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Zinc Oxide-Modified Mordenite as an Effective Catalyst for the Dehydrogenation of 

(bio)Ethanol to Acetaldehyde.

Samuel J. Raynesa and Russell A. Taylor*a.
a Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK

Email: russell.taylor@durham.ac.uk

ORCID: 0000-0001-7999-8157 (SR), 0000-0001-7528-4587 (RT).

Abstract:

The direct transformation of ethanol to acetaldehyde is an important step in the cascade 

conversion of bioethanol to higher value chemicals and for the development of sustainable 

fuels. Herein, zinc oxide supported on alkali cation-exchanged mordenite (ZnO/M–MOR) 

prepared by a simple wetness impregnation method, is shown to be a selective and stable 

catalyst for the direct dehydrogenation of ethanol to acetaldehyde at 400 °C under continuous 

flow conditions. Through variation of the ZnO loading and the zeolite counter-cation (Na, K, 

Rb, Cs), an optimum catalyst material was identified, ZnO/Rb–MOR loaded at 3.5 wt% Zn. 

Acetaldehyde productivity (normalised to Zn) could be increased by over 80% and ethylene 

selectivity reduced to 0.9 % through simple variation of the extra-framework alkali cation. 

Very low ethylene production leads to low levels of carbonaceous deposits and therefore 

minimal deactivation at short time on stream (< 5 h).  Detailed analysis of the optimized system 

reveals excellent selectivity and stability beyond 120 h time on stream, resulting in an average 

acetaldehyde productivity of 16 mmol gcat
−1 h−1 and overall acetaldehyde selectivity of 90% 

whilst operating at an ethanol conversion level of 40 %. Additionally, the use of a zeolite 

support is shown to greatly improving the usage efficiency of Zn atoms by virtue of an 

acetaldehyde productivity increase from 20 to 48 mmol mmolZn
−1 h−1 for unsupported and 

supported ZnO, respectively. The new catalyst system shows that ZnO can be tuned to give 

very low ethylene selectivity and extended lifetimes in ethanol dehydrogenation to 

acetaldehyde which has not previously been reported.  
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1. Introduction:

Bioethanol, a common biofuel, is currently produced on a large scale (28 billion gallons in 

2018) by fermentation of biomass (such as corn and sugarcane) with production predominantly 

localized in the USA and Brazil.1 In the USA, bioethanol is produced in excess and added to 

inventory as demands for fuel blending and exports have already largely been met.2 The direct 

transformation of bioethanol into (bio)acetaldehyde and beyond could therefore prove to be a 

more sustainable route to many higher-value chemicals, one which utilizes an available and 

renewable carbon feedstock. Further, the direct transformation of bioethanol to acetaldehyde 

and beyond may be of industrial interest owing to its potential profitability.3 Figure 1 outlines 

potential routes to higher value products following production of (bio)acetaldehyde from 

(bio)ethanol, namely the synthesis of nbutanol4 (Guerbet reaction) and butadiene5 (Lebedev 

reaction), both via the aldol condensation,6, 7 the synthesis of pyridine via acrolein with addition 

of ammonia (Chichibabin reaction),8 and the synthesis of pentaerythritol by reaction with 

formaldehyde.9 

Acetaldehyde is a versatile platform chemical that can be utilized in a variety of ways to 

manufacture higher value chemicals. Currently, the vast majority of acetaldehyde produced 

industrially is formed via the oxidation of ethylene by the Wacker process which utilizes a 

homogeneous PdCl2/CuCl2 catalyst system.10 The process operates under moderate conditions 

giving 95% acetaldehyde yield for the two-stage process at 110 °C and 10 bar, although it 

requires substantial infrastructure investment and predominantly utilizes carbon sources that 

are typically produced from non-renewable and non-sustainable feedstocks.10-12 As the global 

market for acetaldehyde is predicted to grow to around USD 1.80 billion by 2022, meeting the 

demand through increased investment in expensive infrastructure and non-renewable carbon is 

undesirable.13, 14
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Figure 1: Schematic routes to higher value products available following prodcution of (bio)acetaldehyde from 
(bio)ethanol, such as pentaerythritol (red), butanol and butadiene (green) and pyridine (blue).

Current research into the transformation of ethanol to acetaldehyde is typically practiced by 

two distinct methods: partial oxidation of ethanol resulting in formation of acetaldehyde and 

water (Equation 1A) and direct dehydrogenation of ethanol resulting in the formation of 

acetaldehyde and hydrogen (Equation 1B).10 

𝐴) 𝐶𝐻3𝐶𝐻2𝑂𝐻 (𝑙) +  
1
2𝑂2(𝑔)→ 𝐶𝐻3𝐶𝐻𝑂(𝑙) +  𝐻2𝑂 (𝑙)

𝛥𝑟𝐻0 =  ― 204.8 𝑘𝐽 𝑚𝑜𝑙 ―1

𝛥𝑟𝐺0 =  ― 182.4 𝑘𝐽 𝑚𝑜𝑙 ―1

𝐵) 𝐶𝐻3𝐶𝐻2𝑂𝐻 (𝑙)→ 𝐶𝐻3𝐶𝐻𝑂(𝑙) +  𝐻2 (𝑔)

𝛥𝑟𝐻0 =  + 81.0 𝑘𝐽 𝑚𝑜𝑙 ―1

𝛥𝑟𝐺0 = +54.8  𝑘𝐽 𝑚𝑜𝑙 ―1

Equation 1: Balanced chemical equations and calculated thermodynamic parameters for A) partial oxidation of ethanol 
with oxygen to form acetaldehyde and water, B) direct dehydrogenation of ethanol to form acetaldehyde and hydrogen.

Partial oxidation is an exothermic process and produces one equivalent of water as a by-product 

for each acetaldehyde equivalent. Owing to this, whilst lower reaction temperatures are 

typically utilized, an energy penalty is often incurred to separate the resultant water from the 

acetaldehyde product and unconverted ethanol if purified acetaldehyde or feed recycling are 

desired. One previous industrially practiced ethanol partial oxidation process, the Veba-
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Chemie process, operated at elevated temperature (500–650 °C) and utilized an elemental silver 

catalyst resulting in acetaldehyde yields of up to 99% at ethanol conversion values of 50–70%, 

although requiring the use of fractional distillation to purify the product stream.10, 15 Academic 

research into ethanol partial oxidation typically focusses on the use of supported precious 

metals such as Pt,16, 17 Pd,18 and especially Au,19-24 at lower operating temperatures of around 

200 °C. However, supported precious metal catalysts may often suffer from short lifetimes due 

to sintering, requiring frequent regeneration.25 Further, precious metal catalysts are often seen 

as undesirable owing to their dwindling reserves and long-term unsustainability.

The direct dehydrogenation of ethanol is an endothermic process and is typically conducted at 

increased reaction temperatures when compared to the partial oxidation process. The reaction, 

however, produces a stoichiometric amount of hydrogen gas as a desirable and easily separated 

by-product that can readily be fed into the hydrogen economy, reducing reliance on the steam 

reforming and water-gas shift reactions for hydrogen production. Additionally, further 

conversion of acetaldehyde to higher-value products may require the use of hydrogen in 

subsequent reaction steps that can be “borrowed” from this initial dehydrogenation (such as 
nbutanol by the Guerbet mechanism).26 Due to the co-production of hydrogen, direct 

dehydrogenation of ethanol was preferred over partial oxidation in the early part of the 20th 

century. However, the need for frequent regeneration of the ethanol dehydrogenation catalysts 

(typically supported Cu based systems) pushed the partial oxidation method to be the preferred 

method for the production of acetaldehyde from ethanol.10 Many current systems for direct 

dehydrogenation of ethanol typically focus around the use of supported metal nanoparticles 

and metal oxides, with related emerging technologies seeking to prevent sintering and 

deactivation of such supported systems.27-31 In particular, zeolite and porous silica materials 

have become an area of considerable interest as favourable supports for metal species owing 

to their ability to stabilize metal ions and direct metal cluster size.24, 32-36 One such example is 

the direct production of acetaldehyde from ethanol over Fe-exchanged mordenite (Fe–MOR) 

zeolites prepared by both solution-state and solid-state ion-exchange methods.36 In this report, 

acetaldehyde was formed with 7-25% selectivity over Fe–MOR materials at reaction 

temperatures between 200-400 °C. Notably, an acetaldehyde selectivity of 79% was reported 

at a reaction temperature of 100 °C over an Fe–MOR catalyst prepared by solid-sate ion-

exchange, albeit at very low ethanol conversion values (0.72%). Additionally, some d-block 

metal-free zeolite systems have been realized as ethanol dehydrogenation catalysts.15, 37 

Specifically, the effect of alkaline metal activation on zeolite ultra-stable Y (USY) in the 
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dehydrogenation of ethanol to acetaldehyde has been studied.15, 38 Reaction of ethanol at 450 

°C over USY treated with Na, K, Rb or Cs hydroxide demonstrated that treatment with NaOH 

was optimal in terms of both ethanol conversion and acetaldehyde selectivity, whilst retaining 

catalyst crystallinity.15

Previous unpublished work within our group has shown that the MOR framework has potential 

to improve the selectivity to acetaldehyde from ethanol by reducing the range of side-products 

in comparison to MFI and BEA frameworks, under similar reaction conditions. Hence, in this 

study, we have screened a large library of metal oxide species supported on sodium-form 

mordenite (Na–MOR) for the direct dehydrogenation of ethanol to acetaldehyde at 400 °C. 

Following the initial screening of metal oxides, ZnO was identified as a promising candidate 

to be supported on MOR. Although unsupported ZnO has been recognized as an ethanol 

dehydrogenation catalyst for close to a century,39-42 the benefits of a tuneable zeolite support 

are herein shown to be significant.  Hence, we explored the effect of varying the ZnO loading 

and zeolite counter-cation to arrive at the optimum catalytic material in this study, ZnO/Rb–

MOR–(7) with a nominal zinc content of 3.5 wt%. Variation of the zeolite counter-cation is 

shown to be able to enhance the acetaldehyde productivity (normalised to Zn) and minimise 

ethylene selectivity. Additionally, ZnO(3.5)/Rb–MOR–(7) was subjected to a long-term 

stability test and is shown to give reproducible performance combined with steady 

acetaldehyde production over 120 hours time on stream (TOS). We believe that such a catalyst 

may offer a robust and efficient alternative for (bio)acetaldehyde production which utilises a 

renewable and available carbon source.

2. Experimental:

2.1. Preparation of Materials

Metal modified mordenites (MxOy/Na–MOR) were prepared by a wetness impregnation of Na–

MOR, (nominal Si/Al = 7, kindly donated by Clariant) with the respective metal nitrate or 

metal chloride solution. A calculated amount of the metal precursor (1–10 wt% by metal) was 

dissolved in distilled water (4 mL) before the zeolite powder (1 g) was added. The resulting 

suspension was then mixed thoroughly overnight. The sample was brought to dryness under 

reduced pressure and constant agitation, followed by further drying at 80 °C overnight and 

subsequent calcination at 550 °C for 5 hours using a 5 °C min−1 ramp rate under static air in a 

muffle furnace. K–MOR, Rb–MOR and Cs–MOR were prepared by an ion-exchange process 

in which the zeolite powder (1 g) was contacted with 0.3 M KNO3, RbNO3 and CsNO3 
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solutions respectively (100 mL×5) in centrifuge tubes under mechanical agitation (tube roller). 

Each contact had a duration of approximately 1 hour. Subsequently, the materials were washed 

with deionized water (100 mL ×3) in a similar fashion. Centrifugation at 4500 rpm for 5.5 

minutes was used to separate the zeolite powder from the exchange and washing media. 

Materials were then dried overnight at 80 °C and calcined at 550 °C for 5 hours using a 5 °C 

min−1 ramp rate under static air. Metal salts were sourced as follows and used without further 

purification: KNO3 (99+%, Acros Organics), RbNO3 (99.5%, Sigma Aldrich), CsNO3 (99.8%, 

Alfa Aesar), Zn(NO3)2·6H2O (98%, Acros Organics), Co(NO3)2·6H2O (99%, Acros Organics), 

Fe(NO3)3·9H2O (99%, Acros Organics), Mn(NO3)2·4H2O (97.5%, Acros Organics), 

CrCl3·6H2O (96%, Aldrich), AgNO3 (GPR reagent grade, BDH Chemicals), Mg(NO3)2·6H2O 

(ACS reagent grade, Alfa Aesar), Ga(NO3)3·H2O (99.9%, Alfa Aesar), RuCl3·H2O (95+%, 

Sigma Aldrich), Cu(NO3)2·3H2O (99%, Acros Organics), Pd(NO3)2·H2O (37–42% Pd Basis, 

Fisher Scientific UK), Ni(NO3)2 (97+%, Aldrich).

2.2. Characterisation of Materials

Metal loadings were determined by ICP-OES analysis using a Jobin Yvon Horiba Ultima 2 

instrument, with the following setup: radial torch, sequential monochromater, cyclonic spray 

chamber and concentric nebulizer. Zeolite materials were initially subjected to digestion in 

concentrated hydrofluoric acid, allowed to evaporate at 150 °C and subsequently re-dissolved 

in a known volume of nitric acid in order to perform ICP-OES measurements. Metal loadings 

determined by ED-XRF spectroscopy were acquired using a Panalytical Epsilon 1 ED-XRF 

spectrometer. Powder X-ray diffraction (pXRD) diffractograms were collected on a Bruker D8 

Avance X-ray diffractometer with Cu Kα radiation (λ = 1.54184 Å) using a step of 0.02 ° over 

a range of 2θ = 5–70 °. A knife edge was utilized for low angle scattering. pXRD samples were 

sieved to < 177 μm (80 mesh), mounted onto either glass or silicon (9 1 1) slide holders by 

adhesion with petroleum jelly and rotated during data acquisition. Solid-state 27Al NMR spectra 

were acquired on a Varian VNMRS spectrometer operating at 104.198 MHz with a spinning 

rate of approx. 14 kHz. Spectra were obtained using direct excitation with a recycle delay of 

0.2 s over 10000 scans. Spectra were referenced to an external standard of 1 M aq. Al(NO3)3 

solution which was used as a primary reference (δAl = 0 ppm). Scanning electron microscopy 

(SEM) was performed on a FEI Helios Nanolab SEM operated at 5 kV. The zeolite powders 

were suspended in isopropyl alcohol by ultrasonic treatment for 5 min. Samples were deposited 

onto a silicon (1 0 0) wafer (Agar Scientific, wafer thickness: 460-530 µm, polished) and coated 

with 20 nm of gold using a Cressington sputter coater 108 Auto. Scanning electron microscopy-
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energy dispersive X-ray spectroscopy (SEM-EDS) mapping was performed on a Zeiss Sigma 

300 VP SEM operated at 15 kV. The zeolite powders were first set into epoxy resin before 

being mechanically ground down by several micrometers and the surfaces diamond polished. 

Care was taken to ensure that zeolite particles were not released from the resin during the 

polishing process and the absence of holes was verified by microscope analysis. As the particles 

were randomly suspended in the resin, the grinding and polishing steps revealed inner areas of 

the samples.

2.3. Catalytic Testing Under Flow Conditions

Reactions under flow conditions were performed using a HEL FlowCAT flow reactor feeding 

ethanol (absolute, 99.8%, Fisher Scientific UK) via an Eldex Optos 1 HPLC pump. All 

catalysts were prepared for catalysis by first pressing at 10 tons for 30 s in an Apollo Scientific 

XRF die equipped with 32 mm KBX-320 pellets using a Specac hydraulic press. The pressed 

catalysts were then sieved between 40–60 mesh (420–250 μm). Catalyst beds were packed into 

a stainless-steel reactor with a 4 mm internal diameter and consisted of a 1.6 g SiC (technical 

grade, approx. 80 grit, Fisher Scientific UK) pre-bed, followed by 0.300 g of the desired 

catalyst diluted with 1.4 g SiC and a 2.0 g SiC post-bed. All catalysts were pre-treated first at 

150 °C for 1 hour then at 400 °C for 30 minutes under flowing He or N2 (40 mL min−1) before 

being adjusted to the desired reaction temperature (200–400 °C). The ramping rate for each 

stage was 10 °C min−1. Once the desired reaction temperature was reached, the system was 

further purged with He or N2 for 30 minutes before ethanol flow (0.171–0.330 mmol min−1) 

was started, feeding via the HPLC pump. On-line product analysis was performed by GC-MS-

BID (Shimadzu GC-2010 Plus) equipped with BPX90 (SGE Analytical) or RTX-VMS 

(Thames Restek) columns for mass spectrometry (MS) detection and a ShinCarbon ST 

(Thames Restek) column for barrier ionization discharge (BID) detection, further details are 

contained within the supplementary information. In all cases, time on stream (TOS) is defined 

as the time since ethanol flow commenced. Ethanol conversion, carbon balance, selectivity, 

yield and effluent composition were calculated as shown in the supplementary information 

using mmol min–1 of carbon as input values. A list of quantitatively calibrated compounds that 

were factored into calculation for each GC column is additionally provided in the 

supplementary information. It is noted that an oscillatory and lower than expected carbon 

balance is reported in some experiments and is discussed in the Supplementary Information.

3. Results and Discussion:
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3.1. Screening of a library of metal oxide species supported on Na–MOR–(7).

A library of metal oxide impregnated mordenite materials, MxOy/Na–MOR–(7), were prepared 

by a wetness impregnation method with a targeted metal loading of 3.0 wt% by metal atom. 

Resultant elemental compositions of the materials, as measured by ICP-OES, can be seen in 

Table S.1. The MxOy/Na–MOR–(7) materials were screened for ethanol conversion to 

acetaldehyde under continuous flow conditions at 400 °C. Acetaldehyde productivities 

normalized by catalyst mass (Figure 2) and molar metal content (Figure S.2) both show 

ZnO/Na–MOR–(7) to be superior in terms of acetaldehyde productivity to all other supported 

metal oxide species tested under these reaction conditions. ZnO/Na–MOR–(7) produced 

acetaldehyde as the major reaction product with ethylene as a minor product alongside low-

intensity traces of diethyl ether and 1,3–butadiene. Most of the other metal oxide species 

predominantly produced ethylene as the major product as a result of preferential ethanol 

dehydration (Table S.2). The major products produced from ethanol conversion over NiO/Na–

MOR–(7) and PdO/Na–MOR–(7) were CH4 and CO suggesting that acetaldehyde was formed 

initially but subsequently underwent rapid decarbonylation by the catalysts, a reaction observed 

for several homogenous Ni and Pd catalysts,43, 44 alongside supported Pd clusters.27 At TOS < 

0.5 h an induction period in acetaldehyde productivity is observed for some of the catalysts 

(ZnO/Na–MOR–(7), Co3O4/Na–MOR–(7) and Fe2O3/Na–MOR–(7)), during which period 

ethylene is the major product (Table S.2 and Figure S.3).

Figure 2: Acetaldehyde productivities normalized to catalyst mass alongside ethanol conversion values resulting from 
reaction of ethanol over ZnO/Na–MOR−(7), Co3O4/Na–MOR−(7), Fe2O3/Na–MOR−(7), Mn3O4/Na–MOR−(7), 
Cr2O3/Na–MOR−(7), Ag/Na–MOR−(7), MgO/Na–MOR−(7), Ga2O3/Na–MOR−(7), Ru2O3/Na–MOR−(7), CuO/Na–
MOR−(7), PdO/Na–MOR−(7) and NiO/Na–MOR−(7) at 400 °C. Ethanol feed rate = 0.171 mmol min−1, catalyst mass 
= 0.300 g. Detection column: BPX90. TOS = 1.75 h.
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3.2. Stability of the ZnO/Na-MOR-(7) system.

Following identification of ZnO/Na-MOR-(7) as a promising candidate for ethanol 

dehydrogenation, several further investigations were undertaken into long-term catalyst 

stability and the effect of varying ZnO loading. Initially, reaction of ethanol over ZnO/Na-

MOR-(7) was monitored over a period of 24 h TOS at an ethanol flow rate of 0.171 mmol 

min−1. As shown in Figure 3, ethanol conversion and carbon balance remain relatively constant 

at ~50% and ~70% respectively throughout the 24-hour runtime, implicating the longer-term 

stability of the catalyst. Additionally, it is observed that whilst the yield of acetaldehyde 

remains steady with increasing time on stream (23%), the yield of ethylene is seen to decrease 

rapidly and substantially from around 15% to 3%. Plotting the productivities of acetaldehyde 

and ethylene over time (Figure 4) confirms this observation to be ascribed to a substantial and 

rapid decrease in ethylene productivity whilst acetaldehyde productivity remains constant. The 

cause of this decrease in ethylene productivity and resultant induction period is currently under 

investigation but is predicted to be the result of deactivation of an acidic or basic site inherent 

to either the zeolite material or ZnO particles. Low-intensity traces of diethyl ether and 1,3–

butadiene were also observed in the product effluent. Hydrogen resulting from direct 

dehydrogenation was also detected (Figure S.1), but not quantified.

Figure 3: Acetaldehyde (▲) and ethylene (♦) yields, ethanol conversion (●) and carbon balance (■, ethanol, 
acetaldehyde, ethylene only) resulting from reaction of ethanol over ZnO/Na–MOR–(7) for 24 hours TOS. Ethanol feed 
rate = 0.171 mmol min−1, catalyst mass = 0.300 g. Detection column: BPX90.
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Figure 4: Productivities of acetaldehyde (▲) and ethylene (♦) per mmol of ZnO obtained from reaction of ethanol over 
ZnO/Na–MOR–(7) for 24 hours TOS. Ethanol feed rate = 0.171 mmol min−1, catalyst mass = 0.300 g. Detection column: 
BPX90.

As production of anhydrous (99.8%) ethanol by azeotropic distillation is an energy intensive 

process, it is more desirable to feed ethanol of a lower grade in order to avoid this inefficient 

process. In order to assess the ability of ZnO/Na-MOR-(7) to operate with more dilute, aqueous 

ethanol feeds, compositions of 95% and 50% ethanol were also fed over the catalyst at 400 °C. 

In each case, the liquid flow rate was kept constant (0.01 mL min−1) which resulted in ethanol 

molar flow rates of 0.171 mmol min−1, 0.162 mmol min−1 and 0.086 mmol min−1 for anhydrous 

(99.8%), 95% and 50% compositions respectively. Figure S.4 shows the acetaldehyde 

productivity and ethanol conversion of ZnO/Na-MOR-(7) for each feed composition. Therein 

it is observed that the highest acetaldehyde productivity (8.0 mmol gcat
−1 h−1) is observed when 

95% ethanol is fed over the catalyst. Additionally, previous literature investigation of the effect 

of water on ethanol conversion over ZnO supports this observation, suggesting a higher extent 

of inhibition for ethanol dehydration in comparison to dehydrogenation.40 This is a significant 

benefit as 95% ethanol is a typical composition obtained following traditional fractional 

distillation of bio-derived ethanol and does not require the use of azeotropic distillation with 

entraining agents such as benzene.45 

3.3. Effect of varying the ZnO loading of ZnO/Na-MOR-(7) on acetaldehyde selectivity.

Having identified ZnO/Na-MOR-(7) as a stable and productive catalyst, optimisation of the 

system was undertaken with a priority of increasing acetaldehyde selectivity. During 

optimisation, the flow rate of ethanol during reactions was increased from 0.171 to 0.330 mmol 

min−1 to achieve a higher gas hourly space velocity (GHSV) and further differentiate catalyst 

performance at lower ethanol conversion levels.  Initially, the effect of varying ZnO loading 

on catalytic performance was investigated. ZnO/Na-MOR-(7) catalysts were prepared by 

wetness impregnation with a targeted loading of 1.0, 3.5, 5.0 and 10 wt% by Zn. Elemental 

compositions of catalysts are detailed in Table 1, with further elemental details shown in Table 
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S.3. In order to confirm framework retention, pXRD analysis of the variously loaded ZnO/Na-

MOR-(7) materials was undertaken. As can be seen in Figure 5A, all samples successfully 

retain a MOR framework type following the impregnation and calcination treatment. 

Additionally, it is observed that the sample loaded to 10.0 wt% Zn exhibits pXRD reflections 

concordant with ZnO, suggesting ZnO clusters of sufficient size to produce a pXRD response 

are present within this material. Figure 5B shows the solid-state 27Al NMR spectra of each 

ZnO/Na-MOR-(7) material and confirms that aluminium exists solely in tetrahedral framework 

positions (δAl ≈ 60 ppm) therefore ruling out any effect of extra-framework alumina on 

catalysis.46 Further, SEM imaging of the four catalyst variations did not show evidence of any 

change in catalyst morphology or large ZnO clusters on the surface of the catalyst crystals 

(Figure 5C). In order to further assess Zn distribution within the materials, a sample of each 

material was set into resin before being mechanically ground down and diamond polished and 

subject to SEM-EDS analysis. This preparation resulted in exposure of the crystal interiors and 

allowed assessment of elemental distribution within the zeolite crystals. Elemental mapping of 

Zn within the prepared samples showed a largely homogenous distribution throughout the 

newly exposed surfaces of the materials with few ZnO nanoparticles present. Those ZnO 

particles which were present were largest and more frequently observed for samples with 

higher Zn loadings (Figure S.5–8). 

Table 1: Nominal and measured Zn contents and Na/Al ratios for ZnO/Na–MOR–(7) materials obtained by ICP-OES. 
Target ZnO loading = 1.0, 3.5, 5.0, 10.0 wt% by Zn.

Material
Nominal Zn 

Loading / Wt%

Measured Zn 

Loading / Wt%
Na/Al Ratio

Na–MOR–(7) 0.00 0.00 1.01

ZnO/Na–MOR–(7)-1.0% 1.00 0.98 0.90

ZnO/Na–MOR–(7)-3.5% 3.50 3.22 0.90

ZnO/Na–MOR–(7)-5.0% 5.00 4.80 0.88

ZnO/Na–MOR–(7)-10% 10.00 9.79 0.91
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Figure 5: A) pXRD patterns within the 2θ = 5–55 ° range of ZnO/Na–MOR–(7) materials containing 1.0, 3.5, 5.0 and 
10 wt% ZnO by Zn. Samples were mounted onto a glass pXRD slide during data acquisition. The ZnO (99.99%, Sigma-
Aldrich) reference diffractogram was acquired using the same analysis conditions as those for zeolite materials; B) 
Solid-state 27Al NMR spectra of ZnO/Na–MOR–(7) materials containing 1.0, 3.5, 5.0 and 10 wt% ZnO by Zn;  C) 
Conventional SEM images of ZnO/Na-MOR-(7) materials loaded at nominal 1.0, 3.5, 5.0 and 10 wt% ZnO by Zn.

The prepared catalysts were each tested for ethanol dehydrogenation to acetaldehyde at 400 °C 

for 4 h TOS.  Figure 6A shows that a maximum acetaldehyde productivity is observed at 10 

wt% ZnO loading, followed by 3.5 wt% Zn loading, when normalized by catalyst mass. The 

molar productivity of acetaldehyde per mole of ZnO, however, decreases with increased ZnO 

loading, suggesting that the catalytic efficiency of ZnO clusters decreases with increasing ZnO 

loading (Figure 6B). This is most likely resultant from the increasing size and frequency of 
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large ZnO clusters in higher loaded samples leading to proportionally fewer available active 

sites. Figure 6D shows that ethylene selectivity decreases with increasing ZnO loading. 

Combined, these effects lead to the observation of a maximum acetaldehyde selectivity for 

ZnO/Na–MOR–(7)-10%, with ZnO/Na–MOR–(7)-3.5% performing at near identical levels 

(Figure 6C). Overall, these observations show ZnO/Na–MOR–(7)-3.5% to be optimal, 

balancing lower metal loading and high molar productivity with low ethylene selectivity. All 

catalysts maintained an ethanol conversion value of around 30–50% (Figure S.9A) at an 

ethanol flow rate of 0.330 mmol min−1. Additionally, a carbon balance of 80+% was observed 

for all reactions (Figure S.9B). The yield of acetaldehyde was observed to be highest for 

ZnO/Na–MOR–(7)-3.5% and ZnO/Na–MOR–(7)-10.0% (Figure S.9C). Further, elemental 

microanalysis of the spent catalyst charges showed the final C wt% value of the materials 

following reaction decreased with increasing ZnO loading from 5.12 wt% for ZnO/Na–MOR–

(7)-1.0% to 3.02 wt% for ZnO/Na–MOR–(7)-10% (Table S.4). This trend correlates with a 

decreasing ethylene selectivity (Figure 6D) for more highly loaded samples and suggests that 

coke deposition is likely the result of ethylene formation and subsequent aromatization as 

described elsewhere in the literature.47-49

Figure 6: Acetaldehyde mass productivity (A), acetaldehyde molar productivity (B), acetaldehyde selectivity (C) and 
ethylene selectivity (D) following reaction of ethanol over ZnO/Na–MOR materials at 400 °C for 4 h TOS at nominal 
Zn loadings of = 1.0 wt% (■), 3.5 wt% (●), 5.0 wt% (♦) and 10 wt% (▲). Ethanol feed rate = 0.330 mmol min−1, catalyst 
mass = 0.300 g. Detection Columns: RTX-VMS + ShinCarbon ST.
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3.4. Effect of varying zeolite counter-cation on acetaldehyde selectivity.

In an attempt to further optimize the performance of zinc oxide impregnated mordenites in 

ethanol dehydrogenation, the effect of the zeolite counter-cation was investigated. The parent  

zeolite, Na–MOR–(7), was first exchanged to completion with metal nitrate solutions of K+, 

Rb+ and Cs+ before wetness impregnation with Zn(NO3)2·6H2O and subsequent calcination to 

afford ZnO/M–MOR–(7) with a targeted 3.5 wt% Zn where M = K, Rb, or Cs. Table 2 shows 

the relevant elemental ratios and compositions for ZnO/M–MOR–(7) materials; further 

elemental compositions of the materials obtained by ICP-OES can be seen in Table S.5. Whilst 

both K+ and Rb+ forms were seen to undergo complete ion-exchange, the Cs+ exchange level 

was not seen to rise above 79% despite further and repeated exchange treatments. It is noted 

that full exchange of other large pore zeolites (BEA and FAU) with Cs+ cations is often not 

observed, with many literature examples showing a maximum Cs+ exchange level of around 

80%.50-54 Figure 7 shows the pXRD patterns (A) and 27Al solid-state NMR spectra (B) for 

ZnO/M–MOR–(7) materials (where M = Na, K, Rb, or Cs) indicating successful retention of 

both an MFI structure and tetrahedral aluminium sites following catalyst preparation, however, 

the low angle reflections (2θ < 15 °) within Figure 7A are decreased in intensity for ZnO/Rb–

MOR–(7) and ZnO/Cs–MOR–(7). It is noted that, whilst reduced crystallinity of ZnO/Rb–

MOR–(7) and ZnO/Cs–MOR–(7) cannot be ruled out, changing zeolite counter cations may 

have an effect on pXRD peak intensities as they are strongly determined by the electron density 

distribution within the zeolite unit cell. Previous publications suggest that low angle reflections 

are the ones most strongly affected by non-framework species in zeolites55, 56 and similar 

observations have also been reported in the literature.57, 58 

Figure 7: A) pXRD patterns within the 2θ = 5–55° range of ZnO/M–MOR–(7) materials where M = Na, K, Rb, or Cs. 
Samples were mounted onto a Si pXRD slide during data acquisition. The ZnO (99.99%, Sigma-Aldrich) reference 
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diffractogram was acquired using the same analysis conditions as those for zeolite materials; B) Solid-state 27Al NMR 
spectra of ZnO/M–MOR–(7) materials where M = Na, K, Rb, or Cs.  

Table 2: Relevant elemental ratios and compositions for ZnO/M–MOR–(7) materials obtained by ICP-OES where M 
= Na, K, Rb, or Cs. Target ZnO loading = 3.5 wt% by Zn. n.d. = Not detected

Material Zn / Wt% Na/Al K/Al Rb/Al Cs/Al

ZnO/Na–MOR–(7) 3.71 1.08 n.d. n.d. n.d.

ZnO/K–MOR–(7) 2.62 0.00 0.97 0.00 0.00

ZnO/Rb–MOR–(7) 3.12 0.00 0.00 1.00 0.00

ZnO/Cs–MOR–(7) 3.09 0.00 0.00 0.00 0.79

Figure 8 shows relevant productivity and selectivity data during the conversion of ethanol to 

acetaldehyde over ZnO/M–MOR–(7) (M = Na, K, Rb, or Cs) materials at 400 °C for 4 h TOS. 

It is observed that the zeolite extra-framework cation has a significant effect on acetaldehyde 

productivity, with a general improvement in performance as follows: Rb+ > Cs+ > K+ > Na+. It 

is noted, however, that the incomplete exchange of Cs+ ions may have resulted in lower activity 

than if complete exchange were achieved for ZnO/Cs–MOR–(7). Figure 8A and 8B show that 

ZnO/Rb–MOR–(7) exhibits superior acetaldehyde productivity when normalized by both mass 

and ZnO molar content with average values of approximately 27 mmol gcat
−1 h−1 and 67 mmol 

mmolZnO
−1 h−1 respectively. Additionally, the selectivity to ethylene, a major side product 

originating from ethanol dehydration is observed to be lowest for ZnO/Rb–MOR–(7) at 

approximately 1% (Figure 8D). As a result, the selectivity to acetaldehyde for ZnO/Rb–MOR–

(7) is shown to be superior to the other tested materials with acetaldehyde accounting for 

around 95% of detected carbon containing products (Figure 8C). Ethanol conversion for all 

reactions was around 30–50% at an ethanol flow rate of 0.330 mmol min−1 (Figure S.10A). 

The carbon balance for all reactions was maintained at around 90% (on average) for all 

catalysts (Figure S.10B). Very small amounts of additional carbon-containing products were 

detected (CO, CO2, CH4) but not quantified and therefore the missing carbon balance is partly 

attributed to these products and visible carbonaceous deposits. Coking values for spent 

catalysts as determined by CHN microanalysis are given in Table S.6, as previously observed 

for ZnO/Na–MOR–(7) materials, carbon coking is generally seen to decrease with decreasing 

ethylene selectivity.
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Figure 8: Acetaldehyde mass productivity (A), acetaldehyde molar productivity (B), acetaldehyde selectivity (C) and 
ethylene selectivity (D) following reaction of ethanol over ZnO/M–MOR materials at 400 °C for 4 h TOS where M = 
Na (■), K (●), Rb (♦) and Cs (▲). Ethanol feed rate = 0.330 mmol min−1, catalyst mass = 0.300 g. Detection Columns: 
RTX-VMS + ShinCarbon ST.

3.5. Performance analysis of the optimized ZnO/Rb–MOR–(7) system.

Upon identification of ZnO(3.5)/Rb–MOR–(7) as the optimum catalyst composition, both 

reproducibility studies and a long-term stability test were undertaken to assess reliability and 

performance over extended time scales. Figure S.11 shows the effluent composition (A), 

acetaldehyde yield (B), acetaldehyde productivity (C), ethanol conversion (D) and carbon 

balance (E) following reaction of ethanol over ZnO(3.5)/Rb–MOR–(7) at 400 °C for 4 h TOS. 

The results shown are averaged over three repeat experiments with error bars denoting one 

standard deviation in each co-ordinate. Good reproducibility is observed across all metrics for 

50% ethanol conversion (Figure S.11D) at an ethanol flow rate of 0.300 mmol min−1. Figure 

S.11C shows that the yield of acetaldehyde remains around 25%, with detected minor products 

including ethylene, ethane and trace amounts of diethyl ether. Figure S.11E demonstrates that 

the average carbon balance is maintained above 80% across all replications, consistent with 

some coke deposition and possibly small contributions from non-calibrated carbon-containing 

species.

Figure 9 shows cumulative acetaldehyde production and acetaldehyde selectivity following 

reaction of ethanol at 400 °C for 120 h TOS over ZnO(3.5)/Rb–MOR–(7) at an ethanol flow 
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rate of 0.330 mmol min−1. Notably, throughout the course of reaction, a selectivity for 

acetaldehyde is maintained above 90% (Figure 9B). Following an initial decrease in 

acetaldehyde productivity (Figure S.12), a steady acetaldehyde productivity of around 16 mmol 

g−1 h−1 is achieved for the remaining 120 h TOS. Crucially, only a low level of deactivation is 

observed throughout the 120 h TOS, suggesting a long and stable catalyst lifetime. 

Additionally, Figure S.13 demonstrates that an initial ethanol conversion of 40% and 

acetaldehyde yield of 25% are achieved with minor deactivation observed towards 120 h TOS. 

A carbon balance of around 90% was maintained throughout the course of the reaction.

Figure 9: Cumulative acetaldehyde productivity (A) and acetaldehyde selectivity (B) following reaction of ethanol over 
ZnO/Rb–MOR–(7) at 400 °C for 120 h TOS. Ethanol feed rate = 0.330 mmol min−1, catalyst mass = 0.300 g. Detection 
Columns: RTX-VMS + ShinCarbon ST.

In order to assess catalyst condition following reaction with ethanol for 120 h TOS, pXRD 

analysis, 27Al solid-state NMR spectroscopy and CHN microanalysis were undertaken. Figure 

S.14 shows the resulting pXRD diffractograms (A) and solid-state 27Al spectra (B) for the fresh 

and spent catalysts indicating retention of both a MOR type framework and aluminium atoms 

exclusively in tetrahedral framework positions. Following reaction, the spent catalyst charge 

was found to possess a carbon content of 4.67 wt% by CHN microanalysis, very similar to 4 h 

TOS (3.52 wt%) (Table S.7). Figure S.15 demonstrates that ethylene productivity decreases 

significantly from 0.73 mmol g−1 h −1 within the first two hours of reaction before levelling off 

to around 0.2 mmol g−1 h −1 for the remaining reaction duration. This observation adds further 

credibility to the hypothesis that ethylene productivity (and subsequent aromatisation) is almost 

solely responsible for coke deposition within this system and typically occurs within the initial 

two hours of reaction. We propose that through catalyst optimisation, ethylene productivity has 

become negligible, and deactivation through the formation of carbonaceous deposits is 

minimised, leading to the extended catalyst lifetime observed. Further, we predict that catalyst 

activity may extend significantly beyond 120 h TOS, therefore further increasing industrial 

applicability. 
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3.6. Effect of zeolite support on acetaldehyde productivity.

Unsupported ZnO has been previously reported in the existing literature to be an efficient 

catalyst for the dehydrogenation of ethanol,39-42 typically achieving acetaldehyde selectivities 

of around 70% in a temperature range of 350–400 °C.40, 59 The major side product of ethanol 

reaction over ZnO is reported to be ethylene (approximately 20–30%) with minor traces of 

acetone and other oxidation products. Varying catalyst pre-treatment between oxidative and 

inert conditions, and at different temperatures, has been shown to result in differing ethylene 

selectivities (38-28%) indicating the importance of the surface properties of the catalyst to the 

performance.59 In addition to this finding, Morales et al. have reported very high acetaldehyde 

selectivities (88–94%) and low ethylene selectivities (1–7%) at 350 °C (6 h TOS) for a series 

of synthetic ZnO materials where the morphological properties of the resultant crystalline 

material varied, exposing different ZnO facets to different degrees.60 In addition, ZnO 

supported on silica (ZnO/SiO2, 0.5 Zn wt%) has been shown to give 7.5% ethylene selectivity 

whilst achieving 62% acetaldehyde selectivity at 360 °C (10 h TOS).61 Some of the data 

reported in the preceding publications is given in Table S.7.  It is clear that due to the differing 

test conditions, direct comparison is challenging. However, none of the aforementioned 

materials were tested beyond 10 h TOS and therefore long-term performance has not been 

established. In addition, whilst the data reported by Morales show very good selectivities, the 

materials give lower calculated acetaldehyde productivities per unit zinc than those previously 

described in this contribution (e.g. 22.3 mmol mmolZn
−1 h−1 for sample ZnO–E3) showing that 

supporting ZnO on mordenite results in better productivity and better selectivity than the 

materials reported by Morales et al..60 

The role of the newly introduced zeolite support, Rb–MOR, was assessed in-house by means 

of comparison between supported and unsupported ZnO alongside a physical mixture of ZnO 

and the zeolite support.  In this investigation, the molar Zn content of each catalyst was kept 

constant as shown in Table 3. Figure 10 shows the selectivities to major products at 0.2 h (A) 

and 4.0 h (B) TOS for ZnO/Rb–MOR–(7), ZnO and a physical mixture of ZnO and Rb–MOR–

(7). Acetaldehyde productivity per unit Zn and ethanol conversion levels are shown in Figure 

10C and D. Figure 10B demonstrates that each catalyst achieves similar acetaldehyde 

selectivities of over 80% after 4 h TOS with supported ZnO/Rb–MOR–(7) achieving the 

highest selectivity of 89%. Figure 10C, however, shows the significant effect of the zeolite 

support in increasing acetaldehyde productivity per unit Zn. As would be expected, both 
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unsupported ZnO (12.6 mg) and physically mixed ZnO + Rb–MOR–(7) achieve similar 

acetaldehyde productivities of around 20 mmol mmolZn
−1 h−1, similar to that reported by 

Morales et al..60 Supported ZnO/Rb–MOR–(7), however, is able to achieve an acetaldehyde 

productivity of around 48 mmol mmZn
−1 h−1 marking nearly a 150% increase of productivity 

per unit Zn when compared to the unsupported materials. This increased acetaldehyde 

productivity is most likely attributed to improved Zn dispersion (as discussed in Section 3.3) 

and a resultant higher availability of active sites. The increased productivity is  also due to an 

almost doubled ethanol conversion of around 35-40% for ZnO/Rb–MOR–(7) in comparison to 

around 20-25% for ZnO (12.6 mg) and ZnO + Rb–MOR–(7). In all cases, carbon balance was 

maintained above 80% (Figure S.16). This result is significant as it suggests that, when 

correctly modified, zeolite supports are able to improve the catalytic efficiency of metal oxide 

materials hence allowing more effective use of diminishing metal reserves. Although zinc is 

not commonly regarded as a physically scarce metal, its supplies are predicted to decline within 

the coming century with a resultant increase in price and decrease in quality as likely 

outcomes.62 Hence, awareness of how to best utilise Zn in the most sustainable manner is 

important, especially if applied to potential large scale industrial processes, such as the 

transformation of (bio)ethanol to acetaldehyde. The origin of the enhanced productivity of ZnO 

supported on mordenite, as well as understanding the striking influence of the extra-framework 

cation, will be investigated further.  

Table 3: Molar Zn contents for ZnO/Rb–MOR–(7), a physical mixture of ZnO and Rb–MOR–(7) and ZnO. Zn content 
for ZnO/Rb–MOR–(7) was determined by ED-XRF with values averaged over three repeat measurements.

Sample Catalyst Mass /mg Zn wt% Zn Content /mmol

ZnO/Rb–MOR–(7) 300 3.39 0.156

ZnO + Rb–MOR–(7) 12.6 + 300 81.4 0.157

ZnO 12.6 81.4 0.157
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Figure 10: Selectivities for major products at 0.2 h TOS (A) and 4.0 h TOS (B) alongside acetaldehyde productivity per 
unit Zn (C) and ethanol conversion (D) for ZnO/Rb–MOR–(7) (×, 300 mg), ZnO (▲, 12.6 mg,) and a physical mixture 
of ZnO and Rb–MOR–(7) (■, 12.6 mg + 300 mg) at 400 °C over 4 h TOS. Ethanol feed rate = 0.399 mmol min−1. 
Detection Columns: RTX-VMS + ShinCarbon ST.

3.7. Comparison to state of the art systems.

In all, we have shown that ZnO(3.5)/Rb-MOR-(7) presents several advantages in comparison 

to other contemporary systems reported for the production of acetaldehyde from ethanol in the 

current literature. Primarily, ZnO(3.5)/Rb-MOR-(7) is recognised as a true direct 

dehydrogenation catalyst owing to the lack of O2 co-feed required in order to produce 

acetaldehyde. In this regard, whilst operating at 673 K, ZnO(3.5)/Rb-MOR-(7) was able to 

achieve a 25% acetaldehyde yield based upon carbon fed (Figure S.13) in comparison to the 

10–15 % yield reported for NaUSY-0.1 at the same temperature.15 As a result of O2 

independence, it is highlighted that reaction of ethanol over ZnO(3.5)/Rb-MOR-(7) 

additionally results in formation of hydrogen as an added-value by-product. Further, 

ZnO(3.5)/Rb-MOR-(7) possesses a long catalyst lifetime with a low level of observed 

deactivation following 120 h TOS. From our analysis, we conclude that these observations are 

resultant from a largely homogenous distribution of ZnO nanoparticles distributed within the 

zeolite micropore network that are resistant to sintering and other forms of deactivation. This 

long lifetime presents a considerable improvement in comparison to many contemporary 
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catalysts that use Cu as a dehydrogenation catalyst which suffer from significant deactivation 

as a result of sintering within as little as 2 h TOS.63 Other supported Cu systems, such as Cu-

ZnAl2O4 also suffer from deactivation, although at slightly extended timescales (5-10 h).64 It 

must be noted, however, that some modern preparation methods may lead to Cu based systems 

with comparable stabilities to ZnO(3.5)/Rb-MOR-(7) reported herein, e.g a Cu–BEA with a 

stable lifetime of 100 h,32  and a highly dispersed Cu/SiO2 prepared by ammonia evaporation 

with a lifetime of 500 h.65 Additionally, copper on calcium silicate catalysts have been reported 

to exhibit a remarkably stable acetaldehyde production, however the longest recorded reaction 

duration was 20 h.66 Finally, ZnO(3.5)/Rb-MOR-(7) may present a desirable alternative to 

commercial copper chromite catalysts (e.g. BASF Cu-1234-1/16-3F67 and BASF 0203T66) for 

the synthesis of acetaldehyde from ethanol. The desire to switch from chromium containing 

catalysts is due to growing concern that, although active copper chromite catalysts contain Cr3+, 

their production and disposal on an industrial scale may risk production of toxic Cr6+.66 

4. Conclusions.

In conclusion, we have shown that ZnO impregnated MOR materials are efficient and selective 

catalysts for the direct dehydrogenation reaction of ethanol to form acetaldehyde at 400 °C 

under continuous flow conditions. ZnO/MOR catalysts may be optimized by increased ZnO 

loading and exchange of alkali counter-cation, with ZnO/Rb–MOR–(7) loaded at 3.5 wt% Zn 

being identified as the optimum catalyst material under the experimental conditions. 

Significantly, two key catalytic parameters showed a striking dependence on the alkali extra-

framework cation of the mordenite zeolite. Acetaldehyde productivity (per unit zinc) was 

shown to nearly double and ethylene selectivity decreased from 9% to 0.9% (at 4 h TOS) on 

changing the extra-framework cation from Na to Rb. ZnO(3.5)/Rb–MOR–(7) is also shown to 

possess a long and desirable catalyst lifetime of 120+ h when operating at 40% ethanol 

conversion, resulting in an acetaldehyde selectivity of 90% and an initial acetaldehyde yield of 

25%. Further, the use of a zeolite support is shown to greatly improving the usage efficiency 

of Zn atoms by virtue of an acetaldehyde productivity increase from 20 to 48 mmol mmolZn
−1 

h−1 for unsupported and supported ZnO, respectively. The combination of very low ethylene 

selectivity, high acetaldehyde selectivity and long catalyst lifetime is commercially desirable 

and, combined with facile and scalable catalyst preparation, makes ZnO/MOR materials 

interesting candidates for sustainable fuels and chemicals production from (bio)ethanol.
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