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Abstract

Posting attractive facial photos is part of everyday life in the social media era.

Motivated by the demand, we propose a lightweight method to automatically

and efficiently beautify the shapes of both portrait and non-portrait faces in

photos, while allowing users to customize the beautification of individual facial

features. Previous methods focus on the beautification of mostly frontal and

neutral faces, without incorporating user controllability in the beautification

process. To address these restrictions, we propose the Facial Reshaping Oper-

ator representation, which is affine-invariant, captures the pairwise geometric

configuration of facial landmarks, and allows for efficient face beautification with

the user-specified weights of individual facial parts. We also propose an unsu-

pervised beautification method in the operator space of faces, where an input

face is iteratively pulled towards a local nearby density mode with improved

attractiveness. Our method distinguishes itself from the commercial beautifica-

tion tools in that it mildly enhances facial shapes without altering makeups or

complexions, which complements these tools that lack fine-grained control on

the attractiveness of facial shapes for users. The experimental results show that

our method improves facial shape attractiveness for a large range of poses and
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expressions, demonstrating the potential of applicability to photos seen on the

social media such as Facebook and Instagram everyday.

Keywords: Face Beautification, Facial Attractiveness, Facial Reshaping

Operator, Facial Geometry

1. Introduction

Driven by the culture of social media, the need of appearing attractive (Sei-

dman & Miller, 2013) has stimulated a body of research on facial attractiveness

analysis (Zhang et al., 2017). Accordingly, the culture has also demanded the

development of commercial systems and tools that allow users to automatically5

and efficiently enhance their photos before posting on the social media plat-

forms such as Facebook and Instagram. The study of (Hu et al., 2014) shows

that nearly half of the photos sampled from Instagram belong to the Selfies and

Friends categories, with both portrait and non-portrait faces being the main

subjects presented in them. However, most of the existing commercial tools10

achieve face beautification by removing darkness and smoothing facial skins

(Ciuc et al., 2013), which may not be desirable in some cases when users want

to preserve their original makeups and complexions (Dang et al., 2019) while

still being able to improve the overall facial attractiveness of the posed photos.

This scenario motivates us to propose an intelligent system that only enhances15

the shapes of faces in the photos, which have significant influences on the attrac-

tiveness (Leyvand et al., 2008), without altering the makeups or complexions.

We expect our system to complement the existing face beautification tools in

providing isolated, fine-grained control on the attractiveness of facial shapes for

users.20

While facial attractiveness is a subjective notion, some studies have shown

that regardless of the ages, genders and races of human observers, their prefer-

ences towards more attractive faces share some objective natures (Cunningham

et al., 1995; Slater et al., 1998; Winston et al., 2007). This motivates the use of

computer techniques for facial attractiveness analysis and enhancement. There25
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have been studies on the impact of the geometry of faces on attractiveness eval-

uation (Schmid et al., 2008) and enhancement (Liao et al., 2012). However,

their rule-based methods cannot quantify how much a face departs from or con-

forms to the average of a group of face, which is hypothesized to be attractive

(Grammer & Thornhill, 1994). In contrast, data-driven methods that require30

human-annotated attractiveness scores for face analysis and beautification have

been proposed (Eisenthal et al., 2006; Leyvand et al., 2008). More recently,

deep learning techniques have been applied to the evaluation and enhancement

of facial attractiveness (Gan et al., 2014; Li et al., 2015). The main limitation of

these supervised methods is that they require a manually annotated face dataset35

with attractiveness scores for training, which is labour-intensive to obtain and

may bias towards specific facial traits (e.g. races) if the dataset is not sufficiently

large-scale. The dependency of these methods on annotations also presents a

major hurdle to the beautification of non-frontal, non-neutral faces in most pho-

tos, because it remains challenging to rate the attractiveness of a facial shape40

when the pose or expression variations are confounded (Zhang et al., 2017).

The other drawback of these methods is that they require non-linear iterative

optimization steps to gradually improve the estimated attractiveness of a given

face, which is computationally costly and prone to local optimum. These chal-

lenges motivate us to propose a more lightweight method for face beautification,45

which only requires a collection of unannotated faces while enabling much more

efficient face reconstruction with the global optimum.

Firstly, we propose to approach the beautification of non-frontal, non-neutral

faces in a geometrically controllable way. Departing from the coordinate-based

face representations of (Leyvand et al., 2008; Liao et al., 2012; Chen et al., 2014),50

we propose to encode the geometry of a face using the orthogonal projection

operator onto the subspace of the facial landmarks. Due to the affine-invariance

of our operator representation, it frees the face beautification process from the

underlying nuisance facial landmarks transformations, such as translation, ro-

tation, and scaling. Furthermore, it fully encodes the pairwise geometric con-55

figuration of facial landmarks, which enables users to prescribe different levels
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of beautification for individual facial parts. Comparing with the non-linear face

reconstruction methods in (Leyvand et al., 2008; Liao et al., 2012; Chen et al.,

2014), the reconstruction of facial landmarks from our operator representation

is a linear projection, which is much more efficient and guaranteed to be globally60

optimal.

On top of our operator representation of faces, we propose to identify beau-

tiful face patterns as the local density modes in the operator space of faces. The

idea is that these density modes represent the local clusters of facial shapes and

exhibit stronger tendency of symmetry and averageness (Grammer & Thorn-65

hill, 1994). We observe that to obtain high-fidelity face beautification results,

users typically want to apply minimum changes to the geometry of an input

face while keeping the original pose and expression intact. Therefore, we for-

mulate the beautification process of an input face as pulling it towards a local

nearby density mode, which can be efficiently found using the mean-shift method70

(Georgescu et al., 2003). As the method successively averages the face opera-

tors in a local neighbourhood until convergence, it is locality-sensitive averaging

for face beautification. The locality-sensitive averaging allows us to adapt the

beautification of a particular face to the local vicinity in the operator space of

faces, so that the original pose and expression variations can be preserved.75

Results show that our method improves facial attractiveness for a wide range

of non-frontal poses and non-neutral expressions, without relying on any human-

annotated attractiveness scores for training (Leyvand et al., 2008; Chen et al.,

2014; Li et al., 2015). 70% of the human subjects we interviewed prefer our beau-

tified results for 100 frontal portraits, while 65% of the subjects prefer the beau-80

tified results for 100 general facial images. Results also show that our method

preserves user-specified facial parts for face beautification. The whole process

takes less than 1 second to finish on a laptop and therefore allows for continu-

ous user interactions. Our publicly available source codes can be downloaded

from this link: https://drive.google.com/open?id=1NonS5WQedtxejTDh-m_85

Ym3MZSk21H54p

The contributions of this paper include:
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• Theoretically, we propose to represent the geometry of a face using the

orthogonal projection operator onto the subspace of the facial landmarks

(Chen et al., 2015). This representation is affine-invariant, captures the90

pairwise geometric configuration among facial landmarks, and allows for

efficient face beautification with the user-specified weights of individual

facial parts. We also propose to formulate the beautification process of a

face as locality-sensitive mode seeking (Li & Tang, 2018) using the mean-

shift method. The method is capable of beautifying non-frontal, non-95

neutral faces by applying minimum changes to input faces via locality-

sensitive averaging.

• Practically, we demonstrate, to the best of our knowledge, the first in-

telligent system that is able to beautify the shapes of both portrait and

non-portrait faces in a purely unsupervised manner. The user study re-100

sults validate that 70% of the examined users prefer our beautification

results for portrait faces, and that 65% of them prefer our results for

non-portrait faces. Our system does not alter the original facial makeups

or complexions of photos, which has the potential of complementing the

existing commercial tools that modify these non-shape factors.105

The remainder of the paper is structured as follows. We review existing work

in Section 2 and describe our face beautification approach in 3. We present our

results in Section 4 and conclude the paper in Section 5.

2. Related Work

In this section, we briefly review existing work related to facial modeling and110

editing, facial attractiveness analysis, and facial attractiveness enhancement.

Facial Modeling and Editing. One approach to face beautification in

natural photos is reconstructing 3D faces from 2D images and applying the 3D

face rectification method of (Liao et al., 2012). Despite the development of

statistical shape models (Blanz & Vetter, 1999; Tena et al., 2011; Maleš et al.,115
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2019) and example-based models (Kemelmacher-Shlizerman et al., 2011; Hass-

ner, 2013), 3D face reconstruction with a wide range of poses and expressions

remains a challenging ill-posed problem. While the work of (Yang et al., 2011)

can be used for facial component transfer, it does not address the problem of face

beautification. Therefore, following (Leyvand et al., 2008; Chen et al., 2014),120

we focus on 2D face beautification in this work.

Textural, expressive, and photometric traits also have important influence on

the perception of facial attractiveness. As a result, a large body of research have

been devoted to the editing of these traits in 2D images, such as face makeup

(Guo & Sim, 2009; Scherbaum et al., 2011; Zhang et al., 2019), expression125

editing (Yang et al., 2011, 2012), pimples removal (Brand & Pletscher, 2008),

photometry correction (Joshi et al., 2010), and hair decoration (Pasupa et al.,

2019). Our work complements these methods in that we focus on editing the

geometric trait of faces in 2D images.

Facial Attractiveness Analysis. Computer techniques have been used130

for facial attractiveness analysis over two decades. We refer the readers to

(Laurentini & Bottino, 2014) for an excellent review of the field. (Grammer &

Thornhill, 1994) composed different facial images to verify the effect of symme-

try and averageness on the perception of facial attractiveness. Later, (Zhang

et al., 2011) validated the effect of averageness using geometrically transformed135

faces. (Schmid et al., 2008) took a rule-based approach to examine that human-

annotated attractiveness scores were consistent with that predicted by neoclas-

sical canons, symmetries, and golden ratios. (Eisenthal et al., 2006) represented

the first to use machine learning for facial attractiveness prediction. They em-

ployed human subjects to rate a library of faces and trained attractiveness re-140

gression models using the appearance and geometry features of faces. Following

this, a number of learning-based facial attractiveness prediction methods have

been proposed (Zhang et al., 2017; Gan et al., 2014; Chen et al., 2014). As it is

ambiguous to rate the attractiveness of non-frontal, non-neutral faces, previous

work mostly focuses on the analysis of frontal portraits. Therefore, we propose145

an unsupervised beautification method for non-frontal, non-neutral faces.
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Facial Attractiveness Enhancement. Compared with facial attractive-

ness analysis, the enhancement problem has received relatively less research

attention. (Liao et al., 2012) optimized the shape of a 3D face model by de-

forming it towards the beauty cannons summarized by (Schmid et al., 2008).150

The method works well for neutral faces but has inherent difficulties of gener-

alizing to non-neutral faces. (Leyvand et al., 2008) was the first to approach

attractiveness enhancement using machine learning. Their results validated the

feasibility of a data-driven approach to face beautification. Recently, (Chen

et al., 2014) searched for a convex combination of attractive faces while max-155

imizing its resemblance to the original face. However, both methods require

human annotations of attractiveness scores for training and cannot work for

non-frontal, non-neutral faces, which are actually the main subjects of real-

world photos. Deep learning has also been applied to facial attractiveness en-

hancement (Li et al., 2015). However, the resulting system does not allow for160

the controllability of beautification due to the black-box nature of deep learning

techniques. In contrast from the methods of (Leyvand et al., 2008; Chen et al.,

2014; Li et al., 2015), our proposed one works for faces with non-frontal poses

and non-neutral expressions in images. Benefiting from the linearity of our op-

erator representation, our method easily allows users to preserve certain facial165

parts while beautifying the remaining.

3. Our Facial Operator Approach to Face Beautification

Fig. 1 provides an overview of our face beautification method. Given an

input facial image, we first detect (a) a collection of facial landmark points

along the jawline and the contours of the eyebrows, eyes, nose, and mouth.170

We then compute (b) an operator to capture the input facial shape, which is

the orthogonal projection matrix onto the subspace of the detected landmarks.

After that, we perform (c) face beautification on the operator by pulling it

towards a local nearby density mode in the operator space of faces. We then

reshape (d) the original landmarks using the optimized operator so that the175
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Input Image Detected Landmarks

Computed Facial Operator Op mized Facial Operator

Reshaped Landmarks Beau ed Image

(a)

(b) (c) (d)

(e)(d)

Computed Facial Operator Op mized Facial Operator

(b) (c) (d)
Facial Reshaping Operator Space

Input Image Detected Landmarks Reshaped Landmarks Beau ed Image

(a) (e)(d)
Facial Landmarks Space

Figure 1: The Overview of Our Face Beautification Method. The computation steps

from (a) to (e) are facial landmarks detection, facial operator computation, facial operator

optimization, facial landmarks reconstruction, and facial image warping respectively.

geometric configuration of the input face can be enhanced. Finally, we warp

(e) the input image using the original and the reshaped landmarks to produce

an beautified image. We also describe our system using the pseudocode in
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Algorithm 1. We describe the steps in the following sections.

Algorithm 1: The overall process of our face beautification system

Input: A facial image I;

A vector of beautification weights w ∈ R
n, where n is the

number of facial landmarks and 0 ≤ wi ≤ 1 is the strength of

modification to the i-th landmark;

A dataset of unannotated face images.

Output: A user-controlled beautified facial image I∗.

1 Detect a collection of facial landmarks P ∈ R
n×3 from I (Section 3.1),

where the homogeneous coordinate of the i-th landmark is

Pi = (Pi1, Pi2, 1);

2 Compute the facial operator representation of P as M = P (PTP )−1PT

(Equation 2, Section 3.2), which is the orthogonal projection operator

onto the subspace of P ;

3 Compute an enhanced facial operator M∗ from M by repeatedly

shifting it towards a local nearby density mode of the given face

dataset until convergence (Equation 5, Section 3.3);

4 Reshape the original facial landmarks P into the enhanced ones

P ∗ = [(1−W )M +WM∗]P (Equation 9, Section 3.4), where

W = wwT is the matrix of pairwise beautification weights;

5 Warp the original facial image I into the beautified one I∗ using the

original and enhanced facial landmarks P and P ∗ (Section 3.5);

180

3.1. Facial Landmarks Detection

Given an input facial image I, the first step of our approach is to detect a

collection of facial landmarks P ∈ R
n×3 for representing the geometry of the

input face, where n is the number of landmark points. The coordinates of the

i-th landmark is Pi = (Pi1, Pi2, 1), where Pi1 and Pi2 are the x and y coordi-185

nates on the image plane respectively. The last component is the homogeneous

coordinate 1, which we need to derive our facial operator representation of P

in Section 3.2. We adopt the method of (Le et al., 2012) for detecting a num-
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ber of n = 68 facial landmark points along the jawline and the contours of the

eyebrows, eyes, nose and mouth. This method builds a local shape model for190

each individual facial part, which is capable of handling a wide range of facial

expression and pose variations.

3.2. Facial Operator Representation

After detecting a collection of facial landmarks P from an input image I,

we aim at deriving a more effective representation of P for facial shape ma-195

nipulation. Our idea is to represent P as the orthogonal projection operator

M ∈ R
n×n onto the coordinate subspace of P . Traditionally, the normalized

coordinates of P and the edge lengths of the delaunay triangulation have been

widely used (Leyvand et al., 2008; Chen et al., 2014). However, these low-level

representations cannot be effectively converted back to the coordinate space,200

making the facial reshaping process non-linear with potentially bad local min-

imas. In contrast, our operator representation M is naturally invariant to the

nuisance affine perturbations of the detected facial landmarks, which geomet-

rically correlates every pair of landmarks in a human-understandable way. In

Section 3.4, we show that it significantly simplifies the facial reshaping process to205

linear projection, allowing for flexible user controllability on the beautification

process

Formulation. To solve for the operator representation M that geometri-

cally correlates every pair of facial landmarks, we consider representing each

landmark Pi as the linear combination of all the landmarks. Because the num-

ber of landmarks n is normally greater than the coordinate dimension (i.e. 3),

we further minimize the L2-norm of the combination coefficients so that the rep-

resentation can be uniquely determined. This leads to the following constrained

minimization problem for each landmark:

x∗ = argmin ‖x‖22, subject to Pi =

n∑
k=1

xkPk (1)

where x ∈ R
n is a vector of linear combination coefficients for each landmark

and ‖x‖22 =
∑n

k=1 x
2
k is the L2-norm of x to be minimized. Solving (1) for each
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landmark individually gives us the matrix representation M :

Facial Reshaping Operator︷ ︸︸ ︷
M = P (PTP )−1PT (2)

where T is the matrix transpose operator and each row of M is the optimal

solution to (1) for the corresponding landmark. We can verify from (2) that

the representation is symmetric (M = MT ), idempotent (M = M2), and exact210

(P = MP ), confirming that it is the orthogonal projection operator onto the

subspace of the facial landmarks. This construction fundamentally changes

the formulation of facial shape manipulation from the traditional non-linear

coordinates optimization to our linear projection.

Affine-Invariance. Here, we verify that our operator representation M is215

guaranteed to be affine-invariant, which allows for efficient facial shape analysis

and manipulation without nuisance facial landmark coordinate transformations

involved in the process. For each landmark Pi, it can be seen from (1) that the

constraint still holds when we apply any linear transformation L ∈ R
3×3 to all

the landmarks, LPi =
∑n

k=1 xk(LPk). This shows that the optimal combination220

coefficients (i.e. rows of M) remain the same under any linear (rotation, uniform

scaling, and shearing) perturbation in real-world facial images. By applying any

homogeneous translation T = (x, y, 1) ∈ R
3 to all the landmarks, we can further

obtain Pi + T =
∑n

k=1 xk(Pk + T ) =
∑n

k=1 xkPk + (
∑n

k=1 xk)T . Because the

last coordinate components of all the landmarks are 1, we have
∑n

k=1 xk = 1225

from the constraint in (1). Therefore, the equation Pi + T =
∑n

k=1 xk(Pk + T )

holds, which confirms that the combination coefficients are also invariant to any

translation of the facial landmarks.

Geometric Significance. On top of the affine-invariance, our operator

representation M also has clear geometric significance that is not provided by

deep learning methods (Gan et al., 2014; Li et al., 2015). This allows it to fully

capture the geometric configurations for every pair of facial landmarks, which

enables part-based user control in face beautification. We reveal this by finding
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Figure 2: The Visualization of Our Operator Representation of Facial Landmarks.

Left : two faces with different expressions and poses, with the corresponding facial landmarks

rendered on top of the faces; the white numbers on the top left show the indices of the 68 facial

landmarks. Right : the rendered images of the two corresponding operator representations,

with blue and red colors representing low and high values respectively; the black lines sepa-

rate different facial parts for clearer visualization. These parts include the jawline (JL), left

eyebrow (LB), right eyebrow (RB), nose bridge (NB), nostril (NO), left eye (LE), right eye

(RE), outer lip (OL), and inner lip (IL). The pairwise geometric configurations represented

by our operator enables part-based user control in face beautification.
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the analytical form of each element of M as follows:

Mij =
(Pi − P )TS−1(Pj − P )

n
+

1

n
(3)

where P = 1
n

∑n
k=1 Pk is the centroid of the face and S = 1

n

∑n
k=1(Pk−P )(Pk−

P )T is the covariance matrix of the landmark coordinates. Now, it becomes clear230

that the diagonal elements of M depend on the normalized squared Euclidean

distance from each landmark to the face centroid, while the non-diagonal ele-

ments depend on the dot product between the pair of normalized vectors from

the two corresponding landmarks to the centroid.

Facial Operator Visualizations. To demonstrate the geometric signif-235

icance of our operator representation, we visualize the operators of two faces

with different expressions and poses in Fig. 2. It can be seen that each facial

part has its a distinct pattern within the matrix. These patterns come from the

configurations of the facial parts relative to each other, which vary according to

the facial shape. As the distances from the landmarks to the face centers are240

encoded in the diagonals of the operators, the elements corresponding to the

outermost contours (i.e. the jawline and eyebrows) have relatively larger values.

The inner facial parts such as the lips and nose have relatively smaller values.

The main difference between the two operators are on the rows and columns

corresponding to the jawline and lips, due to the more significant changes caused245

by expression and pose. It is also possible to infer the symmetry information

of facial parts from the visualized operators. Taking the first one for example,

the submatrix occupied by the jawline and eyebrows is nearly symmetric about

its main diagonal, signifying the vertical symmetries of the two facial parts. In

comparison, the symmetry patterns of the second face have been considerably250

weakened by the changing expression and pose.

3.3. Facial Operator Optimization

After computing the operator M from an input set of facial landmarks P ,

the next step of our approach is to optimize M into M∗ with improved facial

attractiveness. The main idea of our method is to iteratively pull M towards255
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a local nearby density mode in the operator space of faces. This allows us to

preserve the original pose and expression during beautification, while gradually

improving the attractiveness of the represented face.

We require a dataset of un-annotated facial operators M = {M i}mi=1 for

training, where m is the number of faces and each operator M i ∈ R
n×n is260

computed from the corresponding face. While the methods of (Leyvand et al.,

2008; Chen et al., 2014; Li et al., 2015) focus on the beautification of frontal and

neutral faces, our method can enhance the shapes of faces with non-frontal poses

and non-neutral expressions, without requiring human-annotated attractiveness

scores for training.265

Feature Transformation. To preserve the major features of faces in beau-

tification, we propose to transform the original operator representation using the

the Principal Component Analysis (PCA) for dimension reduction and selection.

By preserving 95% of the dataset variance, we obtain a low-dimensional close

approximation of an input operator M as follows:

M = M +

C∑
c=1

λcΓc (4)

where M ∈ R
n×n is the mean, {Γc}Cc=1 are the principal components in the

descending order of the associated variance, and {λc}Cc=1 are the projection

coefficients of M onto these components. Therefore, the operator can be ap-

proximated using the mean operator and a set of mutually uncorrelated details.

These details are sorted in the descending order of the corresponding principal270

eigenvalues (i.e. data variances).

As the leading coefficients explain more rapidly changing expressions and

poses in the dataset, we choose to use the non-leading coefficients for facial shape

optimization. Empirically, we exclude the first two coefficients and subject the

remaining {λc}Cc=3 to optimization. We reconstruct the optimized operator as275

M∗ = M +
∑2

c=1 λcΓc +
∑C

c=3 λ
∗
cΓc, where {λ∗

c}Cc=3 are the coefficients after

face optimization. This is visualized in Fig. 3. In the following, we use M

to abbreviate the coefficient representations {λc}Cc=3 for explaining our face

beautification method.
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28th: 9.3764e-005 29th: 8.7872e-005 30th: 8.2706e-005

3rd: 0.003133052 4th: 0.002582757 5th: 0.0017336803
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 Op mized during 
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Figure 3: The Visualization of Our PCA Feature Transformation. The images show

the mean facial operator and the discovered PCA components as sorted by their associated

eigenvalues (displayed on the bottom of each small image). We fix the PCA coefficients

corresponding to the first and the second components during face beautification, because they

encode large-scale pose and expression variations and modifying them leads to noticeable

facial image distortions. We only optimize the remaining PCA coefficients that mostly encode

intrinsic facial shape features.

(a) Source Face 1 (b) Source Face 2 (d) Without Trans. (e) With Trans. - Ours(c) Input Face

Figure 4: The Effect of Feature Transformation on Facial Shape Interpolation. (a):

a frontal and neutral source face. (b): another source face with pose and expression. (c):

an input face. (d): the interpolated face generated by applying the mean of the two source

facial operators to the input face without feature transformation. (e): the interpolated face

generated using our feature transformation method.

15



(a) Input Face (b) Without Trans. (c) With Trans. - Ours

Figure 5: The Effect of Feature Transformation on Face Beautification. (a): an input

face. (b): the beautified face without using feature transformation. (c): the beautified face

with our feature transformation method.

We show an example of face interpolation in Fig. 4, where we apply the mean280

of the facial operators of two source faces to an input face with and without

feature transformation. We evaluate this task because the averaging operation

is the building block of our unsupervised face beautification method. It can be

seen that while the two source faces have different expressions and poses, they

share the consistent intrinsic facial geometric configuration. However, when285

their shapes are naively interpolated and transferred to a target face, some

extrinsic factors creep in and lead to undesirable face distortions. By excluding

the leading PCA coefficients, it can be seen that the transferred face has no

noticeable distortions. Furthermore, we show an example of face beautification

with and without feature transformation in Fig. 5. It can be seen that the290

beautified image with feature transformation is much more realistic compared

with that without feature transformation. The output images in Fig. 4 and 5

are generated using the facial image warping method in Section 3.5.

Locality-sensitive Face Beautification. Motivated by the averageness

property of facial attractiveness (Grammer & Thornhill, 1994; Schmid et al.,295

2008; Zhang et al., 2011), we propose to optimize an input facial operator M by

iteratively averaging its local nearby samples in the operator space of faces. Our

idea is to regard faces at the local cluster centers (i.e. local average faces) as the

locally most attractive, which to our knowledge is first proposed in this work.

Different from the methods of (Grammer & Thornhill, 1994; Schmid et al., 2008;300
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Zhang et al., 2011), we ensure the locality of the averaging operation so that

the averaged faces have improved attractiveness while remaining similar to the

input. According to the mean-shift formulation of (Comaniciu & Meer, 2002),

this iterative locality-sensitive averaging operation is guaranteed to converge to

a local nearby density mode in the operator space, under mild assumptions of305

the kernel function used for measuring the distance between any pair of facial

operators.

We formulate the idea of iterative local averaging and obtain our face beau-

tification formula at one scale as follows:

Locality-sensitive Face Averaging︷ ︸︸ ︷
Ψ(M) =

∑m
i=1 [h

−C
i e−||Mi−M ||2/2h2

i ]M i

∑m
i=1 [h

−C
i e−||Mi−M ||2/2h2

i ]
(5)

where M is an input facial operator using our PCA feature representation, each

M i is a training sample from the face dataset M, m is the number of training

samples in M, and C is the dimension of the PCA representation. It can be310

seen from (5) that the distance between M and M i is measured as the Gaussian

kernel function e−||Mi−M ||2/2h2
i , which assigns higher weights to geometrically

more similar faces and lower weights to faces that are farther away from the

input. Compared with the equal or linear weighting kernels, the exponential

locality of the Gaussian kernel function allows for better preservation of the315

input pose and expression during beautification.

To account for varying sample densities, we associate an adaptive scale hi

with each face in the dataset:

hi = ||M i −Mγm||2 (6)

where γ ∈ (0, 1) and Mγm is the γm-nearest neighbor to M i in the dataset.

When γ is set to a small value, only very close samples can contribute to the

averaging and thus only small-scale facial features will be modified. When γ is

set to a larger value, more distant samples will be considered and larger-scale320

facial features will be enhanced. Empirically, we choose the set of scales γ ∈
{0.005, 0.01, 0.02, 0.04, 0.08} because they are able to cover both local nearby
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(a) Source Face (b) Input Face (c) Beau ed Face

Figure 6: The Example of Face Beautification via Shape Transfer. (a): a source face.

(b): an input face to be beautified. (c): the beautified face with the shape coming from the

example. The shape transfer is efficiently done by applying the operator of the source face to

the input as linear projection.

and more distant training samples for facial shape optimization. For each γ,

we compute the corresponding adaptive scale hi for each training sample M i

and iteratively evaluate the locality-sensitive averaging operation in (5) until325

convergence. The final optimized operator M∗ is computed as the mean of the

convergent solutions of all scales.

3.4. Facial Landmarks Reshaping

With the original facial landmarks P and the optimized facial operator M∗

computed by our locality-sensitive averaging method, the next step of our ap-330

proach is to find a set of new landmarks P ∗ that are consistent with the enhanced

facial shape represented by M∗. We show that our operator representation re-

duces the process to a linear projection, which is significantly less costly com-

pared with the non-linear optimization method of (Leyvand et al., 2008; Chen

et al., 2014). Besides the global optimality of our method, it allows users to335

flexibly control the beautification weight of each individual facial part, thereby

achieving user-satisfied beautification results.

Formulation. To ensure the quality of face beautification, we minimize

the distance between the original and the new landmarks while enforcing the

consistency of the new landmarks with the optimized operator:

P ∗ = argmin ‖X − P‖2F , subject to X = M∗X (7)

18



(a) Input Face (b) Full Average (c) Jawline Fixed (d) Nostril Fixed (e) Eyebrows Fixed

Figure 7: The Example of User-controlled Face Averaging. (a): an input face. (b): a

full average face created by applying the mean facial operator to the input. (c): the average

face with the original jawline shape by setting the corresponding beautification weight to 0.

(d): with the original nostril shape. (e): with the original left and right eyebrow shapes.

where X ∈ R
n×3 is a set of new landmarks to be found and ‖X − P‖2F =

∑n
i=1

∑2
j=1 (Xij − Pij)

2 measures the deviation of the two sets of landmarks.

The constraint enforces that the new landmarks should be within the subspace

corresponding to the operator M∗, thereby reconstructing the encoded pairwise

geometric configurations of the facial landmarks. The optimal solution to (7)

is the linear projection of the original facial landmarks onto the new optimized

operator:
Facial Reshaping︷ ︸︸ ︷
P ∗ = M∗P (8)

Essentially, M∗ acts as the facial reshaping operator that enhances an input

face via linear projection, which is significantly more efficient than the non-

linear optimization process of (Leyvand et al., 2008; Chen et al., 2014).340

Fig. 6 shows an example of face beautification via shape transfer. It can be

seen that the modified face appears to resemble the source face as indicated by

the thinner jawline, longer eyebrows, bigger eyes and mouth. This is efficiently

done by linearly projecting the input facial landmarks using the operator of the

source face.345

User Controllability. Now, we consider the problem of user controllability

in face beautification. Sometimes, users may want to prescribe different levels

of beautification for individual facial features, such as preserving the shapes

of the eyebrows more while enhancing the shapes of the jawline more. This
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can be naturally done using our operator representation. We denote a vector

of beautification weights as w ∈ R
n, where 0 ≤ wi ≤ 1 is a user-specified

value controlling how much the facial shape related to the i-th landmark can be

altered. We group the landmarks into the jawline, left eyebrow, right eyebrow,

nose bridge, nostril, left eye, right eye, outer lip, and inner lip, as visualized in

Fig. 2 and described in Appendix 1. The landmark weights within each group

are equal. As a result, the beautification weight matrix W = wwT ∈ R
n×n

indicates the weight configuration of the whole face: Wij is larger if the relative

geometric configuration of the landmarks i and j should be enhanced more, and

Wij is smaller if the configuration needs to be preserved more. We compute the

reshaped facial landmarks as follows:

User-controlled Facial Reshaping︷ ︸︸ ︷
P ∗ = [(1−W )M +WM∗]P (9)

whereM andM∗ are the original and the optimized facial operators respectively.

Ifw is a vector of 0, no beautification is applied and the original face is recovered.

If w is a vector of 1, the new face is generated without preserving any features

of the original. By adjusting the weights of the facial parts, users can enhance

input faces while preserving certain desired features.350

Fig. 7 shows an example of applying the mean facial operator to reshape an

input face, while keeping some of the original facial parts fixed during reshaping.

The mean operator is computed on the training set of (Le et al., 2012) and

the created full average face appears to have more round and symmetric facial

features than the input. By setting the beautification weights of the facial355

landmarks on the jawline to 0, the partial average face looks more similar to

the input than the full average, as the jawline has a global influence on the

shape of the whole face. By fixing the nostril or the eyebrows instead, the

results are more similar to the full average face, but the shapes of the nostril

and eyebrows still resemble the originals. Our user-controlled facial reshaping360

method produces satisfactory customized results in all cases.
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3.5. Facial Image Warping

Finally, given an input facial image I and the detected facial landmarks P ,

the final step of our approach is to produce an beautified image I∗ using the

optimized facial landmarks P ∗. Our goal is to geometrically deform the input365

image so that the original facial landmarks can be matched to the optimized

ones, while ensuring that the deformed image remains realistic and high-quality.

To this end, we adopt the Moving Least Squares method of (Schaefer et al., 2006)

for fitting an rigid transformation on each image location. To more efficiently

process high-resolution facial images that are popular nowadays, we modify the370

original method by sampling a low-resolution grid (10% of the image resolution)

on the input image and deforming the grid using the original and the optimized

landmarks. Afterwards, for each quad on the deformed grid, we compute a

backward perspective transformation that maps the quad to the corresponding

one on the original grid. Finally, we use these backward transformations to fill375

the output image using the corresponding pixels from the input image. Our

modified method is capable of producing a high-quality, high-resolution beauti-

fied image within a second. We use it to generate all of the modified face images

in this work.

4. Results380

4.1. Full-face Beautification Results

We show our full-face beautification results in Fig. 8. We provide more

results on general facial images in Appendix 2 and results on frontal portraits

in Appendix 3. We generate these results using the popular Helen facial im-

age dataset (Le et al., 2012), which consists of 11, 147 high-resolution facial385

images for training and 2, 330 images for testing. These images cover a diverse

range of genders, races, ages, poses, and expressions. The diversity of the Helen

dataset is important for well representing the local density modes in the face

space, which our method seeks for face beautification. Despite the diverse back-

grounds, shapes, poses, and expressions of the input faces, our method manages390
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Input Face
Beau

ed
Face

Input Face
Beau

ed Face

Figure 8: Our Full-face Beautification Results. These faces are selected to cover a wide

range of gender (male and female), pose (frontal and non-frontal), and expression (neutral and

non-neutral). Our method is purely unsupervised and does not require any human-annotated

facial attractiveness scores for training.
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(a) Input Face (b) [Leyvand et al. ] (c) Ours

Figure 9: The Comparison of Our Unsupervised Method with the Supervised

Method of (Leyvand et al., 2008). (a): the input facial images. (b): the beautified

images taken from (Leyvand et al., 2008). (c): the beautified images generated by our

method. We use the red boxes to highlight the overly modified characteristic facial parts that

some end-users may want to preserve during beautification.
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(a) Input Face (b) [Chen et al.] (c) Ours

Figure 10: The Comparison of Our Unsupervised Method with the Supervised

Method of (Chen et al., 2014). Left : the input facial images. Middle: the beautified

images taken from (Chen et al., 2014). Right : the beautified images generated by our method.

We use the red boxes to highlight the overly modified characteristic facial parts that some

end-users may want to preserve during beautification.
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(a) Input Face (b) [Diamant et al.] (c) Ours

Figure 11: The Comparison of Our Unsupervised Method with the Semi-supervised

Method of (Diamant et al., 2019). Left : the input facial images. Middle: the beautified

images taken from (Diamant et al., 2019). Right : the beautified images generated by our

method. We use the red boxes to highlight the overly modified characteristic image regions

that some end-users may want to preserve during beautification.

to automatically optimize the input facial geometric configurations and pro-

duce high-resolution images with improved facial attractiveness. Importantly,

the poses and expressions of the input faces are well preserved by our method.

Note that neither human-annotated attractiveness scores (Leyvand et al., 2008;

Chen et al., 2014; Li et al., 2015) nor 3D face modeling (Liao et al., 2012) are395

required by our method. Our face beautification results are all generated in a

purely unsupervised manner.

Comparisons with Supervised Methods. Here, we compare our method

with that of (Leyvand et al., 2008) and (Chen et al., 2014). These two methods

only work on frontal portraits and therefore cannot generalize well to non-frontal400

poses and non-neutral expressions. Besides, they both require human-annotated

facial attractiveness scores for training, which unfortunately are difficult to ob-

tain for non-frontal and non-neutral faces that exist in many real-world appli-

cations.

Due to the limited number of results provided in (Leyvand et al., 2008)405

and (Chen et al., 2014), we can only compare with a few facial images taken

from the original papers in Fig. 9 and 10. Both our unsupervised method
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and the two supervised methods improve the perceived attractiveness of the

input faces. While the supervised methods are shown to apply more intense

modifications to the eyebrows and eyes, our method preserves more features410

of these regions. The beautified faces generated by our method appear more

similar to the input, which is because our method performs beautification via

iterative locality-sensitive averaging. Therefore, it is capable of maintaining

some of the input facial features that are normally missing during the supervised

optimization process of (Leyvand et al., 2008) and (Chen et al., 2014).415

Comparisons with Semi-supervised Methods. Here, we compare our

method with that of (Diamant et al., 2019), which is the most recent method

that uses facial attractiveness annotations to train a beauty-conditional gener-

ative adversarial network (GAN) for semi-supervised face beautification. This

method represents the state-of-the-art research on leveraging deep learning and420

generative modelling for face beautification. We take the mildly beautified pho-

tos from the original paper and compare our results with them in Fig. 11. It

can be clearly seen that the method of (Diamant et al., 2019) modifies mainly

the facial textures, resulting in smoother skins (the top two faces on the middle

column) and a new facial identity (the bottom face on the middle column). In425

contrast, our method solely enhances the facial shapes (e.g., the thinner jawline

as shown on the bottom right), without altering the original textures or com-

plexions. As a result, our method can maintain the original facial characteristics

while still improving the perceived facial attractiveness.

4.2. User Study430

To empirically evaluate the effectiveness of our face beautification method,

we designed a user study for collecting human preferences towards the original

faces or the beautified versions generated by our method. The study consists

of two courses, one based on 100 general facial images from the challenging

Helen test set (Le et al., 2012) and the other based on 100 more controlled435

frontal portraits we collect from the Internet. We conducted the study on both

sets of images to demonstrate the robustness of our method in handling non-
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General Facial Images Frontal Portraits

Beau ed Faces

Original Faces

No Preferences

Figure 12: The User Study of Our Method. Left : the percentages of human subjects

preferring the original faces, the beautified faces, or without preferences on general facial

images. Right : the percentages of human preferences on input faces with frontal poses and

neutral expressions.

frontal, non-neutral faces in the wild. We generated the beautified results for

both sets of images and presented them in Appendix 2 and 3 respectively. We

recruited 12 male and 12 female human subjects aged 22-35. In each course, we440

randomly presented pairs of the original and the beautified images to each of

the subjects, with the order of the images in each pair being randomized. We

asked each subject to pick the more attractive face in each pair or to express no

preferences. When finished, we obtained 2, 347 and 2, 085 choices for the two

courses respectively. We did not have the full 2, 400 choices for either of the two445

courses because some participants accidentally skipped a small fraction of them

without submitting any preferences. Nevertheless, we still had around 97.8%

and 86.9% response rates, which were sufficient for our analysis.

As shown in Fig. 12, the subjects in both courses prefer the full-face beau-

tified images over the originals. Remarkably, the percentages of subjects pre-450

ferring our results on the much more challenging general facial image course,

which includes non-frontal and non-neutral faces, are comparable to that on the

frontal portraits (70% versus 65%). This demonstrates the robustness of our

method for enhancing non-frontal and non-neutral faces, which are very com-

mon in many real-world applications. To our knowledge, this is the first time455

in the field that a method has been shown to be capable of beautifying such

challenging faces.

Here, we provide a more detailed analysis of the user study results on the

27



Figure 13: The Distribution of General Facial Images in the User Study. For each of

the 100 general facial images in the user study, the percentage of the 24 subjects who prefer

the beautified result is computed and aggregated here. To be exact, 6, 19, 46, 24, and 5

images receive preference ratings from a percentage of subjects as shown for each bin.

Generally prefer
   [80%

, 100%
]

 Borderline
[40%

, 60%
)

Generally not prefer
         [0%

, 20%
)

Original Beau ed Original Beau ed Original Beau ed

Figure 14: The examples of general facial images that receive preference ratings from a ma-

jority (i.e. over 80%) of, a mixed pool (i.e. between 40% and 60%) of, and a minority (i.e.

under 20%) of the 24 subjects in the user study.
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course of general facial images, because they represent more realistic face vari-

ations and are the main targets of this work. As can be seen in Fig. 13, very460

few of the beautified images are either preferred (i.e. over 80%) or not preferred

(i.e. under 20%) by a majority of the 24 subjects. This suggests that achiev-

ing consensus on face beautification results among the subjects is very unlikely,

which is in line with that around 13% of them have no preferences expressed as

shown on the left of Fig. 12.465

We show some of these particular images along with those that receive bor-

derline ratings (i.e. between 40% and 60%) in Fig. 14. It can be noticed that for

the lower-left pair in the figure, the beautified image has distortions around the

frame of the glasses, which is probably why it is generally not preferred by the

subjects. As for the lower-middle pair with a very novel mouth configuration,470

the woman’s eyes become less symmetric after beautification and are therefore

not considered as attractive by the subjects. In contrast, the beautified images

on the upper row are preferred by a high percentage of the subjects, as they dis-

play more symmetric facial features and thinner jaw-lines without introducing

noticeable distortions. It is even more interesting to note that the borderline475

images on the middle row do not show noticeable flaws either, but the beautified

versions are not considered as significantly more attractive than the originals

by the subjects. Taking the middle left pair as an example, the beautified facial

image of the man appears less muscular and as a result the subjects have mixed

ratings on it.480

4.3. User-controlled Beautification Results

Beyond full-face beautification without user intervention, our method allows

users to prescribe a beautification weight in [0, 1] for each individual facial part.

The smaller the weight, the better preserved the shape of the corresponding

part. Fig. 15 shows some user-customized face beautification results, for which485

we allow users to preserve one or more facial parts while fully beautifying the

remaining. As shown on the first row, our method generates natural and smooth

transitions between the shape of the input mouth and that of the fully beautified
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(a1) Input Face (a2) Lips = 0.4 (a3) Lips = 0.8 (a4) Full

(b1) Input Face (b2) Jawline = 0.5 (b3) Jawline=0.9

(c1) Input Face (c2) Lips=0.5, Eyebrows=0.3 (c3) Lips=0.7, Eyebrows=0.9

(d1) Input Face (d2) Eyes=0.25 (d3) Eyes=0.75

(b4) Full

(c4) Full

(d4) Full

Preserving User-speci ed Facial Parts

(a2) Lips = 0.4 (a3) Lips = 0.8

(b2) Jawline = 0.5 (b3) Jawline=0.9

(c2) Lips=0.5, Eyebrows=0.3 (c3) Lips=0.7, Eyebrows=0.9

(d2) Eyes=0.25 (d3) Eyes=0.75

Figure 15: Our User-controlled Face Beautification Results. Here, we allow users

to preserve one or more facial parts while fully beautifying the remaining. On each row,

we show the input facial image on the first column and the full-face beautified images on

the fourth column. We show the intermediate beautified images on the second and third

columns, with the user-customized beautification weights of the facial parts being preserved.

The beautification weights of the parts not being preserved are set to the largest value of 1.0.

30



version, when users change the beautification weights of the outer and inner lips

from 0.0 (i.e. no beautification) to 0.4, 0.8, and 1.0 (full beautification). Our490

method works equally well for allowing users to control the beautification level

of the jawline (on the second row) and eyes (on the fourth row) of an input

face. More challenging is the case when users want to preserve more than one

facial part, as shown on the third row of Fig. 15. Still, our method generates

intermediate beautified images that naturally interpolate the original and the495

fully enhanced eyebrows and mouth.

4.4. Computational Cost

We list the run time of each computation step of our face beautification

method in Table 1. The time is measured for processing a typical facial image

of resolution 1280 × 960 on a laptop with an Intel(R) Core i7-6500U 2.5GHZ500

CPU and a 8GB RAM. Overall, the whole beautification process takes less than

1 second to finish, which allows for continuous user interactions with low latency.

The steps of facial operator computation (b), facial operator beautification (c),

and facial landmarks reshaping (d) are extremely efficient because (b) mainly

involves the inverse of a 3×3 matrix, (c) is accelerated using a KD-tree structure,505

and (e) is simply a linear projection. While the step of facial image warping (e)

is the most time-consuming, it is still reasonably fast given the high resolution of

the input image. Note that the steps of facial landmarks detection (a) and facial

image warping (e) are not the focus of this work, and they could be replaced by

other faster methods in the future.510

5. Conclusion and Future Work

We have proposed a purely unsupervised method for facial shape beautifi-

cation, without requiring any human-annotated facial attractiveness scores for

training. Our method has been shown to be capable of beautifying both frontal

portraits and general facial images that contain a wide range of non-frontal poses515

and non-neutral expressions, which is beyond the ability of the current super-

vised face beautification methods. On top of this, our method enables users to
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Table 1: The run time of our method for beautifying a typical input facial image of resolution

1280 × 960. The steps (b)-(d) are our contributions in this work, for each of which we also

list the big O computational complexity (where n is the number of facial landmarks, m is the

number of facial images in the dataset, and k is a small number of iteration steps required for

convergence). As the steps (a) and (e) are not our work in this paper, we refer the readers

to the original papers for their detailed computational complexity analysis (Le et al., 2012;

Schaefer et al., 2006).

Operation Complexity Run time

Step (a) Facial Landmarks Detection — 0.451723s

Step (b) Facial Operator Computation O(3n2) 0.000117s

Step (c) Facial Operator Optimization O(kn2m logm) 0.190622s

Step (d) Facial Landmarks Reshaping O(2n3) 0.002041s

Step (e) Facial Image Warping — 0.323160s

Total The Whole Process — 0.967839s

flexibly prescribe beautification weights so that certain facial parts can be pre-

served more while others can be enhanced more. As the speed of our method is

interactive, it allows users to continuously customize the beautification weights520

until satisfactory results are obtained.

To achieve the above, we have proposed to formulate face beautification as

the process of iteratively pulling the operator representation of an input face

towards a local nearby density mode in the operator space of faces. Benefit-

ing from the orthogonal projection nature of our operator representation, it525

frees the beautification process from the nuisance affine transformations of fa-

cial landmarks and naturally groups facial landmarks into individual facial parts

for user control. It also significantly simplifies the reconstruction of beautified

facial landmarks as linear projection, which is very efficient and guaranteed to

be globally optimal. Due to the locality of our iterative face averaging method,530

the beautified version of an input face faithfully preserves the original pose and

expression, which have been confirmed by many examples shown in the paper

and the supplementary materials.

The main limitation of our method is that it mainly applies small modifica-
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tions to the shape of a given face, as shown in Fig. 8. This is because modifying535

the facial shape to a much larger extent may introduce noticeable flaws, es-

pecially when the face is confounded with significantly non-frontal poses and

non-neutral expressions. This limitation was not demonstrated in the previous

methods as they exclusively handle frontal and neutral faces, which unfortu-

nately only account for a tiny fraction of facial photos posted every day on540

social media.

To address the above limitation, one important future work is to find a

theoretical way to decompose our orthogonal projection operator of faces into

three geometrically independent variations: shape content, pose, and expression.

With this decomposition, we can then safely apply larger modifications to the545

shape content while maintaining the pose and expression as much as possible.

The previous work on the decomposition of faces (Blanz & Vetter, 1999; Tena

et al., 2011; Yang et al., 2012) only discovers the statistical independence of these

variations, which may not suffice to maintain the realism of each individual face

in the beautification process. Motivated by the recent success of (Shen et al.,550

2020) on semantic face editing, we are actively exploring GANs trained on our

facial operator representations to obtain more reliable identity-relevant features

for facial shape beautification. Based on a good geometric decomposition of our

facial operator, another extension of our face beautification method is to further

consider some annotated facial beauty scores while pulling an input face towards555

a local density mode. As we have shown in the paper, beautifying faces along

the underlying face manifold is important for preserving facial characteristic

features. However, our study in Fig. 12 indicates that there are around 35%

of participants who do not necessarily regard those density modes of faces as

significantly more attractive. This suggests that the Euclidean distance metric560

we use in the facial operator space is suboptimal for face beautification. As an

extension, we are planning to replace the Euclidean metric with a more effective

one by jointly learning from a large collection of unannotated faces and a small

fraction of annotated beauty ratings (Anand et al., 2013). The recent deep

learning methods of (Ge, 2018; Cakir et al., 2019) can also be extended to learn565
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a more effective yet beauty-aware metric for facial shape analysis. Without

further modification, our method would then be able to converge to the more

beauty-aware local density modes by following the new metric in our facial

operator space.

We have recruited 12 Chinese males and 12 Chinese females in our user570

study and mainly reported their aggregated judgements of our face beautifica-

tion results. However, previous studies have also shown that the gender and

race biases of human subjects are non-negligible in the perception of facial at-

tractiveness (Coetzee et al., 2014). Therefore, we are planning to extend our

user study for more detailed data collection and analysis of such group biases575

in the future. We also intend to interview the future subjects on top of asking

for their overall rating of face beautification results, so that we can gain more

detailed subjective insights into the results.

The computational bottlenecks of our face beautification method are the

steps of facial landmarks detection and facial image warping. These are not580

our focus in this work and can be significantly accelerated by using other faster

methods, such as the one of (Zhang et al., 2014) for landmarks detection and

that of (Liao et al.) for image warping.

Currently, to ease user control in face beautification, we have allowed users

to customize beautification weights on the level of facial parts (e.g. the jawline585

and the eyes). An interesting direction of research is automatically learning

these weights from high-level personal traits such as gender, age, and race.

We have formulated facial shape beautification as an iterative locality-sensitive

averaging process in the face space. We have specified the locality of face averag-

ing using a scale parameter γ, which has the advantage of producing minimum590

changes to input faces so that major facial features are well preserved. In the

future, the choice of γ could be optimized based on user preferences towards fa-

cial attractiveness. Non-local faces could also be incorporated in the averaging

process to suggest more diverse, user-satisfied face changes for beautification.

We have focused on the beautification of 2D facial shapes in this work. Still,595

our facial reshaping operator and locality-sensitive averaging method are inde-
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pendent of the specific coordinate dimension, which can be seamlessly adapted

for the beautification of 3D facial meshes (Liao et al., 2012).

As users prefer minimum changes to input images, we have proposed to

fix the leading PCA coefficients of an input facial operator while optimizing600

the remaining. This method works well in our experiments and can be further

enhanced using the more advanced facial attribute descriptions (Wang et al.,

2016).
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