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ABSTRACT: A statistical method to determine the number of
measurements required from nanomaterials to ensure reliable and
robust analysis is described. Commercial products utilizing graphene are
in their infancy and recent investigations of commercial graphene
manufacture have attributed this to the lack of robust metrology and
standards by which graphene and related carbon materials can be
measured and compared. Raman spectroscopy is known to be a useful
tool in carbon nanomaterial characterization, but to provide meaningful
information, in particular for quality control or management, multiple
spectra are needed. Herein we present a statistical method to quantify
the number of different spectra or other microscale measurements that
should be taken to reliably characterize a graphene material. We have
recorded a large number of Raman measurements and studied the statistical convergence of these data sets. We use a graphical
approach to monitor the change in summary statistics and a Monte Carlo based bootstrapping method of data analysis to
computationally resample the data demonstrating the effects of underanalyzing a material; for example, graphene nanoplatelets may
require over 500 spectra before information about the exfoliation efficiency, particle size, layer number, and chemical
functionalization is accurately obtained.
KEYWORDS: graphene, Raman spectroscopy, nanomaterial metrology, graphene manufacture, 2D materials, carbon nanotubes

■ INTRODUCTION

Since the landmark isolation of single-layer graphene, there
have been many investigations into its record properties
including electron mobility,1,2 room temperature quantum Hall
effect,3,4 thermal conductivity,5 and high strength6,7 which are
all highly desirable in real-world devices and applications.8

Despite this interest, commercial products utilizing graphene
are still rare, and recent publications have pointed to the lack
of robust metrology and standards by which graphene and
related carbon materials can be measured and compared
between industrial manufacturers.9−17 The number of
companies producing and using graphene has expanded
rapidly in recent years, and at the time of writing, graphene-
info (a graphene news aggregator) lists 223 companies: 92 in
Europe, 73 in North America, 45 in Asia, and 13 in Australia,18

using different manufacturing routes and producing a range of
materials with irregular sizes, shapes, and chemical function-
ality.19 These differences in properties make it difficult to use
an alternative or replacement commercial graphene source in
applications without extensive prior testing and reformulation.
Characterization of graphene from 60 different suppliers has
shown that many companies manufacture graphite nano-
platelets with a wider range of properties than the ISO
description graphene would suggest.9,20 Although standardiza-
tion work on graphene will help, it is worth noting that in some

applications, like composite materials, the use of graphite
platelets over single-layer graphene can be beneficial.21 A
robust analysis tool is needed for both academia and industry
to inform quality control and industrial standards for the
fulfilment of graphene’s full potential.
This urgent problem has been highlighted in recent

publications,9−12 with potential high throughout quality
control techniques for graphene materials including static
light scattering, surface area measurements, and wide area
optical contrast images suggested.10,16 Unfortunately, while
many of these techniques serve one specific manufacturing
route, they cannot be applied to a material without a significant
amount of prior knowledge of the origin of the materials. The
lack of a widely adopted, high-throughout, low-cost, simple,
and rigorous analytical method may suggest the development
of a “catch all” approach is difficult; instead, a compromise
between rapid screening and detailed analysis may be required
to ensure quality control measures can meet required
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standards. These standards may well depend on application
and will remain a question for key stakeholders. To inform
such work, we present a statistical method for identifying when
detailed microscale measurements can be considered repre-
sentative of a macroscale material and thereby approach an
answer to the following question: how close can we get to high
throughput?
We focus on Raman spectroscopy; among the many

techniques for graphene analysis, Raman remains the most
versatile due to the depth of information that can be readily
extracted with very little sample preparation required,
including exfoliation efficiency, particle size, layer number,
and chemical functionalization. Additionally, Raman metrics
have been reported for the analysis of other 2D materials that
share many of the same problems observed from graphene:
inefficient exfoliation and irregular particle sizes.22

In materials science, Raman data are usually acquired by
using Raman microscopy which couples a Raman spectrometer
to an optical microscope, allowing high-magnification visual-
ization of a sample and Raman analysis with a microscopic
laser spot. In common with other microscale techniques a
single spectrum should not be used to characterize a
macroscopic material. While it is common for a representative

Raman spectrum of a carbon sample to be reported,23−26 this
is undesirable because of the variations likely to be present.
Figure 1a highlights this with three different Raman spectra
from the same material. Based on the evidence of only one
spectrum, this material could be highly oxidized graphite or
few-layer graphene, whereas in fact the sample is mostly
graphitized carbon.
One potential solution adopted by some is to collect

multiple spectra from a sample and build a statistically
meaningful picture of the material being analyzed.27−31 This
is effective, albeit very time-consuming, and is the method we
build on here to develop a robust quality control measure. To
make the approach more acceptable and useful, it is beneficial
to consider how many data points are required to establish a
meaningful analysis. Most reports that use microscopic
techniques, whether that is Raman microanalysis, electron
microscopy, or scanning probe microscopy, generally state a
mean and standard deviation assuming the graphene material
follows a Gaussian model.32−34 Unfortunately, this method-
ology is rarely applicable to graphene materials as shown from
careful analysis of flake sizes by Kouroupis-Agalou et al.35,36 In
addition, many important properties can be heavily influenced
by minority components within a material.37,38 The same

Figure 1. (a) An indication of the range of single spectra that can be obtained from a carbon material (in this example, produced by high-
temperature carbonization) and how poorly any one spectrum represents the bulk sample. (b) Distribution as shown as a bivariate histogram; the
population of bins defined by both the ID/IG ratio (x-axis) and I2D/IG ratio (y-axis) denoted as a color map. Colored crosshairs link bins to a typical
spectrum with those features, shown in (a). The bottom (green) spectrum is consistent with graphitized carbon and represents the bulk of material
present; the middle (red) spectrum shows a small phase of highly crystalline graphite formed, while the top (blue) Raman spectrum shows the most
defective amorphous carbon present.

Scheme 1. Analysis of Different Graphene Materials Undertaken on a Number of Powder Samplesa

aRaman data sets were collected on the randomly mixed powders, Raman data were then fitted to extract peak parameters, and statistical testing
was used to investigate the size of the data set required.
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exciting properties like nanoparticle size, shape, and complex
chemical environment that promise the most remarkable
applications require similarly complex characterization, thereby
prohibiting the use of single averaged values. Rather than
finding another distribution model, it is easier and more
reliable to report the entire distribution of values measured or
at least compare a range of summary statistics like mean (μ),
upper and lower quartiles (Q75, Q25), and 10% and 90%
percentiles (P10, P90).
Here we investigate the size of data sets required for a

reliable, reproducible evaluation of nanomaterials by proposing
a statistical method of visualizing data convergence that can, in
principle, be applied to any microscopic technique. The most
pressing concern, however, is graphene metrology, and for this
we promote statistically robust Raman data sets, following a
process outlined in Scheme 1, because of the flexibility, depth
of information, and ease of use. To this end, we have
investigated the size of Raman data sets required for different
industrially relevant graphene materials as well as the effect of
signal-to-noise on the reliability of these data sets and also
provide a computer program specifically written for the
analysis of carbon nanomaterials that can reliably fit large
data sets. One feature of Raman data sets is the varied amount
of information extracted from peak fitting of large data sets,
specifically peak positions, widths, and height data. When
dealing with these data, we highlight 3D bivariate histograms
as shown in Figure 1b; these allow the full distribution of key
parameters such as ID/IG and I2D/IG to be shown on the same
axes in a simple plot that can be compared with other similar
materials and act as a fingerprint. These are not the only
metrics that can be used, but they can be widely applied to any
graphene material; other metrics require specific sample
preparation or have a more specific focus.30,31

It is unlikely that a single technique will meet all the
disparate demands from a field as broad as 2D materials;
however, Raman spectroscopy is a nondestructive, relatively
straightforward technique that requires little sample prepara-
tion and is especially useful for carbon materials.

■ EXPERIMENTAL SECTION
Raman Spectroscopy. Raman spectra were recorded with a

Horiba LabRam Evolution by using a 532 nm laser (17.2 mW, M2 <
1.1, beam divergence <0.45 mrad) and a ×50 long working distance
objective lens (Leica HCX PL FLUOTAR, WD = 8 mm, NA = 0.55);
samples were ground to a fine powder and pressed into pellets to
provide a smooth, flat surface to focus onto. Three samples were
taken from each type of material, and automatic Raman maps were
collected over an 80 × 80 μm2 square at 2.5 μm intervals to produce
three data sets of 1024 points; the acquisition time and number of
repeat scans were varied according to sample to maximize the signal-
to-noise possible. The instrument was calibrated to the 520.7 cm−1

Raman signal of silicon before every map was recorded.
Materials. The 325 mesh natural flake graphite, iron(III) chloride

reagent grade (97%), resorcinol reagent plus (99%), furfural (99%),
sodium cholate hydrate BioXtra (>99%), hydrazine monohydrate
reagent grade (98%), potassium permanganate ACS reagent grade
(≥99.0%), sodium nitrate ACS reagent grade (≥99.0%), and
polystyrene (average Mw ∼ 350000, average Mn ∼ 170000) were
purchased from Sigma-Aldrich. Methanol analytical reagent grade
(>99.9%) was purchased from Fisher Scientific. Pureshield argon
(99.998%) and hydrogen (99.995%) were used as provided by BOC.
The 6 M hydrochloric acid was prepared from hydrochloric acid S.G
1.18 purchased from Fisher Scientific. Hydrogen peroxide (27%
solution stabilized in H2O) was purchased from Alfa Aesar; all
chemicals were used as purchased.

Commercial samples were sourced from different companies and
analyzed as received; the use of “high” and “low” quality labels to
differentiate the two graphene nanoplatelet samples was based on the
marketing materials of the products from their manufacturers.

Exfoliation. Graphite (25 g) and sodium cholate hydrate (2.5 g)
were mixed in distilled water (500 mL) in a jacketed glass vessel. A
L5M Silverson high shear mixer equipped with a 32 mm rotor and a
96 2 × 2 mm2 square hole stator (the rotor stator gap is 136 μm) was
run at 8000 rpm for 90 min while cooling the dispersion to 0 °C.

The resulting dispersion was centrifuged at 500 rpm (32g) for 45
min, and supernatant was collected to remove the unexfoliated
graphite. The supernatant was centrifuged at 1000 rpm (129g) for 45
min, and then the supernatant from this is further centrifuged at
10000 rpm (12857g) for 45 min to remove tiny fragments, and the
sediment was collected. The sediment was dispersed in water and
filtered (0.2 μm polycarbonate); 3 L of distilled water was then used
to remove the residual sodium cholate, followed by 100 mL of ethanol
and acetone. The filter paper was dried in a vacuum oven (∼1 Pa, 60
°C) for 24 h, and few-layer graphene was removed.

Graphitization. Graphitic foam was produced following similar
method to Kicinśki et al.;39 resorcinol (2.5 g) and iron(III) chloride
(8.3 g) were dissolved in a mixture of water (23 mL) and methanol
(24 mL), to which furfural (5.0 g) was added. This mixture was
placed in a centrifuge tube and mixed with a vortex mixture and then
placed in an oven for 24 h at 60 °C for polymerization. Following a
further 3 days to dry, the solid polymer was placed in an alumina boat
for high-temperature processing. The alumina boat was placed inside
a quartz worktube (I.D. 29 mm) inside a Carbolite tube furnace
(MTF 12/38/400); the system was purged with argon (150 mL
min−1) for 30 min, and then hydrogen (8.72 mL min−1) was added to
the flow at atmospheric pressure. Argon gas flow was measured by a
volumetric flow meter while hydrogen was controlled by a Brooks
5850 TR series mass flow controller in totalizer mode. The furnace
was heated to 1050 °C at 10 °C and held at this temperature for 2 h.
Following high-temperature processing, the graphitized foam was
washed in 6 M HCl for 48 h before filtering (0.2 μm, polycarbonate)
and washed with copious water until washings were neutral.

Chemically Reduced GO. Graphite oxide was produced by using
the Hummers method;40 typically sodium nitrate (5 g) was dissolved
in sulfuric acid (230 mL) at 0 °C before graphite (10 g) was added
followed by the slow addition of potassium permanganate (30 g),
ensuring the temperature does not exceed 10 °C. The mixture was
then heated to 35 °C for 2 h, after which ice cold deionized water
(460 mL) was slowly added to quench the reaction, and the brown
solution was further diluted (1.4 L) and hydrogen peroxide added
until fizzing stops. The acidic solution was centrifuge washed until
neutral, with a subsequent 6 M HCl wash and neutralization.

A 20 mL aliquot of the graphite oxide solution was then sonicated
(20 min, 30% amplitude, 5 s pulse) by using a 750 W Cole-Parmer
ultrasonic processor. This mixture was centrifuged at 1000 rpm for 30
min, and then the supernatant was freeze-dried (SP Scientific
BenchTop Pro). The graphene oxide (40 mg) thus prepared was
dispersed into water (50 mL) and reduced by the addition of
hydrazine monohydrate (20 μL) and heating to 60 °C for 24 h; the
resulting black dispersion was filtered (0.2 μm nylon) and redispersed
by gentle sonication into water (20 mL) and freeze-dried (SP
Scientific BenchTop Pro).

■ METHODOLOGY OF STATISTICAL ANALYSIS

A selection of graphene-related materials have been prepared
and analyzed by using three independent sets of 1024 Raman
spectra collected from powder samples to identify guidance for
the robust collection of statistically meaningful data, all
following the workflow in Scheme 2. The materials were
chosen to cover the full range of interesting and topical carbon
nanomaterials, specifically graphite, liquid exfoliated graphene,
reduced graphene oxide, and high-temperature graphitized
carbon. In addition, two commercial GNP (graphene nano-
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platelet) samples and a commercial MWCNT (multiwalled
carbon nanotube) sample were analyzed; full details are
provided in the Supporting Information. The samples were
mixed and ground into uniform fine powders and pressed into
crude pellets to ensure a random distribution of flakes with
minimal spatial dependence; independent Raman spectra were
then collected from points 2.5 μm apart over an area covering
80 × 80 μm2. Typically, this took around 16 h. These
measurements were taken three times for every material (six
for MWCNTs and graphitized carbon) on a different sample
each time.
Spectra were assigned and fitted by applying well-established

protocols.41 A full treatment of Raman spectroscopy for carbon
materials is beyond the scope of this work; however, in
summary, the inelastic Raman scattering is caused by the
production of phonons, vibrational excitation modes within the
crystal structure of the carbon material, and therefore
information about the crystal and electronic structure of the
carbon can be inferred (a typical spectrum can be seen in
Figure S1). Present in all graphitic carbon materials, the G
band with a Raman shift of ∼1580 cm−1 is caused by the
degenerate iTO (in-plane transverse optical) and LO

(longitudinal optical) phonon modes, the symmetrical
opposing motion of carbon atoms in a single direction within
the plane of the graphene sheets.41−43 The D peak is dispersive
and more variable in wavenumber but generally appears
around 1350 cm−1 and is caused by scattering from the same
iTO phonon mode around the K point in the Brillouin zone;
however, this transition requires a second scattering event from
a symmetry breaking “defect” bonded to the six-membered
carbon ring, hence the label “defect” peak.44 This is commonly
used to probe functionalization, sheet size, and defect density
by crudely correlating them with the peak ratio ID/IG.

45−49

The other major peak is the 2D peak observed at higher
Raman shifts around 2700 cm−1 and commonly used to probe
graphene thickness. The sensitivity of this peak is due to the
double- or triple-resonance condition of this interac-
tion;41,42,50,51 this means that the incident photon produces a
photoexcited electron−hole pair within the material that
undergoes two distinct inelastic scattering events before re-
emitting a photon with a different energy. The similarity in
energy between the photons and excitation transition makes
the process resonant and therefore sensitive to changes within
the band structure such as observed from monolayer and
bilayer graphene, a change that alters the shape, position, and
intensity of the peak. Commonly, the I2D/IG and 2D peak
FWHM are extracted and used as a measure of graphene
thickness or exfoliation efficiency.52−54 Graphene thin film
devices prepared from CVD growth or mechanical exfoliation
make excellent use of these parameters, and methods for
spatial mapping of pristine graphene films through Raman and
optical microscopy have provided insight into defect
concentration and electrical performance.55−57 Although
these methods require sufficient data points or spectra for a
statistically meaningful spatial map, many commercial
graphene products or graphene-containing materials make
use of graphene in powder form (such as GNPs) where spatial
maps will provide very little useful information.
To investigate the size of data sets for powdered samples,

the spectra collected were fitted, and the ratios of peak heights,
ID/IG and I2D/IG, were used in the statistical analysis. Although
we chose to use peak intensities of the G and D band, as they
are most widely applicable for powders, other peak parameters
such as FWHM of the 2D band can be used to test the
statistical sample sizes (see the Supporting Information).
Elaborating briefly on the program developed to analyze large
Raman data sets, every spectrum is treated as independent and
fitted in turn. By use of the freely available lmfit58 Python
package for least-squares regression, a background is fitted and
then additional spectral features are added sequentially, but
each time the principle of Occam’s razor was used to validate
the new function. Specifically, if the addition of a spectral
feature only accounts for <2.5% of variation in the data, that
feature was excluded from the final model; this is important to
get a reliable estimate of the uncertainty in the fitted
parameters. The fitted parameters for every spectrum are
then reported, providing the full range of peak parameters
measured across the entire data set. Full details are provided in
the Supporting Information. This program is freely available at
https://github.com/SGoldie4/RamanMapAnalysis.
The parameters returned from each measurement are

analyzed according to the workflow in Scheme 2, initially for
data convergence as the map was collected. This process
considers the entire distribution, making no assumptions about
statistical models, and we visualize how key summary statistics

Scheme 2. Flowchart of the Statistical Analysis Procedure
Used in This Paper for Carbon Nanomaterials
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vary as more points are added starting from only one data
point. The summary statistics chosen were mean (μ),
interquartile range (Q25, Q75), and 10th and 90th percentiles-
(P10, P90) as a function of sample size. This visualizes the
change in the distribution of data as more Raman spectra are
collected and also shows the approximate value at which the
distribution stops changing and the data set could be
considered to have converged.
This is demonstrated in Figure 2, which shows the summary

statistics initially changing dramatically as new points are
added before becoming smoother; these changes are also
highlighted with three colored regions. After this convergence
point there is little to be gained by collecting further spectra
other than to increase the resolution of the distribution.
However, collecting fewer data points than this convergence
point could result in erroneous distributions of the Raman

peak parameters. The tolerance to errors in the Raman analysis
will depend on the purpose of the analysis; if one simply
wished to look for any significant changes to a material
following some treatment or process, far fewer points could be
collected whereas a check for minority phases and impurities in
a bulk powder would require a more comprehensive data set.
The flexibility to deal with any distribution rather than

assuming one specific statistical model is important as some
materials contain a random mixture with a normal distribution,
while others are dominated by a log-normal distribution and
yet other materials have irregular distributions containing two
material phases.35

In addition to the convergence plots described above, a
method known as bootstrapping was used to better understand
the effect of underanalyzing a material. Bootstrapping
repeatedly analyzes smaller subsamples of the original data

Figure 2. Example convergence plot and final distribution of exfoliated graphene. (a) Mean, quartile, and percentile summary statistics can be used
to describe the distribution. (b) Full distribution of ID/IG ratios measured from the sample is shown as a histogram. By calculating summary
statistics as each point was recorded, one can see the change in distribution with overall sample size. The left shaded region highlights highly
variable data; any analysis undertaken with so few data points will be unreliable. The middle region shows where the data are starting to converge
although noise is observed. The lightest shaded area to the right shows where the data have converged within error, after which the addition of new
data points will make little difference.

Figure 3. Schematic illustrating the Monte Carlo based bootstrap analysis. The scatter plots show I2D/IG data points representing a data set with
two subsamples of random values highlighted in red and blue. Distributions of these subsamples, number of data points in subsample labeled in the
figure, are shown in the histograms to the right; note the difference between histograms of different colors when the smaller subsample is used (top
row). These scatter plots only show a small number of points for clarity.
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set collected and can be used to analyze the scatter in multiple
of these subsamples about the value of the larger data
distribution. This is done by using a Monte Carlo type method
to randomly select values from the data set and place them into
a subsample; this can be analyzed to find the mean or even full
distribution of that subsample before repeating the process to
generate and analyze another random subsample. As the
subsample increases in size closer to the size of the full data set,
the mean and distribution are expected to more closely
resemble the full population distribution as illustrated in Figure
3. Conversely, the variation and noise in smaller subsamples is
indicative of the analysis that would result from only collecting
smaller Raman data sets.
Finally, to understand the role that random noise plays in

the convergence and final distribution of peak parameters, a
large model data set was produced based on real data. A
polynomial background and perfect Lorentzian peaks were
mathematically described before a pseudorandom number
generator was used to induce random noise into the signal. A
series of “maps” were produced containing the same spectral
peaks but with random noise added at a constant level across
the map; each map then increases in noise compared to the
last. By fitting these model maps, we can crudely separate the
scatter caused by experimental noise from the scatter caused by
polydisperse samples.

■ RESULTS AND DISCUSSION
To attempt any analysis of large data sets containing many
Raman spectra, it is necessary to fit mathematical models and
use the parameters in place of each spectra. To achieve this, we
developed a simple computer program (further details in the
Supporting Information) and shown it is successful at
processing large Raman data sets. Every spectrum is fitted

independently of all others, ensuring noisy spectra or minor
components do not affect the parameters reported from other
spectra. The peaks included in every fit are also validated to
ensure they are present and not simply the result of random
noise.
The data fitting package used allows for estimates of the

error in every fitted parameter, which is a useful tool for
investigating possible outliers. Our program, freely available
with this work, has been successfully used to fit Raman data
from various carbon materials and returns all peak parameters
for further analysis. The exact parameters required will depend
on the analysis, but most commonly ID/IG and I2D/IG are used
to characterize graphene and related materials; for this purpose
a 3D bivariate histogram heat map should be highlighted for
the effective display of the full distribution of all of these
parameters simultaneously in one graph which allows for easy
comparison with other materials. Having validated the program
used to fit Raman data, the size of Raman data sets and the
effect this has on the reliability could be considered. Here it
should be stressed that our example uses Raman data collected
from graphene and related materials; however, the same
approach can be applied to any analytical method of
nanomaterials that measures different regions of a heteroge-
neous material. By visualization of the trends in summary
statistics and evolution of the subsample distributions, it has
proved possible to understand the analysis and make
justifications for the use of a specified sample size. It is clear
different materials will require bespoke analyses with rigorous
justification; too many data points, in this case Raman spectra,
will waste valuable time and increase costs for manufacturers,
but too few points can result in erroneous analyses.
To ensure that 1024 points are sufficient to draw such

conclusions, the three independent samples for each material

Figure 4. Key statistical plots highlighting the difference present within two different GNP samples; the top row (a, b) is from a more
homogeneous product, and the bottom row (c, d) is from a more irregular product. The bootstrap analysis is shown on the left (a, c); the
distribution of different subsamples (colored lines) containing different numbers of data points (displayed on the plot) were randomly generated
from one complete data set of each material. In cases where the lines are very different, measuring a small number of points should not be relied
upon to reproducibly characterize the material. The plots (b, d) on the right show the change in summary statistics (solid = mean; dashed = Q25,
Q75; dotted = P10, P90) as more data points are added to the analysis; the different colored lines indicate different data sets from the same material.
The shaded colored regions highlight different convergence regimes as described previously; these regions were used to inform the sample sizes
used for the bootstrap analysis.
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are compared. As expected, there is noise; however, all data
sets from the same material are large enough to be
indistinguishable from each other, and therefore it is assumed
from the “true” distribution of that material. Any gaps between
the data and “true” or population distribution can be ignored;
full data sets are shown and discussed in the Supporting
Information.
While these data sets are consistent, the difference between

materials is marked. To illustrate this point, we contrast two
commercial GNPs using the statistical method; this case study
highlights the methodology and difference in analysis between
materials. They were described as different grades, but there
was no information about flake sizes, chemical functionaliza-
tion, or exfoliation efficiency provided with these materials and
both were listed with very similar Raman spectra. However,
with large Raman data sets the two materials are unmistakable.
One GNP sample is highly monodispersed with sharp peaks in
both the I2D/IG and ID/IG distributions very similar to bulk
graphite while the other is very polydisperse with a large range
of graphite flake sizes indicated from the Raman data,
illustrated in Figure 4.
The difference in materials also applies to the different

analyses required for them; the monodisperse sample has a
very reliable Raman spectrum that would require a relatively
small sample size to plot the complete distribution of material
present. In contrast, the polydisperse sample requires a much
larger data set to approach complete characterization. These
effects are illustrated in Figure 4, where key bootstrap and
convergence line plots from the two materials are shown. The
monodisperse sample has a much sharper distribution in the
bootstrap plots (Figure 4a) even with a small subsample size;
these plots are a way of visualizing how different the analysis
would be using smaller sample sizes than the 1024 recorded. In
the case of the monodisperse material, if only 100 Raman
spectra were recorded, there could be some uncertainty due to
the shift in mean and intensity between the yellow and green
lines. However, the general trend is consistent, and even with
300 data points the different subsamples are indistinguishable
from each other.
The convergence plot (Figure 4b) also shows the same

trends; with fewer than 200 data points the mean and
distribution width are changing substantially as new spectra are
included. After this point the distribution becomes more
established although there are still some fluctuations as the
sample size increases. Once 400 spectra are included, the
distribution shows little change beyond random noise and
slight variations due to possible outliers or minor components
already included in the analysis. In contrast, the other
commercial GNP sample (Figure 4d) has a much wider
range of ID/IG values that cause significant variation even after
hundreds of points have been recorded; indeed, 500 points are
required before even the mean becomes stable, and many more
points are needed if the full distribution is required, in this case
750 data points to stabilize the percentile and interquartile
range.
Considering the bootstrap analysis of this material as shown

in Figure 4c, the effect of underanalyzing the material can be
seen; these plots also make clear the asymmetrical shape of the
distribution of ID/IG values. From this analysis the heteroge-
neous sample contains two components: a major fraction of
material with a low ID/IG and a minor fraction with a much
higher ID/IG. The exact number of measurements required
would depend on the question being asked; however, these

plots illustrate the difficulty of establishing the exact
distribution even with hundreds of points. Were these
materials to be compared based on only a few Raman spectra,
they may appear indistinguishable.
This statistically inspired approach has also been successfully

demonstrated with other carbon materials, many of which have
different behaviors and would require different sample sizes for
their analysis (full details in the Supporting Information). One
notable example was characterization of material produced
through the liquid phase exfoliation of graphite to produce
graphene with high shear, a process commonly used in
industry and many research laboratories. Here we deliberately
avoided a multistep cascade centrifugation process to purify
the material and used only a single centrifugation step. Without
the extensive purification process there was a significant
population of graphite found in the Raman analysis of the
material. However, evidence of exfoliation through an increase
in I2D/IG, accompanied by an increase in ID/IG, was observed
in some components present within the bulk powder (Figure
S33). These signals could be difficult to detect from a single
Raman spectrum.
We have shown it is possible, and useful, to display the

entire distribution from nanomaterial analysis. The size desired
for such distributions to be considered representative can be
justified with the methodology described. We have focused on
detailed discussions of GNPs here, but the approach has also
been applied to other carbon materials. A summary of sample
sizes required for the materials measured is included in Table
1; for further details see the Supporting Information. It is

important to note that the numbers are not definitive for the
types of carbon discussed, as similar materials of different
origin may behave differently. It is the methodology and its
application in determining the data points needed for
convergence that are important.
Experimental noise is inevitable when collecting Raman

spectra, and so to understand the effect of noise, a model data
set was created based on real peak parameters to which a
controlled level of random noise was added. The model data
set was fitted, and the convergence and distribution of fitted
peak parameters from many different model spectra, with the
same noise levels, were compared with increasing noise levels
(Figure S6). The first observation was that the fitted values
agreed with the model values used, despite being treated
independently, confirming the program written to fit the
Raman data sets is correctly fitting the mathematical forms
expected.

Table 1. Number of Spectra Required for the Data Sets to
Converge for Different Carbon Materials Studieda

data points for convergence

material mean value distribution

graphite 150 300
exfoliated graphene 250 400
high quality GNPs (ID/IG) 200 400
low quality GNPs 500 750
MWCNTs 400 1600
reduced GO 400 600
graphitized carbon 400 600

aThe “mean value” refers to the number of points required to be
confident of the major fractions of a material while “distribution” is
the sample size desired for an accurate distribution.
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Crucially there was little correlation between the number of
points required for a data set to converge and the signal-to-
noise present as seen from Figure 5. While the distribution of

data clearly becomes wider the more noise is present, the rate
of convergence remains steady (in this example requiring 300
points) irrespective of noisy spectra (Figures S8 and S9). This
convergence with number of data points (n) follows the
relationship √n−1; hence, adding points results in the same
reduction in the uncertainty of the data set, regardless of the
initial uncertainty due to spectral noise. A map containing
many noisy spectra may be difficult to fit, but this will not alter
the number of points required; that depends on the
components and inhomogeneity of the sample. The effect on
small peaks that become lost in background noise will be
discussed later.
Significantly more impacted by signal-to-noise is the

variation in peak parameters. Despite fitting the same
spectrum, the random noise creates significantly more
uncertainty in the accuracy of a single spectrum. This is
visualized in Figure 6 where the standard deviation is clearly
increasing with decreasing signal/noise; however, the mean ID/
IG is in agreement with the expected value from the model data
until the signal/noise level becomes less than around 10.
To understand this effect further, the standard deviation is

normalized to the peak ratio being calculated, known as a
coefficient of variation, which provides a measure of the scatter
as a percentage that accounts for the difference in magnitude
between I2D/IG and IG/IG; this is plotted against the noise
level.

σ
μ

= coefficient of variationx

x

Figure 6b shows there is a strongly linear relationship
between the average noise level within a set of experiment data

and the random noise to be expected in the fitted outputs. This
normally distributed noise is unavoidable when using real data
sets; however, it is also clear that the standard deviation from
noise will remain below 5% for a good signal-to-noise level.
Materials often produce significantly wider and less defined
distributions so these can reasonably be attributed to
polydispersity within the sample.
These linear trends were observed to break down as the

signal intensity of the lowest peak, in this model data set the
2D peak, approaches the noise present within the background.
In this limit the analysis and peak fitting become unstable as
the peak height becomes lost in the noise, occurring at signal-
to-noise values around 1.5 (further discussion in the
Supporting Information). It is suggested that this represents
the limit of usability for extracting even vague average values
from Raman map data. However, signal-to-noise ratios greater
than two can be used to estimate mean values for material
properties from large Raman data sets hundreds of points in
size. Although, at this value the scatter in data is significant so
signal-to-noise values of the lowest spectral feature should be
above 20 if probing the polydispersity of a nanomaterial
powder.
It is acknowledged that Figure 6b provides no predictive

power; however, by spanning spectra containing no noise to
spectra in which peaks are smaller than the background scatter,
it is possible to confirm that the magnitude of the variation
caused by noise remains smaller than the variation that is
clearly a feature of nanomaterials. There is also close
agreement with experimental data, collected many times
from the same spot on a control graphite sample. This
indicates the broad trends and approximate values as well as
normal distribution curves generated from model data apply to
experimental data. This allows us to differentiate between the
width and character of distributions generated from a
material’s inhomogeneity and the effect of noise in the sample.
Importantly, the effect of noise on a distribution should be
relatively low in comparison to the material properties we are
actually trying to measure, so long as the signal-to-noise of the
lowest features remains above 1.5.

■ CONCLUSION
In summary, we have investigated a range of carbon
nanomaterials by applying a fitting algorithm to extract peak
parameters and a statistical approach, utilizing summary
statistics and bootstrap analysis, to visualize the convergence
of the data sets. This statistical method allowed us to quantify
the number of different spectra needed to characterize a
material without relying on conventional statistical models that
often do not apply to nanomaterials. This method for
accurately characterizing nanomaterials will have significant
impact on graphene metrology and can be applied to the
growing graphene industry in both manufacture through
quality control and formulation of graphene products through
consistency of supply. We also considered the effect of signal
noise on the spectral analysis; while noisy data sets were
confirmed to increase uncertainty, they have very little effect
on the required sample size for a given level of precision. Such
critical reflection of measurement techniques is required for
nanomaterial metrology to mature and allow graphene and
other exciting and technologically relevant 2D materials to
transition from the lab scale to an industrial setting. This work
demonstrates that large data sets should be collected and
complete distributions reported due to the polydispersity of

Figure 5. Convergence plot showing the effect of worsening signal-to-
noise on the convergence of large Raman data sets. While complex in
appearance, the key message from this plot is the collective behavior
of lines as the sample size changes. The colored lines indicate
increasing levels of noise through a rainbow spectrum from red (high
noise) to blue (low noise). While the lower noise levels are more
difficult to see due to the significantly reduced spread of data, the
actual rate of convergence or fluctuations in the lines are consistent
across all noise levels; this is seen in the general trend of fluctuating
lines of all colors before the convergence point around 300, after
which all lines become relatively smooth.
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many nanomaterials. Typically, a few hundred data points were
found to be sufficient to establish the mean value of a given
metric, while accurate distributions to identify minor
components often required over 400 data points. Such insights
should inform the development of nanomaterial metrology
which would allow greater confidence in the manufacture of
graphene products. We suggest users undertake their own
analysis following this methodology for their materials and
quality control purposes.
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that can be used for many other testsin this case used to
graphically show convergence testing.

Figure 6. Model data containing 500 unique spectra with nominally the same peaks were produced with random noise; this was repeated for
increasing noise. (a) Average and standard deviation ID/IG returned per noise level; the deviation is clearly increasing while the mean is reasonably
constant and close to the theoretical value shown as gray dashed line. (b) Relationship between the coefficient of variation and signal-to-noise
calculated showing that noisy spectra almost never contribute more variation than the variation inherent in nanomaterials. (c) Distribution of ID/IG
ratios fitted to the data set with a noise level indicated by the text label.

ACS Applied Nano Materials www.acsanm.org Article

https://dx.doi.org/10.1021/acsanm.0c02361
ACS Appl. Nano Mater. 2020, 3, 11229−11239

11237

https://pubs.acs.org/doi/10.1021/acsanm.0c02361?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acsanm.0c02361/suppl_file/an0c02361_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Karl+S.+Coleman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-9091-7362
http://orcid.org/0000-0001-9091-7362
mailto:k.s.coleman@durham.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stuart+J.+Goldie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-0636-4230
http://orcid.org/0000-0002-0636-4230
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Scott+Bush"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jonathan+A.+Cumming"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02361?ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02361?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02361?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02361?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02361?fig=fig6&ref=pdf
www.acsanm.org?ref=pdf
https://dx.doi.org/10.1021/acsanm.0c02361?ref=pdf


■ REFERENCES
(1) Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.;
Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh Electron Mobility in
Suspended Graphene. Solid State Commun. 2008, 146 (9−10), 351−
355.
(2) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K.
S.; Geim, A. K. The Electronic Properties of Graphene. Rev. Mod.
Phys. 2009, 81 (1), 109−162.
(3) Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer,
H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K.
Room-Temperature Quantum Hall Effect in Graphene. Science
(Washington, DC, U. S.) 2007, 315 (5817), 1379−1379.
(4) Gusynin, V. P.; Sharapov, S. G. Unconventional Integer
Quantum Hall Effect in Graphene. Phys. Rev. Lett. 2005, 95 (14),
146801.
(5) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan,
D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-
Layer Graphene. Nano Lett. 2008, 8 (3), 902−907.
(6) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the
Elastic Properties and Intrinsic Strength of Monolayer Graphene.
Science (Washington, DC, U. S.) 2008, 321 (5887), 385−388.
(7) Frank, I. W.; Tanenbaum, D. M.; van der Zande, A. M.; McEuen,
P. L. Mechanical Properties of Suspended Graphene Sheets. J. Vac.
Sci. Technol. B Microelectron. Nanom. Struct. 2007, 25 (6), 2558.
(8) Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.;
Schwab, M. G.; Kim, K. A Roadmap for Graphene. Nature 2012, 490
(7419), 192−200.
(9) Kauling, A. P.; Seefeldt, A. T.; Pisoni, D. P.; Pradeep, R. C.;
Bentini, R.; Oliveira, R. V. B.; Novoselov, K. S.; Castro Neto, A. H.
The Worldwide Graphene Flake Production. Adv. Mater. 2018, 30
(44), 1803784.
(10) Kovtun, A.; Treossi, E.; Mirotta, N.; Scida,̀ A.; Liscio, A.;
Christian, M.; Valorosi, F.; Boschi, A.; Young, R. J.; Galiotis, C.;
Kinloch, I. A.; Morandi, V.; Palermo, V. Benchmarking of Graphene-
Based Materials: Real Commercial Products versus Ideal Graphene.
2D Mater. 2019, 6 (2), 025006.
(11) Reiss, T.; Hjelt, K.; Ferrari, A. C. Graphene Is on Track to
Deliver on Its Promises. Nat. Nanotechnol. 2019, 14 (10), 907−910.
(12) Pollard, A. J. Metrology for Graphene and 2D Materials. Meas.
Sci. Technol. 2016, 27 (9), 092001.
(13) Zhu, Y.; Ji, H.; Cheng, H.-M.; Ruoff, R. S. Mass Production and
Industrial Applications of Graphene Materials. Natl. Sci. Rev. 2018, 5
(1), 90−101.
(14) Wick, P.; Louw-Gaume, A. E.; Kucki, M.; Krug, H. F.;
Kostarelos, K.; Fadeel, B.; Dawson, K. A.; Salvati, A.; Vaźquez, E.;
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