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Degenerate nonlinear parabolic equations with discontinuous
diffusion coefficients

Dohyun Kwon and Alpár Richárd Mészáros

Abstract

This paper is devoted to the study of some nonlinear parabolic equations with discontinuous
diffusion intensities. Such problems appear naturally in physical and biological models. Our
analysis is based on variational techniques and in particular on gradient flows in the space
of probability measures equipped with the distance arising in the Monge–Kantorovich optimal
transport problem. The associated internal energy functionals in general fail to be differentiable,
therefore classical results do not apply directly in our setting. We study the combination of
both linear and porous medium type diffusions and we show the existence and uniqueness of the
solutions in the sense of distributions in suitable Sobolev spaces. Our notion of solution allows us
to give a fine characterization of the emerging critical regions, observed previously in numerical
experiments. A link to a three phase free boundary problem is also pointed out.
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1. Introduction

In this paper, we investigate a class of degenerate nonlinear parabolic equations, with
discontinuous diffusion intensities. These can be written formally as the Cauchy problem for
the unknown ρ : [0, T ] × Ω → [0,+∞)⎧⎪⎪⎨⎪⎪⎩

∂tρ− Δϕ(ρ) −∇ · (∇Φρ) = 0, in (0, T ) × Ω,

(∇ϕ(ρ) + ∇Φρ) · n = 0, on (0, T ) × ∂Ω,

ρ(0, ·) = ρ0, in Ω,

(1.1)
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where T > 0 is a given time horizon, Ω ⊂ Rd is the closure of a bounded convex open set with
smooth boundary, Φ : Ω → R is a given Lipschitz continuous potential function, ρ0 ∈ P(Ω) is
a nonnegative Borel probability measure and the diffusion intensity function ϕ : [0,+∞) → R

is supposed to have a discontinuity at ρ = 1. Therefore, ϕ is extended to be a multi-valued
function at the discontinuity and in addition, it is supposed to be monotone in the sense that
if ηi ∈ ϕ(ρi), then

(η1 − η2)(ρ1 − ρ2) � 0.

Our aim is to identify a large class of potentials Φ, nonlinearities ϕ and initial data ρ0, for which
we show the well-posedness of (1.1) in a suitable distributional sense. Furthermore, we aim to
describe some fine properties of the solutions. Let us remark that our results are expected to be
valid also in the case of Ω = Rd, without running into many technical difficulties, provided we
work in the space of measures having enough uniform moment bounds, just as in the original
works [25, 34].

Such problems appear naturally in physical and biological models. Let us briefly describe two
of these. In [4], the authors study so-called phenomena of self-organized criticality. These arise
typically in sandpile models, in which the sand particles are subject to a constant diffusion only
at regions where their density is greater than a given threshold, otherwise they remain still. At
the macroscopic level, in the cited reference such models were described by equations similar to
(1.1), with Φ = 0 and ϕ(ρ) = 0, if ρ < ρc and ϕ = const if ρ � ρc (where ρc is a given threshold
value). Via an approximation procedure and numerical investigations, the authors observe the
growth (in time) of the critical region, where ρ = ρc, therefore, they conclude that particles
following this diffusion law ‘self-organize into criticality’. Our main results in this paper will
rigorously confirm such phenomena.

In [17], the authors study diffusion models for biological organisms that increase their
motility when food or other resource is insufficient. They refer to such phenomena as starvation
driven diffusion. At the mathematical level, their model consists in a system of reaction-diffusion
equations for two species, where the diffusion rates are discontinuous functions depending
on the (food supply)/(food demand) ratio in the global population. In this model, a Lotka–
Volterra type competition is implemented and a particular example is provided when one
species follows the starvation driven diffusion and the other follows the linear diffusion. The
authors conclude, by means of numerical simulations, that in heterogeneous environments
the starvation-driven diffusion turns out to be a better survival strategy than the linear one.
Therefore, by this conclusion the authors would like to underline also the fact that in biological
models, discontinuous diffusion rates might appear in a very natural way, resulting many times
in a better description of competing biological systems.

Degenerate nonlinear parabolic problems like (1.1) received a lot of attention in the past
couple of decades. For a nonexhaustive list of classical works on this subject, we refer to [7–9,
12, 13] and the references therein. In majority of the literature, however, the nonlinearity ϕ
is taken to be a continuous function.

To the best of our knowledge, except in particular cases involving linear type diffusions
and/or bounded initial data (see, for instance, in [5, 6, 10]), our model problem in its full
generality has not been addressed previously in the literature. The solution obtained in the
aforementioned references heuristically can be written as pairs (ρ, ηρ) belonging to well-chosen
function spaces, such that

∂tρ− Δ(ηρ) −∇ · (∇Φρ) = 0

is fulfilled either in the distributional or entropic sense and ρ(t, x) ∈ ηρ(t, x) almost everywhere
(a.e.).

In this paper, we rely on the gradient flow structure of (1.1) in the space of probability
measures, when equipped with the distance W2 arising in the Monge–Kantorovich optimal



690 DOHYUN KWON AND ALPÁR RICHÁRD MÉSZÁROS

transport problem. To (1.1), we associate an entropy functional E : P(Ω) → R ∪ {+∞}, defined
as

E(ρ) :=

⎧⎪⎨⎪⎩
∫

Ω

S(ρ(x))dx +
∫

Ω

Φ(x)dρ(x), if S(ρ) ∈ L1(Ω),

+∞, otherwise,
(1.2)

where S : [0,+∞) → R is a given function. At the formal level, the relationship between ϕ and
S can be written as

ϕ(ρ) = ρS′(ρ) − S(ρ) + S(1) and ϕ′(ρ) = ρS′′(ρ), if ρ �= 1.

We observe that the discontinuity of ϕ at ρ = 1 corresponds to the nondifferentiability of S
at ρ = 1. Furthermore, as ϕ is monotone, we impose that S is convex and the multiple values
of ϕ can be represented by the subdifferential of S. In this sense, throughout the paper, we
consider S to be given which satisfies the following assumption.

Assumption 1.1. S : [0,+∞) → R is continuous, strictly convex and superlinear, in the
sense that limρ→+∞ S(ρ)/ρ = +∞. Furthermore, S is twice continuously differentiable in
(0,+∞) \ {1}.

Let us note that in this article the internal energy part of the functional E in general will
satisfy the well-known condition introduced by McCann [32], so it will be displacement convex.
But this energy fails to be differentiable on (P(Ω),W2). Furthermore, in general we do not
impose λ-convexity assumptions on the potential Φ (so the potential energy in general fails to be
displacement λ-convex). Because of these two deficiencies, the classical results from [2] do not
apply directly in our setting. The lack of geodesic λ-convexity in the context of Wasserstein
gradient flows typically poses serious obstructions (as we can see, for instance, in [18, 26,
30]). Even though the existence of the gradient flow of E in (P(Ω),W2) is expected, the fine
characterization of the density curves, their velocities and the critical region {ρ = 1}, in as
general settings as possible, is a challenging task. Because of the same reasons, an approach
by maximal monotone operators as in [5] would not be satisfactory in our setting either. In
this context, ours seems to be the first contribution which gives fine characterization of the
gradient flows of a general class of nondifferentiable internal energies in (P(Ω),W2).

In our analysis, we rely on the classical minimizing movements scheme of De Giorgi (see also
[25, 39]). This, for a given ρ0 ∈ P(Ω) (and for a small parameter τ > 0 and N ∈ N such that
Nτ = T ) iteratively constructs (ρk)Nk=0 as

ρk+1 = argmin
{
E(ρ) +

1
2τ

W 2
2 (ρk, ρ) : ρ ∈ P(Ω)

}
, k ∈ {0, . . . , N − 1}. (1.3)

In order to write down the first-order necessary optimality conditions associated to (1.3), in
Section 2 as our first contribution in this paper, we give a precise characterization of the
subdifferential of E in (P(Ω),W2) (cf. [2]) in various settings (depending on the growth
condition of S and the summability of ρ0). Our analysis in this section relies on classical
results from convex analysis, carefully adapted to (1.3). As an intermediate result, we show
(see Lemma 2.10) that optimizers of the problem (1.3) enjoy higher summability estimates
than the a priori ones coming from the growth condition of S at +∞.

In order to give a precise description of the optimality conditions associated to (1.3), we
introduce a function pk which encodes the ‘transition’ between the phases {ρk < 1} and {ρk >
1} through the critical region {ρk = 1}. This is very much inspired by the derivation of the
pressure variable in recent models studying crowd movements under density constraints (see
in [19, 31, 33]). Because of this similarity, throughout the paper, we sometimes use the
abused terminology of pressure to refer to the variable p. Interestingly, numerical experiments
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Figure 1 (colour online). One minimizing movement step in 1D, for Φ(x) = 2x, Ω = [0, 1] and
S in (1.7).

suggest (see Figure 1) that the critical region emerges in general already after one minimizing
movement iteration.

After obtaining the necessary compactness results, we pass to the limit with the time
discretization parameter τ ↓ 0 and we recover a PDE (which precisely describes the weak
distributional solutions of (1.1)) satisfied by the limit quantities (ρ, p). This formally reads as

⎧⎪⎨⎪⎩
∂tρ− Δ(LS(ρ, p)) −∇ · (∇Φρ) = 0, in (0, T ) × Ω,

ρ(0, ·) = ρ0, in Ω,

(∇(LS(ρ, p)) + ∇Φρ) · n = 0, in [0, T ] × ∂Ω.

(1.4)

Here, the operator LS is defined pointwisely for functions (ρ, p) : [0, T ] × Ω → R by

LS(ρ, p)(t, x) := [ρ(t, x)S′(ρ(t, x)) − S(ρ(t, x)) + S(1)]1{ρ �=1}(t, x) + p(t, x)1{ρ=1}(t, x) (1.5)

and the pressure variable p : [0, T ] × Ω → R satisfies⎧⎪⎪⎨⎪⎪⎩
p = S′(1−) if 0 � ρ < 1,

p ∈ [S′(1−), S′(1+)] if ρ = 1,

p = S′(1+) if ρ > 1.

(1.6)

Formally, (1.4) and (1.6) correspond to the three phase free boundary problem

Δp = −ΔΦ, in {ρ = 1}, p = S′(1−) in {ρ < 1} and p = S′(1+) in {ρ > 1}.
Throughout the paper we distinguish cases depending on the diffusion rates in the two

phases {ρ < 1} and {ρ > 1}. We consider the combination of linear and porous medium type
diffusions, which correspond to a behavior as S(ρ) ∼ ρ log(ρ) and S(ρ) ∼ ρm (for m > 1), in
{ρ < 1} and {ρ > 1}. So, typical examples we have in mind include

S(ρ) :=

⎧⎪⎪⎨⎪⎪⎩
ρ log ρ, if ρ ∈ [0, 1],

ρm

m− 1
− 1

m− 1
, if ρ ∈ (1,+∞),

or

S(ρ) :=

⎧⎪⎪⎨⎪⎪⎩
ρm

m− 1
, if ρ ∈ [0, 1],

ρr

r − 1
− 1

r − 1
+

1
m− 1

, if ρ ∈ (1,+∞),
for m > r > 1.

Energies of only logarithmic type or power like ones with the same power on both phases
will also be considered (as in (1.7) or (1.8)). The analysis in the case of general energies is
quite involved. In the same time, optimizers in the minimizing movements scheme possess
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different characteristics in the case of logarithmic type and porous medium type internal
energies (such as fully supported vs. not fully supported; Lipschitz continuous vs. not Lipschitz
continuous, etc.). As a result of this, we have to use different arguments to obtain the needed
estimates. Therefore, to keep the paper as much readable as possible, we carefully break the
cases (depending on the behavior of the internal energies) into specific sections.

In order to emphasize the main ideas of the paper, we present two toy problems in details.
These turn out to be building blocks of our analysis for more general cases. Section 3 is devoted
to the case when the entropy is of logarithmic type on both phases {ρ < 1} and {ρ > 1} and
in particular S is given by

S(ρ) :=

{
ρ log ρ, if ρ ∈ [0, 1],

2ρ log ρ, if ρ ∈ (1,+∞).
(1.7)

In this case, it turns out that the solution (ρ, p) satisfies p = 1 in {ρ < 1}, p ∈ [1, 2] in {ρ = 1},
p = 2 in {ρ > 1} and we have the simplified expression LS(ρ, p) = pρ.

Similarly, Subsection 5.1 presents the analysis in the case when S is given by

S(ρ) :=

⎧⎪⎪⎨⎪⎪⎩
ρm

m− 1
, for ρ ∈ [0, 1],

2ρm

m− 1
− 1

m− 1
, for ρ ∈ (1,+∞),

(1.8)

for some m > 1. For this energy, the first equation of (1.4) can be written as

∂tρ−∇ · (ρ[∇(
ρm−1p

)
+ ∇Φ

])
= 0, in (0, T ) × Ω.

Furthermore, p = m
m−1 in {ρ < 1}, p ∈ [ m

m−1 ,
2m
m−1 ] in {ρ = 1} and p = 2m

m−1 in {ρ > 1}.
Starting with Section 4, we consider general entropies. Assumptions are made on the growth

of S in the two different phases {ρ < 1} and {ρ > 1}. First, we impose

Assumption 1.2.

S : [0,+∞) → R satisfies
ρm−2

σ2
< S′′(ρ) if ρ ∈ (0, 1) for some m � 1 and σ2 > 0. (1.9)

The imposed summability assumption on the initial data ρ0 ∈ P(Ω) plays also a crucial role
in our analysis. If ρ0 ∈ L∞(Ω), it turns out that the entire iterated sequence (ρk)Nk=1 obtained
in the scheme (1.3) remains essentially uniformly bounded, provided the potential Φ is regular
enough. This fact does not depend on the differentiability of S and it is well known in the
literature (see [38]). In this case, imposing only the assumption (1.9) on S is enough to obtain
the well-posedness of (1.4)–(1.6).

The other ‘extreme’ case is when we only impose that ρ0 has finite energy, that is, E(ρ0) <
+∞. We show that the iterated sequence will have improved summability estimates for k ∈
{1, . . . , N} (see in Lemma 2.10), provided S satisfies the additional growth condition (1.10b)–
(1.10a) below. These summability estimates on the iterated sequence will be enough to obtain
the necessary a priori estimates and pass to the limit as τ ↓ 0 to obtain a weak solution to
(1.4)–(1.6).

As a consequence of these arguments, we will always distinguish two cases with respect to
the previous two summability assumptions when stating our main results. Our main result in
the case of ρ0 ∈ L∞(Ω) reads as:

Theorem 1.1 (Theorems 3.1, 4.2, 5.1, 5.6 and Theorem 6.1). Suppose that Assump-
tions 1.1-1.2 hold and Φ satisfies (2.4). For ρ0 ∈ L∞(Ω), there exists ρ ∈ L∞([0, T ] × Ω),
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ρm ∈ L2([0, T ];H1(Ω)) and p ∈ L2([0, T ];H1(Ω)) ∩ L∞([0, T ] × Ω) such that (ρ, p) is a unique
solution of (1.4)–(1.6) in the sense of distributions.

For general initial data such that E(ρ0) < +∞, we shall impose the following additional
growth condition on S.

Assumption 1.3.

S : [0,+∞) → R satisfies
ρr−2

σ1
� S′′(ρ) if ρ ∈ (1,+∞) and (1.10a)

S′′(ρ) � σ1ρ
r−2 if ρ ∈ (1,+∞) for some r, σ1 � 1. (1.10b)

Note that under (1.10) and r > 1, E(ρ0) < +∞ is equivalent to ρ0 ∈ Lr(Ω). Similarly to
Theorem 1.1, we can formulate the corresponding well-posedness result.

Theorem 1.2 (Theorems 3.1, 4.2, 5.1, 5.6 and Theorem 6.1). Suppose that Assump-
tions 1.1–1.3 are fulfilled and

m < r +
β

2
(1.11)

hold true for β > 1 (its precise value is given in (2.23)). For ρ0 ∈ P(Ω) such that E(ρ0) < +∞,
there exists ρ ∈ Lβ([0, T ] × Ω) and p ∈ L2([0, T ];H1(Ω)) ∩ L∞([0, T ] × Ω) such that (ρ, p) is a
solution of (1.4)–(1.6) in the sense of distributions. Furthermore, we have

ρm− 1
2 ∈ L2([0, T ];H1(Ω)), if m � r and ρm− 1

2 ∈ Lq([0, T ];W 1,q(Ω)) if r < m < r +
β

2
for some q ∈ (1, 2). If in addition β � 2r, then the pair (ρ, p) is unique.

Let us comment on the additional technical assumption (1.11) in the previous theorem. While
this condition has to be required for purely technical reasons and we do not claim anything
about its sharpness, we believe that it could be physically motivated. This would just mean
that for unbounded initial data, the diffusion rate on the region {ρ < 1} cannot be ‘too much
slower’ than the one on the region {ρ > 1}. With other words, ‘too fast’ diffusion rate on
{ρ > 1} and ‘too slow’ diffusion on {ρ < 1} might result in unphysical phenomena and in non
existence of solutions.

It worth also noticing that the previous phenomenon is not expected for bounded solutions.
Also, in particular from the definition of β in (2.23), we see that β < +∞ can be arbitrary
large if d = 2 and β = +∞, if d = 1. Therefore, in such cases the previous theorem holds true
without the additional assumption (1.11). The same is true in the case when 1 � m � r.

Let us make a brief comment also on the proof of the previous theorems. In the case when the
diffusion rates are equal on the two phases {ρ < 1} and {ρ > 1}, that is, m = r, the derivation
of the optimality conditions already gives us enough a priori estimates on gradients of suitable
powers of the density variable. Then, these are enough to obtain the strong compactness of the
interpolated curves of the discrete in time densities and pass to the limit as τ ↓ 0. The situation
is way more challenging in the case when m �= r. In these situations, we actually obtain the
required estimates on the gradients of the discrete in time densities raised on a carefully chosen
‘intermediate’ power (depending on both m and r). This idea seems to be crucial in our analysis
and this is one of the most technical parts of the paper.

It is worth to comment also on the fact that in Theorem 1.2 we obtain improved summability
estimates of the density variable, even if one merely imposes Lr summability on ρ0 and the
diffusion rate in {ρ > 1} is r, we obtain ρ ∈ Lβ([0, T ] × Ω) (and β given in (2.23) satisfies
β > r; in particular β < +∞ is arbitrary large for d = 2 and β = +∞ for d = 1). This improved
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summability estimate (with respect to the summability of the initial data) seems to be well
known in the case of standard porous medium equations (for instance, in the case of Φ = 0, this
is a consequence of [40, Theorem 8.7]). Our proof, which is based on purely optimal transport
techniques, implies this estimate in particular also in the classical porous medium equation.

When studying the well-posedness of the system (1.4)–(1.6), one can ask the natural question
whether these PDEs can be represented as continuity equations. Under suitable additional
assumptions, this is always the case, as we can show in Theorem 4.9, Theorem 5.5 and
Theorem 5.13 when (1.4) also reads as⎧⎪⎨⎪⎩

∂tρ−∇ · (ρ∇(
S′(ρ)1{ρ �=1} + p1{ρ=1}

))−∇ · (ρ∇Φ) = 0, in (0, T ) × Ω,

ρ(0, ·) = ρ0, in Ω,

ρ
[∇(

S′(ρ)1{ρ �=1} + p1{ρ=1}
)

+ ∇Φ
] · n = 0, in [0, T ] × ∂Ω.

(1.12)

We underline that the required additional assumptions are needed to guarantee Sobolev
estimates on S′(ρ). We can summarize our results in this direction as follows.

Theorem 1.3 (Theorems 4.9 and 5.13). Let us suppose that we are in the setting of
Theorem 1.2 and (ρ, p) is the solution of(1.4)–(1.6). If we additionally assume

m < r +
1
2

(1.13)

and

β > 2 and m <
β

2
+

1
2
, (1.14)

then (ρ, p) is a weak solution of (1.12) in the sense of distribution. The uniqueness of the
solution holds under the same assumption as in Theorem 1.2. If in addition ρ0 ∈ L∞(Ω) and
Φ satisfies (2.4), we can drop (1.14) from the statement.

In the same way as in Theorem 1.2 (by the definition of β in (2.23)), (1.14) holds for any
m, r � 1 if d = 1 or d = 2. Moreover, when r = m, then the second inequality in (1.14) is
satisfied for all m � 1 and β > 2 is equivalent to m > 3d−4

2d .
The attentive reader could observe that in the statements of Theorems 1.1 and 1.2 we

included the corresponding uniqueness results as well. Indeed, Section 6 is entirely devoted
to this issue and in particular we obtain an L1 contraction result for the density variable
ρ (see in Theorem 6.1), implying its uniqueness. This will then imply the uniqueness of
the corresponding p variable as well. Our approach is inspired by [20, Section 3] and [40,
Theorem 6.5], and as expected, the monotonicity of the operator LS (see Lemma 6.2) plays
a crucial role in our argument. By the ‘double degeneracy’ of our problem, neither of the
previously mentioned two approaches apply directly and a very careful combination of the
two is required to obtain the desired L1 contraction. Similarly as in [40, Theorem 6.5], in
this analysis an additional summability assumption is needed on the density variable. Due to
the extra Lβ summability obtained in Theorem 1.2 or in the case of bounded solutions as in
Theorem 1.1, this is automatically fulfilled in many cases. Let us mention that we expect a
W2-type contraction argument (in the spirit of [14, 15]) to hold in our setting as well, provided
we impose some convexity assumptions on the potential Φ. The results from [11] imply that
the Wasserstein contraction is equivalent to the geodesic convexity of the energy, provided the
energy is smooth. Since the internal energies considered in this article, even though geodesically
convex, in general fail to be differentiable, the results from [11] do not apply directly in our
setting. These investigations represent the subject of future study. Finally, since in general we
do not impose (λ-)convexity assumptions on Φ, our energy will in general lack the displacement
(λ-)convexity property, which also motivates our search for an L1-contraction instead.
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Section 7 is devoted to further discussions on the models studied in this paper. In particular,
we discuss examples where the emergence of the critical region {ρ = 1} can be observed for
positive times, even if that was not present in the case of the initial data, that is, L d({ρ0 =
1}) = 0. We illustrate this in dimension one and we describe stationary solutions (minimizers
of the free energy) corresponding to suitable potential functions Φ, where the critical region
is present. As we mentioned before, our problems can be linked to three phase-free boundary
problems, and in this section we also derive these ones formally.

We end our paper with three small appendices, where we collected some well-known facts (or
consequences of well-known results) from the theory of optimal transport (Appendix A) and
convex analysis (Appendix B). In Appendix C we present also a suitable version of the classical
Aubin–Lions lemma, which is repeatedly used throughout the paper to obtain compactness of
families of time dependent functions in Lebesgue spaces.

2. The minimizing movements scheme, optimality conditions and properties of the energy

Throughout the paper Ω ⊂ Rd is given, as the closure of a bounded, convex open set with
smooth boundary. P(Ω) denotes the space of Borel probability measures on Ω and L d stands
the Lebesgue measure on Rd. We also use the notation Pac(Ω) := {μ ∈ P(Ω) : μ � L d�Ω}.
T > 0 is a fixed time horizon and we often use the notations Q := [0, T ] × Ω and R+ := (0,+∞).

As S′ is strictly increasing in R+ \ {1} from Assumption 1.1, S′(0+) and S′(1±) are well
defined in R ∪ {−∞} and R, respectively, as follows.

S′(0+) := lim
ε→0+

S′(ε), S′(1−) := lim
ε→1−

S′(ε) and S′(1+) := lim
ε→1+

S′(ε). (2.1)

In particular, we have that S′(1−) � S′(1+).
We define the corresponding internal energy J : P(Ω) → R ∪ {+∞} by

J (ρ) :=

⎧⎪⎨⎪⎩
∫

Ω

S(ρ(x))dx if ρ ∈ Pac(Ω),

+∞ otherwise.

(2.2)

Furthermore, we suppose that there is given Φ : Ω → R a potential function in W 1,∞(Ω) and
the associated potential energy F : P(Ω) → R given by

F(ρ) :=
∫

Ω

Φ(x)dρ(x).

Let ρ0 ∈ P(Ω) be given and consider a time discretization parameter τ > 0 and N ∈ N

such that Nτ = T . We define the minimizing movements (ρk)Nk=1 of J + F as follows: for
k ∈ {1, . . . , N} set,

ρk := arg min
ρ∈P(Ω)

{
J (ρ) + F(ρ) +

1
2τ

W 2
2 (ρ, ρk−1)

}
. (2.3)

Note that the existence and uniqueness of the solutions in the minimization problems (2.3)
follow from standard compactness, lower semicontinuity and convexity arguments (similarly as
in [38, Proposition 8.5], for instance).

In what follows, in our analysis we differentiate two cases with respect to the summability
assumption on ρ0. Since these need slightly different arguments, we separate them in two
different subsections. In particular, if one assumes L∞ summability on ρ0, the presented results
will hold true under no additional assumptions on S (other than in Assumption 1.1). However,
in (2.3), we can allow general measure initial data, in which case an additional growth condition
(see (1.10)) has to be imposed on S in order to obtain the same optimality conditions.
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2.1. Optimality conditions for ρ0 ∈ L∞(Ω)

Lemma 2.1. Suppose that Assumption 1.1 takes place and ρ0 ∈ L∞(Ω). If Φ is non-constant,
let us assume that Φ ∈ C1(Ω) and

∇Φ(x0) · n(x0) > 0, ∀x0 ∈ ∂Ω and ∇Φ ∈ BV (Ω; Rd) with [ΔΦ]+ ∈ L∞(Ω), (2.4)

where n stands for the outward normal vector to ∂Ω and [ΔΦ]+ denotes the positive part of
the measure ΔΦ. Let (ρk)Nk=1 be constructed via the scheme (2.3). Then we have

‖ρk‖L∞ � ‖ρk−1‖L∞(1 + τ‖[ΔΦ]+‖L∞)d � ‖ρ0‖L∞(1 + τ‖[ΔΦ]+‖L∞)kd

� ‖ρ0‖L∞edT‖[ΔΦ]+‖L∞ ,

∀k ∈ {1, . . . , N}.

Remark 2.1. Let us note that the second part of assumption (2.4) is sharp and it is very
much related to the ones imposed in the work of Ambrosio (see [1]), as an improvement of the
classical DiPerna–Lions theory [21], on transport equations with BV vector fields.

Proof of Lemma 2.1. The proof of this result in the case when Φ ≡ 0 is essentially the same
as the proof of [38, Proposition 7.32] (since that proof is not assuming any differentiability on
S).

For general Φ, we use some ideas from the proof of [16, Theorem 1]. Let us approximate
S with a sequence (Sε)ε>0 of smooth convex functions such that S′′

ε � cε > 0 for any ε > 0
with S′

ε(0+) = −∞. Let Φε be a smooth approximation of Φ which satisfies (2.4) and such
that Φε → Φ, ∇Φε → ∇Φ, uniformly as ε ↓ 0 and ‖[ΔΦε]+‖L∞ � ‖[ΔΦ]+‖L∞ , for ε > 0. Let
ρεk be the unique solution of (2.3), when we replace S with Sε and Φ by Φε. Writing down the
optimality conditions, we obtain

S′
ε(ρ

ε
k) + Φε +

φε
k

τ
= C a.e.,

where φε
k ∈ K(ρεk, ρk−1). Let us suppose that φε

k ∈ C2,α(Ω), otherwise we approximate ρk−1 by
strictly positive C0,α measures (and ρεk is Lipschitz continuous and strictly positive), and we
use Caffarelli’s regularity theory to deduce the desired regularity for the potential.

Now, let x0 be a maximum point of ρεk. From the previous equality, since S′
ε is strictly

increasing, we certainly have that x0 is a minimum point of Φε + φε
k

τ .
We claim that x0 /∈ ∂Ω. Indeed, if x0 would belong to ∂Ω, we would have that

(∇φε
k(x0) + τ∇Φε(x0)) · n(x0) � 0.

However, by the convexity of Ω, we have that (x0 −∇φε
k(x0)) · n(x0) � 0, from where ∇φε

k(x0) ·
n(x0) � 0. This fact together with the assumption (2.4) yields a contradiction. Indeed, from
the uniform convergence of ∇Φε → ∇Φ, we have that

∇Φε(x0) · n � ∇Φ(x0) · n − ε > 0,

for sufficiently small ε > 0.
Therefore, the maximum point x0 of ρεk belongs to the interior of Ω. This implies that

Δφε
k(x0) + τΔΦε(x0) � 0. Using the Monge–Ampère equation, we find

‖ρεk‖L∞ = ρεk(x0) = ρk−1(x0 −∇φε
k(x0)) det

(
Id −D2φε

k(x0)
)
� ‖ρk−1‖L∞(1 − Δφε

k(x0))d

� ‖ρk−1‖L∞(1 + τΔΦε(x0))d � ‖ρk−1‖L∞(1 + τ‖[ΔΦε]+‖L∞)d

� ‖ρk−1‖L∞(1 + τ‖[ΔΦ]+‖L∞)d � ‖ρ0‖L∞(1 + τ‖[ΔΦ]+‖L∞)kd

� ‖ρ0‖L∞edT‖[ΔΦ]+‖L∞ ,
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where in the first inequality we have used the inequality between the arithmetic and geometric
means. Since the last three bounds depend only on the data, these will also remain valid also
in the limit ε ↓ 0 (since the minimizers of both the approximated and the original problems
are unique). Therefore the thesis of the lemma follows. �

Now, we state the main result of this subsection on the first-order necessary optimality
conditions for the problems in (2.3).

Theorem 2.2. Suppose ρ0 ∈ L∞(Ω). For all k ∈ {1, . . . , N}, there exists C = C(k) ∈ R and
φk ∈ K(ρk, ρk−1) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C − φk

τ
− Φ � S′(0+) in {ρk = 0},

C − φk

τ
− Φ ∈ [S′(1−), S′(1+)] in {ρk = 1},

C − φk

τ
− Φ = S′ ◦ ρk otherwise.

(2.5)

Here, K(ρk, ρk−1) is given in Definition A.1. Also, S′(0+) and S′(1±) are given in (2.1). Note
that if S′(0+) = −∞, then ρk > 0 a.e. (see Lemma A.4), and in this case the first inequality
in (2.5) is not present.

The proof of the previous results relies on the precise derivation of the subdifferential of the
corresponding objective functional in (2.3). Let us point out that the subdifferential of sum
is not always the sum of subdifferentials (see, for instance [38, Example 7.22]). Therefore, we
need to carefully choose the domain of definition of J . In the spirit of Lemma 2.1, we consider
it as a functional on L∞(Ω) instead of P(Ω). The additive property of subdifferentials on
L∞(Ω) holds under suitable conditions (cf. [22]).

Remark 2.2. Let us underline that in our analysis we rely on the classical subdifferential
calculus in Lp spaces rather than directly computing Wasserstein subdifferentials (cf. [2]). This
is mainly because of the already available powerful classical results on precise representations
of subdifferentials of integral functionals, such as J , on Lp spaces (cf. [35, 36]). In the same
time, this framework is well suited also for computing the subdifferential of ρ �→ W 2

2 (·, ρk−1)
(see, for instance, in [38]).

It is worth mentioning, however, that at the heuristic level there is an intimate link between
the two notions of subdifferentials, namely: if ξ ∈ ∂J (ρ) (that is, ξ is an element of the classical
Lp subdifferential) is sufficiently regular, then ∇ξ ∈ ∂W2J (ρ) (that is, ∇ξ is an element of the
Wasserstein subdifferential). Nevertheless, this connection at this point remains only formal,
because typically we do not have any a priori information on the regularity of ξ to justify
this link.

Proposition 2.3. For all k ∈ {1, . . . , N}, we have

∂

(
J (ρ) + F(ρ) +

1
2τ

W 2
2 (ρ, ρk−1)

)∣∣∣∣
ρ=ρk

= ∂J (ρk) + Φ +
1
2τ

∂(W 2
2 (ρ, ρk−1))|ρ=ρk

. (2.6)

Proof. To simplify the writing, we consider only the case k = 1. Let us check that J and
W 2

2 (·, ρ0) satisfy the assumptions in Lemma B.2. The convexity of S implies that of J . Also,
the continuity of J in L∞(Ω) follows from the continuity of S. From Lemma B.1, we conclude
J ∈ Γ(L∞(Ω)). We have the same conclusion for the functional F (which is actually linear in
ρ).
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Let us show that W 2
2 (·, ρ0) ∈ Γ(L∞(Ω)). Define H : L1(Ω) → R ∪ {+∞} by

H(φ) := −
∫

Ω

φcdρ0. (2.7)

Proposition A.3 implies that H∗ : L∞(Ω) → R ∪ {+∞} is given (in the sense of (B.1)) by

H∗ =
1
2
W 2

2 (·, ρ0) on L∞(Ω).

We conclude W 2
2 (·, ρ0) ∈ Γ(L∞(Ω)).

Finally, choose A ⊆ Ω a Borel set such that L d(A) �= 1 and define

μ̂ :=
1

L d(A)
1A. (2.8)

J (μ̂), F(μ̂) and W 2
2 (μ̂, ρ0) are finite. Furthermore, by the continuity of S in R+, J is continuous

at μ̂. In the same way, F is also continuous at μ̂. Thus, we conclude (2.6) from Lemma B.2. �

Next, let us find the subdifferential of W 2
2 (·, ρk−1). While this subdifferential is expected to

be the set of Kantarovich potentials K(ρk, ρk−1), it is not straight forward to conclude about
this as we consider the subdifferential for the functional on L∞(Ω). We rely on the ideas from
[38, Proposition 7.17], tailored to our setting.

Lemma 2.4 [38, Lemma 7.15]. Let X be a Banach space and H : X → R ∪ {+∞} be convex
and lower semicontinuous. Set H∗(y) = sup

x∈X
{〈x, y〉X,X∗ −H(x)}. Then, we have

∂H∗(y) = arg max
x∈X

{〈x, y〉X,X∗ −H(x)}. (2.9)

Lemma 2.5. H : L1(Ω) → R ∪ {+∞} given in (2.7) is convex and lower semicontinuous.

Proof. The proof of convexity of H is the same as in [38, Proposition 7.17], where one needs
to change only the definition of ϕc using essential infima.

Let us show now that H is lower semicontinuous For this, let ϕ ∈ L1(Ω) and (ϕn)n∈N a
sequence in L1(Ω) such that ϕn → ϕ strongly in L1(Ω) as n → +∞.

Note first that by definition,

−ϕc(y) � ϕ(y), a.e. in Ω,

from where we have that H(ϕ) > −∞. Because of the strong L1 convergence, we know that
there exists a subsequence of (ϕn)n∈N (that we do not relabel), which is converging pointwise
a.e. in Ω to ϕ. We shall work with this sequence from now on.

Writing the previous inequality for ϕc
n and ϕn, we have that

lim inf
n→+∞ −ϕc

n(y) � lim inf
n→+∞ ϕn(y) = ϕ(y), a.e. in Ω,

where we used the fact that ϕn(y) → ϕ(y) a.e. in Ω, as n → +∞.
Let us define g : Ω → R ∪ {+∞} as g(y) := lim inf

n→+∞ −ϕc
n(y). Note that this is measurable

function. Indeed, (−ϕc
n)n∈N is a sequence of measurable functions (infima of measurable

functions), and using Fatou’s lemma for the non-negative sequence of measurable functions
(−ϕc

n − ϕn)n∈N, one concludes that g is measurable and∫
Ω

ϕ(y)ρ0(y)dy �
∫

Ω

g(y)ρ0(y)dy � lim inf
n→+∞ H(ϕn).

Claim. ϕ(y) � −ϕc(y) � g(y) for a.e. y ∈ Ω.
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Proof of the claim. Actually the first inequality was shown before, thus we show only the
second one. Thus, by Egorov’s theorem, we have that for any δ > 0 there exists a measurable set
Bδ ⊆ Ω such that L d(Bδ) < δ and (ϕn)n∈N converges uniformly to ϕ as n → +∞ on Ω \Bδ.
Let us fix a small δ > 0. We have furthermore that for any ε > 0 there exists Nε ∈ N such that

ϕ(x) − ε � ϕn(x) � ϕ(x) + ε

for a.e. x ∈ Ω \Bδ and n � Nε. Because of this, we have the following chain of inequalities for
all n � Nε

−ϕc
n(y) = sup

x∈Ω

{
ϕn(x) − |x− y|2} � sup

x∈Ω\Bδ

{
ϕn(x) − |x− y|2}

� sup
x∈Ω\Bδ

{
ϕ(x) − ε− |x− y|2}.

Taking lim inf
n→+∞ of both sides, one obtains

g(y) � sup
x∈Ω\Bδ

{
ϕ(x) − ε− |x− y|2}

for a.e. y ∈ Ω. By the arbitrariness of ε and δ (in this order), one gets that

g(y) � sup
x∈Ω

{
ϕ(x) − |x− y|2} = −ϕc(y),

as we claimed.
Note that we have proved the following: if (ϕn)n∈N is converging to ϕ in L1(Ω), then there

exists a subsequence (ϕnj
)j∈N of the original sequence such that

H(ϕ) � lim inf
j→+∞

H(ϕnj
).

This statement actually implies the lower semicontinuous of H on the full sequence. Indeed,
observe that by the definition of lim inf, there exists a subsequence (ϕnk

)k∈N of the original
sequence such that

lim inf
n→+∞ H(ϕn) = lim

k→+∞
H(ϕnk

).

We have shown previously that there exists a subsequence (ϕnkj
)j∈N of (ϕnk

)k∈N such that

H(ϕ) � lim inf
j→+∞

H(ϕnkj
).

On the other hand

lim inf
j→+∞

H(ϕnkj
) = lim

j→+∞
H(ϕnkj

) = lim
k→+∞

H(ϕnk
) = lim inf

n→+∞ H(ϕn),

thus the lower semicontinuous of H follows. �

Proposition 2.6. For all k ∈ {1, . . . , N} we have

1
2
∂(W 2

2 (ρ, ρk−1))
∣∣
ρ=ρk

= K(ρk, ρk−1). (2.10)

Proof. To simplify the notation, we set k = 1. Recall from Proposition A.3 that
1
2
∂(W 2

2 (ρ, ρ0))|ρ=ρ1 = ∂H∗(ρ1)

for H given in (2.7). From Lemmas 2.4 and 2.5, it holds that

∂H∗(ρ1) = argmaxφ∈L1(Ω)

{∫
Ω

φdρ1 +
∫

Ω

φcdρ0

}
.

From Definition A.1, we conclude. �



700 DOHYUN KWON AND ALPÁR RICHÁRD MÉSZÁROS

Finally, let us compute the subdifferential of J based on [36]. Before, we need the following
preparatory result.

Lemma 2.7 [36, Corollary 1B]. Let ψ and Ψ be given as in (B.2). Assume that ψ(μ(x))
is majorized by a summable function of x for at least one μ ∈ L∞(Ω) and that ψ∗(ζ(x)) is
majorized by a summable function of x for at least one ζ ∈ L1(Ω). Then, an element ξ ∈ L∞(Ω)∗

belongs to ∂Ψ(μ) given in (B.3) if and only if ξac(x) ∈ ∂ψ(μ(x)) for a.e. x ∈ Ω where ξac is the
absolutely continuous component of ξ, and the singular component ξs of ξ attains its maximum
at μ over

{ν ∈ L∞(Ω) : Ψ(ν) < +∞}.

Proposition 2.8. For ρk is given in (2.3), if ξ ∈ ∂J (ρk) ∩ L1(Ω), then it holds that

ξ ∈

⎧⎪⎪⎨⎪⎪⎩
[−∞, S′(0+)] a.e. in {ρk = 0},
[S′(1−), S′(1+)] a.e. in {ρk = 1},
S′ ◦ ρk a.e. in {ρk �= 1}.

(2.11)

Proof. Let us show that S and S∗ satisy assumptions on Lemma 2.7. Let μ = ζ = 1
L d(Ω)

1Ω,
then S(μ) is finite, and thus in L1(Ω). On the other hand, as S is superlinear, S∗ < +∞ in
[0,+∞). Therefore, for any constant c ∈ R, S∗(c) ∈ L1(Ω).

By Lemma 2.7, ξac(x) ∈ ∂S(ρk(x)) a.e., where ξac is the absolutely continuous part of ξ.
From the direct computation of ∂S(ρk(x)), we conclude that ξac satisfies the right-hand side
of (2.11). As ξ ∈ L1(Ω), the singular part of ξ is zero, ξac = ξ and we conclude (2.11). �

Proof of Theorem 2.2. We only consider the case that k = 1. By the optimality of ρ1 in
(2.3), it holds that

0 ∈ ∂

(
J (ρ1) + F(ρ1) +

1
2τ

W 2
2 (ρ1, ρ0)

)
.

From Propositions 2.3 and 2.6, there exists ξ ∈ ∂J (ρ1), φ1 ∈ K(ρ1, ρ0) and C ∈ R such that

ξ +
φ1

τ
+ Φ − C = 0 a.e. on Ω.

As φ1,Φ ∈ L1(Ω), ξ ∈ ∂J (ρ1) ∩ L1(Ω), Proposition 2.8 implies (2.5). �

2.2. Optimality conditions for ρ0 ∈ P(Ω) having finite energy

In this subsection, we are imposing (1.10). Let us show first that J satisfying the additional
assumption in (1.10) defines a continuous functional on Lr(Ω). In the previous subsection, the
continuity of J in L∞(Ω) directly follows from the continuity of S.

Lemma 2.9. Let J be given in (2.2) satisfying (1.10b). Then J is continuous in Ls(Ω) for
all

s > r if r = 1, and s � r if r > 1. (2.12)

Proof. From (1.10b), there exists c > 0 such that for all ρ ∈ [0,+∞) (since S is also
continuous, hence uniformly bounded on [0,1])

|S(ρ)| � c(ρs + 1), (2.13)

for all s satisfying (2.12).
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Consider a sequence {μi}i∈N ⊂ Ls(Ω) such that

μi → μ in Ls(Ω) as i → ∞ (2.14)

These exists a subsequence {μij}j∈N ⊂ {μi}i∈N such that

μij → μ a.e. as j → ∞. (2.15)

From (2.13), it holds that for all j ∈ N

0 � c(|μij |s + 1) − |S(μij )| � c(|μij |s + 1) ± S(μij ). (2.16)

Let us apply Fatou’s lemma into c(|μij |s + 1) + S(μij ). From (2.14), (2.15) and the continuity
of S, it holds that∫

Ω

c(|μ(x)|s + 1) + S(μ(x))dx � lim inf
j→∞

∫
Ω

c(|μij (x)|s + 1) + S(μij (x))dx,

�
∫

Ω

c(|μ(x)|s + 1)dx + lim inf
j→∞

∫
Ω

S(μij )dx,

and we have

J (μ) � lim inf
j→∞

J (μij ).

Similarly to the argument at the end of the proof of Lemma 2.5, we conclude the lower
semicontinuity along the full sequence, therefore

J (μ) � lim inf
i→∞

J (μi). (2.17)

Applying Fatou’s lemma again into c(|μij |s + 1) − S(μij ), we get

J (μ) � lim sup
j→∞

J (μij ), (2.18)

and as before, we deduce the upper semicontinuity along the full sequence. Therefore (2.17)
and (2.18) imply that J (μ) = lim

j→∞
J (μij ) and J is continuous in Ls(Ω). �

In what follows, we show that the minimizers of the of the minimizing movements scheme
(2.3) enjoy higher order summability estimates (which are independent of ρ0, but depend on
τ). These will play a crucial role later when deriving the optimality conditions.

Lemma 2.10. Suppose that S satisfies Assumption 1.1 and (1.10a). Let ρk ∈ P(Ω) be the
minimizer in (2.3). Then ρk ∈ Lβ(Ω), where β := (2r − 1)d/(d− 2), if d � 3. If d = 2, then
the statement is true for any β < +∞ and β = +∞ if d = 1. In particular, there exists C > 0
depending only on Ω, ‖∇Φ‖L∞ and β such that if β < +∞, then∫

Ω

(ρk)βdx � C +
C

τ2
W 2

2 (ρk, ρk−1). (2.19)

Otherwise, for d = 1,

‖ρk‖L∞ � C.

Remark 2.3. Let us note that the previous lemma gives an improvement on the
summability of ρk. Indeed, in case when the internal energy is of logarithmic entropy type,
we know a priori that ρk ∈ L1(Ω), while in the case of power like entropies, we have a priori
ρk ∈ Lr(Ω). In contrast to these, we clearly improve the summability exponents in both cases.
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Proof of Lemma 2.10. For ε > 0, let Sε : [0,+∞) → R smooth, strictly convex such that
S′′
ε � cε > 0 (for some cε > 0), S′

ε(0+) = −∞ and Sε → S uniformly as ε → 0. Let ρεk be the
unique minimizer of the problem

inf
ρ∈P(Ω)

{
Eε(ρ) :=

∫
Ω

Sε(ρ)dx + F(ρ) +
1
2τ

W 2
2 (ρ, ρk−1)

}
. (2.20)

By the assumptions on Sε, classical results imply that ρεk is Lipschitz continuous.
Without loss of generality, we can assume that Sε satisfies the growth (1.10a) if ρ > 2. We

can write the optimality condition

S′′
ε (ρεk)∇ρεk + ∇Φ +

∇ϕε
k

τ
= 0 a.e., (2.21)

where ϕε
k is a Kantorovich potential in the transport of ρεk onto ρk−1. From here, there exists

a constant C > 0 (depending only on r and σ1) such that∫
Ω

|S′′
ε (ρεk)∇ρεk|2ρεkdx � C

(
‖∇Φ‖2

L∞ +
1
τ2

W 2
2 (ρεk, ρk−1)

)
.

And in particular, for any � > 2, we have by setting Ω	 := {ρεk > �},∫
Ω�

|∇(ρεk)
r−1/2|2dx � C

(
‖∇Φ‖2

L∞ +
1
τ2

W 2
2 (ρεk, ρk−1)

)
. (2.22)

We know that the optimizers ρεk are Lipschitz continuous on their supports, therefore the
super-level sets Ω	 are open.

Moreover, once again using the fact that ρεk is Lipschitz continuous, we have that there exists
δ > 0 such that

dist(∂Ω	,Ω2	) � 2δ.

Indeed, otherwise if one supposes the contrary, then for any n ∈ N, there exist xn ∈ ∂Ω	

and yn ∈ Ω2	 such that dist(xn, yn) < 1
n , then one would have that |ρεk(xn) − ρεk(yn)| �

1
n‖∇ρεk‖L∞(Ω�) → 0, as n → +∞. However, this would be a contradiction since ρεk(xn) = �
and ρεk(yn) � 2�.

Now, by defining Ω	,δ := {χΩ2� � ηδ > s} for some s ∈ (0, 1/2) to be set later (where ηδ : Rd →
R is a mollifier obtained from a smooth even kernel η : Rd → R — such that

∫
Rd ηdx = 1, η � 0

and spt(η) ⊂ B1(0) — by ηδ := (1/δd)η(·/δ)), we have that Ω2	 ⊂ Ω	,δ ⊂ Ω	, Ω	,δ is an open
set, and by Sard’s theorem it has smooth boundary for L 1-a.e. s ∈ (0, 1/2). We choose such
an s.

We have in particular from (2.22) that∫
Ω�,δ

|∇(ρεk)
r−1/2|2dx � C

(
‖∇Φ‖2

L∞ +
1
τ2

W 2
2 (ρεk, ρk−1)

)
,

and so the Sobolev embedding theorem implies (since ρεk is only uniformly bounded in Lr(Ω))
that (ρεk)

r−1/2 ∈ L2∗
(Ω	,δ) from where ρεk ∈ Lβ(Ω	,δ), where β := 2∗(r − 1/2), if d � 3 and β <

+∞ arbitrary if d = 2 and β can be taken +∞ if d = 1. He we use the notation 2∗ = 2d/(d− 2).
From the above construction, we can claim that ρεk ∈ Lβ(Ω). Indeed, we have∫

Ω

(ρεk)
βdx =

∫
{ρε

k�	}
(ρεk)

βdx +
∫

Ω�,δ

(ρεk)
βdx +

∫
Ω�\Ω�,δ

(ρεk)
βdx

� (2β + 1)�βL d(Ω) + C

(
‖∇Φ‖2

L∞ +
1
τ2

W 2
2 (ρεk, ρk−1)

)
.

Let us underline that this bound only depends on W 2
2 (ρεk, ρk−1). Clearly, the previous inequality

is valid only if β < +∞. In the case of d = 1, that is, when β = +∞, we first perform the
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computation for β < +∞ finite, and obtain the desired bound after taking β-root of the
previous inequality and sending β → +∞.

Now, it is easy to see that because Sε → S uniformly, we have that the objective functional in
(2.20) Γ-convergences to the objective functional in the original problem as ε ↓ 0, with respect
to the weak-∗ convergence of probability measures. Indeed, take a sequence (ρε)ε>0 and ρ in
P(Ω) such that ρε



⇀ ρ as ε ↓ 0. Note that by the construction of the approximation Sε, if

Eε(ρε) � C (for a constant independent of ε), then we have that (ρε)ε>0 is uniformly bounded
in Lr(Ω). By the uniform convergence Sε → S, we have that for any δ > 0 there exists ε0 such
that

S(ρε) � Sε(ρε) + δ, ∀ε < ε0.

Therefore

E(ρ) � lim inf
ε↓0

E(ρε) � lim inf
ε↓0

Eε(ρε) + δL d(Ω),

so the Γ-liminf inequality follows by the lower semicontinuity of the energy E and the
arbitrariness of δ > 0. For the Γ-limsup inequality, we use a constant sequence ρε = ρ as a
recovery sequence such that Eε(ρ) is finite for all ε > 0. Clearly limε↓0 Eε(ρ) = E(ρ).

Finally, since both ρk and ρεk, the solutions of the original and the approximated problems,
respectively, are unique, when ε ↓ 0 we find that ρk also has the Lβ(Ω) bound. The thesis of
the lemma follows. �

Let us note that in Lemma 2.10 the Lβ bounds on ρk depends only on 1
τ2W

2
2 (ρk, ρk−1) and

the data. Therefore, when considering the piecewise constant interpolated curves (ρτ )τ>0 (see
their precise definition in (3.8)), and integrating them in time and space, we find the following
very important lemma.

Lemma 2.11. Suppose that ρ0 ∈ P(Ω) with J (ρ0) < +∞ and (1.10) hold. The curves
(ρτ )τ>0 are uniformly bounded in Lβ(Q) for β given in

β :=

⎧⎪⎪⎨⎪⎪⎩
(2r − 1) d

d−2 if d � 3,

(0,∞) if d = 2

+∞ if d = 1.

(2.23)

Proof. Let β as in the statement of the lemma and let (ρτ )τ>0 stand for the piecewise
constant interpolations as defined in (3.8). Then, Lemma 2.10 and (2.19) imply that∫ T

0

∫
Ω

(ρτ )βdxdt = τ

N∑
k=1

∫
Ω

(ρk)βdx � τNC + C

N∑
k=1

1
τ
W 2

2 (ρk, ρk−1),

where C > 0 depends only on the data and Ω. Since τN = T and
∑N

k=1
1
τW

2
2 (ρk, ρk−1) is

uniformly bounded (see Lemma 3.4), we conclude. �

Under the above assumption, we show a result parallel to Theorem 2.2.

Theorem 2.12. Suppose that ρ0 ∈ P(Ω) such that E(ρ0) < +∞ and (1.10) hold. Then,
for all k ∈ {1, . . . , N} there exists C = C(k) ∈ R and φk ∈ K(ρk, ρk−1) satisfying (2.5). Here,
K(ρk, ρk−1) and ρk are given in Definition A.1 and (2.3), respectively.

We recall the following lemma from [35, 36] and compute the subdifferential of J explicitly.
In comparison to the previous subsection, it holds that (Lr(Ω))∗ = Lr′(Ω) for r ∈ (1,+∞)
where r′ := r

r−1 and thus the argument below is simpler than Lemma 2.7.
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Lemma 2.13 [35, Theorem 2], [36, Equations (1.11) & (1.12)]. Let ψ and Ψ be given as
in (B.2). Assume that ψ(μ(x)) is majorized by a summable function of x for at least one μ ∈
L∞(Ω) and that ψ∗(ζ(x)) is majorized by a summable function of x for at least one ζ ∈ L1(Ω).
Then, an element ξ ∈ Lr(Ω)∗ belongs to ∂Ψ(μ) given in (B.3) if and only if ξ(x) ∈ ∂ψ(μ(x))
for a.e. x ∈ Ω.

Proof of Theorem 2.12. Let us set k = 1. The first part of the proof is parallel to
Propositions 2.3 and 2.6. Let us show

∂

(
J (ρ) + F(ρ) +

1
2τ

W 2
2 (ρ, ρ0)

)∣∣∣∣
ρ=ρ1

= ∂J (ρ1) + Φ +
1
τ
K(ρ1, ρ0), (2.24)

where K is given in Definition A.1 and the subdifferential is defined in Definition B.1. Recall
Γ(·) from Definition B.2 and its equivalent property in Lemma B.1. Note that J ∈ Γ(Lr(Ω))
follows from the convexity of S and Lemma 2.9. The same is true for F .

Let us underline that it is crucial that we have a priori bounds on the optimizers of (2.3) in
Lβ(Ω) for some β > 1. Indeed, Lemma 2.10 yields that even if r = 1 (which corresponds to the
logarithmic entropy type interaction energy), we have that the optimizers satisfy ρk ∈ Lβ(Ω).
In this case, without loss of generality, one considers the continuity of J and F in Lβ(Ω).
Otherwise, we gain Lr(Ω) bounds simply from the growth condition on S at +∞, hence we
can also refer to the continuity of J in this space.

Furthermore, from Proposition A.3, we have

H∗ =
1
2
W 2

2 (·, ρ0) on Lβ(Ω)

for H : Lβ′
(Ω) → R ∪ {+∞} given in (2.7) and β′ := β

β−1 . Thus we get W 2
2 (·, ρ0) ∈ Γ(Lβ(Ω)).

Finally, by the parallel argument in Lemma 2.5, H is also in Γ(Lβ′
(Ω)). From Lemmas B.2

and 2.4, we conclude (2.24).
The rest of the proof is parallel to that of Theorem 2.2. From (2.24) and Lemma 2.13, there

exists ξ ∈ ∂J (ρ1) satisfying (2.11), φ1 ∈ K(ρ1, ρ0) and C ∈ R such that

ξ +
φ1

τ
+ Φ − C = 0 a.e. on Ω.

and we conclude (2.5). �

To give a fine characterization of the critical regions {ρ = 1} arising in our models, we
introduce a new scalar pressure field p defined via the subdifferential of J and its ‘nontrivial’
value on the set {ρ = 1} is due to the nondifferentiability of S at s0 = 1. This construction is
inspired by recent works on crowd motion models with hard congestion effects (see, for instance,
[31, 33]).

Definition 2.4. Let (ρk)Nk=1 be given by the minimizing movement scheme (2.3) and let
φk ∈ K(ρk, ρk−1). For k ∈ {1, . . . , N}, let us define pk : Ω → R by

pk = pk(·; τ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{
C − φk

τ
− Φ, S′(1−)

}
in ρ−1

k ([0, 1)),

C − φk

τ
− Φ in ρ−1

k ({1}),

min
{
C − φk

τ
− Φ, S′(1+)

}
in ρ−1

k ((1,+∞)),

(2.25)
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where the constant C ∈ R might be different at each step. We observe that by the convexity
of S and (2.5) shown in Theorem 2.12, pk can be written in compact form as

pk = min
{

max
{
C − φk

τ
− Φ, S′(1−)

}
, S′(1+)

}
. (2.26)

Lemma 2.14. For k ∈ {1, . . . , N}, φk ∈ K(ρk, ρk−1) and pk are Lipschitz continuous in Ω.

Proof. From [38, Theorem 1.17], we have that φk shares the modulus of continuity of the
cost (x, y) �→ |x− y|2. On the one hand, as Ω is compact, we conclude that φk is Lipschitz
continuous. On the other hand, (2.26) implies that pk is Lipschitz continuous. �

Remark 2.5. Let us remark that pk is given in the same manner as in (2.25) or equivalently
in (2.26) throughout the article. As the Lipschitz continuity of the Kantorovich potential is
independent of the energy, the above lemma holds true for all the models we consider in
this paper.

In the following lemma, we deduce more properties of the optimizers of the JKO scheme
(2.3).

Lemma 2.15. Suppose that Assumption 1.1 takes place. Let (ρk)Nk=1 be obtained via
the minimizing movement scheme (2.3). For k ∈ {1, . . . , N}, let φk ∈ K(ρk, ρk−1) given in
Theorem 2.12. Then, we have:

(i)

ρk =

⎧⎪⎪⎨⎪⎪⎩
0, in f−1

k ((−∞, S′(0+)]),

1, in f−1
k ([S′(1−), S′(1+)]),

(S′)−1 ◦ fk, otherwise,

(2.27)

a.e. in Ω, where fk := C − φk

τ − Φ, and S′(0+) and S′(1±) are given in (2.1);
(ii) ρk is continuous in Ω;
(iii) the formula

|∇ρk| =
|∇fk|
S′′(ρk)

, (2.28)

holds true a.e. in ρ−1
k (R+ \ {1});

(iv) if in addition we suppose that Assumption 1.2 takes place with some σ2 > 0 and
m ∈ [1, 2], then ρk is Lipschitz continuous in Ω with a Lipschitz constant that might
degenerate when τ ↓ 0.

Proof. (i) By Assumption 1.1, S′ is strictly increasing function in R+ \ {1} and

S′(0+) < S′(a) < S′(1−) � S′(1+) < S′(b)

for all a ∈ (0, 1) and b > 1. Thus, (2.5) shown in Theorem 2.12 implies that ρk(x) = 0 for
x ∈ f−1

k ((−∞, S′(0+)]) and ρk(x) = 1 for x ∈ f−1
k ([S′(1−), S′(1+)]). Also, S′ is invertible in

R+ \ {1}, therefore (2.5) implies

ρk(x) = (S′)−1 ◦ fk(x) for x ∈ f−1
k (S′(R+ \ {1})),

and we conclude (2.27) a.e. in Ω.
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(ii) Let us show that ρk is continuous in Ω. Define (̂S′)−1 : R → [0,+∞) by

(̂S′)−1 :=

⎧⎪⎪⎨⎪⎪⎩
0, in (−∞, S′(0+)],

1, in [S′(1−), S′(1+)],

(S′)−1, otherwise.

(2.29)

Note that from (2.27), we have

ρk = (̂S′)−1 ◦ fk a.e. in Ω. (2.30)

From the continuity and invertibility of S′ in R+ \ {1}, we conclude that (̂S′)−1 is continuous in
R. Furthermore, from Lemma 2.14, we know that φk is Lipschitz continuous and Φ is Lipschitz
continuous by assumption, therefore fk is Lipschitz continuous. From (2.30), we conclude that
ρk is continuous in Ω.

(iii) As S is strictly convex and twice differentiable in R+ \ {1} (by Assumption 1.1), (S′)−1

is differentiable in S′(R+ \ {1}) and on this set we have

((̂S′)−1)′ = ((S′)−1)′ =
1

S′′ ◦ (S′)−1
. (2.31)

Therefore, by (2.30) we have (2.28).
(iv) Using Assumption 1.2, from (2.28), we conclude that a.e. in ρ−1

k (R+ \ {1}) we can
compute

|∇ρk| =
|∇fk|
S′′(ρk)

� σ2ρ
2−m
k |∇fk|. (2.32)

As fk is Lipschitz continuous and ρk is bounded (since it is continuous in Ω), we conclude that
ρk is Lipschitz continuous in Ω if m ∈ [1, 2]. �

Remark 2.6. Let us emphasize that the representation formula (2.27) is independent of the
entropy function S, therefore it remains the same for all energies considered in the manuscript.
As a consequence, the formula (2.28) holds also true for all the models throughout the paper.

3. Linear diffusion with discontinuities – a cornerstone of our analysis

In this section, we show the well-posedness of (1.4) in the most simple case considered in this
paper, that is, when the associated internal energy is an entropy of logarithmic type. We give
a fine characterization of the ‘critical phase’ {ρ = 1} via a scalar pressure field. In the next
sections, we shall see how the results and ideas from this sections will be important to build
solutions for problems with more general nonlinearities.

In this section, we assume that S : [0,+∞) → R is defined by

S(ρ) :=

{
ρ log ρ, for ρ ∈ [0, 1],

2ρ log ρ, for ρ ∈ (1,+∞).
(3.1)

Let us note that S defines a continuous superlinear function on R+ with S′(1−) = 1 and
S′(1+) = 2.

Our main theorem from this section can be formulated as follows.
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Theorem 3.1. For ρ0 ∈ P(Ω) such that J (ρ0) < +∞ and S given in (3.1), there exists ρ ∈
L1(Q) ∩ AC2([0, T ];P(Ω)) and p ∈ L2([0, T ];H1(Ω)) ∩ L∞(Q) with

√
ρ ∈ L2([0, T ];H1(Ω))

such that (ρ, p) is a weak solution of⎧⎪⎨⎪⎩
∂tρ− Δ(ρp) −∇ · (∇Φρ) = 0, in (0, T ) × Ω,

ρ(0, ·) = ρ0, in Ω,

(∇(ρp) + ∇Φ) · n = 0, in [0, T ] × ∂Ω,

(3.2)

in the sense of distribution. Furthermore, (ρ, p) satisfies⎧⎪⎪⎨⎪⎪⎩
p(t, x) = 1 a.e. in {0 < ρ(t, x) < 1},
p(t, x) ∈ [1, 2] a.e. in {ρ(t, x) = 1},
p(t, x) = 2 a.e. in {ρ(t, x) > 1}.

(3.3)

If in addition ρ0 ∈ L∞(Ω) and Φ satisfies (2.4), then ρ ∈ L2([0, T ];H1(Ω)) ∩ L∞(Q).

In the proof of the previous theorem, we rely on the minimizing movements scheme associated
to the gradient flow of J , defined in (2.3). As technical tools, we define different interpolations
between the discrete in time densities (ρk)Nk=0 and pressures (pk)Nk=0 and obtain a weak solution
of (3.2) by sending τ ↓ 0.

By the definition of pk in Definition 2.4, the optimality condition (2.5) in Theorem 2.2 applied
to the energy from this section, can be simplified as follows.

Lemma 3.2. For all k ∈ {1, . . . , N}, there exists C ∈ R such that

pk(1 + log ρk) +
φk

τ
+ Φ = C a.e. (3.4)

Proof. Note that a subdifferential ∂S(ρ) of S : [0,+∞) → R is given by

∂S(ρ) =

⎧⎪⎨⎪⎩
1 + log ρ for 0<ρ<1,
[1, 2] for ρ = 1,
2(1 + log ρ) for ρ>1.

(3.5)

Thus, Theorem 2.2 and (2.25) imply

pk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 in ρ−1
k ((0, 1)),

C − φk

τ
− Φ ∈ [1, 2] in ρ−1

k ({1}),

2 in ρ−1
k ((1,+∞)).

a.e. (3.6)

Thus, we simplify (2.5) into (3.4). �

An easy consequence of the above constructions is the following result, which can be seen as
a simplified version of Lemma 2.15.

Lemma 3.3. For k ∈ {1, . . . , N}, ρk is Lipschitz continuous in Ω. Here, ρk is given in (2.3).

Proof. From (3.4) in Lemma 3.2, we have that

ρk(x) = exp
{

1
pk(x)

(
C − φk(x)

τ
− Φ

)
− 1

}
a.e. (3.7)
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As pk and φk are Lipschitz continuous from Lemma 2.14, Φ is Lipschitz continuous by the
assumption and pk has a lower bound +1 from (3.6), (3.7) implies that ρk is Lipschitz
continuous. �

3.1. Interpolations between the discrete in time densities, velocities, momenta and pressures

As technical tools, similarly as it is done in the framework of models developed, for instance, in
[31, 33, 38], we introduce two different kinds of interpolations between the objects in the title
of the subsection. These interpolations actually are independent of the considered energies, and
we refer back to them throughout the paper.

Piecewise constant interpolations. Let us define ρτ , pτ : Q → R and vτ ,Eτ : Q → Rd as
follows⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρτ (t, x) := ρk(x),

pτ (t, x) := pk(x),

vτ (t, x) :=
1
τ
∇φk(x),

Eτ (t, x) := ρτ (t, x)vτ (t, x)

for (t, x) ∈ ((k − 1)τ, kτ ] × Ω and k ∈ {1, . . . , N}, (3.8)

for (ρk)Nk=1 obtained in (2.3) and φk ∈ K(ρk, ρk−1) given in Theorem 2.2.
By standard arguments on gradient flows (see for instance [38, Proposition 8.8], [33,

Lemma 3.5]), we have the following.

Lemma 3.4. It holds that

1
2τ

N∑
k=1

W 2
2 (ρk, ρk−1) =

1
2τ

N∑
k=1

∫
Ω

|∇φk|2dρk(x) � J (ρ0) − inf J .

Furthermore, there exists a constant C > 0 such that for any 0 � s < t � T

W2(ρτ (t), ρτ (s)) � C(t− s + τ)
1
2 . (3.9)

Proposition 3.5. Let (ρτ )τ>0 and (pτ )τ>0 given (3.8) and (2.25), respectively. We have
the followings.

(1) (pτ )τ>0 is uniformly bounded in L2([0, T ];H1(Ω)) ∩ L∞(Q).
(2) (

√
ρτ )τ>0 is uniformly bounded in L2([0, T ];H1(Ω)).

(3) If in addition ρ0 ∈ L∞(Ω) and Φ satisfies (2.4), then (ρτ )τ>0 is uniformly bounded in
L2([0, T ];H1(Ω)) ∩ L∞(Q).

Proof. Step 1. Clearly, by construction, (pτ )τ>0 is uniformly bounded. Furthermore, if ρ0 ∈
L∞(Ω), then Lemma 2.1 implies that (ρτ )τ>0 is uniformly bounded by a constant depending
only on the data for all t ∈ [0, T ].

Step 2. Now, let us show that (∇√
ρτ )τ>0 and (∇pτ )τ>0 are uniformly bounded in L2(Q).

Let φk ∈ K(ρk, ρk−1). Lemmas 2.14 and 3.3 implies that φk, ρk and pk are Lipschitz continuous
functions, and therefore by Rademacher’s theorem one can differentiate these function a.e. in
Ω. Note that {ρk �= 1} is an open by the continuity of ρk in Lemma 3.3 and thus (3.6) implies

∇pk = 0 a.e. in {ρk �= 1}. (3.10)

Therefore, we get

log ρk∇pk = 0 and (ρk − 1)∇pk = 0 a.e. (3.11)
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Next, we claim that

∇pk · ∇ρk = 0 a.e. in Ω. (3.12)

From (3.6), the above holds in the open set {ρk �= 1} and in the interior of {ρk = 1}, but we
point out that ∂{ρk = 1} may have positive measure even though ρk is Lipschitz continuous.
In order to show (3.12) in Ω, we apply the coarea formula and (3.10). As ρk is Lipschitz and
∇pk is in L1(Ω), we could use the coarea formula in [27, Corollary 5.2.6] and conclude that∫

Ω

|∇pk||∇ρk|dx =
∫
R

∫
(ρk)−1(s)

|∇pk|dH d−1ds.

where H d−1 stands for the (d− 1)-dimensional Hausdorff measure. From (3.10), we conclude
(3.12).

Differentiating (3.4) and applying (3.11) and (3.12), we have

−∇φk

τ
−∇Φ = ∇(pk(1 + log ρk)) = ∇pk +

pk
ρk

∇ρk a.e. (3.13)

From (3.13) and (3.12) again, we have

2ρk

( |∇φk|2
τ2

+ |∇Φ|2
)

� |∇pk|2 +
p2
k

ρk
|∇ρk|2 a.e., (3.14)

from where we can write

2ρk

( |∇φk|2
τ2

+ |∇Φ|2
)

� |∇pk|2 + p2
k|∇

√
ρk|2 a.e.

As pk ∈ [1, 2] (from (3.6)), we have∫
Ω

(|∇pk|2 + |∇√
ρk|2

)
� 2

∫
Ω

|∇φk|2
τ2

ρkdx + 2‖∇Φ‖2
L∞ .

From Lemma 3.4, we conclude that (
√
ρτ )τ>0 and (pτ )τ>0 are uniformly bounded in

L2([0, T ];H1(Ω)) for all τ > 0.
Moreover, if ρ0 ∈ L∞(Ω), we have ‖ρk‖L∞ � ‖ρ0‖L∞(Ω)e

dT‖[ΔΦ]+‖L∞ (from Lemma 2.1), and
therefore from (3.14) we get∫

Ω

|∇pk|2dx +
∫

Ω

1
‖ρ0‖L∞(Ω)edT‖[ΔΦ]+‖L∞ |∇ρk|2dx � C, (3.15)

from where we have (ρτ )τ>0 is uniformly bounded in L2([0, T ];H1(Ω)). �

Corollary 3.6. Let (ρτ )τ>0 and (pτ )τ>0 be as in the previous proposition. There exist
p ∈ L2([0, T ];H1(Ω)) and ρ ∈ L1(Q) such that

ρτ → ρ in L1(Q), as τ ↓ 0,

and

pτ ⇀ p in L2([0, T ];H1(Ω)), as τ ↓ 0.

along a subsequence. If in addition ρ0 ∈ L∞(Ω) and Φ satisfies (2.4), then we also have ρ ∈
L2([0, T ];H1(Ω)) and ρτ → ρ in L2(Q), as τ ↓ 0.

Proof. The weak sequential compactness of (pτ )τ>0 follows from the uniform boundedness
in L2([0, T ];H1(Ω)) in the previous proposition. Also, as (ρτ )τ>0 has the ‘quasi-Hölder’ type
estimates in Lemma 3.4 and (

√
ρτ )τ>0 is uniformly bounded in L2([0, T ];H1(Ω)), we conclude

the strong compactness of (ρτ )τ>0 in L1(Q) by a consequence of a modified version of the
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classical Aubin–Lions lemma in Lemma C.2, often used in similar context (see, for instance,
[18, Proposition 4.8] and [29, Proposition 5.2]). If ρ0 ∈ L∞(Ω), the last statement simply
follows from the similar arguments. �

As a consequence of the above results, we have the following.

Lemma 3.7. (ρ, p) given in Corollary 3.6 satisfies (3.3).

Proof. Step 1. Let (ρτ , pτ ) be defined in (3.8) and (2.25). First, from (3.6), we have

(pτ − 2)(ρτ − 1)+ = (pτ − 1)(ρτ − 1)− = 0 in Q. (3.16)

As it holds that

|(ρτ − 1)+ − (ρ− 1)+| � |ρτ − ρ| and |(ρτ − 1)− − (ρ− 1)−| � |ρτ − ρ|, (3.17)

Proposition 3.5 implies that both (ρτ − 1)+ → (ρ− 1)+ and (ρτ − 1)− → (ρ− 1)− in L1(Q) as
τ ↓ 0 (up to passing to a subsequence).

Step 2. Let us show that for a.e. t ∈ [0, T ]∫
Ω

(p(t, x) − 2)(ρ(t, x) − 1)+dx = 0 and
∫

Ω

(p(t, x) − 1)(ρ(t, x) − 1)−dx = 0. (3.18)

We only show the first one as the parallel arguments work for the second one. From (3.16), we
have

0 =
∫
Q

(pτ (t, x) − 2)(ρτ (t, x) − 1)+dxdt. (3.19)

Recall that up to passing to a subsequence, (pτ )τ>0 convergences weakly−� in L∞(Q) (see
Proposition 3.5) and ((ρτ (t, x) − 1)+)τ>0 converges strongly (from Step 1) in L1([0, T × Ω]) as
τ ↓ 0. Combining these with (3.19), we conclude the first equation of (3.18).

As pτ ∈ [1, 2] for pτ given in (2.25), we have p ∈ [1, 2] a.e. in Q. Thus, (3.18) implies

(p− 2)(ρ− 1)+ = (p− 1)(ρ− 1)− = 0 a.e.

and we conclude (3.3). �

Proposition 3.8. Let Eτ be given in (3.8). Then up to passing to a subsequence, (Eτ )τ>0

weakly-� converges to

E := −∇(pρ) −∇Φρ, in D ′(Q; Rd),

as τ ↓ 0 where and (ρ, p) is given in Corollary 3.6.

Proof. For any test function ζ ∈ C∞
c (Q; Rd), we claim that up to passing to a subsequence,

I :=
∫
Q

ζ · d(Eτ − E) → 0, as τ ↓ 0. (3.20)

From (3.11), we have log ρτ∇pτ = 0 in a.e. in Q and thus it holds that

−Eτ = pτ∇ρτ + ρτ (1 + log ρτ )∇pτ + ∇Φρτ = ∇(ρτpτ ) + ∇Φρτ . (3.21)

By the weak convergence of (ρτ )τ>0 to ρ, we already have that∫
Q

ζ · ∇Φdρτ dt →
∫
Q

ζ · ∇Φdρdt, τ ↓ 0,
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we only focus on the other term. By integration by parts and from the fact that ζ ∈ C∞
c (Q; Rd),

we study thus

I1 =
∫
Q

(ρτpτ − ρp)∇ · ζdxdt.

By subtracting and adding the same term in the above equation, we get

I1 = I2 + I3 where I2 =
∫
Q

(ρτ − ρ)pτ∇ · ζdxdt and I3 =
∫
Q

ρ(pτ − p)∇ · ζdxdt.

From the Hölder inequality, we have

|I2| � ‖ρτ − ρ‖L1(Q)‖pτ‖L∞(Q)‖∇ · ζ‖L∞(Q).

As ρτ → ρ in L1(Q) as τ ↓ 0 and ‖pτ‖L∞(Q) is uniformly bounded (Proposition 3.5), we
conclude I2 → 0 as τ ↓ 0. On the other hand, as pτ



⇀ p in L∞(Q) as τ ↓ 0 (Proposition 3.5),

and ρ ∈ L1(Q) we have I3 → 0 as τ ↓ 0 as well, and thus we conclude (3.20). �

To arrive to the time continuous PDE satisfied by (ρ, p) from Corollary 3.6, as technical
tools (inspired from [31, 33, 38]), we introduce a geodesic interpolation between (ρk)Nk=1 and
we consider the corresponding velocities and momenta as well.

More precisely, we define ρ̃τ : [0, T ] → P(Ω), ṽτ , Ẽ
τ ∈ M (Q; Rd) as follows: for t ∈ ((k −

1)τ, kτ ] and k ∈ {1, . . . , N}⎧⎪⎪⎨⎪⎪⎩
ρ̃τ (t, x) :=

(
kτ−t
τ vτ (t, x) + id

)
#
ρτ (t, x),

ṽτ (t, x) := vτ (t, x) ◦ (kτ−t
τ vτ (t, x) + id

)−1
,

Ẽ
τ
(t, x) := ρ̃τ (t, x)ṽτ (t, x),

(3.22)

where ρτ and vτ are given in (3.8).
Following the very same steps as in [38, Lemma 8.9] and [33, Step 2 in Theorem 3.1], we

have the following.

Lemma 3.9. We have that:

(i) (ρ̃τ )τ>0 is uniformly bounded in AC2([0, T ];P(Ω));
(ii) there exists C > 0 such that

∫ T

0

∫
Ω
|ṽτ |2dρ̃τt dt � C;

(iii) (Ẽ
τ
)τ>0 is uniformly bounded in M (Q; Rd).

As a consequence, we have that along a subsequence

(iv) supt∈[0,T ] W2(ρ̃τt , ρt) → 0, as τ ↓ 0;

(v) Ẽ
τ 

⇀ E, in M (Q; Rd), as τ ↓ 0;

where ρ is given in Proposition 3.5 and E is given in Proposition 3.8.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let us underline that the main reason for introducing the
interpolations (ρ̃τ , Ẽ

τ
) is that by construction, they satisfy the PDE⎧⎪⎨⎪⎩

∂tρ̃
τ + ∇ · Ẽτ

= 0, in (0, T ) × Ω,

ρ̃τ (0, ·) = ρ0, in Ω,

Ẽ
τ · n = 0, on [0, T ] × ∂Ω,

(3.23)
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in the distributional sense. Then, Lemma 3.9 and Proposition 3.8 allow us to conclude that
(ρ, p) satisfies (3.2) in the distributional sense. Finally, from Lemma 3.7, we conclude that (ρ, p)
satisfies (3.3). The thesis of the theorem follows. �

4. Linear diffusion on {ρ < 1} and porous medium type diffusion on {ρ > 1}
As we will see below, in this section the diffusion coefficients and the diffusion rates are not
necessarily supposed to be the same in the regions {ρ < 1} and {ρ > 1}. Therefore, a technical
difficulty arises, because of the lack of a simple way (as in (3.4)) to derive the first-order
necessary optimality conditions for the minimizing movement scheme. To overcome this issue,
instead, we use a particular decomposition for S, which allows us to use the construction from
Section 3.

In this section too, we impose Assumption 1.1. If ρ0 /∈ L∞(Ω), we impose additionally (1.10).
Furthermore, throughout this section we suppose also the following: S : [0,+∞) → R satisfies

ρ−1

σ2
� S′′(ρ) in (0, 1) (4.1)

for some constant σ2 > σ1 for σ1 given in (1.10a). This corresponds to (1.9) with m = 1.
A direct consequence of the above assumption is the following result.

Lemma 4.1. S : [0,+∞) → R satisfies

S′(0+) = −∞. (4.2)

Proof. Integrating (4.1) from 1
2 to ρ, it holds that

S′
(

1
2

)
− S′(ρ) � 1

σ2

(
log

1
2
− log ρ

)
.

As σ2 > 0, we conclude that

S′(ρ) � S′
(

1
2

)
− 1

σ2
log

1
2

+
1
σ2

log ρ → −∞ as ρ → 0+. �

Example 4.1. For m > 1, S : [0,+∞) → R given by

S(ρ) :=

⎧⎪⎪⎨⎪⎪⎩
ρ log ρ, for ρ ∈ [0, 1],

1
m− 1

(ρm − 1), for ρ ∈ (1,+∞).

Note that Assumption 1.1 follows from the smoothness and strict convexity of S in R+ \ {1}
and

S′(1−) = 1 < S′(1+) =
m

m− 1
.

(4.1) is obtained by

ρS′′(ρ) =

{
1, for ρ ∈ (0, 1),

mρm−1 � m, for ρ ∈ (1,+∞).

(1.10) is also fulfilled with r = m.
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In this case, LS(ρ, p)(x) is given by

LS(ρ, p)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x), if 0 < ρ(x) < 1,

p(x) ∈
[
1,

m

m− 1

]
, if ρ(x) = 1,

ρ(x)m +
1

m− 1
, if ρ(x) > 1.

Our main theorem from this section reads as:

Theorem 4.2. Suppose that (1.10) and (4.1) hold true. For ρ0 ∈ P(Ω) such that
J (ρ0) < +∞, there exists ρ ∈ Lβ(Q) ∩ AC2([0, T ];P(Ω)) for β given in (2.23) and p ∈
L2([0, T ];H1(Ω)) ∩ L∞(Q) with

√
ρ ∈ L2([0, T ];H1(Ω)) such that (ρ, p) is a weak solution of⎧⎪⎨⎪⎩

∂tρ− Δ(LS(ρ, p)) −∇ · (∇Φρ) = 0, in (0, T ) × Ω,

ρ(0, ·) = ρ0, in Ω,

(∇(LS(ρ, p)) + ∇Φρ) · n = 0, in [0, T ] × ∂Ω,

(4.3)

in the sense of distribution. Furthermore, (ρ, p) satisfies for a.e. (t, x) ∈ Q⎧⎪⎪⎨⎪⎪⎩
p(t, x) = S′(1−) if 0 < ρ(t, x) < 1,

p(t, x) ∈ [S′(1−), S′(1+)] if ρ(t, x) = 1,

p(t, x) = S′(1+) if ρ(t, x) > 1.

(4.4)

If in addition ρ0 ∈ L∞(Ω) and Φ satisfies (2.4), we can drop (1.10) from the statement and we
obtain that ρ ∈ L2([0, T ];H1(Ω)) ∩ L∞(Q).

Let us briefly explain the outline of the proof. First, we define Sa and Sb : [0,+∞) → R by

Sa(ρ) :=

{
S′(1−)ρ log ρ, for ρ ∈ [0, 1],

S′(1+)ρ log ρ, for ρ ∈ (1,+∞),
(4.5)

and

Sb(ρ) := S(ρ) − Sa(ρ). (4.6)

We show the convexity of Sa and twice differentiability of Sb in Lemma 4.4. This particular
decomposition will be useful when deriving optimality conditions in our minimizing movement
scheme. Under (4.1), we are able to apply similar arguments as the ones in Section 3.

We point out that Lemma 4.1 implies that ρk > 0 a.e. (see Lemma A.4). Theorem 2.2 and
(4.1) yield that ρk satisfies the following lemma.

Lemma 4.3. Let (ρk)Nk=1 be obtained via the minimizing movement scheme (2.3). For k ∈
{1, . . . , N} and φk ∈ K(ρk, ρk−1) given in Theorem 2.2, we have that

ρk =

{
1, in f−1

k ([S′(1−), S′(1+)]),

(S′)−1 ◦ fk, otherwise,
(4.7)

in Ω, where fk := C − φk

τ − Φ, and S′(1±) is given in (2.1). In particular, ρk is Lipschitz
continuous in Ω with a Lipschitz constant that might degenerate when τ ↓ 0.

Proof. This result is a direct consequence of Lemma 2.15. Indeed, Lemma A.4 shows that
ρk > 0 a.e. in Ω, therefore spt(ρk) = Ω. Also, in Assumption 1.2 we have m = 1. Moreover, since
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Lemma 4.1 yields that S′(0+) = −∞, and since we can eventually modify ρk on a negligible
set, we can use the representation (4.7) for ρk everywhere in Ω. �

The following properties hold for Sa and Sb.

Lemma 4.4. Sa is convex and continuous in R+. Also, Sb is continuously differentiable and
S′
b is locally Lipschitz continuous in R+. In particular, we have

Sb(1) = S(1) and S′
b(1) = 0. (4.8)

Proof. From convexity of S, it holds that S′(1−) < S′(1+) and thus Sa is convex. It is
obviously also continuous by construction.

On the other hand, by the construction in (4.5), Sb(ρ) is differentiable on R+ \ {1}. Let us
show that Sb(ρ) is differentiable at ρ = 1. By differentiating (4.5) on R+ \ {1}, we have that

S′
a(ρ) =

{
S′(1−)(1 + log ρ), for ρ ∈ (0, 1),

S′(1+)(1 + log ρ), for ρ ∈ (1,+∞).

Therefore, we conclude that

S′
b(1−) = S′(1−) − S′

a(1−) = 0 and S′
b(1+) = S′(1+) − S′

a(1+) = 0

and Sb is continuously differentiable in R+. As both S′ and S′
a are locally Lipschitz in R+ \ {1},

S′
b is also locally Lipschitz continuous in R+ \ {1}. As S′

b is continuous, we conclude that S′
b is

locally Lipschitz continuous in R+. Finally, Sb(1) = S(1) follows from Sa(1) = 0. �

Lemma 4.5. Let (ρk)Nk=1 be obtained via the minimizing movement scheme (2.3) and let
(pk)Nk=1 be constructed in (2.25). For k ∈ {1, . . . , N}, we have that

pk(1 + log ρk) + S′
b(ρk) +

φk

τ
+ Φ = C, a.e. in Ω. (4.9)

Proof. We first note that Lemma 4.1 implies that ρk > 0 a.e. in Ω (see also Lemma A.4).
From Theorem 2.2, we have

pk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S′(1−), in ρ−1
k ((0, 1)),

C − φk

τ
− Φ, in ρ−1

k ({1}),

S′(1+), in ρ−1
k ((1,+∞)).

(4.10)

As S′
b(1) = 0, (4.9) holds in ρ−1

k ({1}) by (4.10).
Finally, from (4.10), in ρ−1

k (R+ \ {1}) we have that

S′
a(ρk) = pk(1 + log ρk). (4.11)

As S′ = S′
a + S′

b in ρ−1
k (R+ \ {1}), we conclude (4.9) from Proposition 2.8. �

Remark 4.2. As Sb is differentiable, in the previous proof we also used the fact

∂S = ∂Sa + S′
b,

the proof of which can be found, for instance, in [28, Corollary 1.12.2].

Similarly as in Section 3, we construct piecewise constant and continuous in time interpola-
tions (ρτ ,vτ ,Eτ ) and (ρ̃τ , ṽτ , Ẽ

τ
). Similarly to Proposition 3.5, we can formulate the following

result.
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Proposition 4.6. (ρτ )τ>0 and (pτ )τ>0 satisfy the exact same bounds as in Proposition 3.5.

Proof. Let us notice first that the uniform boundedness of (pτ )τ>0 in L∞(Q) follows from
the construction in (4.10).

Let us show the other estimates from Proposition 3.5. Note that both S′
b and ρk are locally

Lipschitz continuous (as we have shown in Lemma 4.4 and Lemma 4.3). Thus, Lemma 4.5
implies

−∇φk

τ
−∇Φ = ∇pk +

(
pk
ρk

+ S′′
b (ρk)

)
∇ρk, a.e. in Ω. (4.12)

By the parallel computation as in (3.14), we conclude that

2ρk
|∇φk|2
τ2

+ 2ρk|∇Φ|2 � |∇pk|2 + ρk

(
pk
ρk

+ S′′
b (ρk)

)2

|∇ρk|2.

From Lemma 4.8, we have

ρk

(
pk
ρk

+ S′′
b (ρk)

)2

|∇ρk|2 � 1
σ2

2ρk
|∇ρk|2 a.e. in Ω.

The rest of arguments is parallel to Step 3 in Proposition 3.5, thus we conclude the thesis
of the proposition. �

Corollary 4.7. Up to passing to a suitable subsequence, the sequences (ρτ )τ>0 and
(pτ )τ>0 converge in the same sense as in Corollary 3.6.

Remark 4.3. From (4.12), we have

2ρk
|∇φk|2
τ2

+ 2ρk|∇Φ|2 � |∇(F (ρk, pk))|2
ρk

, where F (ρ, p) := pρ + ρS′
b(ρ) − Sb(ρ).

Then, if ρ0 ∈ L∞(Ω), this observation together with the uniform L∞ bounds on ρτ imply
uniform L2([0, T ];H1(Ω)) bounds on F (ρτ , pτ ).

As the proof of Proposition 3.5, we rely on the coarea formula when proving the following
result.

Lemma 4.8. For (ρk)Nk=1 and (pk)Nk=1 given in (2.3) and (2.25), it holds that

|pk + ρkS
′′
b (ρk)||∇ρk| � 1

σ2
|∇ρk| a.e. in Ω. (4.13)

Proof. If x ∈ {ρk �= 1}, then (4.11) implies

pk(x)
ρk(x)

+ S′′
b (ρk(x)) = S′′

a (ρk(x)) + S′′
b (ρk(x)) = S′′(ρk(x)). (4.14)

From (4.1), we conclude

|pk + ρkS
′′
b (ρk)| � 1

σ2
a.e. in {ρk �= 1}. (4.15)

Recall that ρk is Lipschitz continuous (cf. Lemma 4.3) and thus

∇ρk = 0 a.e. in {ρk = 1}
(see, for instance, [23, Theorem 4.(iv), Section 4.2.2]). Therefore, we conclude (4.13). �
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Proof of Theorem 4.2. As an initial observation, let us remark that by similar arguments
as in Lemma 3.9, one obtains the same estimates for the continuous in time interpolations
(ρ̃τ , ṽτ , Ẽ

τ
), and by passing to the limit as τ ↓ 0, we obtain a continuity equation of the form

∂tρ + ∇ · E = 0.

Since the limits of (ρ̃τ , Ẽ
τ
) and (ρτ ,Eτ ) are the same, it remains to identify the limit of the

latter one to get the precise form of our limit equation.
Step 1. From direct computation as in (3.21), we obtain that

−Eτ = ρτ∇(S′
b(ρ

τ ) + pτ (1 + log ρτ )) + ρτ∇Φ

= ∇(ρτS′
b(ρ

τ ) − Sb(ρτ ) + Sb(1) + pτρτ ) + ρτ∇Φ. (4.16)

From Proposition 4.6 and Corollary 4.7, we can claim that

∇(ρτS′
b(ρ

τ ) − Sb(ρτ ) + Sb(1) + pτρτ ) → ∇(ρS′
b(ρ) − Sb(ρ) + Sb(1) + pρ), (4.17)

as τ ↓ 0 in the sense of distribution. Indeed, using the strong L1(Q) compactness of (ρτ )τ>0

and the weak-� compactness of (pτ )τ>0 in L∞(Q), we can pass to the limit ρτpτ . Recall that
(ρτ )τ>0 in uniformly bounded in Lβ(Q) for β given in (2.23). As r < β, Corollary 4.7 yields
the convergence of (ρτ )τ>0 in Lr(Q). As the growth rate of ρS′

b(ρ) and Sb(ρ) is r, we conclude
that ρτS′

b(ρ
τ ) − Sb(ρτ ) → ρS′

b(ρ) − Sb(ρ) in L1(Q) as τ ↓ 0.
Step 2. Let us show that

ρS′
b(ρ) − Sb(ρ) + Sb(1) + pρ = LS(ρ, p). (4.18)

By parallel arguments as in Lemma 3.7, we conclude that (ρ, p) satisfies (4.4). Thus, it holds
that

ρS′
a(ρ) − Sa(ρ) = pρ, a.e. in ρ−1(R+ \ {1}) (4.19)

and we conclude (4.18) a.e. in ρ−1(R+ \ {1}). From (4.17) and (4.18), we conclude (4.3).
Furthermore, from Lemma 4.4, we obtain that

ρS′
b(ρ) − Sb(ρ) + Sb(1) + pρ = p in ρ−1({1}).

and we conclude (4.18) a.e. in ρ−1({1}). �

In particular, (4.3) can be also represented in the form of a continuity equation, as we show
below.

Theorem 4.9. Suppose that (1.10) and (4.1) hold true. Let ρ0 and (ρ, p) be given in
Theorem 4.2. If

r � 3d− 4
2d

, (4.20)

then (ρ, p) also satisfies⎧⎪⎨⎪⎩
∂tρ−∇ · (ρ∇(

S′(ρ)1{ρ �=1} + p1{ρ=1}
))−∇ · (ρ∇Φ) = 0, in (0, T ) × Ω,

ρ(0, ·) = ρ0, in Ω,

ρ
[∇(

S′(ρ)1{ρ �=1} + p1{ρ=1}
)

+ ∇Φ
] · n = 0, in [0, T ] × ∂Ω,

(4.21)

in the sense of distribution. If in addition ρ0 ∈ L∞(Ω) and Φ satisfies (2.4), we can drop (1.10)
and (4.20) from the statement.

Remark 4.4. Note that (4.20) is equivalent to β � 2 for β given in (2.23) and the inequality
holds for any r � 1 if d = 1 or d = 2.
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Proof. Note that (4.4) and (4.5) imply that S′
a(ρ) = p(1 + log ρ) in ρ−1(R+ \ {1}). Further-

more, from (4.6) and (4.8), it holds that

I1 := S′(ρ)1{ρ �=1} + p1{ρ=1} = p(1 + log ρ) + S′
b(ρ). (4.22)

From p ∈ L2([0, T ];H1(Ω)) and (4.4), we obtain

ρ log ρ∇p = 0 a.e. (4.23)

From (4.22) and (4.23), we have

ρ∇I1 = ρ∇p + p∇ρ + ρ∇(S′
b(ρ)).

Next, we claim that

ρ∇p + p∇ρ + ρ∇(S′
b(ρ)) ∈ L1(Q).

Consider the first term ρ∇p. Recall from Theorem 4.2 that ∇p ∈ L2(Q). If ρ0 ∈ L∞(Ω), then
ρ ∈ L∞(Q) from Lemma 2.1 and thus ρ∇p ∈ L1(Q). On the other hand, if (4.20) is fulfilled,
then β given in (2.23) is greater than or equal to 2. As ρ ∈ Lβ(Q) from Lemma 2.11, we obtain
ρ ∈ L2(Q) and thus ρ∇p ∈ L1(Q).

Furthermore, as ∇√
ρ ∈ L2(Q), ∇ρ = 2ρ

1
2∇√

ρ ∈ L1(Q) and the second term is in L1(Q).
Finally,

ρ∇(S′
b(ρ)) = 2ρ

3
2S′′

b (ρ)∇√
ρ.

As the growth rate of ρ
3
2S′′

b (ρ) is r − 1
2 and r − 1

2 � β
2 , ρ ∈ Lβ(Q) implies ρ

3
2S′′

b (ρ) ∈ L2(Q)
and the last term is in L1(Q).

Finally, we have

ρ∇I1 = ∇(ρp + ρS′
b(ρ) − Sb(ρ) + Sb(1)) = ∇LS(ρ, p)

for LS given in (1.5). By Theorem 4.2, we conclude that (ρ, p) is a weak solution of (4.21). �

5. Porous medium type diffusion on {ρ < 1} and general diffusion on {ρ > 1}
Similarly to the classical porous medium equation, in this section we do not expect solutions to
be fully supported. As in Section 3, let us first study an example with a particular nonlinearity.

5.1. Same diffusion exponent

In this subsection, we suppose that S : [0,+∞) → R is defined by

S(ρ) :=

⎧⎪⎪⎨⎪⎪⎩
ρm

m− 1
, for ρ ∈ [0, 1],

2ρm

m− 1
− 1

m− 1
, for ρ ∈ (1,+∞).

(5.1)

where m > 1.
Our main theorem in this section can be formulated as follows.

Theorem 5.1. For ρ0 ∈ P(Ω) such that J (ρ0) < +∞ and S given in (5.1), there

exists ρ ∈ Lβ(Q) ∩ AC2([0, T ]; (P(Ω),W2)) and p ∈ L2([0, T ];H1(Ω)) ∩ L∞(Q) with ρm− 1
2 ∈

L2([0, T ];H1(Ω)) such that (ρ, p) is a weak solution of⎧⎪⎨⎪⎩
∂tρ− Δ([(m− 1)ρm + 1] p

m ) −∇ · (∇Φρ) = 0, in (0, T ) × Ω,

ρ(0, ·) = ρ0, in Ω,

(∇([(m− 1)ρm + 1] p
m ) + ∇Φρ) · n = 0, in [0, T ] × ∂Ω,

(5.2)
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in the sense of distribution. Furthermore, (ρ, p) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p(t, x) =
m

m− 1
a.e. in {0 < ρ(t, x) < 1},

p(t, x) ∈
[

m

m− 1
,

2m
m− 1

]
a.e. in {ρ(t, x) = 1},

p(t, x) =
2m

m− 1
a.e. in {ρ(t, x) > 1}.

(5.3)

In addition, if ρ0 ∈ L∞(Ω) and Φ satisfies (2.4), then ρ ∈ L∞(Q) and ρm ∈ L2([0, T ];H1(Ω)).

Let us recall the definition of (ρk)Nk=1 and (pk)Nk=1 from (2.3) and (2.25), respectively. Let us
underline that in the setting of this section due to the structure of the nonlinearity we typically
expect spt(ρk) to be a proper subset of Ω, unlike in the case of Lemma A.4 which was used in
Sections 3 and 4. For this reason, we expect the Lipschitz continuity of ρm−1

k instead of ρk. The
following result is a simplified version of Lemma 2.15, tailored to the entropy function (5.1).

Lemma 5.2. For all k ∈ {1, . . . , N}, there exists C ∈ R such that

ρm−1
k pk =

(
C − φk

τ
− Φ

)
+

a.e. (5.4)

In particular, ρm−1
k is Lipschitz continuous. Here, φk is given in Theorem 2.2.

Proof. Note that

∂S(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m
m−1ρ

m−1 for 0 < ρ < 1,[
m

m− 1
,

2m
m− 1

]
for ρ = 1,

2m
m− 1

ρm−1 for ρ > 1.

and

pk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m

m− 1
in ρ−1

k ([0, 1)),

C − φk

τ
− Φ in ρ−1

k ({1}),

2m
m− 1

in ρ−1
k ((1,+∞)).

a.e. (5.5)

for pk given in (2.25). Then, Theorem 2.12 implies

ρm−1
k pk +

φk

τ
+ Φ = C a.e. on spt(ρk) (5.6)

for some constant C ∈ R.
Moreover, if ρk = 0 a.e. on some set A ⊂ Ω, then Theorem 2.12 and S′(0+) = 0 (from (5.5))

imply that

C − φk

τ
− Φ � 0 a.e. in A,

and we conclude (5.4).
Next, recall that Lemma 2.14 yields that φk is Lipschitz continuous and thus (C − φk

τ − Φ)+
is Lipschitz continuous as well. As Lemma 2.14 yields the Lipschitz continuity of pk, and since
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this has a positive lower bound m
m−1 (from (5.5) and (2.5)), we conclude that ρm−1

k is also
Lipschitz continuous. �

Lemma 5.3. Let (ρτ )τ>0, (pτ )τ>0 stand for the piecewise constant interpolations given

in (3.8) and (2.25), respectively. Then ((ρτ )m− 1
2 )τ>0 and (pτ )τ>0 are uniformly bounded in

L2([0, T ];H1(Ω)).

Proof. From Lemma 5.2, it holds that

I1 := −ρ
1
2
k∇Φ − ρ

1
2
k

∇φk

τ
= ρ

1
2
k∇(ρm−1

k pk) a.e. (5.7)

As pk and ρm−1
k are Lipschitz continuous from Lemma 5.2, we have

I1 = ρ
1
2
k pk∇(ρm−1

k ) + ρ
m− 1

2
k ∇pk a.e. on spt(ρk). (5.8)

Furthermore, since we have the Lipschitz continuity of ρm−1
k and (5.5), we apply a parallel

argument as in the proof of Proposition 3.5 and conclude that

(ρm− 1
2

k − 1)∇pk = 0 and ∇(ρm−1
k ) · ∇pk = 0 a.e. on Ω. (5.9)

From (5.8) and (5.9), we have that

I2
1 = p2

k|ρ
1
2
k∇(ρm−1

k )|2 + |∇pk|2 a.e. on spt(ρk). (5.10)

As pk � m
m−1 a.e. in Ω as in (5.5), we conclude that

I2
1 �

(
m

m− 1

)2

|ρ 1
2
k∇(ρm−1

k )|2 + |∇pk|2 a.e. on spt(ρk). (5.11)

(5.9) yields that ∇pk = 0 a.e. on spt(ρk)c = {ρk = 0}. Furthermore, as ρm−1
k is Lipschitz

continuous (see Lemma 5.2), we have

ρ
1
2
k∇(ρm−1

k ) = 0 a.e. on spt(ρk)c.

Therefore, (5.11) holds a.e. on Ω.
On the other hand, applying Lemma 3.4, it holds that∫ T

0

∫
Ω

I2
1 dxdt � 2(J (ρ0) − inf J ) + TL d(Ω)‖∇Φ‖L∞ .

As ρ
1
2
k∇(ρm−1

k ) = m−1
m− 1

2
∇(ρm− 1

2
k ) and since (ρτ )τ>0 is uniformly bounded in Lβ(Q) (with β >

m− 1/2, see Lemma 2.10) we conclude that ((ρτ )m− 1
2 )τ>0 and (pτ )τ>0 are uniformly bounded

in L2([0, T ];H1(Ω)) (since (pτ )τ>0 is also uniformly bounded) and therefore we conclude. �

As a consequence of Lemma 5.3 and Lemma C.2, we have the following convergence.

Corollary 5.4. Let (ρτ )τ>0 and (pτ )τ>0 be as in the previous lemma. Then, there exists

ρ ∈ Lm(Q) and p ∈ L2([0, T ];H1(Ω)) with ρm− 1
2 ∈ L2([0, T ];H1(Ω)), such that

ρτ → ρ in Lm(Q), as τ ↓ 0,

and

pτ ⇀ p in L2([0, T ];H1(Ω)), as τ ↓ 0.

along a subsequence.
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Proof of Theorem 5.1. Note that (5.5) implies (5.3) for (ρτ , pτ ). Then, a similar argument
as the one in Lemma 3.7 together with the convergence results from Corollary 5.4 reveals that
(ρ, p) satisfies (5.3).

Furthermore, from Lemma 5.2, we can write that

Eτ = ρτvτ = −ρτ∇((ρτ )m−1pτ ) −∇Φρτ = −{
(m− 1)pτ (ρτ )m−1∇ρτ + (ρτ )m∇pτ

}−∇Φρτ .

Note that (5.5) implies

((ρτ )m − 1)∇pτ = 0 a.e. (5.12)

From (5.12), we conclude that

(m− 1)pτ (ρτ )m−1∇ρτ + (ρτ )m∇pτ = (m− 1)pτ (ρτ )m−1∇ρτ +
1
m
{(m− 1)(ρτ )m + 1}∇pτ ,

=
1
m
∇([(m− 1)(ρτ )m + 1]pτ ). (5.13)

As described in Proposition 3.8, up to passing to a subsequence and using the weak-�
convergence of (pτ )τ>0 in L∞(Q) and strong convergence of ((ρτ )m)τ>0 in L1(Q) from
Corollary 5.4, we conclude that (Eτ )τ>0 converges to

E := − 1
m
∇([(m− 1)ρm + 1]p) −∇Φρ

in D ′(Q; Rd), as τ ↓ 0 where (ρ, p) is given in Corollary 5.4. The rest of argument is parallel to
the proof of Theorem 3.1.

A last remark is that if ρ0 ∈ L∞(Ω), then clearly ρ ∈ L∞(Q) and thus ρm ∈
L2([0, T ];H1(Ω)). �

In particular, (5.2) can be also represented in the form of a continuity equation, as we show
below. Note that the condition (5.14) below is equivalent to β � 2m.

Theorem 5.5. For S given in (5.1), let ρ0 and (ρ, p) be given in Theorem 5.1. If

d � 4m, (5.14)

then (ρ, p) also satisfies⎧⎪⎨⎪⎩
∂tρ−∇ · (ρ[∇(

ρm−1p
)

+ ∇Φ
])

= 0, in (0, T ) × Ω,

ρ(0, ·) = ρ0, in Ω,

ρ[∇(
ρm−1p

)
+ ∇Φ] · n = 0, in [0, T ] × ∂Ω,

(5.15)

in the sense of distribution. If in addition ρ0 ∈ L∞(Ω) and Φ satisfies (2.4), we can drop (5.14)
from the statement.

Proof. As p ∈ L2([0, T ];H1(Ω)) and (ρ, p) satisfies (5.3) from Theorem 5.1, we have

∇p = 0 a.e. in {ρ �= 1} (5.16)

and thus

(ρm − 1)∇p = 0 a.e. (5.17)

From the direct computation using (5.17), it holds that

I1 := ρ∇(
ρm−1p

)
= (ρm)

1
m∇

(
(ρm)

m−1
m p

)
= ρm∇p +

m− 1
m

p∇(ρm).

We claim that I1 ∈ L1(Q), which is enough for the representation (5.15). Recall from
Theorem 5.1 and Lemma 2.11, ∇p ∈ L2(Q), p ∈ L∞(Q) and ρ ∈ Lβ(Q) for β given in (2.23).
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Consider the first term ρm∇p. If ρ0 ∈ L∞(Ω), then ρ ∈ L∞(Q) and thus ρm ∈ L2(Q). If (5.14)
holds (which is automatically the case if d = 1, 2), then β � 2m for β given in (2.23) (r = m

in this case) and thus ρm ∈ L2(Q). Furthermore, as ∇ρm− 1
2 ∈ L2(Q) and

∇(ρm) =
m

m− 1
2

ρ
1
2∇(ρm− 1

2 ),

so the last term is also in L1(Q).
Finally, it is easy to see that

I1 =
(m− 1)ρm + 1

m
∇p +

m− 1
m

p∇(ρm)

= ∇
(
[(m− 1)ρm + 1]

p

m

)
. �

5.2. Porous medium type diffusion on {ρ < 1} and general diffusion on {ρ > 1}
In this subsection, we suppose that Assumptions 1.1–1.3 hold true for some r � 1, for some
m > 1 and a constants σ1, σ2 > 0. Note that S can be any function satisfying the assumptions,
and in particular in the case of r = 1, S behaves as the logarithmic entropy when ρ > 1.

Our main theorem from this section reads as:

Theorem 5.6. Suppose that Assumptions 1.1–1.3 hold true for m > 1 and r � 1 such that

m < r +
β

2
(5.18)

is fulfilled for β given in (2.23). For ρ0 ∈ P(Ω) such that J (ρ0) < +∞, there exists ρ ∈ Lβ(Q)
and p ∈ L2([0, T ];H1(Ω)) ∩ L∞(Q) such that (ρ, p) is a weak solution of⎧⎪⎨⎪⎩

∂tρ− Δ(LS(ρ, p)) −∇ · (∇Φρ) = 0, in (0, T ) × Ω,

ρ(0, ·) = ρ0, in Ω,

(∇(LS(ρ, p)) + ∇Φρ) · n = 0, in [0, T ] × ∂Ω,

(5.19)

in the sense of distribution. Furthermore, (ρ, p) satisfies⎧⎪⎪⎨⎪⎪⎩
p(t, x) = S′(1−) if 0 � ρ(t, x) < 1,

p(t, x) ∈ [S′(1−), S′(1+)] if ρ(t, x) = 1,

p(t, x) = S′(1+) if ρ(t, x) > 1.

(5.20)

Here, LS is given in (1.5). In particular,

ρm− 1
2 ∈ L2([0, T ];H1(Ω)) if m � r and ρm− 1

2

∈ Lq([0, T ];W 1,q(Ω)) if r < m < r +
β

2
(5.21)

for q ∈ (1, 2) given in (5.36). If in addition ρ0 ∈ L∞(Ω) and Φ satisfies (2.4), we can drop (1.10)
and (5.18) from the statement and we obtain ρ ∈ L∞(Q) and ρm ∈ L2([0, T ];H1(Ω)).

Example 5.1. As a nonlinearity, one can consider for instance the following one. For m >
r > 1, let S : [0,+∞) → R be given by

S(ρ) :=

⎧⎪⎪⎨⎪⎪⎩
ρm

m− 1
, for ρ ∈ [0, 1],

ρr

r − 1
+

1
m− 1

− 1
r − 1

, for ρ ∈ (1,+∞).
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This clearly satisfies Assumptions 1.1 and 1.2, since

S′(1−) =
m

m− 1
<

r

r − 1
= S′(1+).

In this case, the operator LS(ρ, p) becomes

LS(ρ, p)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x)m +
1

m− 1
if 0 < ρ(x) < 1,

p(x) ∈
[

m

m− 1
,

r

r − 1

]
if ρ(x) = 1,

ρ(x)r +
1

r − 1
if ρ(x) > 1.

First, using similar ideas as in Section 4, we choose a constant l such that

1 < l < β (5.22)

for β given in (2.23) and split the function S into Sa and Sb : [0,+∞) → R defined by

Sa(ρ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S′(1−)(ρl − 1)

l
, for ρ � 1,

S′(1+)(ρl − 1)
l

, for ρ > 1,

(5.23)

and
Sb(ρ) := S(ρ) − Sa(ρ). (5.24)

Note that S′(1+) > S′(1−). Then, as shown in Lemma 4.4, we conclude that Sa is convex
and continuous in [0,+∞). Also, Sb is continuously differentiable and S′

b is locally Lipschitz
continuous in [0,+∞).

Let us recall the definition of (ρk)Nk=1 and (pk)Nk=1 from (2.3) and (2.25). Also, recall the
definition of φk given in Theorem 2.2.

Lemma 5.7. For all k ∈ {1, . . . , N}, there exists C ∈ R such that

ρl−1
k pk + S′

b(ρk) =
(
C − φk

τ
− Φ

)
+

a.e. (5.25)

In particular, pk and ρm−1
k are Lipschitz continuous in Ω. If in addition m ∈ (1, 2], then ρk is

locally Lipschitz continuous in spt(ρk).

Proof. First, (5.25) follows from the parallel argument in the proof of Lemma 5.2.
Note that φk and pk are Lipschitz continuous (cf. Lemma 2.14) and fk := C − φk

τ − Φ are
Lipschitz continuous. From (2.28) in Lemma 2.15, we have that

|∇(ρk)m−1| = (m− 1)ρm−2
k |∇ρk| = (m− 1)ρm−2

k

|∇fk|
S′′(ρk)

a.e. in ρ−1
k (R+ \ {1}).

On the one hand, this, together with (1.9) from Assumption 1.2, further implies

|∇(ρk)m−1| � σ2(m− 1)|∇fk| a.e. in {x ∈ Ω : 0 < ρk < 1}.
On the other hand, (1.10a) from Assumption 1.3 yields

|∇(ρk)m−1| � σ1(m− 1)|∇fk|ρm−r
k

� σ1(m− 1)|∇fk|max{‖ρk‖m−r
L∞(Ω), 1}. a.e. in {x ∈ Ω : ρk > 1}.

Therefore, we conclude that ρm−1
k is Lipschitz continuous in Ω.
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Finally, the following identity

|∇ρk| =
ρ2−m
k

(m− 1)
|∇(ρk)m−1| a.e. in spt(ρk)

shows that ρk is locally Lipschitz continuous in spt(ρk), provided m ∈ (1, 2]. This in particular
is also a consequence of Lemma 2.15(iv). �

Proposition 5.8 below contains all the needed estimates and the compactness result on the
sequence (ρτ , pτ )τ>0 that are necessary to pass to the limit as τ ↓ 0 and prove the main theorem
of this section, that is, Theorem 5.6. The proof of this proposition requires some intermediate
results that are provided below in Lemmas 5.9–5.11.

Proposition 5.8. Let (ρτ )τ>0, (pτ )τ>0 stand for the piecewise constant interpolations given
in (3.8) and (2.25), respectively. Then, (pτ )τ>0 is uniformly bounded in L2([0, T ];H1(Ω)).

(1) If r � m, then ((ρτ )m− 1
2 )τ>0 is uniformly bounded in L2([0, T ];H1(Ω)).

(2) If r < m < r + β
2 , then ((ρτ )m− 1

2 )τ>0 is uniformly bounded in Lq([0, T ];W 1,q(Ω)) for
some q ∈ (1, 2).

(3) If in addition ρ0 ∈ L∞(Ω) and Φ satisfies (2.4), then ((ρτ )m)τ>0 is also uniformly
bounded in L2([0, T ];H1(Ω)) for any m > 1 and r � 1.

Proof. From Lemma 5.7, it holds that

I1 := −ρ
1
2
k

∇φk

τ
− ρ

1
2
k∇Φ = ρ

1
2
k∇(ρl−1

k pk + S′
b(ρk)) a.e.

We follow the very same steps and in the proof of Lemma 5.2 (where we also use (5.8) and
(5.9)). Therefore, we have

I1 =
l − 1
m− 1

ρ
l−m+ 1

2
k pk∇(ρm−1

k ) + ρ
l− 1

2
k ∇pk + ρ

1
2
k∇(S′

b(ρk)) a.e. on spt(ρk). (5.26)

Note that

ρ
1
2
k∇(S′

b(ρk)) =
1

m− 1
ρ

5
2−m

k S′′
b (ρk)∇(ρm−1

k ) a.e. on spt(ρk). (5.27)

From (5.26) and (5.27), it holds that

I1 =
1

(m− 1)ρm−2
k

(
(l − 1)ρl−2

k pk + S′′
b (ρk)

)
ρ

1
2
k∇(ρm−1

k ) + ρ
l− 1

2
k ∇pk a.e. on spt(ρk).

We can apply (5.9) and conclude (since ∇pk = 0 a.e. in {ρk �= 1}) that

I2
1 =

1
(m− 1)2ρ2m−4

k

(
(l − 1)ρl−2

k pk + S′′
b (ρk)

)2
ρk|∇(ρm−1

k )|2 + |∇pk|2 a.e. on spt(ρk).

(1) If r � m, then Lemma 5.9 below implies

I2
1 � σ2

3

(m− 1)2
|∇(ρm− 1

2
k )|2 + |∇pk|2 a.e. on spt(ρk),

for σ3 given in (5.29). By the parallel argument in Lemma 5.3, we conclude the uniform bound
in L2([0, T ];H1(Ω)).



724 DOHYUN KWON AND ALPÁR RICHÁRD MÉSZÁROS

(2) If r < m < r + β
2 , then Lemma 5.10 below yields the uniform bound of (∇(ρτ )m− 1

2 )τ>0

in Lq(Q) for q given in (5.36). On the other hand, as 2r − 1 � β, it holds that(
m− 1

2

)
q =

m− 1
2

m−r
β + 1

2

= β
2m− 1

2m− 2r + β
� β.

As ρτ is uniformly bounded in Lβ(Q) from Lemma 2.11, (ρτ )m− 1
2 is uniformly bounded in

Lq(Q).
(3) From Lemma 5.11, we conclude that

I2
1 � σ2

4

(m− 1)2
|∇(ρmk )|2 + |∇pk|2 a.e. on spt(ρk).

The same argument as before yields that ((ρτ )m)τ>0 is uniformly bounded in
L2([0, T ];H1(Ω)). �

Lemma 5.9. Let us suppose that we are in the setting of Proposition 5.8. If r � m, it holds
that ∣∣∣∣ 1

ρm−2
k

(
(l − 1)ρl−2

k pk + S′′
b (ρk)

)∣∣∣∣ρ 1
2
k |∇(ρm−1

k )| � σ3|∇(ρm−1/2
k )|, (5.28)

where

σ3 :=
m− 1
m− 1

2

min
{

1
σ1

,
1
σ2

}
. (5.29)

Proof. We claim that∣∣∣∣ 1
ρm−2
k

(
(l − 1)ρl−2

k pk + S′′
b (ρk)

)∣∣∣∣ � min
{

1
σ1

,
1
σ2

}
in {ρk �= 1}. (5.30)

Recall that

S′′
a (ρk) =

{
(l − 1)S′(1−)ρl−2

k if ρk < 1,

(l − 1)S′(1+)ρl−2
k if ρk > 1,

and thus by the definition of pk (see (2.25)) we have

(l − 1)ρl−2
k pk + S′′

b (ρk) = S′′
a (ρk) + S′′

b (ρk) = S′′(ρk) a.e. in {ρk �= 1}. (5.31)

Thus, (1.9) implies

S′′(ρk)
ρm−2
k

� 1
σ2

a.e. in {0 < ρk < 1}. (5.32)

Furthermore, as r � m, (1.10a) implies

S′′(ρk)
ρm−2
k

� ρr−m
k

σ1
� 1

σ1
a.e. in {ρk > 1}. (5.33)

and we conclude (5.30).
Recall that ρm−1

k is Lipschitz continuous from Lemma 5.7. Thus, we have

∇(ρm−1
k ) = 0 a.e. in {ρk = 1} (5.34)

(see, for instance, [23, Theorem 4(iv), Section 4.2.2]). As ρ
1
2
k∇(ρm−1

k ) = m−1
m− 1

2
∇(ρm− 1

2
k ), (5.28)

follows from (5.30) and (5.34). �
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Lemma 5.10. Let us suppose that we are in the setting of Proposition 5.8. If r < m < r + β
2 ,

then ∥∥∥∥ 1
ρm−2
k

(
(l − 1)ρl−2

k pk + S′′
b (ρk)

)|∇(ρm− 1
2

k )|
∥∥∥∥
L2(Ω)

� C‖∇(ρm− 1
2

k )‖Lq(Ω) (5.35)

for some q ∈ (1, 2) and a constant C > 0.

Proof. From the relation between r and m, the constant q defined by

q :=
1

m−r
β + 1

2

(5.36)

is in the interval (1,2). As shown in (5.31), it holds that

I2 :=
1

ρm−2
k

(
(l − 1)ρl−2

k pk + S′′
b (ρk)

)|∇(ρm− 1
2

k )| =
S′′(ρk)
ρm−2
k

|∇(ρm− 1
2

k )| a.e. in {ρk �= 1}.
(5.37)

In {0 < ρk < 1}, (5.32) implies

‖I2‖L2({0<ρk<1}) �
1
σ2

∥∥∥∇(ρm− 1
2

k )
∥∥∥
L2({0<ρk<1})

for σ2 given in (1.9). As q ∈ (1, 2) and the domain is compact, the Hölder inequality yields
that

‖I2‖L2({0<ρk<1}) �
|Ω| 12− 1

q

σ2
‖∇(ρm− 1

2
k )‖Lq({0<ρk<1}). (5.38)

Next, we claim that

‖I2‖L2({ρk>1}) � C‖∇(ρm− 1
2

k )‖Lq({ρk>1)} (5.39)

for some constant C > 0.
From (1.10a) and (5.37), it holds that

‖I2‖L2({ρk>1}) =
∥∥∥ρ2−m

k S′′(ρk)∇(ρm− 1
2

k )
∥∥∥
L2({ρk>1})

� 1
σ1

∥∥∥ρr−m
k ∇(ρm− 1

2
k )

∥∥∥
L2({ρk>1})

. (5.40)

On the other hand, as

1
2

+
m− r

β
=

1
q
,

the Hölder inequality yields that∥∥∥ρr−m
k ∇(ρm− 1

2
k )

∥∥∥
L2({ρk>1})

‖ρm−r
k ‖

L
β

m−r ({ρk>1)}
� ‖∇(ρm− 1

2
k )‖Lq({ρk>1)}. (5.41)

As ρk is uniformly bounded in Lβ(Ω) from Lemma 2.10, ρm−r
k is uniformly bounded in

L
β

m−r (Ω). From (5.40) and (5.41), we conclude (5.39).
Finally, as (5.34) holds true, (5.35) follows from (5.38) and (5.39). �

Lemma 5.11. Let us suppose that we are in the setting of Proposition 5.8. If ρ0 ∈ L∞(Ω)
and Φ satisfies (2.4), then it holds that∣∣∣∣ 1

ρm−2
k

(
(l − 1)ρl−2

k pk + S′′
b (ρk)

)∣∣∣∣ρ 1
2
k |∇(ρm−1

k )| � σ4|∇(ρmk )|, (5.42)
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where

σ4 :=
m− 1
m

min
{

1
σ1

,
1
σ2

}
min

{(
‖ρ0‖L∞edT‖ΔΦ‖L∞

)− 1
2
,
(
‖ρ0‖L∞edT‖ΔΦ‖L∞

)r−m− 1
2
}
.

Proof. Recall from Lemma 2.1 that if ρ0 ∈ L∞(Ω), then we have

‖ρk‖L∞ � ‖ρ0‖L∞edT‖ΔΦ‖L∞ =: C. (5.43)

On the other hand, from (5.31) and ∇(ρm−1
k ) = m−1

m ∇(ρmk ), it holds that

I3 :=
1

ρm−2
k

(
(l − 1)ρl−2

k pk + S′′
b (ρk)

)
ρ

1
2
k∇(ρm−1

k ) =
m− 1
m

S′′(ρk)

ρ
m− 3

2
k

∇(ρmk ) a.e. in {ρk �= 1}.

(5.44)

Then, (5.32) and (5.43) yield that

|I3| � m− 1
mσ2

ρ
− 1

2
k |∇(ρmk )| � m− 1

mσ2
C− 1

2 |∇(ρmk )| a.e. in {0 < ρk < 1}. (5.45)

Furthermore, (1.10b) and (5.43) imply

|I3| � m− 1
mσ1

ρ
r−m− 1

2
k |∇(ρmk )| � m− 1

mσ1
C− 1

2 min{Cr−m, 1}|∇(ρmk )| a.e. in {ρk > 1}. (5.46)

Finally, as (5.34) holds, (5.42) follows from (5.45) and (5.46). �

Corollary 5.12. Let (ρτ )τ>0 and (pτ )τ>0 be as in the previous proposition and (5.18)
hold. There exists ρ ∈ Lβ(Q) and p ∈ L2([0, T ];H1(Ω)) such that

ρτ → ρ in Ls(Q), as τ ↓ 0,

and

pτ ⇀ p in L2([0, T ];H1(Ω)), as τ ↓ 0,

along a subsequence for any s ∈ (0, β) and β given in (2.23).

Proof. Recall that Lemma 2.11 yields that (ρτ )τ>0 is uniformly bounded in Lβ(Q). In both
cases r � m and r < m < r + β

2 , Lemma C.2 and Proposition 5.8 yield (ρτ )τ>0 is precompact
in Ls(Q) for any s ∈ (0, β).

Indeed, first, we consider the case r < m < r + β
2 . We apply Proposition 5.8(2) and

Lemma C.2(1) to conclude that (ρτ )τ>0 converges to ρ in L(m− 1
2 )q∗(Q) along a subsequence,

where q∗ := qd
d−q and q ∈ (1, 2) is given in Proposition 5.8(2). Note that a direct computation

shows that

q∗ =
2r − 1
2m− 1

2d
d− 2

=
β

m− 1/2
.

By a similar argument, we conclude the strong convergence of (ρτ )τ>0 in Ls(Q) along a
subsequence, also in the case when r � m. �

Proof of Theorem 5.6. Note that by the direct computation as in (5.13) and (4.16), we have

−Eτ = −ρτvτ = ρτ∇((ρτ )l−1pτ + S′
b(ρ

τ )) + ρτ∇Φ

= ∇
(

1
l
((l − 1)(ρτ )l + 1)pτ + ρτS′

b(ρ
τ ) − Sb(ρτ ) + Sb(1)

)
+ ρτ∇Φ.

Then, we have −Eτ = ∇LS(ρτ , pτ ) + ρτ∇Φ for LS given in (1.5). Since l, r < β from (5.18),
Corollary 5.12 yields that (ρτ )l, ρτS′

b(ρ
τ ) and Sb(ρτ ) converge in L1(Q) as τ ↓ 0. As pτ is
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uniformly bounded, we conclude that

−Eτ → ∇
(

1
l
((l − 1)ρl + 1)pτ + ρS′

b(ρ) − Sb(ρ) + Sb(1)
)

+ ρ∇Φ, as τ → 0,

along a subsequence in D ′(Q; Rd). Note that we have ρ ∈ Lβ from the uniform boundedness in
Lemma 2.11 and p ∈ L2([0, T ];H1(Ω)) ∩ L∞(Q) from Proposition 5.8. As

LS(ρ, p) =
1
l
((l − 1)ρl + 1)pτ + ρS′

b(ρ) − Sb(ρ) + Sb(1), (5.47)

for LS given in (1.5), we conclude that (ρ, p) satisfies (5.19). The rest of argument is parallel
to Theorem 4.2. �

In particular, (5.2) can be also represented in the form of a continuity equation, as we show
below.

Theorem 5.13. Suppose that (1.10) and (4.1) hold true. Let ρ0 and (ρ, p) be given in
Theorem 5.6. If

m < r +
1
2

(5.48)

and

β > 2 and m <
β

2
+

1
2

(5.49)

hold, then (ρ, p) is a weak solution of⎧⎪⎨⎪⎩
∂tρ−∇ · (ρ∇(

S′(ρ)1{ρ �=1} + p1{ρ=1}
))−∇ · (ρ∇Φ) = 0, in (0, T ) × Ω,

ρ(0, ·) = ρ0, in Ω,

ρ
[∇(

S′(ρ)1{ρ �=1} + p1{ρ=1}
)

+ ∇Φ
] · n = 0, in [0, T ] × ∂Ω,

(5.50)

in the sense of distribution. If in addition ρ0 ∈ L∞(Ω) and Φ satisfies (2.4), we can drop (5.49)
from the statement.

Here, note that if d = 1 or 2, (5.49) holds true for any m.

Proof. (5.48) implies (5.18) and thus (5.21) follows from Proposition 5.8. From (5.49), we
can choose l such that

max
{

1,m− 1
2

}
< l � β

2
. (5.51)

From (5.20) and the construction in (5.23), we have

S′(ρ)1{ρ �=1} + p1{ρ=1} = pρl−1 + S′
b(ρ).

We claim that

ρ∇(pρl−1 + S′
b(ρ)) ∈ L1(Q). (5.52)

By the direct computation, we obtain

ρ∇(pρl−1 + S′
b(ρ)) = ∇pρl + pρ∇(ρl−1) + ρ∇(S′

b(ρ)), (5.53)

= ∇pρl +
l − 1
m− 1

2

pρl−m+ 1
2∇(ρm− 1

2 ) +
1

m− 1
2

S′′
b (ρ)ρ

5
2−m∇(ρm− 1

2 ). (5.54)
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As ρ ∈ Lβ(Q) and β � 2l, ρl ∈ L2(Q) and thus ∇pρl ∈ L1(Q). Now, let us consider the second
term. From (5.21), ∇(ρm− 1

2 ) ∈ Lq(Q) for q given in (5.36) and m, r satisfying (5.18). Recall
that p ∈ L∞(Q) and ρ ∈ Lβ(Q). As l < β

2 from (5.51), we have

1
q

+
l −m + 1

2

β
=

m− r

β
+

1
2

+
l −m + 1

2

β
=

l − r + 1
2

β
+

1
2
� 1.

Thus, from the Hölder inequality, we conclude that the second term in (5.53) is in L1(Q).

Similarly, as r −m + 1
2 > 0 from (5.48), S′′

b (ρ)ρ
5
2−m ∈ L

β

r−m+ 1
2 (Q) and

1
q

+
r −m + 1

2

β
=

1
2β

+
1
2
� 1,

we conclude that the third term is in L1(Q) and (5.52).
Next, we claim that

ρ∇(pρl−1 + S′
b(ρ)) = ∇LS(ρ, p) (5.55)

for LS given in (1.5). As p ∈ L2([0, T ];H1(Ω)) and (ρ, p) satisfies (5.3) from Theorem 5.1, we
have

∇p = 0 a.e. in {ρ �= 1}. (5.56)

As ρl ∈ L2(Q) from Theorem 5.6 and (5.51), we have

(ρl − 1)∇p = 0 a.e. (5.57)

From the direct computation using (5.57), it holds that

ρ∇(
ρl−1p

)
= (ρl)

1
l ∇

(
(ρl)

l−1
l p

)
= ρl∇p +

l − 1
l

p∇(ρl)

=
(l − 1)ρl + 1

l
∇p +

l − 1
l

p∇(ρl)

= ∇
(
((l − 1)ρl + 1)

p

l

)
.

Therefore, we have

∇(pρl−1 + S′
b(ρ)) = ∇

(
((l − 1)ρl + 1)

p

l
+ ρS′

b(ρ) − Sb(ρ) + Sb(1)
)
. (5.58)

From (5.47) and (5.58), we conclude (5.55).
Finally, note that if ρ0 ∈ L∞(Ω) and Φ satisfies (2.4), then ρ ∈ L∞(Q) and thus ρl ∈ L2(Q)

for any l > 0. Furthermore, we choose l = m + 1, then from Proposition 5.8.(3), we conclude
that pρ∇(ρm) ∈ L1(Q). Therefore, we show (5.52) without (5.49). �

6. Uniqueness via an L1-contraction

We construct an L1 contraction result, inspired by [20, Section 3] and [40, Theorem 6.5]. In
particular, this will imply the uniqueness of the solution of (4.3)–(4.4) and (5.19)–(5.20). Let us
underline the fact that because of the generality of the previous two problems, on the one hand,
the techniques from [20, Section 3] do not apply directly. On the other hand, because of the
presence of the critical regimes {ρi = 1}, i = 1, 2, the construction from [40, Theorem 6.5] does
not apply directly either. Therefore, we develop a careful combination of these two approaches
to be able to provide an L1-contraction for all the systems considered previously, with general
initial data.
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Theorem 6.1. Let (ρ1, p1), (ρ2, p2) be solutions to (1.4)–(1.6) with initial conditions
ρ1
0, ρ

2
0 ∈ P(Ω) such that J (ρi0) < +∞, i = 1, 2. Suppose that LS(ρi, pi) ∈ L2(Q), i = 1, 2 (or

equivalently ρi ∈ L2r(Q), i = 1, 2). Then we have

‖ρ1
t − ρ2

t‖L1(Ω) � ‖ρ1
0 − ρ2

0‖L1(Ω), L 1 − a.e. t ∈ [0, T ].

Remark 6.1. It is worth noticing that the assumption LS(ρi, pi) ∈ L2(Q), i = 1, 2 in the
statement of the previous theorem seems quite natural in the setting of L1-type contractions
for porous medium equations (see [40]). In our setting, because of the Lβ(Q) estimates on ρi

(where β is defined in (2.23)) and because of the Lr-type growth condition on LS at +∞, this
assumption is fulfilled already if β � 2r. In the same time, no such assumption is needed if the
initial data are in L∞(Ω), since in that case L∞ estimates hold true for ρit for a.e. t ∈ [0, T ]
(see Lemma 2.1).

Proof of Theorem 6.1. Let (ρ1, p1) and (ρ2, p2) be two solutions to (1.4)–(1.6) with initial
data ρ1

0 and ρ2
0, respectively. Let ϕ ∈ C2

c ((0, T ] × Ω) and using the notation

I(ϕ, t) :=
∫

Ω

ϕt

(
ρ1
t − ρ2

t

)
dx

we compute

d
dt

I(ϕ, t) =
∫

Ω

∂tϕ(ρ1 − ρ2) + ϕ∂t(ρ1 − ρ2)dx.

Now, using equation (4.3) and by integrating the above expression on (0, t), we get

I(ϕ, t) = I(ϕ, 0) +
∫ t

0

∫
Ω

∂sϕ(ρ1 − ρ2) + Δϕ(LS(ρ1, p1) − LS(ρ2, p2))

−∇ϕ · ∇Φ(ρ1 − ρ2)dxds (6.1)

= I(ϕ, 0) +
∫ t

0

∫
Ω

(LS(ρ1, p1) − LS(ρ2, p2))[A∂sϕ + Δϕ−A∇Φ · ∇ϕ]dxds,

where we use the notation

A :=
ρ1 − ρ2

LS(ρ1, p1) − LS(ρ2, p2)
, (6.2)

with the convention A = 0, when LS(ρ1, p1) = LS(ρ2, p2). Note that Lemma 6.2 below implies
that if LS(ρ1, p1) = LS(ρ2, p2) a.e., then ρ1 = ρ2 and p1 = p2 a.e. Furthermore, on this very
particular set actually there is no contribution in the integral on the right-hand side of (6.1), so
it is meaningful to set A = 0 there. Also, because of the monotonicity property of the operator
LS (see Lemma 6.2), we have that A � 0 a.e. in Q.

Similarly to the arguments from [20, Section 3], for ζ : Ω → R smooth with |ζ| � 1, we
consider the dual backward equation as⎧⎪⎨⎪⎩

A∂tϕ + Δϕ−A∇Φ · ∇ϕ = 0, in (0, T ) × Ω,

∇ϕ · n = 0, on (0, T ) × ∂Ω,

ϕ(T, ·) = ζ, in Ω.

(6.3)

Let us note that if we are able to construct a suitable (weak) solution ϕ to (6.3), for
which the computations in (6.1) remain valid, we can deduce the L1-contraction result, after
optimizing with respect to ζ. In general, one cannot hope for smoothness of A, and so (6.3)
is degenerate. Therefore, we introduce suitable approximations which will allow to construct
smooth test function.
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Let us define two Borel sets
E1 := {ρ1 � 1/2} ∪ {ρ2 � 1/2}

and E2 := Q \ E1. We suppose that both sets E1 and E2 have positive measures with respect
to L d+1, otherwise we simply do not consider the negligible one in the consideration below.
First, by Lemma 6.3, we have that A�E1 is bounded. Second we have the following

Claim. A−1�E2 ∈ L2(E2).

Proof of the claim. Let us notice that we can write
E2 =

({ρ1 < 1/2} ∩ {ρ2 � 1/2}) ∪ ({ρ1 � 1/2} ∩ {ρ2 < 1/2}) ∪ ({ρ1 < 1/2} ∩ {ρ2 < 1/2})
:= E1

2 ∪ E2
2 ∪ E3

2 .

We further decompose E1
2 := ({ρ1 < 1/2} ∩ {1/2 � ρ2 < 1}) ∪ ({ρ1 < 1/2} ∩ {ρ2 � 1}) =:

E11
1 ∪ E12

1 . For almost every (a.e.) q ∈ E11
1 , we have

A−1(q) =
LS(ρ1(q), p1(q)) − LS(ρ2(q), p2(q))

ρ1(q) − ρ2(q)
= ρ̃(q)S′′(ρ̃(q))

where ρ̃(q) is between ρ1(q) and ρ2(q). Since restricted to E11
1 both ρ1 and ρ2 are bounded by

1, we have that A−1�E11
1 ∈ L∞(E11

1 ).
For a.e. q ∈ E12

1 , we have

A−1(q) =
LS(ρ1(q), p1(q)) − LS(ρ2(q), p2(q))

ρ1(q) − ρ2(q)
� 2|LS(ρ1(q), p1(q)) − LS(ρ2(q), p2(q))|,

since restricted to this set |ρ1(q) − ρ2(q)| � 1/2 a.e. Therefore, by our assumption on LS(ρi, pi),
we have that A−1�E12

2 ∈ L2(E12
2 ). Therefore, A−1�E1

1 ∈ L2(E1
2).

Similarly, we can draw the same conclusion in the case of E2
2 , and so A−1�E2

2 ∈ L2(E2
2).

For a.e. q ∈ E3
2 , we conclude similarly as in the case of E11

2 , that is, we have that

A−1(q) =
LS(ρ1(q), p1(q)) − LS(ρ2(q), p2(q))

ρ1(q) − ρ2(q)
= ρ̃(q)S′′(ρ̃(q)),

where ρ̃(q) is between ρ1(q) and ρ2(q). Since restricted to E3
2 both ρ1 and ρ2 are bounded by

1/2, we have that A−1�E3
2 ∈ L∞(E3

2).
Therefore, combining all the previous arguments, one obtains that A−1�E2 ∈ L2(E2), and

the claim follows.
Let ε > 0 and let K1 := ‖A1E1‖L∞(Q). Let Aε

1 := max{ε,A1E1}. Then, we have ε � Aε
1 �

K1 and ‖Aε
1 −A1E1‖L∞(Q) � ε. In the same time, for 0 < δ � K given, let Aε

2 = Aε
2(δ,K) be

smooth such that δ � (Aε
2)

−1 � K and

(Aε
2)

−1 → [(A1E2)
−1]δ,K strongly in Lq(E2), as ε ↓ 0, (6.4)

for any q ∈ [1,+∞) and in particular, A−1
ε



⇀ [(A1E2)

−1]δ,K weakly-� in L∞(E2) as ε ↓ 0. Here,
for a nonnegative function f : Q → [0,+∞) we use the notation fδ,K := min{max{f, δ},K}.

Now, let us define Aε : Q → [0,+∞) as

Aε :=

{
Aε

1, a.e in E1,

Aε
2, a.e. in E2.

By construction, min{ε; 1/K} � Aε � max{K1, 1/δ}. For θ > 0, let Aθ (which depends also on
ε, δ and K) be a smooth approximation of Aε such that

min{ε; 1/K} � Aθ � max{K1, 1/δ}, in Q; (6.5)

ε � Aθ � K1, a.e. in E1;

1/K � Aθ � 1/δ, a.e. in E2;



DEGENERATE NONLINEAR PARABOLIC EQUATIONS 731

and Aθ → Aε strongly in Lq(Q) for any q ∈ [1,+∞) and in particular

Aθ


⇀ Aε weakly − � in L∞(Q), as θ ↓ 0. (6.6)

Moreover, we have

A−1
θ → [(A1E2)

−1]δ,K in Lq(E2), ∀ q ∈ [1,+∞) and

A−1
θ



⇀ [(A1E2)

−1]δ,K in L∞(E2), as max{θ, ε} ↓ 0. (6.7)

To check this last claim, we argue as follows.

‖A−1
θ − [(A1E2)

−1]δ,K‖Lq(E2)

� ‖A−1
θ − (Aε

2)
−1‖Lq(E2) + ‖(Aε

2)
−1 − [(A1E2)

−1]δ,K‖Lq(E2)

= ‖(Aθ −Aε
2)/(AθA

ε
2)‖Lq(E2) + ‖(Aε

2)
−1 − [(A1E2)

−1]δ,K‖Lq(E2)

� K2‖Aθ −Aε
2‖Lq(E2) + ‖(Aε

2)
−1 − [(A1E2)

−1]δ,K‖Lq(E2) → 0,

as max{θ, ε} ↓ 0, by the construction of Aθ and Aε
2. We conclude similarly about the weak-�

convergence as well.
Since Φ ∈ W 1,∞(Ω), we consider a smooth approximation of it, (Φθ)θ>0 such that ∇Φθ →

∇Φ, as θ ↓ 0, strongly in L2r′(Ω).
Let us consider the regularized dual equation which reads as⎧⎪⎨⎪⎩

∂tϕθ + (1/Aθ)Δϕθ −∇Φθ · ∇ϕθ = 0, in (0, T ) × Ω,

∇ϕθ · n = 0, on (0, T ) × ∂Ω,

ϕθ(T, ·) = ζ, in Ω.

(6.8)

Let ϕθ be the smooth solution of (6.8), when the coefficient function is Aθ and we use this
in (6.1) as

I(ϕθ, T ) − I(ϕθ, 0)

=
∫ T

0

∫
Ω

∂sϕθ(ρ1 − ρ2) + Δϕθ(LS(ρ1, p1) − LS(ρ2, p2)) −∇ϕθ · ∇Φ(ρ1 − ρ2)dxds

=
∫
E1

∂sϕθ(ρ1 − ρ2) + Δϕθ(LS(ρ1, p1) − LS(ρ2, p2)) −∇ϕθ · ∇Φ(ρ1 − ρ2)dL d+1

+
∫
E2

∂sϕθ(ρ1 − ρ2) + Δϕθ(LS(ρ1, p1) − LS(ρ2, p2)) −∇ϕθ · ∇Φ(ρ1 − ρ2)dL d+1

=
∫
E1

(LS(ρ1, p1) − LS(ρ2, p2))[A∂sϕθ + Δϕθ −A∇Φ · ∇ϕθ]dL d+1

+
∫
E2

(ρ1 − ρ2)
[
∂sϕθ + A−1Δϕθ −∇Φ · ∇ϕθ

]
dL d+1 =: I1 + I2.

It remains to show that both |I1| and |I2| can be made arbitrary small. Because φθ solves (6.8)
with the coefficient function Aθ, we have

I1 =
∫
E1

(LS(ρ1, p1) − LS(ρ2, p2))[A∂sϕθ + Δϕθ −A∇Φ · ∇ϕθ]dL d+1

−
∫
E1

(LS(ρ1, p1) − LS(ρ2, p2))A
[
∂sϕθ + A−1

θ Δϕθ −∇Φθ · ∇ϕθ

]
dL d+1
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=
∫
E1

(LS(ρ1, p1) − LS(ρ2, p2))(Aθ −A)A− 1
2

θ A
− 1

2
θ ΔϕθdL d+1

+
∫
E1

(LS(ρ1, p1) − LS(ρ2, p2))A∇ϕθ · (∇Φθ −∇Φ)dL d+1.

From here, by (6.5) we have

|I1| � ε−
1
2 ‖A− 1

2
θ Δϕθ‖L2(Q)

(∫
E1

|LS(ρ1, p1) − LS(ρ2, p2)|2|Aθ −A|2dL d+1

) 1
2

+
∫ T

0

∫
Ω

|ρ1 − ρ2||∇ϕθ||∇Φθ −∇Φ|dxdt.

By Lemma 6.4(1), the summability assumption on ρi ∈ L2r(Q) and the approximation ∇Φθ →
∇Φ, in L2r′(Ω) as θ ↓ 0, we conclude that the second term in the previous inequality tends to 0

as θ ↓ 0. By Lemma 6.4(2), we have that ‖A− 1
2

θ Δϕθ‖L2(Q) � C for some constant independent
of θ and ε. Furthermore, by (6.6), by the summability assumption on LS(ρi, pi) and by the
construction of Aε

1, for θ small enough we have∫
E1

|LS(ρ1, p1) − LS(ρ2, p2)|2|Aθ −A|2dL d+1

� 2
∫
E1

|LS(ρ1, p1) − LS(ρ2, p2)|2|Aθ −Aε
1|2dL d+1

+ 2
∫
E1

|LS(ρ1, p1) − LS(ρ2, p2)|2|Aε
1 −A|2dL d+1

� ε2 + Cε2,

for some constant independent of ε, θ,K and therefore by the arbitrariness of ε, we conclude
that I1 = 0.

In the case of I2, we argue as follows.

I2 =
∫
E2

(ρ1 − ρ2)
[
∂sϕθ + A−1Δϕθ −∇Φ · ∇ϕθ

]
dL d+1

−
∫
E2

(ρ1 − ρ2)
[
∂sϕθ + A−1

θ Δϕθ −∇Φθ · ∇ϕθ

]
dL d+1

=
∫
E2

(ρ1 − ρ2)(A−1 −A−1
θ )A

1
2
θ A

− 1
2

θ ΔφθdL d+1

+
∫
E2

(ρ1 − ρ2)∇ϕθ · (∇Φθ −∇Φ)dL d+1

=
∫
E2

(ρ1 − ρ2)(A−1 −A−1
δ,K)A

1
2
θ A

− 1
2

θ ΔφθdL d+1

+
∫
E2

(ρ1 − ρ2)(A−1
δ,K −A−1

θ )A
1
2
θ A

− 1
2

θ ΔφθdL d+1

+
∫
E2

(ρ1 − ρ2)∇ϕθ · (∇Φθ −∇Φ)dL d+1

=: I21 + I22 + I23.



DEGENERATE NONLINEAR PARABOLIC EQUATIONS 733

In the case of I23, we argue exactly as in the case of the second term of I1 to conclude that
this term tends to 0 as θ ↓ 0. As for the other terms, let us note that by the definition of A−1

δ,K

(on E2), we have that

∣∣∣A−1 −A−1
δ,K

∣∣∣ =

⎧⎪⎪⎨⎪⎪⎩
δ a.e. in {0 � A−1 < δ} ∩ E2,

0 a.e. in {δ � A−1 � K} ∩ E2,

A−1 −K a.e. in {K � A−1} ∩ E2,

and thus ∣∣∣A−1 −A−1
δ,K

∣∣∣ � δ + (A−1 −K)+, a.e. in E2. (6.9)

Therefore, since A
1
2
θ � δ−

1
2 , we obtain

|I21| � ‖A− 1
2

θ Δφθ‖L2(Q)δ
− 1

2
(
δ‖ρ1 − ρ2‖L2(E2) + ‖(ρ1 − ρ2)(A−1 −K)‖L2({K�A−1}∩E2)

) → 0,

as K → +∞ and δ ↓ 0 (in this order). This is true indeed, by Lemma 6.4(2) and by the fact
that∫

{K�A−1}∩E2

(ρ1 − ρ2)2(A−1 −K)2dL d+1 �
∫
{K�A−1}∩E2

(ρ1 − ρ2)2(A−1)2dL d+1

�
∫
{K�A−1}∩E2

(LS(ρ1, p1) − LS(ρ2, p2))2dL d+1.

Since A−1 ∈ L2(E2), by Chebyshev’s inequality L d+1({K � A−1} ∩ E2) → 0, as K → +∞,
so by the summability of L2

S(ρi, pi) we deduce that for K large enough last term in the last
inequality is smaller than δ2. Therefore, by the arbitrariness of δ, we conclude that I21 has to
be zero.

To show that |I22| can be made arbitrary small, using again A
1
2
θ � δ−

1
2 a.e. on E2 and

Lemma 6.4(2), we have

|I22|2 � δ−1C

∫
E2

(ρ1 − ρ2)2(A−1
δ,K −A−1

θ )2dL d+1.

By the fact that A−1
δ,K , A−1

θ ∈ L∞(E2), ρ1, ρ2 ∈ L2(E2) and by the weak-� convergence of A−1
θ

to A−1
δ,K in L∞(E2), we conclude that for θ small enough, the right-hand side of the previous

inequality is smaller than δ, therefore by the arbitrariness of δ we conclude that I22 = 0. �

The next three lemmas (in an implicite or explicite form) are used in the proof of
Theorem 6.1.

Lemma 6.2. Let (ρ1, p1), (ρ2, p2) : Ω → R2 satisfy (1.6). Then LS (defined in (1.5)) defines
a monotone operator in the sense that

if ρ1(x) < ρ2(x), then LS(ρ1, p1)(x) < LS(ρ2, p2)(x). (6.10)

In particular, for x ∈ Ω, if

LS(ρ1, p1)(x) = LS(ρ2, p2)(x), (6.11)

then ρ1(x) = ρ2(x) and p1(x) = p2(x).

Proof. First of all, if we have (6.11) and ρ1(x) = ρ2(x), then (1.5) and (1.6) imply p1(x) =
p2(x). Thus, it is enough to show that ρ1(x) = ρ2(x).

Let us show now that LS is a monotone operator in the sense of (6.10). First, note that
ρ �→ ρS′(ρ) − S(ρ) is strictly increasing in R+ \ {1}. Indeed, from the strict convexity of S
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(Assumption 1.1), one has that

∂ρ(ρS′(ρ) − S(ρ)) = ρS′′(ρ) > 0 in R+ \ {1}. (6.12)

Therefore, (6.10) holds if ρ1(x), ρ2(x) ∈ (0, 1) or ρ1(x), ρ2(x) ∈ (1,+∞). Thus, it remains to
treat the remaining cases.

Consider the case that ρ1(x) = 1 < ρ2(x). Let us recall that S and S′ are continuous in R+

and R+ \ {1}, respectively, (by Assumption 1.1). As ρ �→ ρS′(ρ) − S(ρ) is strictly increasing in
(1,+∞), we have that

LS(ρ2, p2) = ρ2(x)S′(ρ2(x)) − S(ρ2(x)) + S(1) > lim
ρ→1+

ρS′(ρ) − S(ρ) + S(1) = S′(1+)

� p1(x) = LS(ρ1, p1)(x). (6.13)

So, from (6.13) and (1.6), we conclude (6.10).
Similar arguments show (6.10) in the case when ρ1(x) < ρ2(x) = 1.
Finally, by combining the inequalities in (6.10) for two previous cases, ρ1(x) = 1 < ρ2(x) or

ρ1(x) < 1 = ρ2(x), we conclude (6.10) for ρ1(x) < 1 < ρ2(x). �

Lemma 6.3. We differentiate two cases.

(1) Assume m = 1 for m given in (1.9). Let (ρ1, p1) and (ρ2, p2) satisfy (1.6). Then we have

0 � A � max {σ1, σ2}, a.e. in Q, (6.14)

where A = A(ρ1, p1, ρ2, p2) is given in (6.2) and σ1, σ2 are from Assumption (1.9)–(1.10).
(2) Let m > 1. If there exist c0 > 0 and a Borel set E ⊆ Q such that ρ1, ρ2 � c0 a.e. on

E, then A�E ∈ L∞(E) and A � max{σ1,
σ2

cm−1
0

} a.e. in E, where A = A(ρ1, p1, ρ2, p2) is given

again in (6.2).

Proof. Let us recall the definition of LS from (1.5), that is,

LS(ρ, p)(t, x) := [ρ(t, x)S′(ρ(t, x)) − S(ρ(t, x)) + S(1)]1{ρ �=1}(t, x) + p(t, x)1{ρ=1}(t, x).

The nonnegativity of A follows from the monotonicity of LS shown in Lemma 6.2. We fix q =
(t, x) ∈ Q a Lebesgue for ρ1, ρ2, p1, p2 and assume ρ1(t, x) � ρ2(t, x). If q ∈ {ρ1 = 1} ∩ {ρ2 = 1},
there is nothing to check, since A(q) = 0 in both cases.

Let us show (1).
Case 1. If q ∈ ({ρ1 > 1} ∩ {ρ2 > 1}) ∪ ({ρ1 < 1} ∩ {ρ2 < 1}), we have that

ρ1(q)S′(ρ1(q)) − S(ρ1(q)) − ρ2(q)S′(ρ2(q)) + S(ρ2(q))

= ρ̃S′′(ρ̃)(ρ1(q) − ρ2(q)) � min
{

1
σ1

,
1
σ2

}
(ρ1(q) − ρ2(q)),

where ρ̃ is a constant between ρ1(q) and ρ2(q). Therefore, we get that A(q) � max{σ1, σ2}.
Case 2. If q ∈ {ρ1 > 1} ∩ {ρ2 = 1}, we have from (1.6) that

ρ1(q)S′(ρ1(q)) − S(ρ1(q)) + S(1) − p2(q) � ρ1(q)S′(ρ1(q)) − S(ρ1(q)) − (S′(1+) − S(1)).

As ρ �→ ρS′(ρ) − S(ρ) is continuous in [1, ρ1(q)] and differentiable in (1, ρ1(q)), the mean value
theorem yields that

ρ1(q)S′(ρ1(q)) − S(ρ1(q)) − p2(q) � ρ̃S′′(ρ̃)(ρ1(q) − 1) � 1
σ1

(ρ1(q) − 1),

where ρ̃ is between 1 and ρ1(q). Parallel arguments show (6.14) on the region {ρ1 = 1} ∩ {ρ2 <
1}.
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Case 3. If q ∈ {ρ1 > 1} ∩ {ρ2 < 1} from similar arguments as in Case 2, we have that

ρ1(q)S′(ρ1(q)) − S(ρ1(q)) − (S′(1+) − S(1)) � 1
σ1

(ρ1(q) − 1)

and

(S′(1−) − S(1)) − [ρ2(q)S′(ρ2(q)) − S(ρ1(q))] � 1
σ2

(1 − ρ2(q)).

As S′(1+) � S′(1−), we conclude that

LS(ρ1, p1)(q) − LS(ρ2, p2)(q) � σ1(ρ1(q) − 1) + σ2(1 − ρ2(q)) = min
{

1
σ1

,
1
σ2

}
(ρ1(q) − ρ2(q)).

The proof of (2) follows the very same steps as the one of (1). By the lower bound c0 > 0 on
the densities in E, we conclude that A � max{σ1,

σ2

cm−1
0

}. �

Lemma 6.4. Let ε > 0 and let ϕε be a smooth solution to (6.8). Then there exists a constant
C = C(T, ‖∇ζ‖L2) > 0 such that:

(1) supt∈[0,T ] ‖∇ϕε‖L2(Ω) � C;

(2) ‖A− 1
2

ε Δϕε‖L2(Q) � C.

Proof. The proof of this results follows the same lines as the one of [20, Lemma 3.1], therefore
we omit it. �

Corollary 6.5. Let ρ0 ∈ P(Ω) satisfy J (ρ0) < +∞. A solution pair to (1.4)–(1.6) such
that LS(ρ, p) ∈ L2(Q) is uniquely determined by ρ0.

Proof. From the contraction result in Theorem 6.1, we deduce the uniqueness of ρ. Now
suppose that there exists to pressure fields p1, p2 solving (4.3) with the same ρ. Taking the
difference of these two equations, we get

Δ(LS(ρ, p1) − LS(ρ, p2)) = 0, in D ′((0, T ) × Ω).

For a.e. t ∈ [0, T ] and for any ϕ ∈ C2
c (Ω), we have that

0 =
∫

Ω

(LS(ρt, p1
t ) − LS(ρt, p2

t ))Δϕdx =
∫
{ρt=1}

(p1
t − p2

t )Δϕdx,

where in the last equality we used the fact that p1
t = p2

t a.e. in {ρt < 1} ∪ {ρt > 1}. By the
arbitrariness of ϕ, we conclude that p1

t = p2
t a.e. on {ρt = 1} and therefore the uniqueness of p

follows. �

7. Discussions

7.1. The emergence of the ‘critical region’ {ρ = 1} – an example

We consider d = 1 and we show that the critical region {ρt = 1} is of positive measure, whenever
the two regions {ρt > 1} and {ρt < 1} are also of positive measure. We will see that this also
implies that the critical region is expected to emerge for positive times, even if L 1({ρ0 =
1}) = 0 (and if L 1({ρ0 < 1}) > 0 and L 1({ρ0 > 1}) > 0). This phenomenon corresponds to
the growth of the critical region for self-organized criticality in [4].
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Proposition 7.1. Let Ω ⊂ R and (ρ, p) be given in Theorem 3.1. If t ∈ (0, T ) is a Lebesgue
point both for t �→ ρt and t �→ pt with

L 1({ρt < 1}) > 0 and L 1({ρt > 1}) > 0, (7.1)

then L 1({ρt = 1}) > 0.

Proof. Let us show that p(t, ·) ∈ C0, 12 (Ω) for a.e. t ∈ [0, T ]. From Theorem 3.1, we know
that ∂xp ∈ L2(Q). As a consequence, we have that∫ T

0

osc
x∈[a,b]

p(t, x)dt �
∫ T

0

∫ b

a

|∂xp(t, x)|dt � ‖∂xp‖L2(Q)T
1
2 |b− a| 12 .

Thus, p ∈ L1(0, T ;C0, 12 (Ω)) and we conclude.
Let t ∈ (0, T ) be a Lebesgue point for both t �→ pt and t �→ ρt such that L 1({ρt < 1}) > 0

and L 1({ρt > 1}) > 0. Then (7.1) and (3.3) imply that there exists {Ui}i∈{1,2} subsets of Ω
such that L 1(Ui) > 0 and pt = i a.e. in Ui for i ∈ {1, 2}. As pt is continuous in Ω for a.e.
t ∈ [0, T ], there exists a point x0 ∈ Ω such that pt(x0) = 3/2. Since N := p−1

t ((5/4, 7/4)) is a
nonempty open set, N has a positive measure. From (3.3), we have that N ⊂ {ρt = 1} and
thus we conclude. �

Remark 7.1. A similar result can be stated in higher dimensions as well, based on the fact
that Sobolev functions cannot take finitely many values, except if they are constants.

7.2. Formal derivation of a free boundary problem — an example

Next, we formally derive the free boundary motion corresponding to the particular problem in
(3.2)–(3.3). For the analysis, we assume that ρ and p are continuous in Q and smooth in {pρ <
1}, {1 < pρ < 2} and {pρ > 2}, which also have smooth boundaries. Under this assumption,
we deduce the following free boundary problem,⎧⎪⎪⎨⎪⎪⎩

∂tρ− Δρ−∇ · (∇Φρ) = 0, in {pρ < 1},
ρ = 1, in {1 < pρ < 2},
∂tρ− 2Δρ−∇ · (∇Φρ) = 0, in {pρ > 2},

and

⎧⎪⎪⎨⎪⎪⎩
p = 1, in {pρ < 1},
−Δp = ΔΦ, in {1 < pρ < 2},
p = 2, in {pρ > 2},

(7.2)

with boundary conditions{
|D(pρ)1+| − |D(pρ)1−| = 0, on {pρ = 1},
|D(pρ)2+| − |D(pρ)2−| = 0, on {pρ = 2},

(7.3)

where for any f : Q → R and c ∈ R, denotes

Df c±(t, x) := lim
(s,y)→(t,x),

(s,y)∈{±(f−c)>0}
Df(s, y).

As the condition (3.3) implies⎧⎪⎪⎨⎪⎪⎩
ρ<1, p = 1 in {pρ<1},
ρ = 1, 1<p<2, in {1<pρ < 2},
ρ>1, p = 2, in {pρ>2},

(7.4)

the first system of equations in (7.2) is a direct consequence of Theorem 3.1. Next, we consider
the second system of equations in (7.2). For a test function ξ ∈ C∞

c (Q) such that ξ is compactly
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supported in {1 < pρ < 2}, (7.4) implies

0 =
∫
Q

−ρ∂tξ + D(pρ) ·Dξ + DΦ ·Dξdxdt =
∫
Q

−∂tξ + (ρDp + pDρ + DΦ) ·Dξdxdt

=
∫
Q

(Dp + DΦ) ·Dξdxdt. (7.5)

Thus, we conclude that −Δp = ΔΦ in {1 < pρ < 2}. The other cases follow from (7.4).
Finally, let us find the boundary condition (7.3) on {pρ = 1} and {pρ = 2}. As [24,

Theorem 3.1], we deduce the condition based on integration by parts. Note that the boundary
condition (7.3) can be regarded as Rankine–Hugoniot conditions. For a test function ξ ∈
C∞

c (Q), (3.2) implies

0 =
∫
Q

−ρ∂tξ + [D(pρ) + ρDΦ] ·Dξdxdt =
∫
{pρ<1}

−ρ∂tξ + [D(pρ) + ρDΦ] ·Dξdxdt

+
∫
{1<pρ<2}

−ρ∂tξ + [Dp + DΦ] ·Dξdxdt +
∫
{pρ>2}

−ρ∂tξ + [D(pρ) + Dφ] ·Dξdxdt. (7.6)

For a set N = {pρ < 1}, {1 < pρ < 2} or {pρ > 2}, the smoothness of p and ρ in N and (7.2)
imply∫

N

−ρ∂tξ + [D(pρ) + ρDΦ] ·Dξdxdt =
∫
∂N

(−ρnt + [D(pρ) + ρDΦ] · nx)ξdH d, (7.7)

where nt and nx are the outward normal vectors on ∂N in x and t directions, respectively.
From (7.6) and (7.7), we conclude that

0 =
∫
∂{pρ<1}

[D(pρ)1− −D(pρ)1+] · nxξdH d +
∫
∂{pρ>2}

[D(pρ)2+ −D(pρ)2−] · nxξdH d.

(7.8)

By the arbitrariness of ξ, (7.8) implies{
[D(pρ)1+ −D(pρ)1−] · nx = 0 on {pρ = 1},
[D(pρ)2+ −D(pρ)2−] · nx = 0 on {pρ = 2}.

As nx is parallel to D(pρ) on the level set of pρ, we conclude (7.3).

7.3. A nontrivial stationary solution — an example

In this subsection, in one spacial dimension, we study stationary solutions to our problems.
For simplicity, let us consider Ω := (0, l) ⊂ R for l > 0. Let (ρ, p) be a solution to (3.2)–(3.3)
with potential Ψ(x) = 2x, where we have associated energy functional,

J (ρ(x)) =
∫ l

0

S(ρ(x))dx +
∫ l

0

Ψ(x)ρ(x)dx,

where S is given in (3.1). From Theorem 3.1, there exists a solution (ρ, p) of⎧⎪⎨⎪⎩
∂tρ− ∂2

x(ρp) − 2∂xρ = 0, in (0, T ) × (0, l),
ρ(0, ·) = ρ0, in (0, l),
∂x(ρp) + 2ρ = 0, in [0, T ] × ∂(0, l),

(7.9)
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1

1

(A) l = 1

1

0.8

(B) l = 0 .8

1

0.6

(C) l = 0 .6

Figure 2 (colour online). Stationary solutions.

and (ρ, p) satisfies (3.3). A stationary problem associated to (7.9) is as follows: find ρ, p : [0, l] →
R satisfying (3.3) and {

∂2
x(ρp) + 2∂xρ = 0, in (0, l),

∂x(ρp) + 2ρ = 0, at x = 0 and x = l.
(7.10)

The solution (ρ, p) can be also characterized as minimizers of the free energy J . Writing down
the optimality conditions (using Lemma 3.2), we have

ρ =

⎧⎪⎪⎨⎪⎪⎩
exp (A− x) in [0, A) ∩ [0, l],

1 in
[
A,A + 1

2

] ∩ [0, l],

exp (2A + 1 − 2x) in
(
A + 1

2 , l
] ∩ [0, l],

(7.11)

where A is chosen to satisfy ∫ l

0

ρdx = 1. (7.12)

Depending on the value l, some cases in (7.11) may not be present (see Figure 2).

Lemma 7.2. If l > ln(3
2 ) + 1

2 , then all three sets {ρ < 1}, {ρ = 1} and {ρ > 1} have
positive measure.

Proof. We consider the continuous function f : R → R defined by

f(x) := exp(x) − 1
2

exp(2x + 1 − 2l) − 1.

We claim that there exists a solution of f(x) = 0 in (0, l − 1
2 ). First, f(0) = − 1

2 exp(1 − 2l) < 0.
Also, as l > ln(3

2 ) + 1
2 , it holds that

f

(
l − 1

2

)
= exp

(
l − 1

2

)
− 3

2
> 0.

Therefore, by the continuity of f and by the intermediate value theorem, we can find A ∈
(0, l − 1

2 ) such that f(A) = 0. For given A, we recall ρ from (7.11). Since we have

A, A +
1
2
∈ (0, l), (7.13)

all three sets {ρ < 1}, {ρ = 1} and {ρ > 1} have positive measure.
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It remains to show that with this choice of A, ρ given in (7.11) satisfies (7.12). From (7.11)
and (7.13), it holds that∫ l

0

ρ(x)dx =
∫ A

0

exp (A− x)dx +
∫ A+ 1

2

A

1dx +
∫ l

A+ 1
2

exp (2A + 1 − 2x)dx

= (exp(A) − 1) +
1
2

+
(

1
2
− 1

2
exp(2A + 1 − 2l)

)
= f(A) + 1 = 1.

and we conclude. �

Remark 7.2. By a parallel argument as above, one can check that a set {ρ > 1} will have
zero measure if l ∈ (0, ln(3

2 ) + 1
2 ]. To see this, let us differentiate two cases.

Case 1. If l ∈ (0, ln 2], then we have

ρ(x) =
exp(−x)

1 − exp(−l)
in [0, l].

Case 2. If l ∈ (ln 2, ln(3
2 ) + 1

2 ], then it holds that

ρ(x) =

{
exp (A− x) in [0, A),
1 in [A, l].

where A ∈ [l − 1
2 , l) is a solution of exp(A) −A = 2 − l.

Appendix A. Optimal transport toolbox

Let us recall now some basic definitions and results from the theory of optimal transport. Let
Π(μ, ν) be the set of all Borel probability measure π on Ω × Ω such that

π(A× Ω) = μ(A), π(Ω ×B) = ν(B) for all measurable subsets A,B ⊂ Ω.

For μ, ν ∈ P2(Ω) we define the 2-Wasserstein or Monge–Kantorovich distance as

W2(μ, ν) := min
{∫

Ω×Ω

|x− y|2dγ : γ ∈ Π(μ, ν)
} 1

2

. (A.1)

For φ : Ω → R measurable, we use the notations

φ+(x) := max{φ(x), 0}, φ−(x) := max{−φ(x), 0} and φc(x) := ess inf
y∈Ω

{
1
2
|x− y|2 − φ(y)

}
where x ∈ Ω.

A.1. Basic facts from optimal transport. Let us recall the definition and properties of
Kantorovich potentials and optimal transport maps. The results are well known in the
literature, we refer, for instance, to [38] for the proofs of the statements.

Definition A.1. Let μ, ν ∈ P(Ω) be given.

(1) We say that φ : Ω → R is a Kantorovich potential from μ to ν if (φ, φ
c
) is a maximizer

of the Kantorovich problem:

sup
{∫

Ω

φdμ +
∫

Ω

ψdν : (φ, ψ) ∈ L1
μ(Ω) × L1

ν(Ω), φ(x) + ψ(y)

� 1
2
|x− y|2, μ⊗ ν − a.e. (x, y) ∈ Ω × Ω

}
.

We denote the set of Kantorovich potential from μ to ν by K(μ, ν).
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(2) We say that a Borel map T : Ω → Ω is a optimal transport map from μ to ν if T is a
minimizer of the following problem:

inf
{∫

Ω

|x− T (x)|2dμ : T#μ = ν

}
.

Here, (T#μ)(A) := μ(T−1(A)) for any Borel set A ⊆ Ω.

Lemma A.1 [38]. For μ ∈ Pac(Ω) and ν ∈ P(Ω), there exists a Lipschitz continuous
Kantorovich potential φ and an optimal transport map T from μ to ν. Also, it holds that

x− T (x) = ∇φ(x) for a.e. x ∈ spt(μ) and W2(μ, ν) = ‖∇φ‖L2
μ
. (A.2)

Lemma A.2 [41, Theorem 1.3], [38, Proposition 1.11]. Let μ, ν ∈ P(Ω). Define L : L1
μ(Ω) ×

L1
ν(Ω) → R as

L(φ, ψ) :=
∫

Ω

φdμ +
∫

Ω

ψdν. (A.3)

Then, it holds that

1
2
W 2

2 (μ, ν)

= max
{
L(φ, ψ) : (φ, ψ) ∈ Cb(Ω) × Cb(Ω), φ(x) + ψ(y) � 1

2
|x− y|2 for all x, y ∈ Ω

}
,

= sup
{
L(φ, ψ) : (φ, ψ) ∈ L1

μ(Ω) × L1
ν(Ω), φ(x) + ψ(y)

� 1
2
|x− y|2 for μ⊗ ν − a.e. (x, y) ∈ Ω × Ω

}
.

Proposition A.3. For r ∈ [1,+∞], let μ ∈ Lr(Ω) ∩ P(Ω) and ν ∈ P(Ω). Then, it holds
that

sup
φ∈Lr′ (Ω)

L(φ, φc) =
1
2
W 2

2 (μ, ν), (A.4)

where r′ := r
r−1 (r′ = 1 if r = +∞ and r′ = +∞ if r = 1) and L is given in (A.3).

Proof. Step 1. Let us show that
1
2
W 2

2 (μ, ν) = I1 (A.5)

where

I1 := sup
{
L(φ, ψ) : (φ, ψ) ∈ Lr′(Ω) × L1

ν(Ω), φ(x) + ψ(y)

� 1
2
|x− y|2 for μ⊗ ν − a.e. (x, y) ∈ Ω × Ω

}
. (A.6)

By Hölder’s inequality, it holds that

‖φ‖L1
μ(Ω) =

∫
Ω

|φ(x)|μ(x)dx � ‖φ‖Lr′ (Ω)‖μ‖Lr(Ω). (A.7)
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As μ ∈ Lr(Ω) ∩ P(Ω), we conclude that

Lr′(Ω) ⊂ L1
μ(Ω) and thus Cb(Ω) × Cb(Ω) ⊂ Lr′(Ω) × L1

ν(Ω) ⊂ L1
μ(Ω) × L1

ν(Ω).

From Lemma A.2, we conclude (A.5).
Step 2. It remains to show that

sup
φ∈Lr′ (Ω)

L(φ, φc) = I1 (A.8)

for I1 given in (A.6). Indeed, let us note that by density we have

sup
φ∈Lr′ (Ω)

L(φ, φc) = sup
φ∈Cb(Ω)

L(φ, φc) = max
φ∈Cb(Ω)

L(φ, φc),

and the latter two quantities are finite by [38, Proposition 1.11]. Therefore the thesis of the
proposition follows. �

A.2. Some properties of minimizers in the minimizing movements scheme and optimality
conditions.

Lemma A.4. For ρk given in (2.3) and S satisfying (4.2), it holds that ρk > 0 a.e.

Proof. The proof is inspired by [38, Lemma 8.6]. The difference is that we consider the
sub-differential of S instead of its derivative.

Step 1. For simplicity, let us use the notation μ := ρk and consider a competitor

μ1 :=
1

L d(Ω)
. (A.9)

Define με := (1 − ε)μ + εμ1 for ε ∈ (0, 1). From convexity of Wasserstein distance, we have

I1 := J (μ) − J (με) �
1
2τ

W 2
2 (με, ρk−1) − 1

2τ
W 2

2 (μ, ρk−1)

� ε

{
1
2τ

W 2
2 (μ1, ρk−1) − 1

2τ
W 2

2 (μ, ρk−1)
}
.

The compactness of Ω implies

I1 � C1ε for some C1 > 0. (A.10)

Step 2. Set A := {x ∈ Ω : μ > 0} and B := {x ∈ Ω : μ = 0}. Let us show that L d(B) = 0.
For sufficiently small ε > 0, it holds that εμ1 < 1 and thus

I1 =
∫
A

S(μ(x)) − S(με(x)) + Φ[μ(x) − με(x)]dx + (S(0) − S(εμ1))L d(B) − ε
1

L d(Ω)

∫
B

Φdx.

By convexity of S, it holds that

I1 � ε

∫
A

[ξε(x) + Φ](μ(x) − μ1)dx + (S(0) − S(εμ1))L d(B) − ε
1

L d(Ω)

∫
B

Φdx,

where ξε(x) ∈ ∂S(με(x)).
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From (A.10), we conclude that for all ξε(x) ∈ ∂S(με(x))

I2 :=
∫
A

[ξε(x) + Φ](μ(x) − μ1)dx +
1
ε
(S(0) − S(εμ1))L d(B) � C1 + C. (A.11)

Note that by the convexity of S, its subdifferential is monotone, therefore for all ε ∈ [0, 1],

(ξε(x) − ξ1)(με(x) − μ1) � 0,

and thus

ξε(x)(μ(x) − μ1) � ξ1(μ(x) − μ1), (A.12)

for a.e. x ∈ Ω where ξ1 ∈ ∂S(μ1). Therefore,

I2 �
∫
A

[ξ1 + Φ](μ(x) − μ1)dx +
1
ε
(S(0) − S(εμ1))L d(B).

Since S′(0+) = −∞ from (4.2), the right-hand side blows up as ε goes to zero unless L d(B) =
0. As I2 is bounded by C1 + C from (A.11), we conclude that L d(B) = 0, and thus μ > 0
a.e. �

Appendix B. Some results from convex analysis

For a Banach space X and F : X → R ∪ {±∞}, we say that F ∗ : X∗ → R ∪ {±∞} is a Legendre
transform of F if

F ∗(y) := sup
x∈X

{〈x, y〉X,X∗ − F (x)} for y ∈ X∗. (B.1)

Here, X∗ stands for the topological dual space of X. We will denote by Cb(Ω) the space of
bounded continuous functions in Ω. In the derivation of optimality conditions associated to
the minimizing movement schemes, in Appendix B, we use subdifferential calculus in Lr(Ω)
(r ∈ [1,+∞]) spaces. Let us recall some basic results on this.

Let us recall the definition of subdifferentials on Lr(Ω)∗ for r ∈ [1,+∞].

Definition B.1 [36, (1.9), (1.10) & (1.13)]. For ψ : R → R ∪ {+∞}, r ∈ [1,+∞] and Ψ :
Lr(Ω) → R ∪ {+∞} defined by

Ψ(μ) :=
∫

Ω

ψ(μ(x))dx, (B.2)

we say that ξ ∈ Lr(Ω)∗ belongs to the subdifferential of Ψ at μ ∈ Lr(Ω) if

Ψ(ν) � Ψ(μ) + 〈ξ, ν − μ〉Lr(Ω)∗,Lr(Ω) (B.3)

for every ν ∈ Lr(Ω). We denote by ∂Ψ(μ) the set of subdifferentials of Ψ at the point μ ∈ Lr(Ω).

Definition B.2 [22, Definition 1.3.1]. Let X be a Banach space. The set of functions
F : X → R ∪ {±∞} which are pointwise supremum of a family of continuous affine function is
denoted by Γ(X).

Lemma B.1 [22, Proposition 1.3.1]. The following properties are equivalent to each other.

(1) F ∈ Γ(X).
(2) F is a convex lower semicontinuous function from X into R ∪ {±∞} and if F takes the

value −∞, then F is identically equal to −∞.
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Lemma B.2 [22, Proposition 1.5.6]. If F1, F2 ∈ Γ(X) and if there exists μ̂ ∈ X such that
F1(μ̂), F2(μ̂) < +∞ and either F1 or F2 is continuous at μ̂, then it holds that

∂F1(μ) + ∂F2(μ) = ∂(F1 + F2)(μ) for all μ ∈ X.

Appendix C. An Aubin–Lions lemma and some of its consequences

In [37], the authors presented the following version of the classical Aubin–Lions lemma (see
[3]):

Theorem C.1 [37, Theorem 2]. Let B be a Banach space and U be a family of measurable
B-valued function. Let us suppose that there exist a normal coercive integrand F : (0, T ) ×B →
[0,+∞], meaning that:

(1) F is B(0, T ) ⊗ B(B)-measurable, where B(0, T ) and B(B) denote the σ-algebras of the
Lebesgue measurable subsets of (0, T ) and of the Borel subsets of B, respectively;

(2) the maps v �→ Ft(v) := F(t, v) are lower semicontinuous for a.e. t ∈ (0, T );
(3) {v ∈ B : Ft(v) � c} are compact for any c � 0 and for a.e. t ∈ (0, T ),

and an lower semicontinuous map g : B ×B → [0,+∞] with the property

[u, v ∈ D(Ft), g(u, v) = 0] ⇒ u = w, for a.e. t ∈ (0, T ).

If

sup
u∈U

∫ T

0

F(t, u(t))dt < +∞ and lim
h↓0

sup
u∈U

∫ T−h

0

g(u(t + h), u(t))dt = 0,

then U is relatively compact in M (0, T ;B).

Many recent papers (including [26, 29]) on gradient flows in the Wasserstein space used the
previous theorem to gain pre-compactness of interpolated curves. In our setting, we use the
following result.

Lemma C.2. Let T > 0 and let q ∈ [1,+∞) and n > 0 be such that nq∗ > 1, where q∗ := qd
d−q

(with the convention q∗ ∈ (0,+∞) is arbitrary if q � d, and therefore, n > 0 and nq∗ > 1 can
also be arbitrary). Suppose that (ρτ )τ>0 is a sequence of curves on [0, T ] with values in P(Ω)
and suppose that there exists C > 0 such that

W 2
2 (ρτt , ρ

τ
s ) � C|t− s + τ |, ∀ 0 � s < t � T (C.1)

and ((ρτ )n)τ>0 is uniformly bounded in Lq([0, T ];W 1,q(Ω)) by C. We suppose moreover that
there exists β � 1 such that ‖ρτt ‖Lβ(Ω) � C for a.e. t ∈ [0, T ].

(1) Then, (ρτ )τ>0 is pre-compact in Lγ(Q), with 1 � γ � β if β < nq∗ and 1 � γ < nq∗, if
β � nq∗.

(2) If in addition, (ρτ )τ>0 is uniformly bounded in Lβ2(Q) for some β2 > γ (where γ is given
in (1)), then (ρτ )τ>0 is pre-compact in Lγ2(Q), for any 1 � γ2 < β2.

Proof. Let us use the previously stated Aubin–Lions lemma, that is, Theorem C.1. Let
1 � α < q∗ be fixed (that we set up later) and let us set B := Lnα(Ω), F : Lnα(Ω) → [0,+∞]
defined as

F(ρ) :=

{‖ρn‖W 1,q(Ω), if ρn ∈ W 1,q(Ω), ρ ∈ P(Ω),

+∞, otherwise
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and g : Lnα(Ω) × Lnα(Ω) → [0,+∞] defined as

g(μ, ν) :=

{
W2(μ, ν), if μ, ν ∈ P(Ω),

+∞, otherwise.

In this setting, (ρτ )τ>0 and F satisfy the assumptions of Theorem C.1. Indeed, from the
assumption, one has in particular that

∫ T

0
‖(ρτt )n‖qW 1,q(Ω)dt � C. The injection W 1,q(Ω) ↪→

Lα(Ω) is compact for any 1 � α < q∗, the injection i : s �→ s
1
n is continuous from Lα(Ω) to

Lnα(Ω) and the sub-level sets of ρ �→ ‖ρn‖W 1,q(Ω) are compact in Lnα(Ω).
Moreover, by the fact that g defines a distance on D(F) and from (C.1), one has that g also

satisfies the assumptions from Theorem C.1, hence the implication of the theorem holds and
one has that (ρτ )τ�0 is pre-compact in M (0, T ;Lnα(Ω)). Let us note that (C.1) implies that
there exists ρ ∈ C([0, T ];P(Ω)) such that up to passing to a subsequence (ρτ )τ>0 converges
uniformly (with respect to W2) to ρ as τ > 0. Up to passing to another subsequence, ρ is the
limit also in M (0, T ;Lnα(Ω)).

From our assumption, we know that ‖ρτt ‖Lβ(Ω) � C for a.e. t ∈ [0, T ]. Now, if β < nq∗, then
setting α such that nα = β, Lebesgue’s dominated convergence theorem implies the strong
pre-compactness of (ρτ )τ>0 in Lβ(Q). Otherwise, Lebesque’s dominated convergence implies
the strong pre-compactness in Lγ(Q) for any 1 � γ < nq∗. This concludes the proof of (1).

To show (2), we note that (1) already implies that ρτ → ρ, strongly in Lγ(Q) as τ ↓ 0 and
in particular a.e. in Q. Furthermore, by the uniform bounds in Lβ2(Ω), with β2 > γ, for any
1 � γ2 < β2 we have that ∫

Q

(ρτ )γ2 dxdt �
(
TL d(Ω)

)1− γ2
β2 ‖ρτ‖γ2

Lβ2
,

which implies that (ρτ )γ2 is uniformly integrable on Q. Therefore, Vitali’s convergence theorem
yields the claim. �

Acknowledgements. The authors thank José A. Carrillo, Inwon Kim and Filippo Santam-
brogio for their interests in this project. They also thank Michael Röckner for pointing out
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20. S. Di Marino and A. R. Mészáros, ‘Uniqueness issues for evolution equations with density constraints’,
Math. Models Methods Appl. Sci. 26 (2016) 1761–1783.

21. R. J. DiPerna and P.-L. Lions, ‘Ordinary differential equations, transport theory and Sobolev spaces’,
Invent. Math. 98 (1989) 511–547.

22. I. Ekeland and R. Témam, Convex analysis and variational problems, Studies in Mathematics and its
Applications 1 (North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co.,
Inc., New York, 1976). (Translated from the French.)

23. L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced
Mathematics (CRC Press, Boca Raton, FL, 1992).

24. L. C. Evans and M. Portilheiro, ‘Irreversibility and hysteresis for a forward–backward diffusion
equation’, Math. Models Methods Appl. Sci. 14 (2004) 1599–1620.

25. R. Jordan, D. Kinderlehrer and F. Otto, ‘The variational formulation of the Fokker-Planck equation’,
SIAM J. Math. Anal. 29 (1998) 1–17.
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