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EIGENVALUES OF MAGNETOHYDRODYNAMIC MEAN-FIELD
DYNAMO MODELS: BOUNDS AND RELIABLE COMPUTATION\ast 

SABINE BOEGLI\dagger AND CHRISTIANE TRETTER\ddagger 

Abstract. This paper provides the first comprehensive study of the linear stability of three
important magnetohydrodynamic (MHD) mean-field dynamo models in astrophysics, the spherically
symmetric \alpha 2-model, the \alpha 2\omega -model, and the \alpha \omega -model. For each of these highly nonnormal prob-
lems, we establish upper bounds for the real part of the spectrum, prove resolvent estimates, and
derive thresholds for the helical turbulence function \alpha and the rotational shear function \omega below
which no MHD dynamo action can occur for the linear models (antidynamo or bounding theorems).
In addition, we prove that interval truncation and finite section method, which are employed to regu-
larize the singular differential expressions and the infinite number of coupled equations, are spectrally
exact. This means that all spectral points are approximated and no spectral pollution occurs, thus
confirming, for the first time, that numerical eigenvalue approximations for the highly nonnormal
MHD dynamo problems are reliable.
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1. Introduction. The existence of magnetic fields of astrophysical bodies like
planets, stars and galaxies gives rise to linear stability problems in magnetohydrodyna-
mic (MHD) dynamo theory. They are governed by induction caused by motions of
the electrically conducting fluid in the interior. It was only in 1999 that the first
successful dynamo action was observed experimentally in two large scale liquid sodium
facilities in Riga, Latvia, and Karlsruhe, Germany [7, 18, 22]. Numerical computations
were performed by physicists under various (symmetry) assumptions on the magnetic
and the velocity field and using necessary simplifications to enable a computer to
tackle the problem numerically. The corresponding eigenvalue problems are all highly
nonnormal, and hence numerical eigenvalue approximations are prone to spectral
pollution and failure of spectral approximation. However, up to now, there has not
been any mathematical justification guaranteeing that the numerical computations in
the physics literature reflect the true spectra of dynamos. The only existing analytical
results are eigenvalue estimates confined to the simplest case, the axisymmetric \alpha 2-
model with isotropic \alpha -profile [9].

We do not only aim at filling this gap for a variety of dynamo models and under
weak assumptions, e.g., not assuming axisymmetry of the magnetic field or small de-
viation from it [11]. In fact, our approach and results are twofold. On the analytical
side, we establish eigenvalue bounds for three important dynamo models in astro-
physics [17], the spherically symmetric \alpha 2-model, the \alpha \omega -model, and the \alpha 2\omega -model.
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Here the first group of our main results are so-called antidynamo theorems or bound-
ing theorems; see [5] (Theorems 4.2, 4.7, and 4.10). For each of the three models, we
derive thresholds for the helical turbulence function \alpha , the rotational shear function
\omega , and their derivatives \alpha \prime , \omega \prime below which all eigenvalues lie in the linearly stable
half-plane (Re(\lambda ) < 0) and hence no dynamo action can occur for the corresponding
linearized models. On the numerical side, for each of the three models, we prove that
eigenvalue approximations for the corresponding singular dynamo operators are spec-
trally exact. This is ensured by the second group of our main results (Theorems 6.5
and 6.7), where we show that, upon both regularization by interval truncation and
truncation to finite operator matrices (finite section method), all eigenvalues are ap-
proximated and no spurious eigenvalues (spectral pollution) occur, thus providing the
first reliable eigenvalue approximations for dynamo problems.

The three dynamo models, and their names, have the following origin. Decompos-
ing the magnetic field into polo\"{\i}dal and toro\"{\i}dal components, the mean-field induction
equation modelling the kinematic mean-field dynamo becomes a coupled system of two
coupled partial differential equations. In the three models distinguished in physics,
the \alpha 2-model, \alpha \omega -model and \alpha 2\omega -model, \alpha is a helical turbulence function, \omega a shear
function representing differential rotation, and the name of the model suggests which
effects are taken into account in these two differential equations. Here one \alpha indicates
that the \alpha -effect is assumed in the first differential equation, while the rest of the name
reflects the effects assumed in the second differential equation, i.e., for the \alpha 2-model
only the \alpha -effect, for the \alpha \omega -model only the \omega -effect, and for the \alpha 2\omega -model both the
\alpha - and \omega -effect. Important examples include the solar magnetic field cycle which is
modelled by an \alpha \omega -model and geodynamo models which are essentially based on an
\alpha 2-mechanism since the differential rotation in the Earth's fluid core is assumed to
be weak; see, e.g., [8].

In real cosmic bodies the functions \alpha and \omega have a complicated spatial structure.
A widely used simpler model, which we also consider here, is the spherically symmetric
case with purely radial dependence of \alpha and \omega . Expanding the polo\"{\i}dal and toro\"{\i}dal
components further in spherical harmonics Y m

l , the dynamo problem turns into a
time-independent eigenvalue problem for an infinite operator matrix. For the \alpha 2-
model, the corresponding dynamo operator decouples into infinitely many pairs of
coupled differential equations given by the operator

\scrA m
\alpha 2 =diag

\bigl( 
\scrA \alpha 2,l : l\geq km

\bigr) 
 - im\omega , \scrA \alpha 2,l=

\Biggl( 
\partial 2
r - 

l(l+1)
r2 \alpha 

 - \partial r\alpha \partial r - \alpha l(l+1)
r2 \partial 2

r - 
l(l+1)
r2

\Biggr) 
,

with Robin and Dirichlet boundary conditions y\prime 1(1) + ly1(1)= 0, y2(1) = 0 imposed
for \scrA \alpha 2,l and with km = max\{ | m| , 1\} . For the more involved \alpha \omega -model and \alpha 2\omega -
model, the system of infinitely many differential equations remains coupled and the
corresponding dynamo operators are infinite tridiagonal operator matrices, e.g., for
the \alpha \omega -model and m \not = 0 given by

\scrA m
\alpha 2\omega := \scrA m

\alpha 2 + \omega \prime \scrC m, \scrC m :=

\left(     
0  - \widetilde \scrC km+1,m 0 . . .

\scrC km,m 0  - \widetilde \scrC km+2,m 0 . . .
0 \scrC km+1,m . . .

. . .
. . .

...
. . .

. . .

\right)     ,

where \scrA m
\alpha 2 is the block diagonal operator matrix in the \alpha 2-model above and \scrC m is a

constant, but unbounded tridiagonal infinite operator matrix whose off-diagonal en-
tries \scrC l,m, \widetilde \scrC l,m are multiplication operators by constant matrices in L2(0, 1)\oplus L2(0, 1)
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2196 SABINE BOEGLI AND CHRISTIANE TRETTER

whose norms tend to \infty , \| \scrC l,m\| , \| \widetilde \scrC l,m\| \rightarrow \infty as l \rightarrow \infty . The \alpha \omega -model has a sim-
ilar structure as the \alpha 2\omega -model, with the operator \scrA \alpha 2,l replaced by \scrA \alpha ,l, which is
obtained from the former by setting the left lower entry equal to 0.

The sparsity or nonexistence of analytical and reliable numerical results for the
three dynamo models is due to the multiple problems that they pose. From the
analytical point of view, already for the decoupled \alpha 2-model the entries \scrA \alpha 2,l on the
diagonal are highly nonnormal operators and their entries are singular differential
expressions at the endpoint r = 0. For the \alpha \omega -model and \alpha 2\omega -model, not only the
entries \scrA \alpha ,l and \scrA \alpha 2,l on the diagonal are highly nonnormal and singular, but the
infinite coupling matrix \scrC m is both unbounded and also highly nonnormal since \scrC l,m,\widetilde \scrC l,m are far from being adjoint to each other. From the computational point of view,
two steps may be needed to obtain numerical eigenvalue approximations, the first one
is interval truncation at the singular endpoint r = 0 and the second one is truncation
of the infinite operator matrices for the \alpha \omega -model and \alpha 2\omega -model.

There do not exist any abstract perturbation theorems that could be applied here
and there are no results guaranteeing that numerical eigenvalue approximations for
these nonnormal problems do approximate all eigenvalues and do not produce spuri-
ous eigenvalues. The present paper provides a series of results addressing all of these
problems, starting with new spectral bounds, resolvent estimates and antidynamo
theorems, general perturbation results to establish generalized strong resolvent con-
vergence and discrete compactness of the resolvents, and, finally, the first results on
the spectral exactness of interval truncation and finite section method for the three
dynamo models.

This paper is organized as follows. In section 2 we present the physical background
and, for each of the three mean-field dynamo models, the system of coupled linear
differential equations modelling it. In section 3 we establish eigenvalue estimates for
the corresponding dynamo operators in an infinite product of L2-spaces which allows
us to write this system of differential equations equivalently as an eigenvalue problem
for the operators \scrA m

\alpha 2 , \scrA m
\alpha \omega , and \scrA m

\alpha 2\omega and we prove antidynamo theorems for all three
models; see Theorems 4.2, 4.7, and 4.10. In section 6, we show that the regularization
process via interval truncation and the truncation to finite operator matrices (finite
section method) are spectrally exact. This implies that the numerical eigenvalue
approximations computed and illustrated in section 7 for the \alpha 2- and \alpha 2\omega -model for
different functions \alpha and \omega do indeed reflect the true spectra of the dynamos.

We use the following notation. The norm and scalar product of a Hilbert space H
are denoted by \| \cdot \| H and \langle \cdot , \cdot \rangle H , respectively; if no confusion may arise, we sometimes
omit the subscriptH. The convergence inH, i.e., \| xn - x\| H \rightarrow 0, is written as xn \rightarrow x.
For Hilbert spaces Hi, i \in \BbbN , define

\scrH = l2(Hi : i\in \BbbN ) :=
\biggl\{ 
(xi)i\in \BbbN : xi\in Hi,

\sum 
i\in \BbbN 

\| xi\| 2Hi
<\infty 

\biggr\} 
, \| (xi)i\in \BbbN \| \scrH :=

\biggl( \sum 
i\in \BbbN 

\| xi\| 2Hi

\biggr) 1
2

;

here \BbbN := \{ 1, 2, 3, . . . \} and \BbbN 0 := \BbbN \cup \{ 0\} . The domain, spectrum, resolvent set and
numerical range of a linear operator T in a Hilbert space are denoted by \scrD (T ), \sigma (T ),

\varrho (T ), and W (T ), respectively. For bounded linear operators we write Tn
s\rightarrow T for

strong operator convergence. Identity operators are denoted by I; scalar multiples \lambda I
are written as \lambda . Analogously, the operator of multiplication with a function w in some
L2-space is again denoted by w; if w \in L\infty , then its operator norm is \| w\| = \| w\| \infty .

Throughout the paper, vectors in \BbbR 3 and vector-valued functions (vector fields)
are set in boldface. We consider all vectors and vector fields in spherical coordinates,

D
ow

nl
oa

de
d 

11
/0

4/
20

 to
 1

29
.2

34
.0

.6
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EIGENVALUES OF MAGNETOHYDRODYNAMIC DYNAMO MODELS 2197

with r denoting the radial component, \theta the inclination angle, and \varphi the azimuthal
angle. The vectors er, e\theta , e\varphi are the local orthogonal unit vectors in the directions of
increasing r, \theta , \varphi , respectively. The partial derivatives are written as \partial t, \partial r, \partial \theta , \partial \varphi .

2. Physical background of MHD mean-field dynamo models. The mo-
tion of an electrically conducting fluid (plasma or liquid metal) in a magnetic field
induces an electric current which, in turn, induces a magnetic field. If the inducing
and the induced magnetic fields coincide, this effect is termed a self-excited dynamo.

The starting point for the mean-field dynamo equations in the \alpha 2-model, the \alpha \omega -
model, and the \alpha 2\omega -model is the magnetic induction equation, which is obtained from
pre-Maxwell's equations and Ohm's law; see [14, Chaps. 11--15]. The velocity field v
is assumed to be steady, i.e., we neglect the back-reaction of the self-excited magnetic
field on the flow. Then the ansatz

B(r, t) = e\lambda t b(r), t \in [0,\infty ),

turns the dynamo problem into a time-independent eigenvalue problem for the eigen-
value parameter \lambda which is, in general, complex.

In order to model highly turbulent flows, the velocity field v and the magnetic
field B are written as superpositions of mean and fluctuating parts,

v = v+ v\prime , B = B+B\prime .

Considering the magnetic field inside a sphere BR(0) of radius R filled with an elec-
trically conducting fluid, the mean part of the induction equation becomes

\partial tB = \nabla \times (v\times B+ v\prime \times B\prime ) +
1

\mu 0\sigma 
\Delta B on BR(0)\times [0,\infty ).

Here, \sigma is the electrical conductivity of the fluid (assumed to be constant in BR(0)
and zero in the exterior), and \mu 0 is the permeability of the vacuum; the case of an
ideally conducting fluid corresponds to \sigma = \infty ; see [6].

The following two assumptions are often used in dynamo theory. (i) The turbulent

electromotive force \scrE := v\prime \times B\prime is supposed to be of the form

(2.1) \scrE = \alpha B - \beta \nabla \times B,

where the helical turbulence function \alpha and the turbulent magnetic diffusivity \beta are
scalar functions. We assume that \alpha depends only on the radius \alpha : [0, R] \rightarrow \BbbR ,
r \mapsto \rightarrow \alpha (r), is differentiable, and \beta \in \BbbR is constant. (ii) The mean velocity field is
assumed to have the form of a rotation

(2.2) v(r) := \omega (| r| ) e\omega \times r = \omega (| r| )| r| sin \theta e\varphi 

with a differentiable function \omega : [0, R]\rightarrow \BbbR , r \mapsto \rightarrow \omega (r), called rotational shear function,
and e\omega denoting the unit vector in the direction of the rotation axis.

From now on, rescaling r and t, we assume that R=1 and \eta :=\beta + 1
\mu 0\sigma 

=1 and all
involved vector fields are mean fields; we omit the averaging symbol in the following.

If the toro\"{\i}dal and polo\"{\i}dal parts of the magnetic field are separated,

B = Bt +Bp =  - r\times \nabla T  - \nabla \times r\times \nabla S
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2198 SABINE BOEGLI AND CHRISTIANE TRETTER

with scalar-valued functions S, T : B1(0)\times [0,\infty ) \rightarrow \BbbR , then, under the normalization
conditions
(2.3)\int \pi 

0

\int 2\pi 

0

S(r, \theta , \varphi ; t) sin \theta d\varphi d\theta = 0,

\int \pi 

0

\int 2\pi 

0

T (r, \theta , \varphi ; t) sin \theta d\varphi d\theta = 0, r \in [0, 1],

the functions S, T are uniquely determined, see [14, sects. 13.3 and 13.4], and satisfy
the following system of coupled partial differential equations on B1(0)\times [0,\infty ):

(2.4) \partial t

\biggl( 
S
T

\biggr) 
=

\biggl( 
\Delta \alpha 

 - \alpha \Delta  - 1
r\alpha 

\prime \partial rr + \omega \prime sin \theta \partial \theta \Delta 

\biggr) \biggl( 
S
T

\biggr) 
 - \omega \partial \varphi 

\biggl( 
S
T

\biggr) 
.

Note that in models with axisymmetric fields the induction effect of \omega is only due
to its radial derivative, as it occurs, e.g., in the differentially rotating layers of the
Sun.

Classification of the various MHD dynamo models. The acronyms of
the different models can be read from (2.4). The so-called \alpha -effect creates polo\"{\i}dal
magnetic field from toro\"{\i}dal field; see the upper right matrix entry \alpha . There are two
effects that create toro\"{\i}dal magnetic field from polo\"{\i}dal field; see the lower left matrix
entry: the \alpha -effect (represented by  - \alpha \Delta  - 1

r\alpha 
\prime \partial rr) and the \omega -effect (represented by

\omega \prime sin \theta \partial \theta ).
The first \alpha in the acronym refers to the \alpha -effect in the upper right matrix entry.

The remaining parts of the name indicate which effects dominate in the lower left
matrix entry: in the \alpha 2-model it is assumed that the \alpha -effect dominates and the term
\omega \prime sin \theta \partial \theta is neglected; in the \alpha \omega -model the \omega -effect is considered to be stronger and
the term  - \alpha \Delta  - 1

r\alpha 
\prime \partial rr is neglected; in the \alpha 2\omega -model both effects are kept in the

lower left matrix entry.
Finally, in the axisymmetric case it is assumed that \partial \varphi T = 0, \partial \varphi S = 0; then the

last term  - \omega \partial \varphi (S, T )
t in (2.4) vanishes.

In a next step, the functions S and T are expanded in spherical harmonics Y m
l ,

l \in \BbbN 0, m =  - l, . . . , l, or, equivalently, m \in \BbbZ , l \geq | m| , as

(2.5)

S(r, \theta , \varphi ; t) =

\infty \sum 
m= - \infty 

\infty \sum 
l=| m| 

xl,m(r)

r
Y m
l (\theta , \varphi )e\lambda l,mt,

T (r, \theta , \varphi ; t) =

\infty \sum 
m= - \infty 

\infty \sum 
l=| m| 

yl,m(r)

r
Y m
l (\theta , \varphi )e\lambda l,mt

for r \in [0, 1], \theta \in [0, \pi ], \varphi \in [0, 2\pi ), where

(2.6) Y m
l (\theta , \varphi ) := Nm

l Pm
l (cos \theta )eim\varphi , Nm

l :=

\sqrt{} 
2l + 1

4\pi 

(l  - m)!

(l +m)!
,

and Pm
l : [ - 1, 1] \rightarrow \BbbR are the associated Legendre polynomials; see, e.g., [1, Chap. 8]).

Remark 2.1. (i) Since Y 0
0 \equiv 1/

\surd 
4\pi is constant, the normalization condi-

tions (2.3) imply that, in (2.5),

x0,0 = y0,0 = 0.

(ii) Since Y m
l , l \geq | m| , depends on \varphi for m \in \BbbZ \setminus \{ 0\} , in the axisymmetric case

we have
\forall m \in \BbbZ \setminus \{ 0\} : xl,m = yl,m = 0, l \geq | m| .
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In the following we use the physical boundary conditions for S and T to derive the
boundary conditions for the coefficients xl,m, yl,m, m \in \BbbZ , l \geq | m| , in the expansions
(2.5). To this end, we extend S, T to \BbbR 3 \times [0,\infty ), and thus xl,m, yl,m to [0,\infty ).

Toro\"{\i}dal magnetic field only exists in material, hence at r = 1 the boundary
condition for Bt is T | r=1 = 0, and hence yl,m(1) = 0, m \in \BbbZ , l \geq | m| . The polo\"{\i}dal

magnetic field Bp is given by a gradient field outside the considered sphere B1(0) and
thus satisfies \Delta S| r>1 = 0; moreover, the magnetic field needs to decay sufficiently
fast in the limit r \rightarrow \infty . This amounts to xl,m(r) = bl,mr - l, r > 1, for some constant
bl,m \in \BbbR , and hence, since the function xl,mis continuously differentiable at r = 1, the
boundary condition becomes x\prime 

l,m(1) + lxl,m(1) = 0, m \in \BbbZ , l \geq | m| .
Thus, via the expansions (2.5) of S, T in spherical harmonics, the system of

partial differential equations (2.4) for S, T is equivalent to a system of infinitely
many ordinary differential equations for xl,m, yl,m, m\in \BbbZ , l\geq | m| , that only decouples
in m but not necessarily in l. The coupling constants are as follows.

Notation 2.2. For l \in \BbbN , m \in \BbbZ , we define

cl,m :=
Nm

l

Nm
l+1

l(l - m+1)

2l+1
= l

\sqrt{} 
(l + 1)2  - m2

(2l+1)(2l+3)
, l \geq max\{ | m| , 1\} ,

\widetilde cl,m :=
Nm

l

Nm
l - 1

(l+1)(l+m)

2l+1
= (l+1)

\sqrt{} 
l2 - m2

(2l - 1)(2l+1)
, l \geq max\{ | m| , 1\} +1.

Theorem 2.3. The functions S, T on [0, 1]\times [0, \pi ]\times [0, 2\pi ]\times [0,\infty ) are solutions
of (2.4) satisfying the physical boundary conditions if and only if for every m \in \BbbZ ,
the parameter \lambda l,m is independent of l,

\lambda l,m = \lambda m, l \geq max\{ | m| , 1\} =: km,

and the functions xl,m, yl,m, l \geq km, on [0, 1] satisfy the infinite system of differential
equations

(\lambda m+im\omega )xl,m =

\biggl( 
x\prime \prime 
l,m - l(l + 1)

r2
xl,m

\biggr) 
+ \alpha yl,m, l \geq km,

(\lambda m+im\omega ) yl,m =

\biggl( 
y\prime \prime l,m - l(l + 1)

r2
yl,m

\biggr) 
 - \alpha 

\biggl( 
x\prime \prime 
l,m - l(l + 1)

r2
xl,m

\biggr) 
(2.7)

 - \alpha \prime x\prime 
l,m+\omega \prime (cl - 1,mxl - 1,m - \widetilde cl+1,mxl+1,m) , l \geq km,

with boundary conditions

(2.8) x\prime 
l,m(1) + lxl,m(1) = 0, yl,m(1) = 0, l \geq km.

Remark 2.4. (i) Note that xl,m, yl,m, m \in \BbbZ , l \geq | m| may be complex-
valued. However, since \alpha is real-valued and cl,m = cl, - m, \widetilde cl,m = \widetilde cl, - m, we
have

\lambda m = \lambda  - m, xl,m = xl, - m, yl,m = yl, - m, m \in \BbbZ , l \geq | m| ,

which, together with Yl,m = Yl, - m, ensures that S, T are real-valued.
(ii) In [16] the expansions in spherical harmonics for various ans\"atze of mean

velocity fields are calculated. The result for a rotation, see (2.2), agrees with
the system (2.7); note that in [16] the spherical harmonics are defined without
the coefficient Nm

l , cf. (2.6).
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The problem (2.7), (2.8) is an eigenvalue problem for an infinite operator matrix
in a suitable product Hilbert space. More precisely, xl,m, yl,m, l \geq km, are solutions
of (2.7), (2.8) if and only if fm :=

\bigl( 
(xl,m, yl,m)t

\bigr) 
l\geq km

is a solution of the eigenvalue

problem
\scrA m

\chi fm = \lambda mfm, m \in \BbbZ ,
where \chi stands for one of the acronyms \alpha 2, \alpha \omega , and \alpha 2\omega denoting the different
dynamo models. The corresponding spaces and operators will be introduced in the
next section; see Definition 3.3.

The three different dynamo models are obtained from (2.7) as follows. In the
second differential equation in (2.7), for the

(i) \alpha 2-model, the \alpha -effect is assumed to dominate and the term with \omega \prime is ne-
glected;

(ii) \alpha \omega -model, the \omega -effect is assumed to dominate and the terms with with \alpha , \alpha \prime 

are neglected;
(iii) \alpha 2\omega -model, both effects are kept and no term is neglected.

Remark 2.5. In the literature, ``\alpha 2-model"" usually refers to the axisymmetric case
(m = 0) which is described by the dynamo matrix \scrA 0

\alpha 2 = \scrA \alpha 2 in Definition 3.3 below.

3. The \bfitalpha 2-, \bfitalpha \bfitomega -, and \bfitalpha 2\bfitomega -MHD dynamo operators. In this section we set
up the operator theoretic framework for the different dynamo models and, simulta-
neously, for the corresponding regularized operators at the singular endpoint 0. The
latter will be needed later to show that interval truncation of (0, 1] to [an, 1] with
an > 0, an \rightarrow 0, n \rightarrow \infty , is spectrally exact; see section 6.

In what follows, to ease notation, we will use the same symbols for multiplication
operators and first order derivative as operators on L2(0, 1) and on L2(a, 1), and we
only use different notation for all operators involving Bessel and Bessel type differential
expressions.

Definition 3.1. Let \alpha : [0, 1] \rightarrow \BbbR be differentiable with \alpha \prime \in L\infty (0, 1). Denote
the Bessel and Bessel type differential expressions \tau l, \tau l,\alpha , l \in \BbbN ,

(3.1)
(\tau lx)(r) :=  - \partial 2

rx(r) +
l(l + 1)

r2
x(r),

(\tau l,\alpha x)(r) :=  - \partial r\alpha \partial rx(r) + \alpha 
l(l + 1)

r2
x(r),

r \in (0, 1].

For l \in \BbbN , \vargamma \in \{ l,\infty \} and a \in [0, 1) we define the Bessel operator Al(a, \vargamma ) and Bessel
type differential operator Al,\alpha (a) in L2(a, 1) as the realizations of \tau l, \tau l,\alpha , respectively,
with domain

\scrD (Al(a, \vargamma )) :=

\biggl\{ 
x \in L2(a, 1) :

x, x\prime \in ACloc((a, 1]), \tau lx \in L2(a, 1) ,
limr\searrow a x(r) = 0, x\prime (1) + \vargamma x(1) = 0

\biggr\} 
,

Al(a, \vargamma )x := \tau lx, x \in \scrD (Al(a, \vargamma ))

and

\scrD (Al,\alpha (a, \vargamma )) := \scrD (Al(a, \vargamma )),

Al,\alpha (a, \vargamma )x := \tau l,\alpha x = \alpha Al(a, l) - \alpha \prime Dr, x \in \scrD (Al,\alpha (a, \vargamma ));

here \alpha , \alpha \prime denote the (bounded) multiplication operators and Dr the operator of dif-
ferentiation in L2(a, 1),

Drx := \partial rx, \scrD (Dr) := W 1,2(a, 1).
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Remark 3.2. (i) If \vargamma = \infty the boundary condition x\prime (1) + \vargamma x(1) = 0 in the
definition of Al(a, \vargamma ) is interpreted as x(1) = 0. Note that one can also
consider \vargamma \in [l,\infty ] as a homotopy parameter; see [13].

(ii) The differential expression \tau l is in limit point case at r = 0; see, e.g., [2, App.
II, sect. 9.IV]. Hence, for a = 0 the boundary condition limr\searrow 0 x(r) = 0 is
already implied by \tau lx \in L2(0, 1).

Definition 3.3. Let \alpha : [0, 1] \rightarrow \BbbR be differentiable with \alpha \prime \in L\infty (0, 1). For l \in \BbbN 
and a \in [0, 1) we define the operator matrices \scrA \alpha 2,l(a), \scrA \alpha ,l(a) in L2(a, 1)\oplus L2(a, 1)
by

\scrA \alpha 2,l(a) :=

\Biggl( 
\partial 2
r - 

l(l+1)
r2 \alpha 

 - \partial r\alpha \partial r - \alpha l(l+1)
r2 \partial 2

r - 
l(l+1)
r2

\Biggr) 
=

\biggl( 
 - Al(a, l) \alpha 
Al,\alpha (a, l)  - Al(a,\infty )

\biggr) 
,

\scrA \alpha ,l(a) :=

\Biggl( 
\partial 2
r  - l(l+1)

r2 \alpha 

0 \partial 2
r  - l(l+1)

r2

\Biggr) 
=

\biggl( 
 - Al(a, l) \alpha 

0  - Al(a,\infty )

\biggr) 
,

\scrD (\scrA \alpha 2,l(a)) = \scrD (\scrA \alpha ,l(a)) := \scrD (Al(a, l))\oplus \scrD (Al(a,\infty )),

and the (constant) matrices \scrC l,m, \widetilde \scrC l,m in L2(a, 1)\oplus L2(a, 1) by

\scrC l,m :=

\biggl( 
0 0

cl,m 0

\biggr) 
, \widetilde \scrC l,m :=

\biggl( 
0 0\widetilde cl,m 0

\biggr) 
,

\scrD (\scrC l,m) := \scrD (\widetilde \scrC l,m) := L2(a, 1)\oplus L2(a, 1),

with entries cl,m, \widetilde cl,m as in Notation 2.2. In the Hilbert space

(3.2) \scrH (a) := l2
\bigl( 
L2(a, 1)\oplus L2(a, 1) : i \in \BbbN 

\bigr) 
we further define the (unbounded) constant coupling matrices

\scrC m :=

\left(          

0  - \widetilde \scrC km+1,m 0 \cdot \cdot \cdot \cdot \cdot \cdot 
\scrC km,m 0  - \widetilde \scrC km+2,m 0 \cdot \cdot \cdot 

0 \scrC km+1,m
. . .

. . .
... 0

. . .
. . .

. . .
...

...
. . .

. . .

\right)          
,

\scrD (\scrC m) := \{ f \in \scrH (a) : \scrC mf \in \scrH (a)\} ,

with km := max\{ | m| , 1\} , m \in \BbbZ , and the infinite block diagonal operator matrices

\scrA \alpha 2(a,m) :=diag(\scrA \alpha 2,l(a) : l\geq km), \scrD (\scrA \alpha 2(a,m)) := l2
\bigl( 
\scrD (\scrA \alpha 2,l(a)) : l\geq km

\bigr) 
,

\scrA \alpha (a,m) :=diag(\scrA \alpha ,l(a) : l \geq km), \scrD (\scrA \alpha (a,m)) := l2
\bigl( 
\scrD (\scrA \alpha ,l(a)) : l \geq km

\bigr) 
.

Then, for m \in \BbbZ , the MHD dynamo operator matrices for the \alpha 2-model, the \alpha 2\omega -
model, and the \alpha \omega -model, respectively, are given by

\scrA m
\alpha 2(a) := \scrA \alpha 2(a,m) - im\omega , \scrD (\scrA m

\alpha 2(a)) := \scrD (\scrA \alpha 2(a,m)),

\scrA m
\alpha 2\omega (a) := \scrA \alpha 2(a,m) - im\omega + \omega \prime \scrC m, \scrD (\scrA m

\alpha 2\omega (a)) := \scrD (\scrA \alpha 2(a,m)),

\scrA m
\alpha \omega (a) := \scrA \alpha (a,m)  - im\omega + \omega \prime \scrC m, \scrD (\scrA m

\alpha \omega (a)) := \scrD (\scrA \alpha (a,m)).
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Remark 3.4. (i) The infinite matrix \scrC m is an unbounded operator in \scrH (a) since

lim
l\rightarrow \infty 

cl,m = \infty , lim
l\rightarrow \infty 

\widetilde cl,m = \infty ;

see Notation 2.2. In Lemma 5.7 below we will show that

\scrD (\scrA \alpha 2(a,m)) \subset \scrD (\scrC m), \scrD (\scrA \alpha (a,m)) \subset \scrD (\scrC m),

which implies that \scrC m is relatively bounded with respect to\scrA \alpha 2(a,m) and\scrA \alpha (a,m).

(i) The difference between the \alpha 2\omega - and \alpha 2-model is the infinite off-diagonal coupling
matrix \omega \prime \scrC m ,

\scrA m
\alpha 2\omega  - \scrA m

\alpha 2 = \omega \prime \scrC m,

which represents the \omega -effect that creates toro\"{\i}dal field from polo\"{\i}dal field. The
difference between the \alpha 2\omega - and \alpha \omega -model is the infinite off-diagonal matrix

\scrA m
\alpha 2\omega  - \scrA m

\alpha \omega = \scrA \alpha 2(a,m) - \scrA \alpha (a,m) = diag

\biggl( \biggl( 
0 0

Al,\alpha (a, l) 0

\biggr) 
: l \geq km

\biggr) 
representing the \alpha -effect which creates toro\"{\i}dal field from polo\"{\i}dal field.

The criteria for the nonexistence of dynamo effects for the various models which
we present in the next section are formulated in terms of the functions \alpha , \omega and of
the smallest eigenvalues of the positive operators Al(a, \vargamma ), \vargamma \in \{ l,\infty \} on the diagonal
of each dynamo model. For this we need the following auxiliary result.

Proposition 3.5. For l \in \BbbN , \vargamma \in \{ l,\infty \} , and a \in [0, 1), the operator Al(a, \vargamma ) is
self-adjoint and positive with compact resolvent. Its spectrum \sigma (Al(a, \vargamma )) consists of
a strictly increasing sequence

\bigl( 
\lambda l,j(a, \vargamma )

\bigr) 
j\in \BbbN of simple eigenvalues satisfying

(3.3) l(l+1)\leq \lambda l,1(a, l)<\lambda l,1(a,\infty )<\lambda l+1,1(a, l+1)<\lambda l+1,1(a,\infty ), l\in \BbbN .

Moreover, \lambda l,j(a, \vargamma ) \leq \lambda l,j(a
\prime , \vargamma ) for a, a\prime \in [0, 1), a \leq a\prime , i.e., \lambda l,j(\cdot , \vargamma ) is monotoni-

cally increasing in [0, 1) for l \in \BbbN , \vargamma \in \{ l,\infty \} .
Proof. For a = 0 all claims but the lower bound \lambda l,1(a, \vargamma ) \geq l(l + 1) were proved

in [9, Prop. 3.1]. The proofs for a > 0 are similar; note that then \tau l is regular at the
endpoint a. The lower bound follows from the numerical range estimate

\langle Al(a, \vargamma )x, x\rangle = \beta \vargamma | x(1)| 2+
\int 1

a

\biggl( 
| x\prime (r)| 2+ l(l+1)

r2
| x(r)| 2

\biggr) 
dr \geq l(l+1)\| x\| 2

for x \in \scrD (Al(a, \vargamma )) with \beta l := l and \beta \infty := 0. The last claim follows from the min-
max principle if we consider all operators Al(a, \vargamma ) in L2(0, 1) and note that, for a,
a\prime \in [0, 1), a \leq a\prime , and x \in \scrD (Al(a

\prime , \vargamma )) \subset \scrD (Al(a, \vargamma )),

\langle Al(a
\prime , \vargamma )x, x\rangle  - \langle Al(a, \vargamma )x, x\rangle =

\int a\prime 

a

\biggl( 
| x\prime (r)| 2+ l(l+1)

r2
| x(r)| 2

\biggr) 
dr \geq 0.

Remark 3.6. The eigenvalues \lambda l,s(0, l) and \lambda l,s(0,\infty ) are the sth nonzero zeros of
the fractional Bessel functions Jl - 1

2
(
\surd 
\cdot ) and Jl+ 1

2
(
\surd 
\cdot ), respectively; see [9, Lemma

3.3], i.e.,

(3.4) \lambda l,s(0, l) = (jl - 1
2 ,s

)2, \lambda l,s(0,\infty ) = (jl+ 1
2 ,s

)2, l \in \BbbN , s \in \BbbN ,

in the notation of [1, sect. 10.1 and 9.5.14], which can also be used to show that the
quotient of the first (s = 1) eigenvalues has the asymptotics

(3.5)
jl+ 1

2 ,1

jl - 1
2 ,1

= 1 +O(l - 2/3), l \rightarrow \infty .
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4. Anti-MHD dynamo theorems. In this section, for each of the three dy-
namo models, we establish criteria for the eigenvalues to lie in the linearly stable
left half-plane. These so-called antidynamo theorems or bounding theorems provide
simple threshold conditions for the functions \alpha and \omega under which the on-set of a
dynamo effect is impossible.

These criteria involve only the functions \alpha , \omega and the first eigenvalues of the
Bessel operators Al(0, l) and Al(0,\infty ), i.e., the smallest nonzero zeros of the spherical
Bessel functions Jl - 1

2
(
\surd 
\cdot ) and Jl+ 1

2
(
\surd 
\cdot ).

Proposition 4.1. Let \alpha : [0, 1] \rightarrow \BbbR be differentiable with \alpha \prime \in L\infty (0, 1). For
l \in \BbbN and a \in [0, 1) define

\gamma \alpha 2,l(a) :=

\Biggl( 
\| \alpha \| + \| \alpha \prime \| \sqrt{} 

\lambda l,1(a, l)

\Biggr) 
, \gamma \alpha ,l(a) := 1+

\| \alpha \| \sqrt{} 
\lambda l,1(a,\infty )

.

Then, for \chi \in \{ \alpha 2, \alpha \} ,
(i) \gamma \chi ,l(a) > \gamma \chi ,l+1(a);

(ii) \gamma \chi ,l(a) \geq \gamma \chi ,l(a
\prime ) for a, a\prime \in [0, 1), a \leq a\prime ;

(iii) \gamma \chi ,l(0) = O(1), l \rightarrow \infty .

Proof. Claims (i) and (ii) follow from Proposition 3.5, and claim (iii) is a conse-
quence of the fact that

\sqrt{} 
\lambda l,1(0, l) is the first positive zero jl,1 of the spherical Bessel

function Jl - 1
2
and the asymptotics of the latter which yield jl,1 = O(l); see [1, sect.

10.1 and 9.5.14].

Theorem 4.2 (antidynamo theorem for the \alpha 2-model). Let \alpha : [0, 1] \rightarrow \BbbR be
differentiable, and let \alpha \prime \in L\infty (0, 1), m\in \BbbZ , and km :=max\{ | m| , 1\} . Then the \alpha 2-dy-
namo operator \scrA \alpha 2(0,m) has no eigenvalues with real part > 0 if

(4.1)

\Biggl( 
\| \alpha \| + \| \alpha \prime \| 

jkm - 1
2 ,1

\Biggr) \bigl( 
\| \alpha \| +| m| \| \omega \| 

\bigr) 
+| m| \| \omega \| 

(jkm+ 1
2 ,1

)2

(jkm - 1
2 ,1

)2
\leq (jkm+ 1

2 ,1
)2,

where jl\pm 1
2 ,1

denote the first positive zeros of the spherical Bessel functions Jl\pm 1
2
(\cdot );

in particular, for the axisymmetric case m = 0, there are no eigenvalues with real part
> 0 if

(4.2)

\Biggl( 
\| \alpha \| + \| \alpha \prime \| 

j 1
2 ,1

\Biggr) 
\| \alpha \| \leq (j 3

2 ,1
)2.

The antidynamo theorem [9, Cor. 4.8] is the special case m=0 in Theorem 4.2,
(4.2) above; see also [21, (27)]. Note that a combination of \| \alpha \| and \| \alpha \prime \| also appears
in the optimal energy bounds obtained for the spherically symmetric \alpha 2-model in
[12]. While they chose the combination

\sqrt{} 
\| \alpha \| 2+\| \alpha \prime \| 2 where both norms contribute

equally, our combination \| \alpha \| + 1
j 1
2
,1
\| \alpha \prime \| in (4.2) emerges from the spectral estimates

for the \alpha 2-dynamo operator \scrA \alpha 2(0,m).
Corollary 4.3. None of the \alpha 2-dynamo operators \scrA \alpha 2(0,m), m \in \BbbZ , has eigen-

values with real part > 0 if one of the following two conditions equivalent to condition
(4.1) hold: \Biggl( 

\| \alpha \| + \| \alpha \prime \| 
jkm - 1

2 ,1

\Biggr) 
\| \alpha \| + | m| \| \omega \| 
(jkm+ 1

2 ,1
)2

+
| m| \| \omega \| 

(jkm - 1
2 ,1

)2
\leq 1, m \in \BbbZ ,
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or equivalently,

\Biggl( 
\| \alpha \| + \| \alpha \prime \| 

j 1
2 ,1

\Biggr) 
\| \alpha \| 

(j 3
2 ,1

)2
\leq 1, \| \omega \| \leq min

m\in \BbbN 

1

m

1 - 
\biggl( 
\| \alpha \| + \| \alpha \prime \| 

j
m - 1

2
,1

\biggr) 
\| \alpha \| 

(j
m+1

2
,1
)2\biggl( 

\| \alpha \| + \| \alpha \prime \| 
j
m - 1

2
,1

\biggr) 
1

(j
m+1

2
,1
)2 +

1
(j

m - 1
2
,1
)2

.

(4.3)

Remark 4.4. For fixed \alpha inequality (4.1) in Theorem 4.2 is satisfied for all suffi-
ciently large | m| , m \in \BbbZ . This follows from (3.3) and Proposition 4.1 (iii) which show
that the right-hand side (jkm+ 1

2 ,1
)2 = \lambda km,1(0,\infty )\geq | m| (| m| +1), while the left-hand

side is of order O(| m| ) as | m| \rightarrow \infty due to the asymptotics of the Bessel zeros; see [1,
sect. 10.1 and 9.5.14] and (3.5).

The following example illustrates this effect and shows which modes m set the
thresholds in Theorem 4.2. It turns out that not only the modes m = 0 and m = 1
play a role here.

Example 4.5 (constant \alpha , comparing thresholds form \in \BbbZ ). We consider constant
\alpha and set \alpha =: \alpha 0, \| \omega \| =: \omega 0. Then the conditions (4.3) become

(4.4) \alpha 0 \leq j 3
2 ,1

, \omega 0 \leq min
m\in \BbbN 

1

m

1 - \alpha 2
0

(j
m+1

2
,1
)2

\alpha 0

(j
m+1

2
,1
)2 + 1

(j
m - 1

2
,1
)2

=: min
m\in \BbbN 

b(m,\alpha 0).

While the function m \mapsto \rightarrow m
(j

m - 1
2
,1
)2 is monotonically decreasing for m=1, 2, . . . , this

is not true for the function m \mapsto \rightarrow m
(j

m+1
2
,1
)2 which is monotonically increasing for

m = 1, 2, 3 and monotonically decreasing for m = 3, 4, . . . , attaining its maximum
for m = 3; this can be proved analytically using a number of different properties
of the dependence of the first Bessel zeros on the order in [10]. Therefore, for any
\alpha 0 \in [0, j 3

2 ,1
], the function b(\cdot , \alpha 0) on the right-hand side above is guaranteed to be

monotonically increasing for m = 3, 4, . . . . Moreover, also b(1, \alpha 0) < b(3, \alpha 0) and
b(2, \alpha 0) < b(3, \alpha 0). However, it turns out that the graphs of b(1, \cdot ) and b(2, \cdot ) have
two intersection points \alpha 1<\alpha 2 in [0, j 3

2 ,1
] with

b(1, \alpha 0) \leq b(2, \alpha 0) < b(3, \alpha 0) for \alpha 0 \in [0, \alpha 1] \cup [\alpha 2, j 3
2 ,1

],

b(2, \alpha 0) \leq b(1, \alpha 0) < b(3, \alpha 0) for \alpha 0 \in [\alpha 1, \alpha 2],

where \alpha 1, \alpha 2 are solutions of a cubic equation. Figure 1 shows the graphs of b(m, \cdot )
for m=1, 2, 3, 4, the condition \alpha 0\leq j 3

2 ,1
for m=0, and the corresponding antidynamo

region for the full \alpha 2-model in the \alpha 0\equiv \alpha , \omega 0=\| \omega \| plane. So depending on the value
of \alpha \equiv \alpha 0, either the modes m = 0, 1 or the modes m = 0, 2 set the thresholds.

The antidynamo criteria for the \alpha 2\omega model and for the \alpha \omega model are not as
simple as (4.1) since they involve infinite operator matrices.

Notation 4.6. For m \in \BbbZ , km :=max\{ | m| , 1\} , define

\delta l,m :=

\left\{       
\surd 
2 cl,m, l = km,\sqrt{} 
2c2l,m+\widetilde c2l,m, l = km + 1,\sqrt{} 
2(c2l,m+\widetilde c2l,m), l\in \BbbN , l\geq km + 2,

(4.5)
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Fig. 1. Anti-\alpha 2-dynamo region (blue/grey) in the \alpha \equiv \alpha 0, \| \omega \| \equiv \omega 0 plane according to (4.4);
lines for m= 1 (red/solid), m= 2 (blue/dotted), m= 3 (green/dashed), m= 4 (brown/solid), and
zoom into the intersection of the thresholds form =1, m=2. (Figure in color online.)

where cl,m for l \geq km and \widetilde cl,m for l \geq km + 1 are as in Notation 2.2,

cl,m = l

\sqrt{} 
(l + 1)2 - m2

(2l+1)(2l+3)
, \widetilde cl,m = (l+1)

\sqrt{} 
l2 - m2

(2l - 1)(2l+1)
.

Theorem 4.7 (antidynamo theorem for the \alpha 2\omega -model). Let \alpha , \omega : [0, 1]\rightarrow \BbbR be
differentiable with \alpha \prime , \omega \prime \in L\infty (0, 1). Let m\in \BbbZ , km :=max\{ | m| , 1\} , and let \delta l,m be as
in Notation 4.6. Then the \alpha 2\omega -dynamo operator \scrA \alpha 2\omega (0,m) has no eigenvalues with
real part > 0 if for some \gamma 1, \gamma 2 \in [0, 1] with \gamma 1 + \gamma 2 \leq 1\Biggl( 

\| \alpha \| + \| \alpha \prime \| 
jkm - 1

2 ,1

\Biggr) \biggl( 
\| \alpha \| + | m| \| \omega \| 

\gamma 1

\biggr) 
+
| m| \| \omega \| 

\gamma 1

(jkm+ 1
2 ,1

)2

(jkm - 1
2 ,1

)2
\leq (jkm+ 1

2 ,1
)2,(4.6)

\Biggl( 
\| \alpha \| + \| \alpha \prime \| 

jl - 1
2 ,1

\Biggr) 
\| \alpha \| + \| \omega \prime \| 

\gamma 2
\delta l,m

\sqrt{} 
(jl+ 1

2 ,1
)4+\| \alpha \| 2

(jl - 1
2 ,1

)2
\leq (jl+ 1

2 ,1
)2, l\in \BbbN , l\geq km(4.7)

for m = 0 the conditions simplify to (4.7) with \gamma 2 = 1 since then condition (4.6) is
automatically satisfied.

Remark 4.8. For given \alpha and \omega , the inequalities in Theorem 4.7 are satisfied for
all sufficiently large | m| , m \in \BbbZ . This follows from (3.3), (3.4), and (3.5) which show
that the right-hand sides are all \geq | m| (| m| +1), while the left-hand side of (4.6) is of
order O(| m| ) and the left-hand side of (4.7) is of order O(

\sqrt{} 
| m| ) as | m| \rightarrow \infty since

km = | m| and clm,m = O(
\sqrt{} 

| m| ), \widetilde clm,m = O(
\sqrt{} 
| m| ) for lm = km, km + 1, km + 2.

The following example illustrates how the inequalities (4.6), (4.7) can be verified,
and sometimes simplified, for concrete functions \alpha , \omega .

Example 4.9 (constant \alpha , \omega \prime , axisymmetric case m = 0). Let \alpha \equiv \alpha 0 \in \BbbR and
\omega (r) = \omega 0r, r \in [0, 1], and m = 0. We claim that, in this case, the infinitely many
anti-\alpha 2\omega -dynamo inequalities (4.6), (4.7) are equivalent to the four inequalities

(4.8) \alpha 0 \leq j 3
2 ,1

, \omega 0 \leq 
3

min
l=1

(jl+ 1
2 ,1

)2 - \alpha 2
0\sqrt{} 

(jl+ 1
2 ,1

)4+ \alpha 2
0

(jl - 1
2 ,1

)2

\delta l,0
,

yielding explicit thresholds for \alpha 0, \omega 0; here the first condition in (4.8) is the anti-\alpha 2-
dynamo condition; see (4.2).
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Proof. Since m = 0 and \alpha \prime \equiv 0, the conditions (4.6), (4.7) reduce to

(4.9) \alpha 2
0 + \omega 0 \delta l,0

\sqrt{} 
(jl+ 1

2 ,1
)4+ \alpha 2

0

(jl - 1
2 ,1

)2
\leq (jl+ 1

2 ,1
)2, l\in \BbbN .

To prove the equivalence of (4.9) and (4.8), we first note that (4.9) implies (4.8) due to
the fact that the sequence of Bessel zeros (jk+ 1

2 ,1
)k\in \BbbN is monotonically increasing. For

the converse it suffices to show that the values of the product q1(l)q2(l) of quotients
in (4.8) for l \in \BbbN , l \geq 4, are larger than the value for l = 3 and hence larger than
the minimum taken over l \in \{ 1, 2, 3\} . The first quotient q1(l) in (4.8) is strictly
increasing in l due to the monotonicity of the Bessel zeros; see above. By Notation
4.6 with km = 1 and l \geq 3, the second quotient in (4.8) is given by

q2(l) =
(jl - 1

2 ,1
)2

\delta l,0
= (jl - 1

2 ,1
)2
\sqrt{} 

(2l  - 1)(2l + 3)

2l(l + 1)
, l \in \BbbN , l \geq 3.

By [10, Thm. 2], the function l \mapsto \rightarrow 
(j

l - 1
2
,1
)2

l+ 1
2

is monotonically increasing for l \in [ - 1
2 ,\infty )

and hence so is

q2(l) =
(jl - 1

2 ,1
)2

(l + 1
2 )

(l + 1
2 )
\sqrt{} 
(2l  - 1)(2l + 3)

2l(l + 1)
, l \in \BbbN , l \geq 3,

being the product of monotonically increasing positive functions. Since q1, q2 are
positive, we conclude q1(l)q2(l)\geq q1(3)q2(3), l\in \BbbN , l\geq 4, as required.

Theorem 4.10 (antidynamo theorem for the \alpha \omega -model). Let \alpha , \omega : [0, 1]\rightarrow \BbbR 
be such that \omega is differentiable and \alpha , \omega \prime \in L\infty (0, 1). Let m\in \BbbZ , km :=max\{ | m| , 1\} ,
and let \delta l,m be as in Notation 4.6. Then the \alpha \omega -dynamo operator \scrA \alpha \omega (0,m) has no
eigenvalues with real part > 0 if for some \gamma 1, \gamma 2 \in [0, 1] with \gamma 1 + \gamma 2 \leq 1

| m| \| \omega \| 
\gamma 1

(jkm+ 1
2 ,1

)2

(jkm - 1
2 ,1

)2
\leq (jkm+ 1

2 ,1
)2,(4.10)

\| \omega \prime \| 
\gamma 2

\delta l,m

\sqrt{} 
(jl+ 1

2 ,1
)4+\| \alpha \| 2

(jl - 1
2 ,1

)2
\leq (jl+ 1

2 ,1
)2, l\in \BbbN , l\geq km(4.11)

for m=0 the conditions simplify to (4.11) with \gamma 2=1 since then condition (4.10) is
automatically satisfied.

Remark 4.11. For fixed \alpha and \omega , the inequalities in Theorem 4.10 are satisfied
for sufficiently large | m| , m \in \BbbZ , for analogous reasons as in Remark 4.8.

5. Proofs of the antidynamo theorems. In this section we give the proofs
of the three different antidynamo theorems presented in the previous section. To this
end we need a number of auxiliary results and estimates which we present first.

We begin with results on the diagonal entries of the infinite operator matrices
describing the \alpha 2\omega model and the \alpha \omega model, the 2 \times 2 operator matrices \scrA \alpha 2,l(a),
and \scrA \alpha ,l(a), l \geq km = max\{ | m| , 1\} , respectively, in L2(a, 1)\oplus L2(a, 1) where a \in [0, 1);
see Definition 3.3. Here the functions \alpha , \omega : [0, 1]\rightarrow \BbbR are supposed to satisfy the
assumptions of the corresponding dynamo model.

Recall that the diagonal entries of the latter are the selfadjoint Bessel operators
 - Al(a, \vargamma ), \vargamma \in \{ l,\infty \} , for which \{ \lambda \in \BbbC : Re(\lambda )\geq  - \lambda l,1(a, \vargamma )\} \subset \varrho ( - Al(a, \vargamma )), where
\lambda l,1(a, \vargamma ) > 0 is the smallest eigenvalue of Al(a, \vargamma ).
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Lemma 5.1. For l\in \BbbN , a\in [0, 1) and \lambda \in \BbbC ,\bigm\| \bigm\| ( - Al(a, \vargamma ) - \lambda ) - 1
\bigm\| \bigm\| \leq 1

Re(\lambda ) + \lambda l,1(a, \vargamma )
, Re\lambda \geq  - \lambda l,1(a, \vargamma ),\bigm\| \bigm\| Al,\alpha (a, l)( - Al(a, l) - \lambda ) - 1

\bigm\| \bigm\| \leq \| \alpha \| + \| \alpha \prime \| \sqrt{} 
\lambda l,1(a, l)

= \gamma \alpha 2,l(a), Re\lambda \geq 0.

Proof. The claims for a = 0 are immediate from [9, Lemmas 3.7 and 3.5]; the
proof for a > 0 is analogous, noting that the norm of the multiplication operator \alpha \cdot 
in L2(a, 1) is bounded by its norm in L2(0, 1).

The following proposition and corollary concern the operator matrices \scrA \alpha 2,l(a),
l\in \BbbN , and the infinite operator matrix \scrA \alpha 2(a,m); see Definition 3.3.

Proposition 5.2. Let a \in [0, 1) and \lambda \in \BbbC , Re(\lambda ) \geq 0.

(i) Let l \in \BbbN . If Re(\lambda )> - \lambda l,1(a,\infty )+\gamma \alpha 2,l(a)\| \alpha \| , then \lambda \in \varrho (\scrA \alpha 2,l(a)) and\bigm\| \bigm\| (\scrA \alpha 2,l(a) - \lambda ) - 1
\bigm\| \bigm\| \leq 1

Re(\lambda )+\lambda l,1(a,\infty ) - \gamma \alpha 2,l(a)\| \alpha \| 

\biggl( 
\lambda l,1(a,\infty )

\lambda l,1(a, l)
+\gamma \alpha 2,l(a)

\biggr) 
;

further,
\bigm\| \bigm\| (\scrA \alpha 2,l(a) - \lambda ) - 1

\bigm\| \bigm\| < \kappa if \kappa > 0 is such that

Re(\lambda )> - \lambda l,1(a,\infty ) + \gamma \alpha 2,l(a)\| \alpha \| +
1

\kappa 

\biggl( 
\lambda l,1(a,\infty )

\lambda l,1(a, l)
+\gamma \alpha 2,l(a)

\biggr) 
.

(ii) Let m \in \BbbZ , km := max\{ | m| , 1\} . If Re(\lambda ) >  - \lambda km,1(a,\infty )+\gamma \alpha 2,km
(a)\| \alpha \| , then

\lambda \in \varrho (\scrA \alpha 2(a,m)) and\bigm\| \bigm\| (\scrA \alpha 2(a,m) - \lambda ) - 1
\bigm\| \bigm\| 

\leq 1

Re(\lambda )+\lambda km,1(a,\infty ) - \gamma \alpha 2,km
(a)\| \alpha \| 

\biggl( 
\lambda km,1(a,\infty )

\lambda km,1(a, km)
+\gamma \alpha 2,km

(a)

\biggr) 
;

further,
\bigm\| \bigm\| (\scrA \alpha 2(a,m) - \lambda ) - 1

\bigm\| \bigm\| < \kappa if \kappa > 0 is such that

Re(\lambda )> - \lambda km,1(a,\infty ) + \gamma \alpha 2,km
(a)\| \alpha \| + 1

\kappa 

\biggl( 
\lambda km,1(a,\infty )

\lambda km,1(a, km)
+\gamma \alpha 2,km

(a)

\biggr) 
.

Proof. Throughout this proof, let a \in [0, 1) and \lambda \in \BbbC , Re(\lambda ) \geq 0.
(i) Let \lambda \in \BbbC with Re(\lambda )> - \lambda l,1(a,\infty )+\gamma \alpha 2,l(a)\| \alpha \| . For \vargamma \in \{ l,\infty \} we set

(5.1) d\lambda ,l(a, \vargamma ) := Re(\lambda ) + \lambda l,1(a, \vargamma ) > \gamma \alpha 2,l(a)\| \alpha \| .

The resolvent (\scrA \alpha 2,l(a) - \lambda ) - 1 admits a matrix representation in terms of the inverses

S\alpha 2

2,l (a, \lambda )
 - 1 of the second Schur complement of \scrA \alpha 2,l(a), see [24, Thm. 2.3.3 i)], which

is given by

S\alpha 2

2,l (a, \lambda ) :=  - Al(a,\infty ) - \lambda  - Al,\alpha (a, l)( - Al(a, l) - \lambda ) - 1\alpha ,

\scrD (S\alpha 2

2,l (a, \lambda )) := \scrD (Al(a,\infty ));

see [24, Def. 2.2.12]. By Lemma 5.1 and (5.1), we have

(5.2)

\bigm\| \bigm\| ( - Al(a,\infty ) - \lambda ) - 1Al,\alpha (a, l)( - Al(a, l) - \lambda ) - 1\alpha 
\bigm\| \bigm\| 

\leq 
\bigm\| \bigm\| ( - Al(a,\infty ) - \lambda ) - 1

\bigm\| \bigm\| \bigm\| \bigm\| Al,\alpha (a, l)( - Al(a, l) - \lambda ) - 1
\bigm\| \bigm\| \| \alpha \| 

\leq 1

d\lambda ,l(a,\infty )

\Biggl( 
\| \alpha \| + \| \alpha \prime \| \sqrt{} 

\lambda l,1(a, l)

\Biggr) 
\| \alpha \| =

\gamma \alpha 2,l(a)\| \alpha \| 
d\lambda ,l(a,\infty )

< 1,
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and hence

S2,l(a, \lambda )=( - Al(a,\infty ) - \lambda )
\bigl( 
I - ( - Al(a,\infty ) - \lambda ) - 1Al,\alpha (a, l)( - Al(a, l) - \lambda ) - 1\alpha 

\bigr) 
is boundedly invertible with

(5.3)
\bigm\| \bigm\| S2,l(a, \lambda )

 - 1
\bigm\| \bigm\| \leq 1

d\lambda ,l(a,\infty )

1

1 - \gamma \alpha 2,l(a)\| \alpha \| 
d\lambda ,l(a,\infty )

=
1

d\lambda ,l(a,\infty ) - \gamma \alpha 2,l(a)\| \alpha \| 
.

If we estimate the norm of the inverse of (\scrA \alpha 2,l(a) - \lambda ) - 1 =:
\bigl( 
Rij

\bigr) 2
i,j=1

by\bigm\| \bigm\| (\scrA \alpha 2,l(a) - \lambda ) - 1
\bigm\| \bigm\| \leq max\{ \| R11\| , \| R22\| \} +max\{ \| R12\| , \| R21\| \} ,

use its representation [24, Thm. 2.3.3 i)] and combine it with the estimates in Lemma
5.1 and in (5.3), we find\bigm\| \bigm\| (\scrA \alpha 2,l(a) - \lambda ) - 1

\bigm\| \bigm\| 
\leq max

\biggl\{ 
1

d\lambda ,l(a, l)

\biggl( 
1+

\| \alpha \| \gamma \alpha 2,l(a)

d\lambda ,l(a,\infty ) - \gamma \alpha 2,l(a)\| \alpha \| 

\biggr) 
,

1

d\lambda ,l(a,\infty ) - \gamma \alpha 2,l(a)\| \alpha \| 

\biggr\} 
+max

\biggl\{ 
1

d\lambda ,l(a, l)

\| \alpha \| 
d\lambda ,l(a,\infty ) - \gamma \alpha 2,l(a)\| \alpha \| 

,
\gamma \alpha 2,l(a)

d\lambda ,l(a,\infty ) - \gamma \alpha 2,l(a)\| \alpha \| 

\biggr\} 
=

1

d\lambda ,l(a,\infty ) - \gamma \alpha 2,l(a)\| \alpha \| 

\biggl( 
max

\Bigl\{ d\lambda ,l(a,\infty )

d\lambda ,l(a, l)
, 1
\Bigr\} 
+max

\biggl\{ 
\| \alpha \| 

d\lambda ,l(a, l)
, \gamma \alpha 2,l(a)

\biggr\} \biggr) 
=

1

d\lambda ,l(a,\infty ) - \gamma \alpha 2,l(a)\| \alpha \| 

\biggl( 
d\lambda ,l(a,\infty )

d\lambda ,l(a, l)
+max

\biggl\{ 
\| \alpha \| 

d\lambda ,l(a, l)
, \gamma \alpha 2,l(a)

\biggr\} \biggr) 
.

Since \lambda l,1(a,\infty ) - \lambda l,1(a, l)>0 and Re(\lambda )\geq 0, we can estimate

d\lambda ,l(a,\infty )

d\lambda ,l(a, l)
=

Re(\lambda )+\lambda l,1(a,\infty )

Re(\lambda ) + \lambda l,1(a, l)
\leq \lambda l,1(a,\infty )

\lambda l,1(a, l)
.

Further we use that Re(\lambda )\geq 0 and \lambda l,1(a, l)\geq l(l + 1) > 1 by (3.3) to estimate

\| \alpha \| 
d\lambda ,l(a, l)

=
\| \alpha \| 

Re(\lambda ) + \lambda l,1(a, l)
\leq \| \alpha \| \leq \gamma \alpha 2,l(a).

Altogether this proves the first estimate in (i). The second claim in (i) is immediate
from the first one.

(ii) Let l \geq km. By (3.3) we have \lambda l,1(a,\infty )\geq \lambda km,1(a,\infty ), \lambda l,1(a, l)\geq \lambda km,1(a, km)
and hence \gamma \alpha 2,l(a)\leq \gamma \alpha 2,km

(a) by (4.1). Thus, Re(\lambda )> - \lambda km,1(a,\infty ) +\gamma \alpha 2,km
(a)\| \alpha \| 

implies that Re(\lambda ) >  - \lambda l,1(a,\infty )+\gamma \alpha 2,l(a)\| \alpha \| and hence \lambda \in \varrho (\scrA \alpha 2,l(a)) by (i) for
every l \geq km. Moreover, the resolvent norm estimate in (i) shows that\bigm\| \bigm\| (\scrA \alpha 2,l(a) - \lambda ) - 1

\bigm\| \bigm\|  - \rightarrow 0, l \rightarrow \infty .

All this implies that the infinite operator matrix \scrA \alpha 2(a,m) - \lambda = diag
\bigl( 
\scrA \alpha 2,l(a) - \lambda :

l \geq km
\bigr) 
is boundedly invertible, and so \lambda \in \varrho (\scrA \alpha 2(a,m)), with (\scrA \alpha 2(a,m) - \lambda ) - 1 =

diag
\bigl( 
(\scrA \alpha 2,l(a) - \lambda ) - 1 : l \geq km

\bigr) 
and

\| (\scrA \alpha 2(a,m) - \lambda ) - 1\| = sup
l\geq km

\bigm\| \bigm\| (\scrA \alpha 2,l(a) - \lambda ) - 1
\bigm\| \bigm\| = max

l\geq km

\bigm\| \bigm\| (\scrA \alpha 2,l(a) - \lambda ) - 1
\bigm\| \bigm\| .
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Now the first estimate in (ii) follows from the monotonicity of \lambda l,1(a, l) and \gamma \alpha 2,l(a),
see above, which implies that the norm bound in (i), which can also be written as

1

\lambda l,1(a, l)
+

1

Re(\lambda )+\lambda l,1(a,\infty ) - \gamma \alpha 2,l(a)\| \alpha \| 

\biggl( 
 - Re(\lambda )+\gamma \alpha 2,l(a)\| \alpha \| 

\lambda l,1(a, l)
+\gamma \alpha 2,l(a)

\biggr) 
,(5.4)

is monotonically decreasing in l for l \geq km. The second claim in (ii) is immediate
from the first one.

Remark 5.3. If, in the proof above, we would use the first Schur complement for
the representation of the inverse (\scrA \alpha 2,l(a) - \lambda ) - 1, we arrive at the same estimate.

Corollary 5.4. Let a\in [0, 1), \lambda \in \BbbC , Re(\lambda )\geq 0, and let m\in \BbbZ , km :=max\{ | m| , 1\} .
Then

\bigm\| \bigm\| im\omega (\scrA \alpha 2(a,m) - \lambda ) - 1
\bigm\| \bigm\| <\gamma 1 if \gamma 1 > 0 is such that

Re(\lambda ) >  - \lambda km,1(a,\infty )+\gamma \alpha 2,km
(a)\| \alpha \| + | m| \| \omega \| 

\gamma 1

\biggl( 
\lambda km,1(a,\infty )

\lambda km,1(a, km)
+\gamma \alpha 2,km

(a)

\biggr) 
.

Proof. There is nothing to prove for m= 0. For m \not = 0, the claim is immediate
from Proposition 5.2 (ii) applied with \kappa = \gamma 1

| m| \| \omega \| .

The following proposition and corollary concern the operator matrices \scrA \alpha ,l(a),
l \in \BbbN , and the infinite operator matrix \scrA \alpha (a,m); see Definition 3.3.

Proposition 5.5. Let a \in [0, 1) and \lambda \in \BbbC , Re(\lambda ) \geq 0.
(i) Let l \in \BbbN . Then \lambda \in \varrho (\scrA \alpha ,l(a)) and\bigm\| \bigm\| (\scrA \alpha ,l(a) - \lambda ) - 1

\bigm\| \bigm\| \leq 1

Re(\lambda ) + \lambda l,1(a, l)

\biggl( 
1 +

\| \alpha \| 
\lambda l,1(a,\infty )

\biggr) 
;

further,
\bigm\| \bigm\| (\scrA \alpha ,l(a) - \lambda ) - 1

\bigm\| \bigm\| < \kappa if \kappa > 0 is such that

Re(\lambda ) >  - \lambda l,1(a, l) +
1

\kappa 

\biggl( 
1 +

\| \alpha \| 
\lambda l,1(a,\infty )

\biggr) 
.

(ii) Let m \in \BbbZ , km := max\{ | m| , 1\} . Then \lambda \in \varrho (\scrA \alpha (a,m)) and

\| (\scrA \alpha (a,m) - \lambda ) - 1\| \leq 1

Re(\lambda )+\lambda km,1(a, km)

\biggl( 
1+

\| \alpha \| 
\lambda km,1(a,\infty )

\biggr) 
;

further,
\bigm\| \bigm\| (\scrA \alpha (a,m) - \lambda ) - 1

\bigm\| \bigm\| < \kappa if \kappa > 0 is such that

Re(\lambda ) >  - \lambda km,1(a, km) +
1

\kappa 

\biggl( 
1 +

\| \alpha \| 
\lambda km,1(a,\infty )

\biggr) 
.

Proof. Let a \in [0, 1) and \lambda \in \BbbC . (i) It is easy to see that

(5.5) (\scrA \alpha ,l(a) - \lambda ) - 1=

\Biggl( 
( - Al(a, l) - \lambda ) - 1  - ( - Al(a, l) - \lambda ) - 1\alpha ( - Al(a,\infty ) - \lambda ) - 1

0 ( - Al(a,\infty ) - \lambda ) - 1

\Biggr) 
.

Since Re(\lambda ) \geq 0 >  - \lambda l(a, l) >  - \lambda l(a,\infty ), we can use Lemma 5.1 to estimate\bigm\| \bigm\| (\scrA l(a, l) - \lambda ) - 1
\bigm\| \bigm\| \leq max

\bigl\{ \bigm\| \bigm\| ( - Al(a, l) - \lambda ) - 1
\bigm\| \bigm\| ,\bigm\| \bigm\| ( - Al(a,\infty ) - \lambda ) - 1

\bigm\| \bigm\| \bigr\} 
+
\bigm\| \bigm\| ( - Al(a, l) - \lambda ) - 1\alpha ( - Al(a,\infty ) - \lambda ) - 1

\bigm\| \bigm\| 
\leq 1

Re(\lambda ) + \lambda l,1(a, l)

\biggl( 
1 +

\| \alpha \| 
\lambda l,1(a,\infty )

\biggr) 
,
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where we used Re(\lambda ) \geq 0 to estimate Re(\lambda )+\lambda l,1(a,\infty ) \geq \lambda l,1(a,\infty ) in the last step.
The second claim is immediate from this estimate.

(ii) The proof is analogous to the proof of Proposition 5.2 (ii) if we use the equality
\| (\scrA \alpha (a,m) - \lambda ) - 1\| = maxl\geq km

\bigm\| \bigm\| (\scrA \alpha ,l(a) - \lambda ) - 1
\bigm\| \bigm\| .

Corollary 5.6. Let a \in [0, 1), \lambda \in \BbbC , Re(\lambda )\geq 0, and m \in \BbbZ , k := max\{ | m| , 1\} .
Then

\bigm\| \bigm\| im\omega (\scrA \alpha (a,m) - \lambda ) - 1
\bigm\| \bigm\| < \gamma 1 if \gamma 1 > 0 is such that

Re(\lambda ) >  - \lambda km,1(a, km) +
| m| \| \omega \| 

\gamma 1

\biggl( 
1 +

\| \alpha \| 
\lambda km,1(a,\infty )

\biggr) 
.

Proof. There is nothing to prove for m= 0. For m \not = 0, the claim is immediate
from Proposition 5.5 (ii) applied with \kappa = \gamma 1

| m| \| \omega \| .

For the \alpha 2\omega and \alpha \omega dynamo models the main task is to study the interaction
of the unbounded infinite coupling matrices \scrC m with the resolvents of \scrA \alpha 2(a,m) or
\scrA \alpha (a,m); see Definition 3.3.

Lemma 5.7. Let m\in \BbbZ , km :=max\{ | m| , 1\} , and a\in [0, 1). For \chi \in \{ \alpha 2, \alpha \} let

\scrA \chi (a,m) := diag(\scrA \chi ,l(a) : l\geq km), \scrD (\scrA \chi (a,m)) := l2
\bigl( 
\scrD (\scrA \chi ,l(a)) : l\geq km

\bigr) 
be one of the operator matrices \scrA \alpha 2(a,m) or \scrA \alpha (a,m), and let \scrC m be given as in
Definition 3.3. Then \scrD (\scrA \chi (a,m)) \subset \scrD (\scrC m) and hence, for \lambda \in \BbbC with

Re(\lambda ) >

\Biggl\{ 
max\{ 0, - \lambda km,1(a,\infty ) + \gamma \alpha 2,km

(a)\| \alpha \| \} if \chi = \alpha 2,

0 if \chi = \alpha ,

the operator product \scrC m(\scrA \chi (a,m) - \lambda ) - 1 is bounded with

\bigm\| \bigm\| \scrC m(\scrA \chi (a,m) - \lambda ) - 1
\bigm\| \bigm\| \leq km+2

max
l=km

\biggl\{ 
\delta l,m

\sqrt{} 
1+

\| \alpha \| 2
(Re(\lambda )+\lambda l,1(a,\infty ))2

s\chi 1,l(a, \lambda )

\biggr\} 
,

where \delta l,m > 0 are given as in Notation 4.6 and s\chi 1,l(a, \lambda ) are norm bounds for the
inverses of the first Schur complements of \scrA \chi ,l(a) given by

\| S\alpha 2

1,l (a, \lambda )
 - 1\| \leq s\alpha 

2

1,l(a, \lambda ) :=
1

Re(\lambda ) + \lambda l,1(a, l)

1

1 - \gamma \alpha 2,l(a)\| \alpha \| 
Re(\lambda )+\lambda l,1(a,\infty )

,(5.6)

\| S\alpha 
1,l(a, \lambda )

 - 1\| \leq s\alpha 1,l(a, \lambda ) :=
1

Re(\lambda ) + \lambda l,1(a, l)
,(5.7)

with \gamma \alpha 2,l defined as in (4.1) for l = km, km+ 1, km+ 2.

Proof. Let \lambda \in \BbbC , Re(\lambda ) \geq 0, be as above. In what follows, since a is fixed, we
abbreviate \scrA \chi ,l :=\scrA \chi ,l(a), l\geq km, in some intermediate steps.

Then, for x=(xl)l\geq km \in \scrH (a)= l2
\bigl( 
L2(a, 1)\oplus L2(a, 1) : i \in \BbbN 

\bigr) 
with \| x\| =1,

\scrC m(\scrA \chi (a,m) - \lambda ) - 1x

=

\left(          

0  - \widetilde \scrC km+1,m(\scrA \chi ,km+1 - \lambda ) - 1 0 \cdot \cdot \cdot 
\scrC km,m(\scrA \chi ,km

 - \lambda ) - 1 0  - \widetilde \scrC km+2,m(\scrA \chi ,km+2 - \lambda ) - 1

0 \scrC km+1,m(\scrA \chi ,km+1 - \lambda ) - 1 . . .
. . .

... 0
. . .

. . .
...

...
. . .

\right)          
x,D
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and hence\bigm\| \bigm\| \scrC m(\scrA \chi (a,m) - \lambda ) - 1x
\bigm\| \bigm\| 2

=
\bigm\| \bigm\| \widetilde \scrC km+1,m(\scrA \chi ,km+1 - \lambda ) - 1xkm+1

\bigm\| \bigm\| 2
+

\infty \sum 
l=km+1

\bigm\| \bigm\| \scrC l - 1,m(\scrA \chi ,l - 1 - \lambda ) - 1xl - 1 - \widetilde \scrC l+1,m(\scrA \chi ,l+1 - \lambda ) - 1xl+1

\bigm\| \bigm\| 2
\leq 
\bigm\| \bigm\| \widetilde \scrC km+1,m(\scrA \chi ,km+1 - \lambda ) - 1

\bigm\| \bigm\| 2\| xkm+1\| 2

+

\infty \sum 
l=km+1

2
\Bigl( \bigm\| \bigm\| \scrC l - 1,m(\scrA \chi ,l - 1 - \lambda ) - 1

\bigm\| \bigm\| 2\| xl - 1\| 2+
\bigm\| \bigm\| \widetilde \scrC l+1,m(\scrA \chi ,l+1 - \lambda ) - 1

\bigm\| \bigm\| 2\| xl+1\| 2
\Bigr) 

=2
\bigm\| \bigm\| \scrC km,m(\scrA \chi ,km

 - \lambda ) - 1
\bigm\| \bigm\| 2 \| xk\| 2

+

\infty \sum 
l=km+2

2
\Bigl( \bigm\| \bigm\| \scrC l,m(\scrA \chi ,l - \lambda ) - 1

\bigm\| \bigm\| 2 + \bigm\| \bigm\| \widetilde \scrC l,m(\scrA \chi ,l - \lambda ) - 1
\bigm\| \bigm\| 2\Bigr) \| xl\| 2

+
\Bigl( 
2
\bigm\| \bigm\| \scrC km+1,m(\scrA \chi ,km+1 - \lambda ) - 1

\bigm\| \bigm\| 2 + \bigm\| \bigm\| \widetilde \scrC km+1,m(\scrA \chi ,km+1 - \lambda ) - 1
\bigm\| \bigm\| 2\Bigr) \| xkm+1\| 2

\leq max

\left\{     
2
\bigm\| \bigm\| \scrC km,m(\scrA \chi ,km

 - \lambda ) - 1
\bigm\| \bigm\| 2,

2
\bigm\| \bigm\| \scrC km+1,m(\scrA \chi ,km+1 - \lambda ) - 1

\bigm\| \bigm\| 2+\bigm\| \bigm\| \widetilde \scrC km+1,m(\scrA \chi ,km+1 - \lambda ) - 1
\bigm\| \bigm\| 2,

supl\geq km+2 2
\Bigl( \bigm\| \bigm\| \scrC l,m(\scrA \chi ,l - \lambda ) - 1

\bigm\| \bigm\| 2+ \bigm\| \bigm\| \widetilde \scrC l,m(\scrA \chi ,l - \lambda ) - 1
\bigm\| \bigm\| 2\Bigr) 

\right\}     .(5.8)

The inclusions \scrD (\scrA \alpha 2(a,m)) \subset \scrD (\scrC m), \scrD (\scrA \alpha (a,m)) \subset \scrD (\scrC m) follow from the
fact that the above supremum is finite in both cases. The latter is a consequence of
the following two properties: first, the asymptotic behavior cl,m = O(l), \widetilde cl,m = O(l),

l \rightarrow \infty , see Notation 2.2, of the only nonzero entry of the 2 \times 2 matrices \scrC l,m, \widetilde \scrC l,m,
see Definition 3.3; second, the decay of the resolvents proved in Propositions 5.2 i)
and 5.5 i), which amounts to

(5.9)
\bigm\| \bigm\| (\scrA \alpha 2,l(a) - \lambda ) - 1

\bigm\| \bigm\| = O(l - 2),
\bigm\| \bigm\| (\scrA \alpha ,l(a) - \lambda ) - 1

\bigm\| \bigm\| = O(l - 2), l\rightarrow \infty ;

here we have used \lambda l(\vargamma ) \geq l(l+1), \vargamma \in \{ l,\infty \} , by Proposition 3.5 and \gamma \alpha 2,l = O(1),
\gamma \alpha ,l=O(1), l\rightarrow \infty ; see (4.1).

The first Schur complement S\chi 
1,l(a, \lambda ) of \scrA \chi ,l(a) is given by

S\alpha 2

1,l (a, \lambda ) :=  - Al(a, l) - \lambda  - \alpha ( - Al(a,\infty ) - \lambda ) - 1Al,\alpha (a, l), S\alpha 
1,l(a, \lambda ) :=  - Al(a, l) - \lambda .

The assumptions on \lambda ensure that S\chi 
1,l(a, \lambda ) is boundedly invertible and that Lemma

5.1 is applicable, which implies the estimates for \| S\chi 
1,l(a, \lambda )

 - 1\| in (5.6), (5.7) in a
straightforward way.

Using the special form of \scrC l,m, \widetilde \scrC l,m, see Definition 3.3, and the representation of
the resolvent of \scrA \chi ,l(a) in terms of its first Schur complement, see [24, Thm. 2.3.3 ii)],
we find that, for l \geq km,\biggl( 

0 0
1 0

\biggr) 
(\scrA \chi ,l(a) - \lambda ) - 1 =

\biggl( 
0 0

S\chi 
1,l(a, \lambda )

 - 1  - S\chi 
1,l(a, \lambda )

 - 1\alpha ( - Al(a,\infty ) - \lambda ) - 1

\biggr) 
and hence, again by Lemma 5.1,

(5.10)

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( 0 0
1 0

\biggr) 
(\scrA \chi ,l(a) - \lambda ) - 1

\bigm\| \bigm\| \bigm\| \bigm\| \leq s\chi 1,l(a, \lambda )

\sqrt{} 
1+

\| \alpha \| 2
(Re(\lambda )+\lambda l,1(a,\infty ))2

.

This, together with the estimates (5.8), proves the claimed bound.
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2212 SABINE BOEGLI AND CHRISTIANE TRETTER

Lemma 5.8. Let m \in \BbbZ , km := max\{ | m| , 1\} , a \in [0, 1), \lambda \in \BbbC , Re(\lambda ) \geq 0. Then\bigm\| \bigm\| \omega \prime \scrC m(\scrA \alpha 2(a,m) - \lambda ) - 1
\bigm\| \bigm\| < \gamma 2 for \gamma 2 > 0 if

(5.11) Re(\lambda )>
km+2
max
l=km

\Biggl\{ 
 - \lambda l,1(a,\infty )+\gamma \alpha 2,l(a)\| \alpha \| +\delta l,m

\sqrt{} 
\lambda l,1(a,\infty )2+\| \alpha \| 2

\lambda l,1(a, l)

\| \omega \prime \| 
\gamma 2

\Biggr\} 
with \delta l,m given by (4.5).

Proof. If \| \omega \prime \| = 0, there is nothing to prove, so we assume that \| \omega \prime \| \not = 0. Let
\lambda \in \BbbC , Re(\lambda ) \geq 0, be as above. Condition (5.11) on Re(\lambda ) implies that Re(\lambda ) >
 - \lambda km,1(a,\infty ) + \gamma \alpha 2,km

(a)\| \alpha \| , and hence the assumptions on \lambda in Lemma 5.7 for
\chi = \alpha 2 are satisfied. The claim is proved if we show, by means of Lemma 5.7, that

(5.12)
\bigm\| \bigm\| \scrC m(\scrA \alpha 2(a,m) - \lambda ) - 1

\bigm\| \bigm\| <
\gamma 2
\| \omega \prime \| 

.

By Lemma 5.7 with (5.6), we have to show that, for l=km, km+1, km+2,

\delta l,m

\sqrt{} 
1+

\| \alpha \| 2
(Re(\lambda )+\lambda l,1(a,\infty ))2

1

Re(\lambda ) + \lambda l,1(a, l)

1

1 - \gamma \alpha 2,l(a)\| \alpha \| 
Re(\lambda )+\lambda l,1(a,\infty )

<
\gamma 2
\| \omega \prime \| 

,

with \delta l,m given by (4.5) or, equivalently,

\delta l,m

\sqrt{} 
(Re(\lambda )+\lambda l,1(a,\infty ))2+\| \alpha \| 2

Re(\lambda ) + \lambda l,1(a, l)

1

Re(\lambda )+\lambda l,1(a,\infty ) - \gamma \alpha 2,l(a)\| \alpha \| 
<

\gamma 2
\| \omega \prime \| 

.

For Re(\lambda )\geq 0 we can estimate\sqrt{} 
(Re(\lambda )+\lambda l,1(a,\infty ))2+\| \alpha \| 2

Re(\lambda ) + \lambda l,1(a, l)
\leq 
\sqrt{} 
\lambda l,1(a,\infty )2+\| \alpha \| 2

\lambda l,1(a, l)
;

in fact, it is easy to check that, since \lambda l,1(a,\infty ) > \lambda l,1(a, l), the left-hand side is
monotonically decreasing for Re(\lambda ) \in [0,\infty ). Altogether, this shows that (5.12) is
satisfied if (5.11) holds.

Lemma 5.9. Let m\in \BbbZ , km :=max\{ | m| , 1\} , a\in [0, 1), and \lambda \in \BbbC , Re(\lambda )\geq 0. Then\bigm\| \bigm\| \omega \prime \scrC m(\scrA \alpha (a,m) - \lambda ) - 1
\bigm\| \bigm\| < \gamma 2 for \gamma 2 > 0 if

(5.13) Re(\lambda ) >
km+2
max
l=km

\Biggl\{ 
 - \lambda l,1(a, l)+\delta l,m

\sqrt{} 
1+

\| \alpha \| 2
\lambda l,1(a,\infty )2

\| \omega \prime \| 
\gamma 2

\Biggr\} 
with \delta l,m given by (4.5).

Proof. The proof is analogous to the proof of Lemma 5.8 if we use Lemma 5.7
with (5.7).

Now we are ready to combine the above results to prove the three antidynamo
theorems in section 3.

Proof of Theorem 4.2 (\alpha 2-model). Let m\in \BbbZ . We apply Corollary 5.4 with a=0
and \gamma 1 = 1, using the definition of \gamma \alpha 2,km

in Proposition 4.1 and noting that the
eigenvalues \lambda l,1(0, \vargamma ), \vargamma \in \{ km,\infty \} , are given by Bessel zeros; see (3.4). Assump-
tion (4.1) ensures that the lower bound for Re(\lambda ) in Corollary 5.4 is \leq 0 so that\bigm\| \bigm\| im\omega (\scrA \alpha 2(0,m) - \lambda ) - 1

\bigm\| \bigm\| < 1 for all Re(\lambda ) > 0 and thus

\scrA \alpha 2(0,m) - \lambda  - im\omega =
\bigl( 
I  - im\omega (\scrA \alpha 2(0,m) - \lambda ) - 1

\bigr) 
(\scrA \alpha 2(0,m) - \lambda )
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is boundedly invertible for Re(\lambda ) > 0. Due to Definition 3.3, this shows that

\sigma (\scrA m
\alpha 2(0)) \cap \{ \lambda \in \BbbC : Re(\lambda ) > 0\} = \emptyset ,

and hence the claim for m \in \BbbZ ; the claim for the special case m = 0 is an immediate
consequence if we note that then km = max\{ | m| , 1\} = 1.

Proof of Theorem 4.7 (\alpha 2\omega -model). Let m \in \BbbZ . We apply Corollary 5.4 and
Lemma 5.8 with a=0 and \gamma 1, \gamma 2 \in [0, 1] such that \gamma 1+\gamma 2 \leq 1, using the definition
of \gamma \alpha 2,km

in Proposition 4.1 and noting that the eigenvalues \lambda l,1(0, \vargamma ), \vargamma \in \{ km,\infty \} ,
are given by Bessel zeros; see (3.4). Assumption (4.6) ensures that the lower bound
for Re(\lambda ) in Corollary 5.4 is \leq 0, while assumptions (4.7) ensure that the lower
bound for Re(\lambda ) in Lemma 5.8 is \leq 0. Together this yields

\bigm\| \bigm\| im\omega (\scrA \alpha 2(0,m) - \lambda ) - 1 - 
\omega \prime \scrC m(\scrA \alpha 2(a,m) - \lambda ) - 1

\bigm\| \bigm\| < 1 for all Re(\lambda ) > 0, and thus

\scrA \alpha 2\omega (0,m) - \lambda  - im\omega +\omega \prime \scrC m =
\bigl( 
I - (im\omega  - \omega \prime \scrC m)(\scrA \alpha 2\omega (0,m) - \lambda ) - 1

\bigr) 
(\scrA \alpha 2\omega (0,m) - \lambda )

is boundedly invertible for Re(\lambda ) > 0. Due to Definition 3.3, this shows that

\sigma (\scrA m
\alpha 2\omega (0)) \cap \{ \lambda \in \BbbC : Re(\lambda ) > 0\} = \emptyset ,

and thus the claim for m\in \BbbZ ; the claim for the special case m=0 is obvious.

Proof of Theorem 4.10 (\alpha 2\omega -model). The proof is analogous to the proof of The-
orem 4.7 for the \alpha 2\omega -model if we use Lemma 5.6 instead of Lemma 5.4 and Lemma 5.9
instead of Lemma 5.8.

6. Spectral exactness of interval truncation and finite section method.
Since all three dynamo models are described by nonselfadjoint linear operators, numer-
ical computations are prone to two undesirable effects, spectral pollution and failure
of spectral inclusion. The former means that numerically computed approximations
of eigenvalues converge to points that are no true eigenvalues; such points are called
spurious eigenvalues. The latter means that not all true eigenvalues are obtained as
limits of numerical approximations. Both effects may be fatal since spectral pollution
may wrongly indicate the existence of a dynamo effect and failure of spectral inclusion
may wrongly exclude a dynamo effect.

Numerical eigenvalue approximations for all three dynamo models require interval
truncation at the singular endpoint r = 0 as well as truncation of the infinite operator
matrices to finite sections. However, results guaranteeing that these two approxima-
tion schemes are spectrally exact, i.e., that they do not exhibit spectral pollution and
spectral inclusion prevails, are lacking.

In this section we close this gap and show that, for all dynamo models, interval
truncation and finite section method are spectrally exact. In general, spectral exact-
ness is equivalent to convergence of the spectra in the Attouch--Wets metric, cf. [4, p.
28]; since both approximating operators and limit operator have compact resolvents,
we can use locally uniform convergence here.

To establish spectral exactness, we prove that the corresponding approximating
operator sequences have discretely compact resolvents and converge in generalized
strong resolvent sense, allowing us to employ a powerful spectral convergence result;
see [3, Thm. 2.19]. For the reader's convenience, we briefly recall the notion of discrete
compactness due to Stummel; see [23, Def. 3.1.(k)] or [3, Def. 2.5].

Definition 6.1. Let E0 be a Banach space, E, En \subset E0, n \in \BbbN , closed comple-
mented subspaces, and Dn arbitrary Banach spaces. A sequence (An)n\in \BbbN of bounded
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linear operators An \in L(Dn, En) is called discretely compact if for each infinite sub-
set I \subset \BbbN and each bounded sequence of elements xn \in Dn, n \in I, there exist y \in E
and an infinite subset J \subset I so that \| Anxn  - y\| E0

\rightarrow 0 for n \in J , n \rightarrow \infty .

The generality of this concept makes it applicable to different situations such as
interval truncation and finite section method. In our case E0 is the Hilbert space
\scrH (0)= l2

\bigl( 
L2(0, 1) \oplus L2(0, 1) : i\in \BbbN 

\bigr) 
. For interval truncation, we choose E=E0 and

En = \scrH (an) = l2
\bigl( 
L2(an, 1)\oplus L2(an, 1) : i \in \BbbN 

\bigr) 
, n \in \BbbN , with an\searrow 0. For the finite

section method, we take E =\scrH (a) = l2
\bigl( 
L2(a, 1)\oplus L2(a, 1) : i\in \BbbN 

\bigr) 
with a\in [0, 1) and

En=\scrH n(a) :=
\bigoplus 

i=1,...,n L
2(a, 1)\oplus L2(a, 1).

Note that we tacitly regard L2(a, 1) as a subspace of L2(0, 1), whence \scrH (a) as a
subspace of \scrH (0), and \scrH n(a) =

\bigoplus 
i=1,...,nL

2(a, 1)\oplus L2(a, 1) as a subspace of \scrH (a) =

l2
\bigl( 
L2(a, 1)\oplus L2(a, 1) : i \in \BbbN 

\bigr) 
.

Definition 6.2. For a \in [0, 1) and j \in \BbbN define

P (a) : L2(0, 1) \rightarrow L2(a, 1), P (a)x := x| [a,1],
\scrP (a) : L2(0, 1)\oplus L2(0, 1)\rightarrow L2(a, 1)\oplus L2(a, 1), \scrP (a) := diag

\bigl( 
P (a), P (a)

\bigr) 
,

\scrP \infty (a) : \scrH (0) \rightarrow \scrH (a), \scrP \infty (a) := diag
\bigl( 
\scrP (a) : i \in \BbbN 

\bigr) 
,

where \scrH (a) := l2
\bigl( 
L2(a, 1)\oplus L2(a, 1) : i \in \BbbN 

\bigr) 
, see (3.2), and

\scrQ j(a) : \scrH (a) \rightarrow \scrH j(a), \scrQ j(a)((xi, yi))i\in \BbbN := ((xi, yi))
j
i=1,

where \scrH j(a) :=
\bigoplus 

i=1,...,j L
2(a, 1)\oplus L2(a, 1).

Throughout this section, let (an)n\in \BbbN \subset (0, 1), an \searrow 0 as n \rightarrow \infty , be a decreasing
sequence.

Remark 6.3. It is easy to see that P (an)
s\rightarrow IL2(0,1), \scrP (an)

s\rightarrow IL2(0,1)\oplus L2(0,1), and

\scrP \infty (an)
s\rightarrow I\scrH (0) as n \rightarrow \infty , see [3, Cor. 3.15], and that \scrQ j(a)

s\rightarrow I\scrH (a) as j \rightarrow \infty for
every a \in [0, 1).

Lemma 6.4. For every l \in \BbbN and \vargamma \in \{ l,\infty \} , the subspace

\Phi l(\vargamma ) :=
\bigl\{ 
x \in \scrD (Al(0, \vargamma )) : \exists \varepsilon \in (0, 1) x| [0,\varepsilon ) \equiv 0

\bigr\} 
\subset L2(0, 1)

is a core of Al(0, \vargamma ); moreover, for all x \in \Phi l(\vargamma ) there exists n0(x) \in \BbbN with

(6.1)
P (an)x \in \scrD (Al(an, \vargamma )), n \geq n0(x),\bigm\| \bigm\| Al(an, \vargamma )P (an)x - Al(0, \vargamma )x

\bigm\| \bigm\|  - \rightarrow 0, n \rightarrow \infty .

Proof. Since the Bessel differential expression \tau l is in limit point case at the
singular endpoint r = 0, the core property of \Phi l(\vargamma ) is immediate from Sturm--Liouville
theory; see, e.g., the proof of [25, Satz 14.12].

For x \in \Phi l(\vargamma ) let n0(x) \in \BbbN be such that x(r) = 0 for r \in [0, an0(x)]. This
implies P (an)x \in \scrD (Al(an, \vargamma )) for n \geq n0(x). The convergence (6.1) follows from
Al(an, \vargamma )P (an)x = P (an)Al(0, \vargamma )x, n \geq n0(x), and from the strong convergence

P (an)
s\rightarrow IL2(0,1), n \rightarrow \infty .

First, we establish spectral exactness of interval truncation to (an, 1], an \searrow 0 for
the 2\times 2 operator matrices \scrA \alpha 2,l(0), \scrA \alpha ,l(0), l \in \BbbN , which are the leading operators
on the diagonals of the three infinite dynamo operator matrices \scrA m

\alpha 2(0), \scrA m
\alpha 2\omega (0), and

\scrA m
\alpha \omega (0), m \in \BbbZ , respectively; see Definition 3.3.
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Theorem 6.5. Let l \in \BbbN be fixed, and let \scrA \chi ,l(0), \chi \in \{ \alpha 2, \alpha \} , denote one of the
2\times 2 operator matrices \scrA \alpha 2,l(0) or \scrA \alpha ,l(0) in L2(0, 1)\oplus L2(0, 1), and let

\bigl( 
\scrA \chi ,l(an)

\bigr) 
n\in \BbbN 

denote its approximating sequence in L2(an, 1)\oplus L2(an, 1) with an \searrow 0. Then there
exists u0 \in \BbbR , independent of l \in \BbbN , so that, for every \lambda \in \BbbC with Re(\lambda ) > u0,

(a) \lambda \in 
\bigcap 

n\in \BbbN 
\varrho 
\bigl( 
\scrA \chi ,l(0)

\bigr) 
\cap \varrho 
\bigl( 
\scrA \chi ,l(an)

\bigr) 
and supn\in \BbbN 

\bigm\| \bigm\| \bigl( \scrA \chi ,l(an) - \lambda 
\bigr)  - 1\bigm\| \bigm\| <\infty ;

(b) (\scrA \chi ,l(0) - \lambda ) - 1,
\bigl( 
\scrA \chi ,l(an) - \lambda 

\bigr)  - 1
, n \in \BbbN , are compact;

(c)
\bigl( 
(\scrA \chi ,l(an) - \lambda ) - 1

\bigr) 
n\in \BbbN is discretely compact;

(d) (\scrA \chi ,l(an) - \lambda ) - 1\scrP (an)
s - \rightarrow (\scrA \chi ,l(0) - \lambda ) - 1, n \rightarrow \infty .

Hence the approximation
\bigl( 
\scrA \chi ,l(an)

\bigr) 
n\in \BbbN of \scrA \chi ,l(0) is spectrally exact, i.e., no spectral

pollution occurs and spectral inclusion prevails. Moreover,

(i) if \lambda 0 \in \BbbC is an eigenvalue of \scrA \chi ,l(0) of algebraic multiplicity \kappa 0, then, for n large
enough, \scrA \chi ,l(an) has exactly \kappa 0 eigenvalues \lambda n

i , i = 1, 2, . . . , \kappa 0, (counted with
algebraic multiplicities) in a neighborhood of \lambda 0 that converge to \lambda 0 as n \rightarrow \infty ,

(ii) all normalized eigenvectors and associated vectors for \lambda n
i , i=1, 2, . . . , \kappa 0, viewed

as elements of L2(0, 1)\oplus L2(0, 1) converge to eigenvectors and associated vectors
for \lambda 0.

Proof. Let l \in \BbbN be fixed. We show that in each claim (a), (b), (c), (d) there
exists a u \in \BbbR , independent of l \in \BbbN , such that the respective assertions hold for all
\lambda \in \BbbC with Re(\lambda )\geq u.

(a) The claims follow from Propositions 5.2 (i) and 5.5 (i) if we use the lower
bounds \lambda l(a, \vargamma ) \geq l(l + 1) \geq 2 for a \in [0, 1), \vargamma \in \{ l,\infty \} ; see (3.3). More precisely, if
\chi = \alpha 2, we can use Proposition 5.2 (i) and the equivalent form (5.4) of the bound

therein to estimate that, for Re(\lambda ) > u\alpha 2 := max
\bigl\{ 
0, - 2+

\bigl( 
\| \alpha \| + \| \alpha \prime \| \surd 

2

\bigr) 
\| \alpha \| 

\bigr\} 
,

sup
n\in \BbbN 

\bigm\| \bigm\| (\scrA \alpha 2,l(a) - \lambda ) - 1
\bigm\| \bigm\| \leq 1

Re(\lambda ) + 2 - 
\bigl( 
\| \alpha \| + \| \alpha \prime \| \surd 

2

\bigr) 
\| \alpha \| 

\biggl( 
1 +

\biggl( 
\| \alpha \| + \| \alpha \prime \| \surd 

2

\biggr) 
\| \alpha \| 

\biggr) 
;

if \chi = \alpha , we use Proposition 5.5 (i) for Re(\lambda ) > u\alpha := 0.
(b) In [9, Thm. 4.1] it was proved that the operator \scrA \alpha 2,l(0) has compact resol-

vent; the proof for \scrA \alpha 2,l(an), n \in \BbbN , is analogous. The compactness of (\scrA \alpha ,l(a) - \lambda ) - 1,
n \in \BbbN , for Re(\lambda ) > u\alpha follows from (5.5) because Al(an, l), Al(an,\infty ) have compact
resolvents and \alpha is bounded.

(c) We prove the claim for \scrA \alpha 2,l(an), n \in \BbbN ; the proof for \scrA \alpha ,l(an), n \in \BbbN , is
analogous. To this end, we show that the operators \scrA \alpha 2,l(an), n \in \BbbN , satisfy the
criteria (i), (ii), (iii) for discrete compactness derived in [3, Prop. 4.6].

(i) By [3, Prop. 2.12 ii) and Ex. 4.17], the diagonal entries Al(an, l), Al(an,\infty ) of
\scrA \alpha 2,l(an), n \in \BbbN , have discretely compact resolvents.

(ii) The operator matrices \scrA \alpha 2,l(an), n \in \BbbN , are diagonally dominant since \alpha is
bounded and \scrD (Al(an, l)) = \scrD (Al,\alpha (an, l)) which implies that Al,\alpha (an, l) is Al(an, l)-
bounded.

(iii) Let \lambda \in \BbbC , Re(\lambda ) > u\alpha 2 = max
\bigl\{ 
0, - 2+

\bigl( 
\| \alpha \| + \| \alpha \prime \| \surd 

2

\bigr) 
\| \alpha \| 

\bigr\} 
. Then, by

Lemma 5.1,

\lambda \in 
\biggl( \bigcap 

n\in \BbbN 
\varrho ( - Al(an, l))

\biggr) 
\cap 
\biggl( \bigcap 

n\in \BbbN 
\varrho ( - Al(an,\infty ))

\biggr) 
,

both supn\in \BbbN 
\bigm\| \bigm\| ( - Al(an, l)  - \lambda ) - 1

\bigm\| \bigm\| , supn\in \BbbN 
\bigm\| \bigm\| ( - Al(an,\infty )  - \lambda ) - 1

\bigm\| \bigm\| are finite and, for
all n \in \BbbN ,
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2216 SABINE BOEGLI AND CHRISTIANE TRETTER

\bigm\| \bigm\| Al,\alpha (an, l)( - Al(an, l) - \lambda ) - 1
\bigm\| \bigm\| \leq \| \alpha \| + \| \alpha \prime \| \surd 

2
=: \gamma 1

\lambda ,

\| \alpha ( - Al(an,\infty ) - \lambda ) - 1\| \leq \| \alpha \| 
Re(\lambda ) + 2

=: \gamma 2
\lambda ,

where \gamma 1
\lambda \gamma 

2
\lambda < 1 due to the assumption on Re(\lambda ).

Now [3, Prop. 4.6] yields that
\bigl( 
(\scrA \alpha 2,l(an) - \lambda ) - 1

\bigr) 
n\in \BbbN is discretely compact for

each \lambda \in \BbbC with Re(\lambda )>u\alpha 2 .
(d) We prove the claim for the operators \scrA \alpha 2,l(0), \scrA \alpha 2,l(an), n \in \BbbN ; the proof

for \scrA \alpha ,l(0), \scrA \alpha ,l(an), n \in \BbbN , is analogous. To this end, we show that the operators
\scrA \alpha 2,l(0), \scrA \alpha 2,l(an), n \in \BbbN , satisfy the assumptions (i) to (iv) in [3, Prop. 3.9].

(i) The operator matrices \scrA \alpha 2,l(0), \scrA \alpha 2,l(an), n \in \BbbN , are diagonally dominant by
(ii) in the proof of (c).

(ii) and (iii) By Lemma 6.4, for \vargamma \in \{ l,\infty \} , there exists a core \Phi l(\vargamma ) \subset \scrD (Al(0, \vargamma ))
of Al(0, \vargamma ) so that for all x \in \Phi l(\vargamma ) there exists n0(x) \in \BbbN with

P (an)x \in \scrD (Al(an, \vargamma )), n \geq n0(x),

\| Al(an, \vargamma )P (an)x - Al(0, \vargamma )x\| =
\bigm\| \bigm\| (IL2(0,1)  - P (an))Al(an, \vargamma )x

\bigm\| \bigm\| \rightarrow 0,

\| Al,\alpha (an, l)P (an)x - Al,\alpha (0, l)x\| =\| (IL2(0,1) - P (an))Al,\alpha (an, l)x\| \rightarrow 0,

\| \alpha P (an)x - \alpha x\| = \| (I  - P (an))\alpha x\| \rightarrow 0

for n \rightarrow \infty since P (an)
s\rightarrow IL2(0,1), n \rightarrow \infty .

(iv) This assumption follows since (a) holds for Re(\lambda ) > u\chi if we observe [3,
Def. 2.1 (iii)].

Now [3, Prop. 3.9], together with [3, Prop. 2.11 i)] and (a), yields that (d) holds
for all \lambda \in \BbbC with Re(\lambda ) > u\chi , where u\chi is as defined in the proof of (a).

Altogether, we proved that all assumptions of [3, Thm. 2.6] are satisfied and the
latter yields all the claims.

Lemma 6.6. Let m \in \BbbZ , a1 \in (0, 1), and \chi \in \{ \alpha 2, \alpha \} . Then, for every \gamma > 0,
there exists u\gamma ,\chi \in \BbbR independent of a \in [0, a1], so that, for \lambda \in \BbbC with Re(\lambda ) > u\gamma ,\chi ,
we have \lambda \in \varrho (\scrA \chi (a,m)) with \bigm\| \bigm\| (\scrA \chi (a,m) - \lambda ) - 1

\bigm\| \bigm\| < \gamma ,\bigm\| \bigm\| im\omega (\scrA \chi (a,m) - \lambda ) - 1
\bigm\| \bigm\| < \gamma ,\bigm\| \bigm\| \omega \prime \scrC m(\scrA \chi (a,m) - \lambda ) - 1
\bigm\| \bigm\| < \gamma .

Proof. It suffices to show that each estimate holds for all \lambda \in \BbbC with Re(\lambda )> u
with u\in \BbbR sufficiently large and independent of a\in [0, a1]. For this we use 1<l(l+1)\leq 
\lambda l(a, \vargamma ) \leq \lambda l(a1, \vargamma ) for l\in \BbbN , \vargamma \in \{ l,\infty \} and a\in [0, a1]; see Proposition 3.5. Then the
claims follow from Proposition 5.2 (ii), Corollary 5.4, and Lemma 5.8 if \chi =\alpha 2 and
from Proposition 5.5 (ii), Corollary 5.6, and Lemma 5.9 if \chi =\alpha .

The following comprehensive theorem combines both necessary approximation
schemes, interval truncation an \searrow 0 for n \rightarrow \infty , and truncation to finite 2j \times 2j
operator matrices for j\rightarrow \infty , by letting j=n\rightarrow \infty . It provides spectral exactness for
this combined approximation scheme and for all three dynamo models.

Theorem 6.7. Let m \in \BbbZ be fixed, and let \scrA m
\chi (0), \chi \in \{ \alpha 2, \alpha 2\omega , \alpha \omega \} , denote

one of the infinite dynamo operator matrices \scrA m
\alpha 2(0), \scrA m

\alpha 2\omega (0), \scrA m
\alpha \omega (0) in \scrH (0) =

l2
\bigl( 
L2(0, 1) \oplus L2(0, 1) : i \in \BbbN 

\bigr) 
, and consider the combined approximating sequence
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\scrA m

\chi ,n(an)
\bigr) 
n\in \BbbN in \scrH n(an) =

\bigoplus 
i=1,...,nL

2(an, 1) \oplus L2(an, 1) with an \searrow 0, n \rightarrow \infty ,
given by

\scrA m
\chi ,n(an) :=\scrQ n(an)\scrA m

\chi (an), \scrD 
\bigl( 
\scrA m

\chi ,n(an)
\bigr) 
:=\scrD 

\bigl( 
\scrA m

\chi (an)
\bigr) 
\cap \scrH n(an), n\in \BbbN .

Then there exists u0 \in \BbbR such that, for every \lambda \in \BbbC with Re(\lambda ) > u0,

(a) \lambda \in 
\bigcap 

n\in \BbbN 
\varrho 
\bigl( 
\scrA m

\chi ,n(0)
\bigr) 
\cap \varrho 
\bigl( 
\scrA m

\chi (an)
\bigr) 
and supn\in \BbbN 

\bigm\| \bigm\| \bigl( \scrA m
\chi ,n(an) - \lambda 

\bigr)  - 1\bigm\| \bigm\| <\infty ;

(b) (\scrA m
\chi (0) - \lambda ) - 1,

\bigl( 
\scrA m

\chi ,n(an) - \lambda 
\bigr)  - 1

, n \in \BbbN , are compact;

(c)
\bigl( \bigl( 
\scrA m

\chi ,n(an) - \lambda 
\bigr)  - 1\bigr) 

n\in \BbbN is discretely compact;

(d)
\bigl( 
\scrA m

\chi ,n(an) - \lambda 
\bigr)  - 1\scrQ n(an)

s - \rightarrow (\scrA m
\chi (0) - \lambda ) - 1, n \rightarrow \infty .

Hence
\bigl( 
\scrA m

\chi ,n(an)
\bigr) 
n\in \BbbN is a spectrally exact approximation of \scrA m

\chi (0), i.e., no spectral
pollution occurs and spectral inclusion prevails. Moreover,

(i) if \lambda 0 \in \BbbC is an eigenvalue of \scrA m
\chi (0) of algebraic multiplicity \kappa 0, then, for n large

enough, \scrA m
\chi ,n(an) has exactly \kappa 0 eigenvalues \lambda n

i , i = 1, 2, . . . , \kappa 0, (counted with
algebraic multiplicities) in a neighborhood of \lambda 0 that converge to \lambda 0 as n \rightarrow \infty ,

(ii) all normalized eigenvectors and associated vectors for \lambda n
i , i = 1, 2, . . . , \kappa 0, when

viewed as elements of \scrH (0)= l2
\bigl( 
L2(0, 1)\oplus L2(0, 1) : i\in \BbbN 

\bigr) 
, converge to eigenvectors

and associated vectors for \lambda 0.

Remark 6.8. Note that \scrQ n(an) = \scrQ n(0)\scrP \infty (an) = \scrP \infty (an)\scrQ n(0), n \in \BbbN . Then

\scrQ n(an)
s\rightarrow I\scrH (0) follows using \scrQ \infty (an)

s\rightarrow I\scrH (0) and \scrQ n(0)
s\rightarrow I\scrH (0).

Proof of Theorem 6.7. The proof will be given in two steps. In the first step we
establish spectral exactness of interval truncation to (an, 1], an\searrow 0, for the three in-
finite dynamo operator matrices \scrA m

\alpha 2(0), \scrA m
\alpha 2\omega (0), and \scrA m

\alpha \omega (0), m\in \BbbZ ; in the second
step we prove spectral exactness of the combination of interval truncation and finite
section methods.

Step 1. Spectral exactness of interval truncation to (an, 1], an\searrow 0. Here we show
that all claims in Theorem 6.7 hold for the approximating sequence

\bigl( 
\scrA m

\chi (an)
\bigr) 
n\in \BbbN in

\scrH (an) = l2
\bigl( 
L2(an, 1)\oplus L2(an, 1) : i \in \BbbN 

\bigr) 
of \scrA m

\chi (0) where, in (d), we have to replace
\scrQ n(an) = \scrP \infty (an)\scrQ n(0) by \scrP \infty (an) alone for n \in \BbbN .

Let m \in \BbbZ be fixed, and let km := max\{ | m| , 1\} . We prove the claims for the
\alpha 2-model and the \alpha 2\omega -model; the proof for the \alpha \omega -model is analogous, e.g., we have
to replace \scrA \alpha 2(a,m) by \scrA \alpha (a,m).

We show that in each claim (a), (b), (c), (d) there exists a u \in \BbbR such that
the assertions hold for all \lambda \in \BbbC with Re(\lambda )> u. To this end, we first consider the
infinite block diagonal operators \scrA \alpha 2(a,m), \scrA \alpha 2(an,m), n \in \BbbN , and then we employ
perturbation results.

(a) For \chi \in \{ \alpha 2, \alpha 2\omega \} and a \in [0, 1), we write

(6.2) \scrA m
\chi (a) - \lambda =

\bigl( 
I  - K\chi (a,m)(\scrA \alpha 2(a,m) - \lambda ) - 1

\bigr) 
(\scrA \alpha 2(a,m) - \lambda ),

where

K\chi (a,m) :=

\Biggl\{ 
im\omega if \chi = \alpha 2,

im\omega  - \omega \prime \scrC m if \chi = \alpha 2\omega .

By Lemma 6.6 applied with \gamma = 1
2 , there exists u 1

2 ,\alpha 
2 \in \BbbR so that for all \lambda \in \BbbC with

Re(\lambda ) > u 1
2 ,\alpha 

2 and a \in [0, a1], we have \lambda \in \varrho 
\bigl( 
\scrA \alpha 2(a,m)

\bigr) 
and

(6.3) \| K\chi (a,m)(\scrA \alpha 2(a,m) - \lambda ) - 1\| < 1.
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This, together with (6.2) and a Neumann series argument, implies that \lambda \in \varrho 
\bigl( 
\scrA m

\chi (a)
\bigr) 

for Re(\lambda ) > u 1
2 ,\alpha 

2 .

(b) For a \in [0, 1), j \in \BbbN let \scrQ j(a) be the mapping of \scrH (a) onto the first 2j

components, see Definition 6.2, and let u\alpha 2 := max
\bigl\{ 
0, - 2+

\bigl( 
\| \alpha \| + \| \alpha \prime \| \surd 

2

\bigr) 
\| \alpha \| 

\bigr\} 
be as in

the proof of Theorem 6.5. Then, by Theorem 6.5 (b), for Re(\lambda )>u\alpha 2 , all operators
\scrQ j(a)(\scrA \chi (an,m) - \lambda ) - 1, j \in \BbbN , are compact. Using Proposition 5.2 (i), the equivalent
form (5.4) of the upper bound therein and \lambda l(a, \vargamma ) \geq l(l + 1) for l \in \BbbN , \vargamma \in \{ l,\infty \} ,
see (3.3), we conclude that, for Re(\lambda ) > u\alpha 2 ,\bigm\| \bigm\| \scrQ j(a)(\scrA \alpha 2(an,m) - \lambda ) - 1 - (\scrA \alpha 2(an,m) - \lambda ) - 1

\bigm\| \bigm\| = max
l\geq km+j

\bigm\| \bigm\| (\scrA \alpha 2,l(an) - \lambda ) - 1
\bigm\| \bigm\| 

\leq 
1+
\Bigl( 
\| \alpha \| + \| \alpha \prime \| \surd 

2

\Bigr) 
\| \alpha \| 

Re(\lambda )+(km+j+1)(km+j+2) - 
\bigl( 
| \alpha \| + \| \alpha \prime \| \surd 

2

\bigr) 
\| \alpha \| 

 - \rightarrow 0, j\rightarrow \infty .(6.4)

Therefore, being the limit of compact operators, (\scrA \alpha 2(an,m) - \lambda ) - 1 is compact for
Re(\lambda )>u\alpha 2 . If, for Re(\lambda )>max\{ u\alpha 2 , u 1

2 ,\alpha 
2\} with u 1

2 ,\alpha 
2 as in (a), we take inverses in

(6.2), we conclude that (\scrA m
\alpha 2(an) - \lambda ) - 1 is compact.

(c) In the same way as in (b), cf. (6.4), we obtain that, for Re(\lambda ) > u\alpha 2 ,

sup
n\in \BbbN 

\bigm\| \bigm\| (\scrA \alpha 2,l(an) - \lambda ) - 1
\bigm\| \bigm\| \leq 

1+\| \alpha \| + \| \alpha \prime \| \surd 
2

Re(\lambda )+l(l+1) - 
\bigl( 
\| \alpha \| + \| \alpha \prime \| \surd 

2

\bigr) 
\| \alpha \| 

 - \rightarrow 0, l\rightarrow \infty .

This and Theorem 6.5 (c) imply that
\bigl( 
(\scrA \alpha 2(an,m) - \lambda ) - 1

\bigr) 
n\in \BbbN is discretely compact

for Re(\lambda )>u\alpha 2 by [3, Thm. 4.8]. For Re(\lambda )>max\{ u\alpha 2 , u 1
2 ,\alpha 

2\} the claim now follows

from the perturbation result [3, Thm. 4.2] using (6.2) and (6.3); see the proof of (a).
(d) Due to Theorem 6.5 (d) for Re(\lambda ) > u\alpha 2 and by Lemma 6.6 (i), e.g., for

Re(\lambda ) > u 1
2 ,\alpha 

2 , which yields that the sequence
\bigl( 
\| (\scrA \alpha 2(an,m) - \lambda ) - 1\| 

\bigr) 
n\in \BbbN is bounded,

we can apply [3, Thm. 3.15] (with \scrS = 0, \scrS (n) = 0 therein) to the infinite operator
matrices \scrA \alpha 2(0,m), \scrA \alpha 2(an,m), n \in \BbbN ; note that, since the latter are diagonal, we
are in case (a) of [3, Thm. 3.15] with N = M = 1. Hence we obtain that, for
Re(\lambda ) > max\{ u\alpha 2 , u 1

2 ,\alpha 
2\} ,

(6.5)
\bigl( 
\scrA \alpha 2(an,m) - \lambda 

\bigr)  - 1\scrP \infty (an)
s - \rightarrow (\scrA \alpha 2(0,m) - \lambda ) - 1, n \rightarrow \infty ,

and claim (d) follows from the perturbation result [3, Thm 3.3] using (6.2) and (6.3),
see the proof of (a).

Altogether, we have proved that all assumptions of [3, Thm. 2.6] are satisfied and
the latter yields all the claims for interval truncation.

Step 2. Spectral exactness of combined interval truncation and finite section
method. First, we prove the claims for the leading operator in the \alpha 2- and \alpha 2\omega -
models, \scrA \alpha 2(0,m)=diag(\scrA \alpha 2,l(0) : l\geq km), and its approximating sequence given by

\scrA \alpha 2,n(an,m) :=\scrQ n(an)\scrA \alpha 2(an,m) =diag(\scrA \alpha 2,l(an,m) : l=km, . . . , km+n - 1),

\scrD (\scrA \alpha 2,n(an,m)) := \scrD (\scrA \alpha 2(an,m)) \cap \scrH n(an), n \in \BbbN .

The claims for \scrA m
\alpha 2(0), \scrA m

\alpha 2\omega (0) then follow by corresponding perturbation arguments,
including [3, Thms. 3.3 and 4.2], that rely on inequalities analogous to those in the
proof of Step 1, cf. (6.2) and (6.3).

Again we show that each of the claims (a), (b), (c), (d) is satisfied for \lambda \in \BbbC with
Re(\lambda ) sufficiently large.
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(a) By Lemma 6.6, if Re(\lambda ) is sufficiently large, then \lambda \in 
\bigcap 

n\in \BbbN \varrho 
\bigl( 
\scrA \alpha 2(0,m)

\bigr) 
\cap \varrho 
\bigl( 
\scrA \alpha 2,n(an,m)

\bigr) 
since \scrA \alpha 2(an,m) is block diagonal and

(6.6) (\scrA \alpha 2,n(an,m) - \lambda ) - 1= \scrQ n(an)(\scrA \alpha 2(an,m) - \lambda ) - 1
\bigm| \bigm| 
\scrH n(an)

, n \in \BbbN .

(b) The compactness of (\scrA \alpha 2(0,m) - \lambda ) - 1, (\scrA \alpha 2,n(an,m) - \lambda ) - 1, n \in \BbbN , follows
from Theorem 6.5 (b) and from (6.6).

(c) The claim is a direct consequence of the discrete compactness of the sequence\bigl( 
(\scrA \alpha 2(an,m) - \lambda ) - 1

\bigr) 
n\in \BbbN due to Theorem 6.5 (c) and of (6.6).

(d) First we note that \scrQ n(an)=\scrQ n(0)\scrP \infty (an)=\scrP \infty (an)\scrQ n(0), n\in \BbbN ; see Remark
6.8. As (\scrA \alpha 2(an,m) - \lambda ) - 1 is block diagonal, Theorem 6.5 (iv) and [3, Prop. 3.12 (a)]

yield (\scrA \alpha 2(an,m)  - \lambda ) - 1\scrP \infty (an)
s\rightarrow (\scrA \alpha 2(0,m)  - \lambda ) - 1 as n \rightarrow \infty , cf. Step 1, and

thus \bigl( 
\scrA \alpha 2,n(an,m) - \lambda 

\bigr)  - 1\scrQ n(an)

=
\bigl( 
\scrA \alpha 2,n(an,m) - \lambda 

\bigr)  - 1\scrP \infty (an)\scrQ n(0)
s - \rightarrow (\scrA \alpha 2(0,m) - \lambda ) - 1, n \rightarrow \infty .

Now all claims for \scrA \alpha 2(0,m) follow from [3, Thm. 2.6].
To prove the claims for the \alpha \omega -model, we replace \scrA \alpha 2(0,m) by \scrA \alpha (0,m) in the

above proof and proceed analogously as for the \alpha 2\omega -model.

Remark 6.9. Note that exact a priori error estimates for eigenvalue approxima-
tions cannot be derived in the nonnormal case. For differential operators with compact
resolvents that are truncated to finite sections/subintervals, it is a classical result that
asymptotic error estimates depend on the behavior of the eigenfunctions truncated to
finite sections/subintervals; see, e.g., [15] or [4, Thm. 5.2]. However, a priori informa-
tion about the behavior of the eigenfuntions is, in general, not available.

7. Numerical examples. In this section we apply and illustrate the results of
the previous section by numerical computations of eigenvalues for different dynamo
models. Particular attention will be paid to the effect of interval truncation. We con-
sider several concrete functions \alpha and \omega , including the helical turbulence function \alpha 
due to Stefani and Gerbeth [19], for which the existence of an oscillatory dynamo effect
for the \alpha 2-model was first suggested by numerical approximations, then still without
a theoretical result ensuring convergence to a true eigenvalue with real part >0.

As in [19] we choose m = 0, although our results cover all m \in \BbbZ . However,
we consider not only \alpha 2-dynamos but also \alpha 2\omega -models where, in addition to interval
truncation, taking finite sections is required for numerical eigenvalue approximations.

The numerical computations underlying the plots in this subsection use a code
written in Wolfram Mathematica 9 software and were operated on a standard dual-
core Linux machine. After applying finite section/domain truncation, the finite system
of regularized ODEs on the interval (a, 1) is solved using a shooting method. This
amounts to finding the zeros of a holomorphic function, which is done using the argu-
ment principle. We use the numerical integrator built into Mathematica to calculate
the contour integral. The precision of the numerically found zero depends on the pre-
cision of the contour integral, which has to be an integer by the argument principle.
Therefore, the distance to the integers is an indicator for numerical precision.

Example 7.1 (\alpha from [19] in the \alpha 2-model, interval truncation). The first example
of a helical turbulence function \alpha for which numerical computations of physicists
indicated the existence of supercritical modes, i.e., of eigenvalues \lambda with Re(\lambda ) > 0,
and hence the existence of an oscillatory dynamo effect for the \alpha 2-model, is due
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to Stefani and Gerbeth [19]. They also conjectured that polarity reversals of the
magnetic field, which are known to occur irregularly, e.g., for the Earth, are related
to the existence of oscillatory modes close to criticality, i.e., Im(\lambda ) \not = 0, Re(\lambda ) \approx 0;
see [20].

In [19] an evolutionary strategy was used to construct helical turbulence functions
\alpha such that, for the dominating mode l = 1, there is a pair of numerical eigenvalue
approximations converging to some \lambda \in \BbbC with Im(\lambda ) \not = 0, Re(\lambda ) \approx 0, and for l \geq 2
the real parts of all numerical eigenvalue approximations are negative. One of these
functions is given by

(7.1) \alpha (r) := C( - 21.46 + 426.41r2  - 806.73r3 + 392.28r4), r \in [0, 1].

For C = 1 the critical numerical values found in [19] for l = 1 are

(7.2) \lambda \pm = 0.01\pm 7.24i;

if the scaling C is increased beyond 1, the positive real part increases further; see [19,
Fig. 3].

However, the \alpha 2-dynamo operator is not selfadjoint and, up to now, there was no
guarantee whatsoever that these numerical values lie near a pair of true eigenvalues
of the \alpha 2-dynamo problem. The results of this paper do not only fill this gap for
the particular helical turbulence function (7.1), but for arbitrary differentiable \alpha with
essentially bounded \alpha \prime ; see Theorem 6.5 and 6.7.

0.00 0.02 0.04 0.06 0.08 0.10
an-60

-40

-20

0

20
Re(λ)

0.02 0.04 0.06 0.08 0.10
an

-10

-5

0

5

10
Im(λ)

Fig. 2. Eigenvalues \lambda n of \scrA \alpha 2,l(an) for l=1, an\in (0, 0.1] if \alpha (r)= - 21.46+426.41r2 - 806.73r3+
392.28r4, r\in [0, 1].

Figures 2 and 3 show our numerically computed eigenvalues of \scrA \alpha 2,l(an) for l = 1
as functions of an \in (0, 0.1], for C = 1 and for C = 1.05. In Figure 2 for C = 1, the
two upper curves in the left picture start, for an = 0.1, with a single, real eigenvalue
at  - 5.4 and a complex, conjugate eigenvalue pair at  - 18.3 \pm 5.4i; there is another
eigenvalue curve with smaller real part. As an decreases, the single eigenvalue moves
left on the real axis, while the pair starts to move right and at the same time down
towards the real axis. There the pair finally meets and splits into two real eigenvalues
moving apart to the left and to the right on the real axis. The eigenvalue moving
right then hits the single real eigenvalue which had been continuously moving left.
The newly formed pair then splits into a complex conjugate pair, while the other
eigenvalue continues to move right on the real axis. As an decreases further, the
complex conjugate pair moves to the right towards the imaginary axis and slightly
beyond with real part converging to 0.01 and imaginary parts converging to \pm 7.2, in
agreement with (7.2).

In Figure 3 for C = 1.05, as an decreases from 0.1 to zero, the eigenvalue pair with
largest real part behaves similarly as in Figure 2 for C=1, but it moves much further
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0.00 0.02 0.04 0.06 0.08 0.10
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-20

0

20
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an

-10
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0
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Fig. 3. Eigenvalues \lambda n of \scrA \alpha 2,l(an) for l= 1, an \in (0, 0.1] if \alpha (r) = 1.05 ( - 21.46+426.41r2 - 
806.73r3+392.28r4), r\in [0, 1].

into the complex right half-plane, converging to 3.9 \pm 6.1i. In contrast to C=1, see
Figure 2, the next two eigenvalues also form a complex conjugate pair which remains
in the left half-plane.

Next, we consider the \alpha 2\omega -model. Here the corresponding operator \scrA 0
\alpha 2\omega (0) is an

infinite operator matrix which, unlike the \alpha 2-operator, does not decouple. Therefore,
in addition to cutting the singular interval (0, 1] at the left at an, truncating \scrA 0

\alpha 2\omega (an)
to its first n rows and columns may also lead to spectral pollution and failure of ap-
proximation of true eigenvalues. Theorem 6.7 is the first result guaranteeing spectral
exactness for either of these truncation processes.

We combine the simplest example of a function \omega such that \omega \prime \not = 0,

(7.3) \omega (r) := \omega 0r, r \in [0, 1], \omega 0 constant,

with two different helical turbulence functions \alpha : in Example 7.2 with constant \alpha \equiv 
\alpha 0 and in Example 7.3 with the polynomial function \alpha in (7.1) due to Stefani and
Gerbeth; see [19]. In both cases, we again consider the axisymmetric case, i.e., m = 0,
and, in view of the good agreement with [19] in the \alpha 2-dynamo model, we choose
an = 0.001.

Since all numerical calculations are computationally expensive, we perform the
computations for selected values of \alpha 0 and \omega 0; to illustrate the dependence on \alpha 0 or
\omega 0 in the plots, we interpolate the eigenvalue paths linearly for better visibility.

Example 7.2 (constant \alpha , \omega \prime in the \alpha 2\omega -model, interval truncation, and finite
section). In the simplest case \omega 0 = 0, i.e., \omega \equiv 0, the \alpha 2\omega -model reduces to the \alpha 2-
model. Even in this case, the eigenvalues are only implicitly known as the solutions
\lambda \in ( - \infty , \alpha 2

0/4) of the equation

(7.4) Jl - 1
2

\bigl( 
k+(\lambda )

\bigr) 
Jl+ 1

2

\bigl( 
k - (\lambda )

\bigr) 
 - Jl+ 1

2

\bigl( 
k+(\lambda )

\bigr) 
Jl - 1

2

\bigl( 
k - (\lambda )

\bigr) 
=0,

where Jl\pm 1
2
are Bessel functions of fractional order and k\pm (\lambda ) :=

\alpha 0

2 \pm 
\sqrt{} 

\alpha 2
0

4  - \lambda ; see

[9, eqs. (7.10) and (7.11)]. Note that, for all \alpha 0 \in \BbbR , the point \lambda = \alpha 2
0/4 is a trivial

solution of (7.4) since the left-hand side is identically zero then, but it is not an
eigenvalue of \scrA \alpha 2,l(0). This follows because, for \alpha 0 = 0, the point \lambda = \alpha 2

0/4 = 0 does
not belong to \sigma (\scrA \alpha 2,l(0)) = \sigma ( - Al(0, l)) \cup \sigma ( - Al(0,\infty )) \subset ( - \infty , - \lambda l,1(0, l)) and the
eigenvalues of \scrA \alpha 2,l(0) depend continuously on \alpha 0. The latter is a consequence of
[9, Prop. 5.1 and Thm. 5.3], which shows that they coincide with the eigenvalues of
a selfadjoint operator S =D+\alpha 0B, where D = diag( - Al(0, l), - Al(0,\infty )) and B is
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D-bounded with D-bound 0. In addition, for all \alpha 0 \in \BbbR , the point \lambda = 0 is another
trivial solution of (7.4) but it is not always an eigenvalue of \scrA \alpha 2,l(0), as the following
numerical computations show.

Figure 4 for \alpha \equiv \alpha 0, \omega \equiv 0 also serves as a reference plot. It shows the numerically
computed eigenvalues of the \alpha 2\omega -problem obtained for an = 0.001 and different \alpha \equiv 
\alpha 0 \in [0, 5]. For \alpha \equiv \alpha 0 = 5 an \alpha 2\omega -dynamo effect is possible since \| \alpha \| \infty = 5 > j 3

2 ,1
\approx 

4.493 violates the anti-\alpha 2\omega -dynamo condition (4.8). The choice of an was motivated
by a separate calculation for an \in [0.001, 0.1], where the eigenvalues changed by less
than 0.5. The critical value \alpha 0 = j 3

2 ,1
\approx 4.493, where the largest eigenvalue passes

into the linearly unstable half-plane Re(\lambda ) > 0 in Figure 4 seems to agree with the
one obtained from Theorem 4.7, which means that the anti-\alpha 2\omega -dynamo theorem is
sharp in this case. This was already pointed out in [21, Ex. 1].1

1 2 3 4 5
α0

-40

-30

-20

-10

0

λ

Fig. 4. Eigenvalue approximations for \scrA \alpha 2\omega (0) with \omega \equiv 0 as functions of \alpha \equiv \alpha 0 =
0, 0.5, 1, . . . , 5, lines for l=1 (black/solid), l=2 (blue/dashed), l=3 (red/dotted), l=4 (green/dashed-
dotted), l=5 (purple/long dashed). (Figure in color online.)

For \omega 0 > 0, due to Example 4.9, (4.8), the anti-\alpha 2\omega -dynamo criterion in Theo-
rem 4.7 amounts to

(7.5) \alpha 0 \leq j 3
2 ,1

, \omega 0 \leq 
3

min
l=1

(jl+ 1
2 ,1

)2 - \alpha 2
0\sqrt{} 

(jl+ 1
2 ,1

)4+ \alpha 2
0

(jl - 1
2 ,1

)2

\delta l,0
.

The explicit values of the constants involved are \delta 1,0 = 2
\sqrt{} 

2
15 , \delta 2,0 = 2

\sqrt{} 
39
35 , \delta 3,0 = 8\surd 

5

and j 1
2 ,1

\approx 3.142, j 3
2 ,1

\approx 4.493, j 5
3 ,1

\approx 5.763, j 7
3 ,1

\approx 6.988. Figure 5 shows the anti-

\alpha 2\omega -region (in grey) in the \alpha 0, \omega 0-plane where no dynamo action can take place due
to Theorem 4.7.

First, we performed numerical computations with all combinations of

n = 3, 6, 10, \alpha 0 = 0, 0.5, 1, . . . , 10, \omega 0 = 0, 5, 10, . . . , 40.

Since the eigenvalue approximations in the box [ - 37, 5] + [ - 5, 5] i was not changed
by more than the given precision 0.1 between n = 6 and n = 10, we set n = 10 and
an = 0.001 for the following calculations.

In Figure 6 we illustrate the behavior of the eigenvalue approximations if we set
\alpha 0 = 5, which violates the anti-\alpha 2\omega -dynamo criterion \alpha 0 \leq j 3

2 ,1
in (7.5) as required,

and increase \omega 0. We see that, as \omega 0 grows, the real parts of the eigenvalue approx-
imations do not vary much, but there is one pair of eigenvalue approximations that

1We note that [21, eq. (27)] contains a misprint; the squares in the numerator should be erased,
cf. [9, eq. (6.3)] or Theorem 4.2.
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0 2 4 6 8
α00

2

4

6

8

10

12

14

ω0

Fig. 5. Anti-\alpha 2\omega -dynamo region (grey) in the \alpha \equiv \alpha 0, \omega \prime \equiv \omega 0 plane according to (7.5); lines
for l=1 (dotted), l=2 (dashed), l=3 (solid).
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Fig. 6. Eigenvalue approximations for \scrA \alpha 2\omega (an, 0) with n = 10, an = 0.001 for \alpha \equiv \alpha 0 = 5,
\omega \prime \equiv \omega 0 = 0, 5, 10, . . . , 40.

meet and form a complex conjugate pair for which the moduli of the imaginary parts
seem to grow.

In Figure 7 we have set \omega 0 = 40 and vary \alpha 0. There are various pairs of eigenvalue
approximations that coalesce, some of which separate again when \alpha 0 grows further.
The real part of the largest eigenvalue pair is monotonically growing; approximately
at \alpha 0 = 5.5 the pair crosses the imaginary axis. So, even in this simple example of
constant \alpha 0 and \omega 0, we observe oscillatory modes close to criticality!

1 2 3 4 5 6
α0

-40

-30

-20

-10

0

Re(λ)

1 2 3 4 5 6
α0

-4

-2

0

2

4

Im(λ)

Fig. 7. Eigenvalue approximations for \scrA \alpha 2\omega (an, 0) with n=10, an =0.001 for \omega \prime \equiv \omega 0 = 40,
and different \alpha \equiv \alpha 0.

Example 7.3 (\alpha in (7.1) from [19] with C = 1, \omega \prime constant in the \alpha 2\omega -model,
interval truncation, and finite section). No numerical computations are available yet
for the combination of the polynomial \alpha studied by Stefani and Gerbeth in [19],
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see (7.1), and linear \omega with \omega \prime \equiv \omega 0; see (7.3). The results presented here were
performed for n = 10 and an = 0.001.

Figure 8 shows the dependence of the eigenvalue approximations on \omega 0. As in
Example 7.2, the real parts of the eigenvalue approximations do not vary much as \omega 0

increases. Apart from the oscillatory pair close to criticality (both eigenvalues corre-
spond to l=1), two additional pairs meet as \omega 0 grows; the moduli of the imaginary
parts increase monotonically up to \omega 0=70.

10 20 30 40 50 60 70
ω0

-30

-20

-10

0

10

Re(λ)

10 20 30 40 50 60 70
ω0

-10

-5

0

5

10

Im(λ)

Fig. 8. Eigenvalue approximations for \scrA \alpha 2\omega (an, 0) with n=10, an=0.001, for \alpha (r)= - 21.46+
426.41r2 - 806.73r3+392.28r4, r\in [0, 1], and different \omega \prime \equiv \omega 0.
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