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We demonstrate how quantum field theory problems can be practically encoded by using a discretization
of the field theory problem into a general Ising model, with the continuous field values being encoded into
Ising spin chains. To illustrate the method, and as a simple proof of principle, we use a (hybrid) quantum
annealer to recover the correct profile of the thin-wall tunnelling solution. This method is applicable to
many nonperturbative problems.
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I. INTRODUCTION

There has been increasing interest in the possibility of
simulating quantum field theory (QFT) on quantum com-
puters [1], with the development of efficient algorithms to
compute scattering probabilities in simple theories of
scalars and fermions [2–17]. In particular it is known that
by latticizing field theories, quantum computers should be
able to compute scattering probabilities in QFTs with a run
time that is polynomial in the desired precision, and in
principle to a precision that is not bounded by the limits of
perturbation theory. However a particularly difficult aspect
of this programme is the preparation of scattering states
[4–6,8,9,14–17], with several works having proposed a
hybrid classical/quantum approach to solving this problem
[11,17–19]. A complementary approach is to map field
theory equations to discrete quantum walks [20–23] which
can be simulated on a universal quantum computer.
Certain nonperturbative quantum processes do not

suffer from this difficulty, and lend themselves much more
readily to study on quantum computers in the short term.

These include the tunneling and related processes, which
are of fundamental importance for the explanation of
quantum mechanical and quantum field theoretical phe-
nomena, for example transmission rates of electron micro-
scopes, first-order phase transitions during baryogenesis, or
the potential initiation of stochastic gravitational wave
spectra in the early Universe and many more.
Typically in tunneling, the system begins in a false

vacuum state that is nondynamical and virtually trivial.
The initial state can be very long lived, with tunneling to a
lower “true” vacuum state taking place via nonperturbative
instanton configurations. The objective of this work is to
demonstrate how a field theory problem can be successfully
encoded on a quantum spin device, by studying the classic
problem of obtaining such tunneling instanton solution
for a system stuck in a metastable minimum (a.k.a. false
vacuum).

II. SETUP OF A SIMPLE PROBLEM

A useful potential to focus on is the following quartic
one:

VðϕÞ ¼ λ

8
ðϕ2 − a2Þ2 þ ϵ

2a
ðϕ − aÞ: ð1Þ

It is convenient to henceforth remove the extraneous
constant term by working with UðϕÞ ¼ VðϕÞ − VðϕþÞ,
which has UðϕþÞ ¼ 0. The resulting potential is shown in
Fig. 1. On the left we show the “thick-wall” regime where ϵ
is large. This limit is when the barrier is close to
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disappearing (or has disappeared altogether) and the walls
become comparable in size to the bubble itself. For
numerics we choose a ¼ λ ¼ 1 and ϵ ¼ 0.3. The opposite
“thin-wall” regime (for which we choose ϵ ¼ 0.01) is the
limit in which ϵ is small and is approximately the difference
in vacuum energy density between the false and true
minima.
We are interested in the situation where the system starts

in the false vacuum, and our objective is to determine the
rate per unit volume of tunneling out of it. Using the well-
known technique of [24–27], the bubble profile is given by
finding a “bounce solution” to the following differential
equation:

d2ϕ
dρ2

þ c
ρ

dϕ
dρ

¼ ∂U
∂ϕ ; ð2Þ

where in four dimensions, c takes the value 2 or 3 for a
finite temperature Oð3Þ symmetric bubble, or a purely
quantum tunnelingOð4Þ symmetric instanton, respectively,
and where ρ is the radial coordinate of the solution. The
required “bounce” is subject to the boundary condition that
dϕ=dρ ¼ 0 as ρ → 0;∞, which determines the starting
value ϕð0Þ, which is the field-value at the centre of the
radially symmetric bubble or instanton (also called the
escape-point). The resulting ϕðρÞ profile for our particular
choice of parameters is shown in Fig. 2.
Once such a solution is determined, the tunneling rate

per unit volume can be estimated from its classical action:

Γ4 ∼ e−S4½ϕ�; Γ3 ∼ Te−S3½ϕ�=T; ð3Þ

respectively.
The action can be expressed in simple analytic terms in

the two limits. In the thick wall limit the bounce action can
be accurately approximated by expanding around the value
ϵ ¼ ϵ0, above which the barrier disappears (i.e., when
the discriminant vanishes), which gives a cubic potential
about the false vacuum. This critical value corresponds to
ϵ0 ¼ 2λa4=3

ffiffiffi
3

p
. Then following the rescaling procedure of

[27], the tunneling actions for the Oð4Þ and Oð3Þ sym-
metric solutions can be written in terms of standard actions
S04 ¼ 91 and S03 ¼ 19.4:

S4 ¼
3ρ

λ
S04; S3 ¼

3aρ3=2

λ1=2
S03: ð4Þ

The thin-wall regime is somewhat easier to study numeri-
cally, and semianalytically the actions can be expressed in
terms of the action S1 for the one-dimensional c ¼ 0
problem1:

S4 ¼
27π2S41
2ϵ3

; S3 ¼
16π3S31
3ϵ2

: ð5Þ

As we stated in the Introduction, the point of our study is
not to find these classical instanton solutions for the
tunneling per se, which are well known, but rather to
demonstrate that the corresponding field-theory configu-
ration can be suitably encoded onto a quantum spin system,
for example a quantum annealer. Once we have established
this as a working principle, one could even envisage testing
for the above behavior directly. Therefore we will in what
follows focus on using a quantum device to recover the
simple c ¼ 0 solution required for the thin-wall regime, as
a proof of principle. We will therefore set ourselves the task
of minimizing the corresponding action integral,

S1 ¼
Z

∞

0

dρ
1

2
_ϕ2 þUðϕÞ; ð6Þ

which should yield a solution of the form shown in
Fig. 2(b).

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to
formulate a continuous scalar field theory on a quantum
spin system. For this study we will make use of quantum
annealers which are a convenient device that is available at
the time of writing. But the same method can be used on

FIG. 1. The thick-wall potential in the left panel (with ϵ ¼ 0.3,
and true and false minima at ϕ− ¼ −1.12542 and ϕþ ¼ 0.786483
respectively), and the thin-wall potential in the right panel (with
ϵ ¼ 0.01).

FIG. 2. Solutions for the thick- and thin-wall potentials. Note
that in the thick-wall case the solution has to start away from the
minimum due to the friction term (in this case ϕe ¼ −1.03488).
The thin-wall solution computed using the hybrid quantum-
classical techniques as discussed later is overlaid on the right
panel.

1This is also the energy of the physical “domain wall” solution,
but for reasons that will become apparent it would be confusing to
use this terminology.
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any device that can encode and optimize a generalized
Ising model.
A quantum annealer in particular is based on the

adiabatic theorem of quantum mechanics, which implies
that a physical system will remain in the ground state if a
given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy
spectrum [28].
The crucial form of the Hamiltonian that we are

interested in, and that is represented on a quantum annealer
is that of a general Ising model, in addition to a time-
dependent transverse field:

HQAðtÞ ¼
X
i

X
j

JijσZi σ
Z
j þ

X
i

hiσZi þ ΔðtÞ
X
i

σXi ; ð7Þ

where σZi ¼ ð1
0

0
−1Þ (σZj0i ¼ j0i, σZj1i ¼ −j1i) is the Pauli

Z operator, with the subscript indicating which spin it acts
upon, and σX is its friend pointing in the X-direction.
The gradual decrease of ΔðtÞ → 0 from a large value
should drive the system into the ground state of the
time-independent part of the Hamiltonian, and this is where
we will put the field theory:

H ¼
X
i

X
j

JijσZi σ
Z
j þ

X
i

hiσZi : ð8Þ

For the annealer to provide a solution to a mathematical
problem, e.g., the calculation of ϕðρÞ for Eq. (6), we have
to find a mapping such that the expectation value of its
Hamiltonian can be identified with its solution, i.e., that it
allows in this example to draw a material equivalence:

ϕðρÞ ⇔ lim
ΔðtÞ→0

hHQAðtÞi; ð9Þ

namely that minimizing the Hamiltonian of the quantum
annealer, H, is the same as extremizing the field theory
action in ϕ.
It is worth noting that the couplings Jij and hi could also

be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential UðϕÞ of a
system in the quantum annealer so as to observe tunneling,
assuming it can be encoded. We will further split the
Hamiltonian into three generic pieces, as

H ¼ HðchainÞ þHðQFTÞ þHðBCÞ: ð10Þ

Here, HðQFTÞ is the Hamiltonian corresponding to the
minimization of the action in Eq. (6) and HðBCÞ is a
Hamiltonian that we add to enforce the boundary
conditions.2

However our first task is to encode continuous field
values over a continuous domain, with only the discrete
Ising model to hand: this is whatHðchainÞ is for. We begin by
splitting the radius variable ρ into M ≫ 1 discrete values
and the field value at the l’th position into N ≫ 1 discrete
values:

ρl ¼ lν ¼ ν…Mν

ϕðρlÞ ¼ ϕ0 þ αlξ ¼ ϕ0 þ ξ…ϕ0 þ Nξ;

where in the present context one might for example take a
fiducial value ϕ0 ≈ −a and ξ ¼ 2a=N, with Mν ¼ Δρ.
Thus our Ising interaction Jij is an ðMNÞ × ðMNÞ matrix,
while hi is an ðNMÞ-vector.
We must now separate those spins in the annealer that

correspond to fields at different values of l, effectively
splitting Jij and hi into N × N sub-blocks. To do this we
will utilize the Ising-chain domain wall representation
introduced in [30]. That is for every position l we add
to the Hamiltonian

HðchainÞ
l ¼ −Λ

�XN−1

j¼1

σZlNþjσ
Z
lNþjþ1 − σZlNþ1 þ σZlNþN

�
:

ð11Þ

As shown in [30], taking Λ to be much larger than every
other energy scale in the overall Hamiltonian, these terms
will constrain the system to remain in the ground subspace
of the Hamiltonian, where exactly one spin position, αl say,
is frustrated for each l. These states are of the form

j11…100…0il ⇒ ϕðρlÞ ¼ ϕ0 þ αlξ; ð12Þ

where in the above the discretized field value is represented
by the position αl of the frustrated domain wall. Con-
versely the field value at the l’th position can be found by
making the measurement

ϕðρlÞ ¼
1

2

XN−1

j¼1

ðϕ0 þ jξÞhσZlNþjþ1 − σZlNþji; ð13Þ

which only receives a contribution from frustrated spin
position with j ¼ αl. For later, it is useful to note that this is
equivalent to

ϕðρlÞ ¼ ϕ0 þ
Nξ

2
−
ξ

2

XN
j¼1

hσZlNþji: ð14Þ

In terms of Jij and hi, adding the full set of Ising-chain
Hamiltonians given by Eq. (11) corresponds to

2For a classical neural network-based approach to solving
Eq. (2) by treating it as an optimization problem see [29].
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JðchainÞlNþi;mNþj ¼ −
Λ
2
δlm ⊗

0
BBBBBBBBB@

0 1

1 0 1

1 0

. .
.

0 1

1 0

1
CCCCCCCCCA

ij

;

ð15Þ

and an h that is independent of l,

hðchainÞlNþj ¼ Λðδj1 − δjNÞ: ð16Þ

This separates the system of spins into blocks of size N,
each of which represents a position.
Moving on toHðQFTÞ, the potential is somewhat easier to

deal with than the kinetic terms, because it can be encoded
entirely in hi. This is only to be expected because the ϕl are
independent of each other in the potential which gives
entirely localized contributions to the Hamiltonian. The
value of UðϕðρlÞÞ at each point follows directly from
Eq. (13):

UðϕðρlÞÞ ¼
1

2

XN−1

j¼1

Uðϕ0 þ jξÞhσZlNþjþ1 − σZlNþji: ð17Þ

This yields an additional contribution to the hwhich is also
independent of l: that is for all l we have

hðQFTÞNlþj ¼
� ν

2
ðUðϕ0 þ ðj − 1ÞξÞ − Uðϕ0 þ jξÞÞ; j < N

ν
2
Uðϕ0 þ ðN − 1ÞξÞ; j ¼ N:

ð18Þ

Note that in a system with arbitrary c ≠ 0, we would need
to evaluate hðUÞ ≡ R

dρρcU, so that hlNþi would acquire a
prefactor of ðlνÞc.
Up to this point the M-factors have been inert and there

has been no coupling between the fields at different
positions in ρl. At this stage the system would simply
relax to M decoupled values of ϕðρlÞ that minimize U in
either one of its two vacua. This changes once we include
the derivatives in the kinetic terms, which contribute to the
bilinear interactions, J. These terms are discretized in ρ as

SKE ≡
Z

Δρ

0

dρ
1

2
_ϕ2 ¼ lim

M→∞

XM
l¼1

1

2ν
ðϕðρlþ1Þ − ϕðρlÞÞ2;

ð19Þ

where ν ¼ Δρ=M scales so as to keep Δρ constant.
Inserting the discrete representation of the field values as
well using Eq. (14), we find

SKE ¼
XM−1

l¼1

XN−1

ij

ξ2

8ν
½σZðlþ1ÞNþi − σZlNþi�

× ½σZðlþ1ÞNþj − σZlNþj�: ð20Þ

Hence the bilinear terms receive the additional contribution:

JðQFTÞlNþi;mNþj ¼
ξ2

8ν

0
BBBBBBBBB@

1 −1
−1 2 −1

−1 2 −1
. .
.

−1 2 −1
−1 1

1
CCCCCCCCCA

lm

ð21Þ

Now it is the N × N indices that are inert, because every i
couples to every j.
Finally we must add terms to enforce a boundary

condition. In the c ¼ 0 case it is sufficient to fix the
endpoints of the solution in the two minima (so that, at the
risk of confusion, the instanton solution itself approximates
a physical domain wall). This can be done by adding a
term HðBCÞ ¼ Λ0

2
ðϕð0Þ þ aÞ2 þ Λ0

2
ðϕðρMÞ − aÞ2 with Λ0

being some other large parameter. This is simply an extra
contribution to h

hðBCÞNlþj ¼
�−Λ0ðϕ0 þ jξþ aÞ; l ¼ 1; ∀ j

−Λ0ðϕ0 þ jξ − aÞ; l ¼ M − 1; ∀ j:

ð22Þ

Together with Eqs. (15), (16), and (21), this completes the
encoding of the field theory problem of Eq. (6).

IV. EXTENSION TO Uð1Þ STRING
Extension to the case of multiple fields and multiple

dimensions would be straightforward although current
technology does not make it very feasible. As an example
we will consider the Uð1Þ topological string in two
dimensions. Consider the following energy integral

HUð1Þ ¼
Z

∞

0

d2x
1

2
∇ϕa ·∇ϕa þUðϕaÞ; ð23Þ

where a ¼ 0, 1 are internal indices, and where

UðϕaÞ ¼
λ

8
ðϕ2

0 þ ϕ2
1 − v2Þ2: ð24Þ

Obviously this two-dimensional theory has a Uð1Þ ∼
SOð2Þ rotational symmetry, and it has a topologically
stable SOð2Þ symmetric configuration in R2, the Uð1Þ
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string. In principle this could be determined exactly as
before as a c ¼ 1 bubble, with ρ being the radius. However
let us pretend that we do not know about the rotational
symmetry and solve it as a 2D problem with two fields.
(It is probably also worth mentioning that strictly speaking
we will be finding the solution for a string in a finite box,
which is also not rotationally symmetric).
We first need to go back to the beginning and decide

how we are going to assign the dimensions and fields
to Ising spins. The simplest is to vectorize the indices
l → lμ¼0…d−1 and i → ia¼0…n−1, where d is the number of
space dimensions and n is the number of fields. Obviously
the indices are then flattened to fit into the bilinear Ising
model; for example the field values at a single point ϕaðxμÞ
can be represented by the spins at the n positions

fiag≡ ðnlμMμ−1 þ aÞN þ ia; a ¼ 0…n − 1:

That is, the position lμ is identified by the multiple of n
with an integer in base-M, i.e., l ¼ nlμMμ−1 with each lμ

yielding n × N values of ia. The Ising model scales as an
nMdN × nMdN matrix.
Clearly the Ising chain coefficients are for a field value at

the lμ’th position, hence Eq. (15) still has a prefactor δlm,
and both Eqs. (15) and (16) are for all iajb indices: for the
chain J and h we have

JðchainÞðlþaÞNþia;ðmþbÞNþjb
¼−

Λ
2
δlmδab

0
BBBBBBBBB@

0 1

1 0 1

1 0

. .
.

0 1

1 0

1
CCCCCCCCCA

iajb

;

hðchainÞðlþaÞNþja
¼Λðδja1−δjaNÞ: ð25Þ

To encode the QFT, we begin with the value of
UðϕaðxμlÞÞ at each point which follows again from
Eq. (13). For the Uð1Þ case, we can specialize to the
2-field case (or more generally interactions that involve at
most two fields). The simplest way to incorporate such
terms is as contributions to J: denoting the fiducial field
values by ϕ̂a, according to Eq. (13) we have

U ¼ 1

4

XN
j0;j1¼1

Uðϕ̂0 þ j0ξ; ϕ̂1 þ j1ξÞhσZlNþj0þ1 − σZlNþj0
i

× hσZðlþ1ÞNþj1þ1
− σZðlþ1ÞNþj1

i ð26Þ

which translates into

JðUÞ
ðlþaÞNþia;ðmþbÞNþjb

¼ ν2

8
δlmð1− δabÞUðϕ̂0 þ j0ξ; ϕ̂1 þ j1ξÞ

þUðϕ̂0 þ ðj0 − 1Þξ; ϕ̂1 þ ðj1 − 1ÞξÞ
−Uðϕ̂0 þ j0ξ; ϕ̂1 þ ðj1 − 1ÞξÞ
−Uðϕ̂0 þ ðj0 − 1Þξ; ϕ̂1 þ j1ξÞ; ð27Þ

regardless of l. Note that it is possible to encode couplings
between three or more fields, but at the expense of intro-
ducing more qubits [31,32]. Meanwhile the Laplacian is
generated by

JðΔÞðlþaÞNþia;ðmþbÞNþjb

¼ ξ2

8
δab

Xd−1
μ¼0

2δlm − δlðmþnMμÞ − δðlþnMμÞm: ð28Þ

In order to for example describe the 2D QFT inside the
square x0 ≡ x ∈ ð0; xMÞ and x1 ≡ y ∈ ð0; yMÞ, we have
l≡ 4l1 þ 2l0. Let us choose boundary conditions such
that the field maps to the square boundary pointing
horizontally or vertically. This can be implemented by
adding terms HðBCÞ such that

2

Λ0H
ðBCÞ ¼ ðϕ0ð0; yÞ þ vÞ2 þ ðϕ0ðxM; yÞ − vÞ2

þ ðϕ1ðx; 0Þ þ vÞ2 þ ðϕ1ðx; yMÞ − vÞ2: ð29Þ

In a straightforward adaption of the 1D case, these are
imposed by

−
1

Λ0 h
ðBCÞ
lNþj0

¼∀l1;j0
�
ϕ̂0 þ j0ξþ v; l0 ¼ 1;

ϕ̂0 þ j0ξ − v; l0 ¼ M − 1;

−
1

Λ0 h
ðBCÞ
ðlþ1ÞNþj1

¼∀l0;j1
�
ϕ̂1 þ j1ξþ v; l1 ¼ 1;

ϕ̂1 þ j1ξ − v; l1 ¼ M − 1:
ð30Þ

In this manner, the lifting to arbitrary numbers of dimen-
sions becomes very straightforward. As mentioned above
the discretization of space-time dimension makes this
currently relatively costly as the size of Ising model
increases as NMd, where N is the number of field values
andM the number of discretized space-points. (Currently in
2 dimensions one could still only manage roughly 20 space
time points and 12 field values even if one were able to
utilize every available qubit of the current state-of-the art
which is a 5000 qubit machine, and even if it were perfectly
connected).
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V. IMPLEMENTATION ON A QUANTUM SPIN
DEVICE AS A GENERAL ISING MODEL

In Sec. III we have devised a method which encodes the
problem of finding a solution to a quantum field theoretical
problem, i.e., of finding a solution to Eq. (6), into finding
the ground state of the Hamiltonian of an Ising model. The
latter can then be given an interpretation as the solution to
Eq. (6) through Eq. (12), for each ρl with l ∈ ½1;…;M�. To
show that our approach is valid and converges to the correct
solution ϕðρÞ, we now implement the method onto various
annealing samplers, as provided by D-Wave [33].
As discussed quantum annealers [28,34] perform con-

tinuous time quantum computations in Ising systems, so
they are extremely well-suited to the problem at hand
(although our discussion could ultimately be adapted to
gate-model quantum computers as well) [35–47]. In con-
trast with the quantum-gate devices, they are already quite
large, 2048 qubits in the current generation, with work
ongoing to develop much more connected 5,000 qubit
machines. D-Wave devices have been able successfully to
simulate condensed matter systems, sometimes showing
advantages over classical counterparts [48–50].
The quantum states are characterized by NM-tuples of

the form j11…100…0i and the Hilbert space of the Ising
model is therefore 2NM dimensional. Sampling such a large
vector space classically, with an exact sampler, while
calculating the expectation value hHi for each state quickly
becomes a computationally prohibitive task for NM ≫ 20.
Conversely, a discretization with NM ≲ 20 cannot give a
reasonable approximation for the derivatives of Eq. (19).
Yet, not unlike protein-folding, in which a unique ground

state is selected from an estimated number of 3300 so-called
conformations within microseconds (known as Levinthal’s
paradox [51]), a quantum annealer can in principle find a
ground state of a Hamiltonian acting on a highly complex
Hilbert space on a similar time scale, assuming there is a
gap between the ground state and the other states of the
system.
While the next generation of annealing processors will

have approximately 5,000 qubits, they will have limited
connectivity [52]. Therefore in order to accommodate the
more general Ising model required for our encoding, we
resorted to a hybrid asynchronous decomposition sampler

(the Kerberos solver [53–55]), which can solve problems
of complex structure and size. To find the ground state
efficiently, it applies in parallel classical tabu search
algorithms, simulated annealing and D-Wave subproblem
sampling on variables that have high-energy impact. Using
this method we calculate the solution ϕðρÞ to Eq. (6) for
N ¼ M ¼ 50 in Fig. 2(b). We observe that the discretized
field theory has minimized at the expected tunneling
solution, and the field theory and its Hamiltonian are
successfully encoded in the Ising model.

VI. CONCLUSION

We conclude that near-term applications of quantum
devices already allow the implementation of a wide class of
scalar field theories. By encoding them as an Ising model,
as described in Sec. III, we have been able to find tunneling
solutions on a D-Wave quantum annealer, which match
very precisely with the classical instanton solution. It is
important to appreciate that our end result is essentially an
experimental one: it is a genuine field theory relaxing to the
predicted solution. Thus the method is a novel, highly
flexible and possibly transformative way to probe non-
perturbative aspects of a wide class of field theories.
Our method has the potential to consider theories and

processes that are not easy to simulate and cannot be treated
analytically either. Thevariety of theory that can be studied in
this laboratory appears to be limited mainly by the number
and connectivity of the qubits in the generalized Isingmodel.
For example the Ising encoding of fermions and of gauge
theories is a longstanding topic (see for example [56,57]). It is
important to realize that these encodings represent genuine
condensed matter field theories constructed from a set of
aligned quantum spins. In this sense although the toy
problem discussed here is an optimization that can be done
classically, depending on the set-up these configurations can
be morally different from a simulation. For example the
system can support actual dynamical quantum tunneling
rather than a simulation of it [58].
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