ΦX 2N2
f 2N2

f

ρ++

Φ6 3 0
Φ4D2 3 0
Φ2X2 6 (3) 0

Ψ2Φ2D 7N2
f 2N2

f

Ψ2Φ3 9N2
f + 3Nf 3N2

f + 3Nf

Ψ2ΦX N2
f −Nf N2

f −Nf

∆

Φ6 10 0
Φ4D2 7 0
Φ2X2 10 (5) 0

Ψ2Φ2D 9N2
f 2N2

f

Ψ2Φ3 18N2
f + 4Nf 6N2

f + 4Nf

Ψ2ΦX 3N2
f −Nf 3N2

f −Nf

Table 26. Number of additional operators of different classes at dimension 6 with Nf fermion
flavours for each BSM model. The numbers in parentheses denote the counting for CP violating
purely bosonic operators.

4 Conclusions and remarks

In this paper, our chief objective has been to pave the way for BSMEFT. The UV model
realised in nature, which is yet to be observed, may be residing over a range of energy
scales containing a highly non-degenerate spectrum. Thus, it is very unlikely (unless it
possesses a compressed spectrum) that all the non-SM particles are integrated out at the
same scale leading to an effective theory described by the SMEFT Lagrangian. Instead,
we expect to see a first glimpse of the full theory at ongoing high-energy experiments,
where a new degree-of-freedom might appear on-shell. After obtaining the first hint of
a new resonance, the imminent course of action will be to embed this new particle into
an extension of SMEFT, where this particle acts as a new infrared degree of freedom in
addition to all Standard Model particles. We denote this class of new effective theories as
BSMEFT.
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BSM Field Operator Class Number of Operators as f(Nf )

Total Number (CPV Bosonic Ops.) B, L Violating Ops.

Σ

Ψ2Φ2D 2N2
f 0

Ψ2Φ3 4N2
f 4N2

f

Ψ2ΦX 6N2
f 6N2

f

Ψ4 69
4 N

4
f −

1
2N

3
f + 9

4N
2
f 9N4

f −N3
f

VL,R; EL,R; NL,R

Ψ2Φ3 20N2
f 6N2

f

Ψ2ΦX 44N2
f 12N2

f

Ψ2Φ2D 32N2
f 12N2

f

Ψ4 676
3 N4

f + 6N3
f + 17

3 N
2
f

805
12 N

4
f + 9

2N
3
f −

7
12N

2
f

χ1

Φ6 7 0
Φ4D2 10 2
Φ2X2 14 (7) 0

Ψ2Φ2D 17N2
f 6N2

f

Ψ2Φ3 38N2
f 18N2

f

Ψ2ΦX 6N2
f 6N2

f

ϕ1

Φ6 3 0
Φ4D2 4 0
Φ2X2 10 (5) 0

Ψ2Φ2D 12N2
f 4N2

f

Ψ2Φ3 15N2
f − 3Nf 3N2

f − 3Nf

Ψ2ΦX 3N2
f +Nf 3N2

f +Nf

Xµ, Yµ

X3 2 (1) 0

Φ2X2 14 (7) 0

Ψ2ΦX 12 0

Table 27. Table 26 continued. The numbers in parentheses denote the counting for CP violating
purely bosonic operators.

Already several rather minimal extensions of the SM exist, which attempt to solve or at
least address its specific shortcomings. These extensions are therefore phenomenologically
motivated and can be considered residual theories of multiple UV theories, e.g. a second
scalar particle can arise from a plethora of very different UV models. Thus it would be wise
to consider them as part of an effective theory, where the other heavy modes belonging
to that unknown full theory have been integrated out. To capture their footprints we can
include the lightest non-SM particle as the IR DOF along with the SM ones and construct
the effective Lagrangian. This enlarges the operator set beyond the SMEFT and that is
what we call BSMEFT.
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BSM Field Operator Class Number of Operators as f(Nf )

Total Number B, L Violating Operators

δ+ Ψ2Φ2 7N2
f +Nf N2

f +Nf

∆ Ψ2Φ2 7N2
f +Nf N2

f +Nf

Φ5 6 0

Σ Ψ2Φ2 4N2
f 2N2

f

Ψ2X 2N2
f 0

VL,R; EL,R; NL,R
Ψ2Φ2 20N2

f + 4Nf 6N2
f + 4Nf

Ψ2X 16N2
f − 2Nf 2N2

f − 2Nf

χ1 Ψ2Φ2 19N2
f +Nf 13N2

f +Nf

ϕ1 Ψ2Φ2 7N2
f +Nf 7N2

f +Nf

Table 28. Number of additional operators of different classes at dimension 5 with Nf fermion
flavours for each BSM model. There are no new dimension 5 operators for the models containing
ρ++ and Xµ, Yµ.

Looking into the possible well-motivated scenarios we have categorized the BSMEFT
construction into three different classes: SM extended by additional uncolored and colored
particles and gauge symmetries. For each such class, we have adopted multiple example
models. We have computed all non-redundant dimension 6 operators, extending SMEFT
to BSMEFT. We have reached out to a variety of scenarios by adding color singlet scalars,
fermions, colored Lepto-Quark scalars, vector-like fermions, and extending the gauge sym-
metry by two abelian groups. Many neutrino mass models contain complex SU(2)L singlets
and (or) multiplets. All of them can be suitably described by a single effective theory
containing a singly, or doubly charged scalar as the additional IR DOF. There are more
complete theories, e.g., the parity conserving Pati-Salam, Left-Right Symmetric Model,
etc. which contain all these DOFs in their minimal and (or) non-minimal versions. The
suitable choices of heavy modes, consistent with phenomenological constraints, will allow
us to rewrite multiple theories in terms of an effective one. The future observation of the
non-SM particle(s) will pinpoint the unique choice of additional IR DOF(s) and will open
the gateway of BSMEFT.
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A The SMEFT effective operator basis

For each BSMEFT scenario, only the additional effective operators in the presence of extra
IR DOFs have been discussed. But while performing the complete analysis of these effective
theories, one must not forget to add the SMEFT operators. For the sake of completeness
we have provided the SM Lagrangian in eq. (A.1) and the complete set of dimension
6 operators [34] in tables 30 and 31. To avoid any ambiguity we have also listed the
Standard Model degrees of freedom and their transformation properties under the gauge
group SU(3)C ⊗ SU(2)L ⊗U(1)Y in table 29.

L(4)
SM = −1

4G
A
µν G

Aµν − 1
4W

I
µνW

Iµν − 1
4Bµν B

µν

+ i(L̄pL /DLpL + Q̄pL /DQpL + ēpR /D epR + ūpR /D upR + d̄pR /D dpR)

−(ypse L̄pL e
s
RH + ypsd Q̄pL d

s
RH + ypsu Q̄pL u

s
R H̃) + h.c.

+ (DµH)† (DµH) − m2 (H†H) − λ (H†H)2. (A.1)

Here, ye,d,u are Yukawa matrices and p, s are flavour indices, /D = γµDµ and the exact form
of Dµ for a specific field is determined based on its gauge quantum numbers. Also,

GAµν = ∂µG
A
ν − ∂νGAµ − g3f

ABCGBµG
C
ν ,

W I
µν = ∂µW

I
ν − ∂νW I

µ − gεIJKW J
µW

K
ν ,

Bµν = ∂µBν − ∂νBµ. (A.2)

are the field strength tensors corresponding to the SU(3)C , SU(2)L and U(1)Y gauge groups
respectively with A,B,C = 1, · · · , 8 and I, J,K = 1, 2, 3.

B BSMEFT: a few more popular scenarios

B.1 The operator bases

SM + SU(2) quadruplet scalar (Θ): the SM can be extended by an SU(2)L quadru-
plet scalar (Θ) with hypercharge 3/2. After the breaking of electroweak symmetry, the
components of the multiplet emerge as electromagnetically charged fields13 and we can
write them as Θ = (Θ+++, Θ++, Θ+, Θ0). Since the quadruplet contains charged scalars
they offer very interesting phenomenology, e.g., neutrino mass generation, lepton number
and flavour violations [80–82, 144–147] in the presence of additional particles which can be
heavy enough to be integrated out. This would lead to an effective Lagrangian described
by the SM DOFs along with the quadruplet scalar. The operators of mass dimensions 5
and 6 involving Θ have been catalogued in tables 32 and 33 respectively. While writing

13An SU(2) quadruplet has T3 values (+3/2, +1/2, −1/2, −3/2). So, using Q = T3 + Y , we get the
electromagnetic charges (+3, +2, +1, 0) since Y = 3/2.
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Field SU(3)C SU(2)L U(1)Y Baryon No. Lepton No. Spin

H 1 2 1/2 0 0 0

QpL 3 2 1/6 1/3 0 1/2

upR 3 1 2/3 1/3 0 1/2

dpR 3 1 −1/3 1/3 0 1/2

LpL 1 2 −1/2 0 −1 1/2

epR 1 1 −1 0 −1 1/2

GAµ 8 1 0 0 0 1

W I
µ 1 3 0 0 0 1

Bµ 1 1 0 0 0 1

Table 29. Standard Model: gauge and global quantum numbers and spins of the fields.

the operators in their covariant forms, we have to be careful with the quadruplet Θ. That
is why we have worked with its component form Θijk with i, j, k = 1, 2 and we identify the
components as Θ111 = Θ+++, Θ112 = Θ++, Θ122 = Θ+ and Θ222 = Θ0. To compute the
higher tensor products of Θ with the SU(2)L doublets, i.e., L,Q,H and with the triplet
Wµν , we have introduced the 4× 4 generators of SU(2) and we denote them as τ I(4):

τ1
(4) =



0
√

3
2 0 0

√
3

2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0


, τ2

(4) =



0 −
√

3
2 i 0 0

√
3

2 i 0 − i 0

0 i 0 −
√

3
2 i

0 0
√

3
2 i 0


, τ3

(4) =



3
2 0 0 0

0 1
2 0 0

0 0 − 1
2 0

0 0 0 − 3
2


. (B.1)

To avoid confusion, for this model we have denoted the 2× 2 Pauli matrices as τ I(2).

Features of the additional operators:

• At dimension 5, we have a lepton number violating operator ÕLHΘ.

• At dimension 6, most of the operators possess similar structures as found in the case
of the complex triplet scalar (∆).

• This scenario does not offer any baryon and lepton number violation at dimension 6.

SM + lepto-quarks (χ2, ϕ2): we have catalogued the effective operators for two other
cases where the SM is extended by additional Lepto-Quarks. These are similar to the
previous Lepto-Quark scenarios but having different hypercharges, see table 34. The ef-
fective operators of dimensions 5 and 6 containing χ2 have been collected in table 35
and tables 37, 38 respectively. We have listed the same for ϕ2 as well in table 36 and
tables 39, 40. The operators with distinct hermitian conjugates have been coloured blue.
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X3

OG fABC GAµν GBνρ GCρµ OG̃ fABC G̃Aµν GBνρ GCρµ

OW εIJKW Iµ
ν W Jν

ρ WKρ
µ OW̃ εIJK W̃ Iµ

ν W Jν
ρ WKρ

µ

Ψ2Φ3 Φ6, Φ4D2

OeH (Lp eqH) (H†H) OH (H†H)6

OuH (Qp uq H̃) (H†H) OH� (H†H)�(H†H)

OdH (Qp dqH) (H†H) OHD (H† i←→D µH)(H† i←→DµH)

Ψ2ΦX Ψ2Φ2D

OeW (Lp σµν eq) τ I HW I
µν O(1)

HLD (H† i←→DµH) (Lp γµ Lq)

OeB (Lp σµν eq)H Bµν O(3)
HLD (H† i

←→
DIµH) (Lp γµ τ I Lq)

OuG (Qp σµν TA uq) H̃ GAµν OHeD (H† i←→DµH) (ep γµ eq)

OuW (Qp σµν uq) τ I H̃ W I
µν O(1)

HQD (H† i←→DµH) (Qp γµQq)

OuB (Qp σµν uq) H̃ Bµν O(3)
HQD (H† i

←→
DIµH) (Qp γµ τ I Qq)

OdG (Qp σµν TA dq)H GAµν OHuD (H† i←→DµH) (up γµ uq)

OdW (Qp σµν dq) τ I HW I
µν OHdD (H† i←→DµH) (dp γµ dq)

OdB (Qp σµν dq)H Bµν OHudD (H̃† iDµH) (up γµ dq)

Table 30. SMEFT dimension 6 operators. Here, TA and τ I are SU(3) and SU(2) generators
respectively. A,B,C = 1, 2, · · · , 8 and I, J,K = 1, 2, 3. p, q = 1, 2, · · · , Nf are flavour indices.
Operator naming convention has been adopted from [34].

Features of the additional operators:

• For χ2, we obtain a single operator at mass dimension 5 which violates baryon and
lepton numbers, whereas for ϕ2 we obtain 2 operators at mass dimension 5 and both
of them violate only lepton number.
• We have noted the lepton and baryon number violations, signifying the mixing be-
tween quark and lepton sectors within the Ψ2Φ2D, Ψ2Φ3 and Ψ2ΦX classes.
• We have also observed the mixing between Bµν , W I

µν and GAµν within the Φ2X2 class
similar to the case of χ1 and ϕ1.

B.2 Flavour (Nf) dependence and B, L, CP violating operators

Based on the ideas discussed in subsection 3.4, we have tabulated the total number of
operators of each class for the additional scenarios discussed in the previous subsections.
We have displayed the results for dimension 5 in table 41 and dimension 6 in table 42. We
have highlighted the number of B, L and CP violating operators wherever needed.
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Φ2X2

OHG (H†H) (GAµν GAµν) OHG̃ (H†H) (G̃Aµν GAµν)

OHW (H†H) (W I
µνW

Iµν) OHW̃ (H†H) (W̃ I
µνW

Iµν)

OHB (H†H) (Bµν Bµν) OHB̃ (H†H) (B̃µν Bµν)

OHWB (H† τ I H) (W I
µν B

µν) OHW̃B (H† τ I H) (W̃ I
µν B

µν)

Ψ4

OLL (Lp γµ Lq) (Lr γµ Ls) Oee (ep γµ eq) (er γµ es)

O(1)
QQ (Qp γµQq) (Qr γµQs) Ouu (up γµ uq) (ur γµ us)

O(3)
QQ (Qp γµ τ I Qq) (Qr γµ τ I Qs) Odd (dp γµ dq) (dr γµ ds)

O(1)
LQ (Lp γµ Lq) (Qr γµQs) OLe (Lp γµ Lq) (er γµ es)

O(3)
LQ (Lp γµ τ I Lq) (Qr γµ τ I Qs) OLu (Lp γµ Lq) (ur γµ us)

Oeu (ep γµ eq) (ur γµ us) OLd (Lp γµ Lq) (dr γµ ds)

Oed (ep γµ eq) (dr γµ ds) OQe (Qp γµQq) (er γµ es)

O(1)
ud (up γµ uq) (dr γµ ds) O(1)

Qu (Qp γµQq) (ur γµ us)

O(8)
ud (up γµ TA uq) (dr γµ TA ds) O(8)

Qu (Qp γµ TAQq) (ur γµ TA us)

O(1)
Qd (Qp γµQq) (dr γµ ds) O(8)

Qd (Qp γµ TAQq) (dr γµ TA ds)

OLedQ (Lpj eq) (drQjs) OduQ εαβγ εjk [(dαp )T C uβq ] [(Qjγr )T C Lks ]

O(1)
LeQu εjk (Lpj eq) (Qrk us) Oduu εαβγ [(dαp )T C uβq ] [(uγr )T C es]

O(3)
LeQu εjk (Lpj σµν eq) (Qrk σµν us) OQQQ εαβγ εjn εkm [(Qjαp )T C Qkβq ] [(Qmγr )T C Lns ]

O(1)
QuQd εjk (Qpj uq) (Qrk ds) OQQu εαβγ εjk [(Qjαp )T C Qkβq ] [(uγr )T C es]

O(8)
QuQd εjk (Qpj TA uq) (Qrk TA ds)

Table 31. Table 30 continued. Here j, k,m, n and α, β, γ are the SU(2) and SU(3) indices re-
spectively and p, q, r, s = 1, 2, · · · , Nf are the flavour indices. Operators in red violate lepton and
baryon numbers.

Ψ2Φ2

ÕLHΘ
1
2(N2

f +Nf )Lip Ljq H̃k Θijk

Table 32. SM extended by SU(2) Quadruplet Scalar (Θ): additional operators of dimension 5.
Here i, j, k are the SU(2) indices and p, q = 1, 2, · · · , Nf are the flavour indices. The operator
violates lepton number.
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Φ4D2

OHΘ� (Θ†Θ)� (H†H) O(1)
HΘD (Θ† i←→D µ Θ) (H† i←→D µH)

O(2)
HΘD (H†H) [(Dµ Θ)† (Dµ Θ)] O(3)

HΘD (Θ†Θ) [(DµH)† (DµH)]

O(1)
Θ� (Θ†Θ)� (Θ†Θ) O(1)

ΘD (Θ†Θ) [(Dµ Θ)† (Dµ Θ)]

O(2)
ΘD (Θ† i←→D µ Θ) (Θ† i←→D µ Θ) O(3)

ΘD [(Dµ Θijk)†Θilm Θ†lmn (Dµ Θjkn)]

Ψ2Φ2D

O(1)
QΘD (N2

f ) (Qpαi γµQαiq ) (Θ† i←→D µ Θ) O(2)
QΘD (N2

f ) (Qpαi τ I γµQαiq ) (Θ† i←→D I
µ Θ)

O(1)
LΘD (N2

f ) (Lpi γµ Liq) (Θ† i←→D µ Θ) O(2)
LΘD (N2

f ) (Lpi τ I γµ Liq) (Θ† i←→D I
µ Θ)

OuΘD (N2
f ) (upα γµ uαq ) (Θ† i←→D µ Θ) OdΘD (N2

f ) (dpα γµ dαq ) (Θ† i←→D µ Θ)

OeΘD (N2
f ) (ep γµ eq) (Θ† i←→D µ Θ)

Φ6

O(1)
Θ (Θ†Θ)3 O(2)

Θ (Θ†ijk Θilm Θ†lmn Θjkn) (Θ†Θ)

O(3)
Θ (Θ†ijk Θilm Θ†lmn Θnrp Θ†rpq Θjkq) O(1)

H2Θ4 (Θ†Θ)2 (H†H)

O(2)
H2Θ4 (Θ†ijk Θilm Θ†lmn Θjkn) (H†H) O(3)

H2Θ4 (Θ†Θ) (H̃ i Θ†ijk ΘjklHl)

O(4)
H2Θ4 (H̃ i Θ†ijk Θjkl Θ†lmn ΘmnrHr) O(1)

H4Θ2 (Θ†Θ) (H†H)2

O(2)
H4Θ2 (H̃ i Θ†ijk ΘjklHl) (H†H) O(3)

H4Θ2 (H̃ i H̃j Θ†ijk ΘklmHlHm)

OH5Θ (H iHj Hk Θ†ijk) (H†H) O(1)
H3Θ3 (H iHj Hk Θ†ijk) (Θ†Θ)

O(2)
H3Θ3 (H iHj Hk Θ†ijn) (Θ†lmk Θlmn)

Φ2X2

OBΘ Bµν B
µν (Θ†Θ) OB̃Θ B̃µν B

µν (Θ†Θ)

OGΘ GAµν G
Aµν (Θ†Θ) OG̃Θ G̃Aµν G

Aµν (Θ†Θ)

O(1)
WΘ W I

µνW
Iµν (Θ†Θ) O(1)

W̃Θ W̃ I
µνW

Iµν (Θ†Θ)

O(2)
WΘ εIJKW

I
µνW

Jµν (Θ† τK(4) Θ) O(2)
W̃Θ εIJK W̃

I
µνW

Jµν (Θ† τK(4) Θ)

OBWΘ BµνW
Iµν (Θ† τ I(4) Θ) OBW̃Θ Bµν W̃

Iµν (Θ† τ I(4) Θ)

Ψ2Φ3

O(1)
QdHΘ (N2

f ) (Qpαi dαq )H i (Θ†Θ) O(2)
QdHΘ (N2

f ) (Qpαi dαq ) τ I(2)H
i (Θ† τ I(4) Θ)

O(1)
QuHΘ (N2

f ) εij (Qpαi uαq ) H̃j (Θ†Θ) O(2)
QdHΘ (N2

f ) εij (Qpαi uαq ) τ I(2) H̃
j (Θ† τ I(4) Θ)

O(1)
eLHΘ (N2

f ) (Lpi eq)H i (Θ†Θ) O(2)
eLHΘ (N2

f ) (Lpi eq) τ I(2)H
i (Θ† τ I(4) Θ)

OeLH2Θ (N2
f ) (Lpi eq) H̃j H̃k Θijk OdQH2Θ (N2

f ) (Qpαi dαq ) (H̃j H̃k Θijk)

OuQH2Θ (N2
f ) (Qpαi uαq ) (Hj Hk Θ†ijk)

Table 33. SM extended by SU(2) Quadruplet Scalar (Θ): additional operators of dimension 6.
Here i, j, k, l,m, n and α are the SU(2) and SU(3) indices respectively. τ I(2) and τ I(4) are SU(2)
generators in 2 × 2 and 4 × 4 representations respectively. A = 1, 2, · · · , 8 and I, J,K = 1, 2, 3.
p, q = 1, 2, · · · , Nf are the flavour indices.
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Non-SM IR DOFs SU(3)C SU(2)L U(1)Y Spin Baryon No. Lepton No.
(Lepto-Quarks)

χ2 3 2 7/6 0 1/3 −1

ϕ2 3 1 −1/3 0 1/3 −1

Table 34. Additional IR DOFs (Lepto-Quarks) as representations of the SM gauge groups along
with their spin, baryon and lepton numbers.

Ψ2Φ2

ÕdHχ2
1
2(N2

f −Nf ) εαβγ ((dαp )T C dβq ) (H̃i χ
γi
2 )

Table 35. SM extended by Lepto-Quark (χ2): additional operators of dimension 5. Here i and
α, β, γ are the SU(2) and SU(3) indices respectively. p, q = 1, 2, · · · , Nf are the flavour indices.
This operator violates baryon and lepton number.

Ψ2Φ2

Õdϕ2
1
2(N2

f +Nf ) ((dαp )T C dβq ) (ϕ†2,α ϕ
†
2,β) ÕLdHϕ2 (N2

f ) εij (dpα Liq) (Hj ϕα2 )

Table 36. SM extended by Lepto Quark (ϕ2): additional operators of dimension 5. Here i, j and
α, β are the SU(2) and SU(3) indices respectively. p, q = 1, 2, · · · , Nf are the flavour indices. Both
operators violate lepton number.
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Φ4D2 Φ6

O(1)
χ2� (χ†2 χ2)� (χ†2 χ2) O(1)

χ2 (χ†2 χ2)3

O(2)
χ2� (χ†2 TA χ2)� (χ†2 TA χ2) O(2)

χ2 (χ†2 TA χ2) (χ†2 TA χ2) (χ†2 χ2)

O(1)
χ2D (χ†2

←→
D µ χ2) (χ†2

←→
D µ χ2) O(1)

H2χ4
2

(χ†2 χ2)2 (H†H)

O(2)
χ2D (χ†2

←→
D A
µ χ2) (χ†2

←→
D µA χ2) O(2)

H2χ4
2

(χ†2 TA χ2) (χ†2 TA χ2) (H†H)

OHχ2� (χ†2 χ2)� (H†H) O(3)
H2χ4

2
(χ†2 χ2) (χ†2 τ I χ2) (H† τ I H)

O(2)
Hχ2D (χ†2

←→
D I
µ χ2) (H†←→D µI H) O(1)

H4χ2
2

(χ†2 χ2) (H†H)2

O(3)
Hχ2D (H†H) [(Dµ χ2)† (Dµχ2)] O(2)

H4χ2
2

(χ†2 τ I χ2) (H† τ I H) (H†H)

O(4)
Hχ2D (χ†2 χ2) [(DµH)† (DµH)]

Ψ2ΦX

OBLuχ2 (N2
f ) εij Bµν (upα σµν Liq)χ

αj
2 OGLuχ2 (N2

f ) εij GAµν (upα σµν Liq)TA χ
αj
2

OWLuχ2 (N2
f ) εijW I

µν (upα σµν Liq) τ I χ
αj
2 OBQeχ2 (N2

f )Bµν (Qpαi σµν eq)χαi2

OGQeχ2 (N2
f )GAµν (Qpαi σµν eq)TA χαi2 OWQeχ2 (N2

f )W I
µν (Qpαi σµν eq) τ I χαi2

Φ2X2

OBχ2 Bµν B
µν (χ†2 χ2) OB̃χ2

B̃µν B
µν (χ†2 χ2)

O(2)
Gχ2

GAµν G
Aµν (χ†2 χ2) O(2)

Gχ2
dABC G

A
µν G

Bµν (χ†2 TC χ2)

O(1)
G̃χ2

G̃Aµν G
Aµν (χ†2 χ2) O(2)

G̃χ2
dABC G̃

A
µν G

Bµν (χ†2 TC χ2)

OWχ2 W I
µνW

Iµν (χ†2 χ2) OW̃χ2
W̃ I
µνW

Iµν (χ†2 χ2)

OBGχ2 Bµν G
Aµν (χ†2 TA χ2) OBG̃χ2

Bµν G̃
Aµν (χ†2 TA χ2)

OBWχ2 BµνW
Iµν (χ†2 τ I χ2) OBW̃χ2

Bµν W̃
Iµν (χ†2 τ I χ2)

OWGχ2 W I
µν G

Aµν (χ†2 TA τ I χ2) OWG̃χ2
W I
µν G̃

Aµν (χ†2 TA τ I χ2)

Ψ2Φ2D

O(1)
Qχ2D (N2

f ) (Qpαi γµQαiq ) (χ†2 i
←→
D µ χ2) O(2)

Qχ2D (N2
f ) (Qpαi TA γµQαiq ) (χ†2 i

←→
D A
µ χ2)

O(3)
Qχ2D (N2

f ) (Qpαi τ I γµQαiq ) (χ†2 i
←→
D I
µ χ2) O(4)

Qχ2D (N2
f ) (Qpαi TA τ I γµQαiq ) (χ†2 TA i

←→
D I
µ χ2)

O(1)
Lχ2D (N2

f ) (Lpi γµ Liq) (χ†2 i
←→
D µ χ2) O(2)

Lχ2D (N2
f ) (Lpi τ I γµ Liq) (χ†2 i

←→
D I
µ χ2)

O(1)
uχ2D (N2

f ) (upα γµ uαq ) (χ†2 i
←→
D µ χ2) O(2)

uχ2D (N2
f ) (upα TA γµ uαq ) (χ†2 i

←→
D A
µ χ2)

O(1)
dχ2D (N2

f ) (dpα γµ dαq ) (χ†2 i
←→
D µ χ2) O(2)

dχ2D (N2
f ) (dpα TA γµ dαq ) (χ†2 i

←→
D A
µ χ2)

Oeχ2D (N2
f ) (ep γµ eq) (χ†2 i

←→
D µ χ2) O(1)

QLHχ2D (N2
f ) (Qpαi γµ Liq) (H†j iDµχ

αj
2 )

OdeHχ2D (N2
f ) (dpα γµ eq) (H†i iDµχαi2 ) O(2)

QLHχ2D (N2
f ) (Qpαi τ I γµ Liq) (H†j iDIµχ

αj
2 )

OueHχ2D (N2
f ) (upα γµ eq) (H̃†i iDµχαi2 )

Table 37. SM extended by Lepto-Quark (χ2): additional operators of dimension 6. Here i, j
and α are the SU(2) and SU(3) indices respectively. TA and τ I are SU(3) and SU(2) generators
respectively. A,B,C = 1, 2, · · · , 8 and I = 1, 2, 3. p, q = 1, 2, · · · , Nf are the flavour indices.
Operators in red violate lepton number.
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Ψ2Φ3

O(1)
QdHχ2

(N2
f ) (Qpαi dαq )H i (χ†2 χ2) O(2)

QdHχ2
(N2

f ) (Qpαi TA dαq )H i (χ†2 TA χ2)

O(3)
QdHχ2

(N2
f ) (Qpαi dαq ) τ I H i (χ†2 τ I χ2) O(4)

QdHχ2
(N2

f ) (Qpαi TA dαq ) τ I H i (χ†2 TA τ I χ2)

O(1)
QuHχ2

(N2
f ) εij (Qpαi uαq ) H̃j (χ†2 χ2) O(2)

QuHχ2
(N2

f ) εij (Qpαi TA uαq ) H̃j (χ†2 TA χ2)

O(3)
QuHχ2

(N2
f ) εij (Qpαi uαq ) τ I H̃j (χ†2 τ I χ2) O(4)

QuHχ2
(N2

f ) εij (Qpαi TA uαq ) τ I H̃j (χ†2 TA τ I χ2)

O(1)
LeHχ2

(N2
f ) (Lpi eq)Hi (χ†2 χ2) O(2)

LeHχ2
(N2

f ) (Lpi eq) τ I Hi (χ†2 τ I χ2)

O(1)
QeHχ2

(N2
f ) (Qpαi eq)χαi2 (H†H) O(2)

QeHχ2
(N2

f ) (Qpαi eq) τ I χαi2 (H† τ I H)

O(1)
Qeχ2

(N2
f ) (Qpαi eq)χαi2 (χ†2 χ2) O(2)

Qeχ2
(N2

f ) (Qpαi eq)TA τ I χαi2 (χ†2 TA τ I χ2)

O(1)
Luχ2

(N2
f ) εij (upα Liq)χ

αj
2 (χ†2 χ2) O(2)

Luχ2
(N2

f ) εij (upα Liq)TA τ I χ
αj
2 (χ†2 TA τ I χ2)

O(1)
LuHχ2

(N2
f ) εij (upα Liq)χ

αj
2 (H†H) O(2)

LuHχ2
(N2

f ) εij (upα Liq) τ I χ
αj
2 (H† τ I H)

OLdHχ2 (N2
f ) (Lpi dαq )χ†2,αj (HiHj)

Table 38. Table 37 continued. Operators in red violate lepton number.

Φ2X2

OBϕ2 Bµν B
µν (ϕ†2 ϕ2) OB̃ϕ2

B̃µν B
µν (ϕ†2 ϕ2)

O(1)
Gϕ2

GAµν G
Aµν (ϕ†2 ϕ2) O(2)

Gϕ2
dABC G

A
µν G

Bµν (ϕ†2 TC ϕ2)

O(1)
G̃ϕ2

G̃Aµν G
Aµν (ϕ†2 ϕ2) O(2)

G̃ϕ2
dABC G̃

A
µν G

Bµν (ϕ†2 TC ϕ2)

OWϕ2 W I
µνW

Iµν (ϕ†2 ϕ2) OW̃ϕ2
W̃ I
µνW

Iµν (ϕ†2 ϕ2)

OBGϕ2 Bµν G
Aµν (ϕ†2 TA ϕ2) OBG̃ϕ2

Bµν G̃
Aµν (ϕ†2 TA ϕ2)

Ψ2Φ2D

O(1)
Qϕ2D (N2

f ) (Qpαi γµQαiq ) (ϕ†2 i
←→
D µ ϕ2) O(2)

Qϕ2D (N2
f ) (Qpαi TA γµQαiq ) (ϕ†2 i

←→
D A
µ ϕ2)

OLϕ2D (N2
f ) (Lpi γµ Liq) (ϕ†2 i

←→
D µ ϕ2) O(1)

uϕ2D (N2
f ) (upα γµ uαq ) (ϕ†2 i

←→
D µ ϕ2)

O(2)
uϕ2D (N2

f ) (upα TA γµ uαq ) (ϕ†2 i
←→
D A
µ ϕ2) O(1)

dϕ2D (N2
f ) (dpα γµ dαq ) (ϕ†2 i

←→
D µ ϕ2)

O(2)
uϕ2D (N2

f ) (dpα TA γµ dαq ) (ϕ†2 i
←→
D A
µ ϕ2) Oeϕ2D (N2

f ) (ep γµ eq) (ϕ†2 i
←→
D µ ϕ2)

OQeHϕ2D (N2
f ) εij ((Qαip )T C γµ eq) (ϕ†2,α iDµHj) OLdHϕ2D (N2

f ) εij ((Lip)T C γµ dαq ) (ϕ†2,α iDµHj)

OLuHϕ2D (N2
f ) ((Lip)T C γµ uαq ) (ϕ†2,α iDµH

†
i ) OQLϕ2D (N2

f ) εαβγ (Lpi γµQαiq ) (ϕβ2 iDµϕ
γ
2)

OQdHϕ2D (N2
f ) εαβγ ((Qαip )T C γµ dβq ) (H̃†i iDµϕ

γ
2) OQuHϕ2D (N2

f ) εαβγ ((Qαip )T C γµ uβq ) (H†i iDµϕ
γ
2)

Odeϕ2D (N2
f ) εαβγ (ep γµ dαq ) (ϕβ2 iDµϕ

γ
2)

Table 39. SM extended by Lepto Quark (ϕ2): additional operators of dimension 6. Here i, j
and α, β, γ are the SU(2) and SU(3) indices respectively. TA are the SU(3) generators. A,B,C =
1, 2, · · · , 8 and I = 1, 2, 3. p, q = 1, 2, · · · , Nf are the flavour indices. Operators in red violate lepton
and baryon numbers.
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Φ4D2 Φ6

O(1)
ϕ2D (ϕ†2 ϕ2)� (ϕ†2 ϕ2) Oϕ2 (ϕ†2 ϕ2)3

O(2)
ϕ2D (ϕ†2

←→
D µ ϕ2) (ϕ†2

←→
D µ ϕ2) OH2ϕ4

2
(ϕ†2 ϕ2)2 (H†H)

O(1)
Hϕ2D (ϕ†2 ϕ2)

[
(DµH)†(DµH)

]
OH4ϕ2

2
(ϕ†2 ϕ2) (H†H)2

O(2)
Hϕ2D (H†H)

[
(Dµ ϕ2)†(Dµ ϕ2)

]
Ψ2Φ3

O(1)
QdHϕ2

(N2
f ) (Qpαi dαq )H i (ϕ†2 ϕ2) O(2)

QdHϕ2
(N2

f ) (Qpαi TA dαq )H i (ϕ†2 TA ϕ2)

O(1)
QHϕ2

(N2
f ) εij (Qpαi uαq ) H̃j (ϕ†2ϕ2) O(2)

QHϕ2
(N2

f ) εij (Qpαi TA uαq ) H̃j (ϕ†2 TA ϕ2)

OLHϕ2 (N2
f ) (Lpi eq)H i (ϕ†2 ϕ2) OQLϕ2 (N2

f ) εij (Qαip Ljq)ϕ
†
2,α (ϕ†2 ϕ2)

Oueϕ2 (N2
f ) ((uαp )T C eq)ϕ†2,α (ϕ†2 ϕ2) OueHϕ2 (N2

f ) ((uαp )T C eq)ϕ†2,α (H†H)

O(1)
QLHϕ2

(N2
f ) εij ((Qαip )T C Ljq)ϕ

†
2,α (H†H) O(2)

QLHϕ2
(N2

f ) εij ((Qαip )T C τ I Ljq)ϕ
†
2,α (H† τ I H)

Oudϕ2 (N2
f ) εαβγ ((uαp )T C dβq )ϕγ2 (ϕ†2 ϕ2) OQϕ2

1
2(N2

f +Nf ) εαβγ εij ((Qαip )T C Qβjq )ϕγ2 (ϕ†2 ϕ2)

OudHϕ2 (N2
f ) εαβγ ((uαp )T C dβq )ϕγ2 (H†H) OQHϕ2 (N2

f ) εαβγ εij ((Qαip )T C Qβjq )ϕγ2 (H†H)

Ψ2ΦX

OBQLϕ2 (N2
f ) εij Bµν ((Qαip )T C σµν Ljq)ϕ

†
2,α OWQLϕ2 (N2

f ) εijW I
µν ((Qαip )T C σµν τ I Ljq)ϕ

†
2,α

OGQLϕ2 (N2
f ) εij GAµν ((Qαip )T C σµν Ljq)TA ϕ

†
2,α OBueϕ2 (N2

f )Bµν ((uαp )T C σµν eq)ϕ†2,α

OGueϕ2 (N2
f )GAµν ((uαp )T C σµν eq)TA ϕ†2,α OBQϕ2

1
2(N2

f −Nf ) εαβγ εij Bµν ((Qαip )T C σµν Qβjq )ϕγ2

OWQϕ2
1
2(N2

f +Nf ) εαβγ εijW I
µν ((Qαip )T C σµν τ I Qβjq )ϕγ2 O(1)

Gudϕ2
(N2

f ) εαβγ GAµν ((uαp )T C σµν [TA]βδ dδq)ϕ
γ
2

OBudϕ2 (N2
f ) εαβγ Bµν ((uαp )T C σµν dβq )ϕγ2 O(2)

Gudϕ2
(N2

f ) εαβγ GAµν ((uαp )T C σµν dβq ) [TA]γδ ϕδ2

OGQϕ2 (N2
f ) εαβγ εij GAµν ((Qαip )T C σµν Qβjq )TA ϕγ2

Table 40. Table 39 continued. Operators in red violate lepton and baryon numbers.

BSM Field Operator Class Number of Operators as f(Nf )

Total Number B, L Violating Operators

Θ Ψ2Φ2 N2
f +Nf N2

f +Nf

χ2 Ψ2Φ2 N2
f −Nf N2

f −Nf

ϕ2 Ψ2Φ2 3N2
f +Nf 3N2

f +Nf

Table 41. Number of additional operators of different classes at dimension 5 with Nf fermion
flavours, for the models containing χ2 and ϕ2.
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BSM Field Operator Class Number of Operators as f(Nf )

Total Number (CPV Bosonic Ops.) B, L Violating Ops.

Θ

Φ6 16 0
Φ4D2 8 0
Φ2X2 10 (5) 0

Ψ2Φ2D 7N2
f 0

Ψ2Φ3 18N2
f 0

χ2

Φ6 7 0
Φ4D2 8 0
Φ2X2 14 (7) 0

Ψ2Φ2D 19N2
f 8N2

f

Ψ2Φ3 38N2
f 18N2

f

Ψ2ΦX 12N2
f 12N2

f

ϕ2

Φ6 3 0
Φ4D2 4 0
Φ2X2 10 (5) 0

Ψ2Φ2D 14N2
f 8N2

f

Ψ2Φ3 27N2
f +Nf 7N2

f +Nf

Ψ2ΦX 20N2
f 10N2

f

Table 42. Number of additional operators of different classes at dimension 6 with Nf fermion
flavours, for models containing Θ, χ2 and ϕ2. The numbers in parentheses denote the counting for
CP violating purely bosonic operators.
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