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Abstract 

Transmembrane proteins act as an intermediary for a broad range of biological process. Making up 

20 to 30% of the proteome, their ubiquitous nature has resulted in them comprising 50% of all targets 

in drug design. Despite their importance, they make up only 4% of all structures in the PDB database, 

primarily owing to difficulties associated with isolating and characterising them. Membrane protein 

docking algorithms could help to fill this knowledge gap, yet only few exist. Moreover, these existing 

methods achieve success rates lower than the current best soluble proteins docking software. We 

present and test a pipeline using our software, JabberDock, to dock membrane proteins. JabberDock 

docks shapes representative of membrane protein structure and dynamics in their biphasic 

environment. We verify JabberDock’s ability to yield accurate predictions by applying it to a 

benchmark of 20 transmembrane dimers, returning a success rate of 75.0%. This makes our software 

very competitive amongst available membrane protein-protein docking tools. 

  



Introduction 

Transmembrane proteins play an essential role as a mediator for many functions critical to an 

organism’s survival. Situated within a lipid membrane that compartmentalises two distinct biological 

regimes; their tasks include sensing, signalling, motility, endocytosis and anchoring. Their 

malfunction is responsible for a multitude of diseases 1, and consequently, they are a frequent target 

in drug design. The formation of complexes, wherein two or more transmembrane proteins will 

oligomerise into either helix bundles or β-barrels, is of vital significance to both the function and 

malfunction of these processes. Yet, of the ~170 000 structures available on the PDB database, only 

~7000 (4%) are transmembrane proteins 2 despite them making up 20-30% of the proteome and 50% 

of all known drug targets 3. This relatively small number of available structures is primarily due to 

the greater technical difficulties associated with characterising them compared to soluble proteins. A 

computational tool capable of accurately predicting complexes would therefore help address some of 

this knowledge gap, provide understanding to underlying biological mechanisms, and inform drug 

design.  

A plethora of increasingly sophisticated protein-protein docking approaches have been developed to 

address the problem of protein assembly prediction 4. These efforts are nucleated around the 

community-led CAPRI competition, which is used to identify the most reliable algorithms, promising 

methodologies and current hurdles 5. However, the vast majority of these methods centre around the 

docking of two or more soluble proteins. While docking transmembrane proteins is facilitated by 

limitations on the search space imposed by the lipid bilayer, membrane docking algorithms must 

consider the impact of the lipid bilayer on a protein’s recognition of a partner in tandem with the 

solvent. In this context, there are only a small number of tools currently available. MPDock 6, utilising 

existing Rosetta sampling and scoring methods in an integrative modelling context, found a 

successful high ranking pose in three out of five applied bound complexes. Hurwitz et al.’s program 

Memdock 7 uses a traditional rigid docking, refinement, re-ranking method, with energetic terms 

representing the membrane’s hydrophobic environment included in the final stage. Comparing the 



performance of Memdock and GRAMM-X 8 on 11 unbound complexes, the authors showed that the 

first yielded a success rate of 36.4% and the latter of 9.1%. Viswanath et al. used the DOCK/PIPER 

9 docking algorithm with an additional re-ranking step that considered the membrane transfer energy, 

achieving a success rate of 36.6% for 26 unbound complexes. Testing other software on the same 

dataset, the authors reported success rates of 30%, 46.6% and 56.6% for ZDOCK+ZRANK 10,11, 

CLUSPRO 12 and GRAMM-X 8, respectively. All of these approaches were only tested against cases 

featuring α-helical transmembrane proteins. Koukos et al., using HADDOCK 13 without any specific 

membrane protein optimisation, achieved a blind docking success rate of 19.2% on their dimeric 

unbound dataset of 26 complexes that included β-barrel, monotopic and α-helix proteins. Of these 26 

test cases, 11 featured a pair of integral proteins as binding partners, and only three of these were 

unbound-ligand-to-unbound-receptor docking. The latter achieved a success rate of 36.4%. 

HADDOCK has also very recently been combined as a refinement tool with the LightDock14 docking 

algorithm and tested against 18 transmembrane-soluble protein complexes15, achieving a success rate 

of 61.1%. At the time of publication, MPDock was presented as a proof of concept, not yet designed 

for widespread use. The DOCK/PIPER membrane energy re-ranking tool is available for download, 

but it must be applied to models obtained independently. Memdock is usable as a webserver, though 

requires input structures to have their solvent-exposed regions manually removed. 

We recently released our protein-protein docking software, JabberDock 16, after testing it against a 

standard benchmark of 226 soluble complexes developed by the CAPRI community 17. It obtained 

a >54% success rate, with the notable achievement that the flexibility of the individual structures 

made little difference to its overall success. JabberDock’s defining feature is its usage of a novel 

protein volumetric representation called Spatial and Temporal Influence Density (STID) maps, which 

are built from short Molecular Dynamics (MD) simulations. STID maps are generated via a physical 

model describing the protein’s shape, electrostatic and residue-level dynamics. Through a 

comprehensive benchmark, we identified an ideal cut-off value (isovalue) to transform STID 

volumetric maps into three-dimensional surfaces. JabberDock docks proteins represented by these 



shapes, attempting to maximise their surface complementarity. A key characteristic of STID maps is 

that the ideal isovalue to transform them into shapes emerges naturally from the MD simulation, 

specifically from the relationship between the surface accessible solvent area and the average STID 

value. Thus, crucially, it is environment-independent. This property makes STID maps an attractive 

representation for membrane proteins, exposed to a biphasic environment. The STID map 

representative of a transmembrane protein can be obtained by independently simulating the pre-

oriented partners immersed in an explicit lipid bilayer. Docking then requires maximising the 

complementarity of two membrane protein surfaces, with the ligand’s translational motion 

perpendicular to the membrane and rotations into the plane of the bilayer constrained. Preliminary 

work in this endeavour yielded encouraging results: we predicted the transmembrane dimeric 

complex formed by bo3 oxidase, with our top-scoring pose corroborating available mass photometry 

data 18.  Herein, we present and test our methodology to dock integral membrane protein dimers, now 

available in JabberDock as an automated pipeline. 

   

Results 

JabberDock docks transmembrane proteins via a multi-stage process summarised by the flow diagram 

in Figure 1 and fully detailed in Methods. In short, JabberDock requires input protein structures to be 

aligned with the centre of mass for the transmembrane region of the proteins at z = 0, where the z-

axis is perpendicular to the bilayer plane. In our tests, we obtained these pre-orientated structures via 

the OPM server 19. Structures are repaired where necessary using the Modeller package 20, before 

being immersed in a POPE bilayer via the PACKMOL-memgen tool 21. GROMACS 22 is then used 

to generate the simulation data using the Amber14SB 23 and SLipid 24 forcefields, which enables the 

generation of STID maps. The maps of both binding partners are then converted into isosurfaces using 

a predetermined cut-off and docked such that their surface complementarity is maximised 16 (see SI 

and Figure S2). This surface-based scoring function is effective because it bypasses the need to 

explicitly handle packing of interfacial atoms, yielding smoother and gentler gradients compared to 



typical atomistic representations (see SI and Figure S3). Here, the search space is navigated using the 

Particle Swarm Optimisation algorithm implemented in the POWer optimisation engine 25. On 

average, our full docking pipeline requires three days for simulation and 12 hours for docking on our 

hardware (see details in SI).



 

Figure 1: JabberDock transmembrane protein docking pipeline. Full details of each step, including a convergence benchmark for Step 4, are available 

in Methods. This example’s target complex is the homodimer 1Q90 (BF), using 2ZT9 (A) as the ligand (blue) and receptor (red). Step 7 features a 

representation of the 5th best model; an intermediate success overlaid on the bound structure (grey).



There does not yet exist a standard transmembrane protein docking benchmark equivalent to the 

soluble proteins one made available by the CAPRI community 17. To test JabberDock, we selected 

all the unbound cases involving pairs of transmembrane proteins within Memdock 7,  HADDOCK 13 

and DOCK/PIPER9 benchmarks. To avoid testing against similar examples, and thus biasing our 

statistics, we only selected one representative within test cases featuring >80% sequence homology. 

This resulted in a diverse benchmark set featuring 20 α-helical complexes. We summarise our results 

for each test case in Table 1. Full details, including the three metrics used to define success by the 

CAPRI community (RMSD of the best pose, with its corresponding ratio of correct residue contacts 

(fnat.) and interfacial RMSD), are given in Table S1.  

Table 1: Results of the membrane docking benchmark. The target complex is provided with two 

composite chains (name indicated in parentheses), which the receptor and ligand correspond to 

respectively. The rank of the first successful model, either of acceptable (*) or intermediate (**) 

quality as determined by the CAPRI criteria (see Methods), is given along with the quality of the best 

pose found in the top 10 predictions. X indicates that no successful pose was found within the 300 

models produced. See Table S1 for details. 

Target Receptor Ligand 
Rank of first successful 

model 

Quality of best pose in top 

10 

1BL8 (AB) 1K4D (C) 1K4D (C) 2 ** 

1EHK (AB) 3S33 (A) 3S33 (B) 1 * 

1H2S (CD) 1GU8 (A) 2F95 (B) 1 ** 

2WIE (AB) 3V3C (A) 3V3C (A) 1 ** 

1E12 (AC) 3A7K (A) 3A7K (A) 2 * 

1M56 (AC) 3OMI (A) 1QLE (C) X - 

1Q90 (BF) 2ZT9 (A) 2ZT9 (A) 5 ** 

1ZOY (CD) 1YQ3 (C) 1YQ3 (D) 159 - 

2QJY (AD) 1ZRT (C) 1ZRT (C) 3 ** 

3CHX (BJ) 1YEW (B) 1YEW (B) 8 * 

3KLY (AB) 3KCU (A) 3KCU (A) 5 ** 

3OE0 (AB) 3ODU (A) 3ODU (A) X - 

3RVY (AB) 3RW0 (A) 3RW0 (A) X - 

4DKL (AB) 4EA3 (A) 4EA3 (A) 1 ** 

2NRF (AB) 2IC8 (A) 2IC8 (A) 1 * 

2VT4 (AB) 2Y00 (A) 2Y00 (B) 8 ** 

3KCU (AB) 3Q7K (A) 3Q7K (A) 1 * 

1M0L (AC) 1C8S (A) 1C8S (A) 7 * 

2K9J (BA) 2RMZ (A) 2K1A (A) 1 * 

2KS1 (BA) 2N2A (A) 2M0B (A) 135 - 



 

JabberDock was successful (i.e. yielding at least one acceptable model or better among its top 10 

candidates) in 75.0% of cases in our benchmark set, producing an intermediate quality success in 

40% of cases (see Figure 2, Figure S5 and Table S1). This remarkable performance is explained by 

JabberDock’s ability to identify the binding interface correctly, primarily due to its sensitivity to the 

dynamics of individual amino acids. Indeed, as shown in Figure 2a, in nearly every test case, at least 

one prediction in the top 10 results features a correctly identified binding interface. We also notice 

that results obtained here are superior to those we reported for JabberDock against soluble proteins 

(54%). Given that our STID map-based scoring function performs comparatively in a water and 

membrane environment (see Figure S2), this substantial increase can be explained by the added 

benefit of a priori knowledge about the orientation of the proteins with respect to the bilayer, coupled 

with the strict constraints imposed by the lipid membrane. 

Expanding the pool of candidate structures to the whole 300 models returned by JabberDock does 

little to improve its overall success rate (with a successful model produced in 85.0% of cases, see 

Figure 2b), in contrast to other protein docking software and the soluble benchmark. This is because 

JabberDock returned a top 10 successful model for the majority of cases it dealt with (15 out of 20). 

The few unsuccessful cases, also challenging for other docking algorithms, possess similar structural 

features to those complexes in the soluble benchmark that JabberDock found problematic. The 

NavAb voltage-gated sodium channel (PDB: 3RVY) features an interlocked arrangement where, 

following the unbound MD simulation, the binding site closed up, preventing the ligand STID surface 

from navigating into the binding pocket. The wild type cytochrome c oxidase (PDB: 1M56) lacks 

characteristic surface features (i.e. it is relatively smooth), making it difficult for JabberDock to 

differentiate between non-binding and binding regions (see Figure S4). All remaining cases that were 

not successful featured either, individually or as a combination; surfaces devoid of feature-rich 

regions (see SI and Figure S4), or relatively small binding interfaces, particularly demanding to 

identify given the goal of the optimiser to maximise surface complementarity.  



 

Figure 2: (a) Quality of best models within the top 10 results for every docking case. For each case, 

the lowest α-carbon RMSD between the prediction and crystallised homolog is presented against the 

associated native residue fraction (fnat.). The dark- to light-shaded regions represent the criteria for 

high to acceptable quality results. Thus, a point landing in one of these regions indicates a success. 

(b) Percentage of cases yielding an acceptable (blue) and intermediate (pink) success as a function of 

the number of ranked structures considered as candidate models. The region corresponding to the top 

10 models is shaded and magnified in the inset. 

 

Some proteins can form multiple complexes by interacting with different binding partners. In our 

previous work16, we observed that knowledge of a protein’s bound state with a specific partner may 

facilitate its docking with a different one, i.e. the bound state of the native complex from which the 

ligand or receptor is sourced can be used as a surrogate for the target complex. Here, we tested this 

approach with the 1M56 test case, comprised of two binding partners that have had their structures 

solved as part of an alternative complex. As reported in Table S1, when docking STID maps generated 

from MD simulations of monomeric binding partners (i.e. extracted from their existing complexes 

and simulated in the unbound state), none of the 300 candidate models were successful. In contrast, 

docking STID maps generated from surrogate bound-state conformations (i.e. from simulations of 

alternative complexes) yielded 8 successful poses, the best one at rank 51. This improvement, 

although not featuring a top 10 successful result, indicates that membrane protein docking may benefit 



from STID maps representing bound dynamics extracted from other known complexes these 

membrane proteins are involved with.  

 

Discussion and Conclusion 

We have presented a pipeline enabling our blind soluble protein-protein docking software, 

JabberDock, to successfully tackle cases involving integral membrane protein dimers. This success 

is due to the molecular representation we adopt to dock proteins, STID maps; casting electrostatics, 

dynamics and protein’s shape into a single volumetric representation. The preliminary stages in the 

building of a STID map require an MD simulation; thus, the different characteristics expressed by the 

protein in both the soluble and lipid environments are encapsulated in the isosurface’s topography. 

Consequently, other than an extended MD simulation, one only needs to restrict the search space of 

the ligand in the docking protocol to regions occupied by the lipid membrane. The problem is, 

therefore, more manageable overall than a soluble protein docking one. 

As no standard transmembrane protein docking benchmark exists, we applied JabberDock to an 

unbound benchmark of 20 transmembrane α-helix proteins taken from three other benchmarks7,9,13, 

which returned a success rate of 75.0%. These results correspond to correctly identifying 7 versus 

DOCK/PIPER’s 2 out of 8 cases 9, 8 versus Memdock’s 4 / 11 cases 7, and 1 versus HADDOCK’s 1 

/ 3 cases13 (note that two cases were tested by more than one of these methods, hence 22 individual 

comparisons from 20 cases). Applying the same difficulty classification method employed by CAPRI 

to soluble protein docking (see Methods), we see that acceptable models within the top 10 candidates 

were obtained even for some of the most flexible cases. Unsuccessful cases were primarily those 

where the STID maps featured flat interfaces, a similar issue encountered with the soluble benchmark 

set. In this context, we have observed that docking binding partners using STID maps generated from 

alternative complexes could improve the docking quality of an otherwise unsuccessful docking case. 

The observed increase in docking accuracy was less significant than what we previously observed for 



globular proteins, where the improvement yielded several successful complexes in the top 10 

predictions. This difference is potentially because the change in dynamics from switching a binding 

interface from lipids to a protein is smaller than the equivalent with a water solvent. It nevertheless 

demonstrates that there is scope for increasing JabberDock success rate by refining our STID map 

representation. Given the success of the results presented here and that previously demonstrated with 

globular proteins, we expect JabberDock to also perform well with transmembrane-solvent proteins, 

regardless of whether the ligand is extracellular, periplasmic or cytoplasmic. 

 

Availability 

JabberDock is available for download under GPL license at github.com/degiacom/JabberDock, along 

with input and target structures used in our benchmark. Authors will release the atomic coordinates 

of all produced models upon article publication using Durham Research Online Datasets Archive 

(DRO-DATA). 

 

  



Methods 

System Building 

Here, we detail the operations required to prepare the binding partners, corresponding to steps 1 and 

2 of Figure 1. Proteins must be pre-oriented before input, i.e. the centre of the transmembrane domain 

of both binding partners is at the origin with the appropriate orientation given that the bilayer will be 

built parallel to the x-y plane. Such pre-alignment comes as standard for structures downloaded from 

the OPM server 19.  

1) Structures are initially checked and, where necessary, repaired using the Modeller program 20. 

Specifically, the FASTA sequence of the protein is downloaded from the PDB database 2 

(placing the FASTA file in the folder is enough if there is no connection to the Internet), and 

this is used to patch up to 15 consecutive missing residues. Modeller will also place missing 

atoms. In its current form, the patching code can only handle two chains at most. This step 

can be skipped, but it is necessary for a complete simulation. 

2) The protein is immersed in a POPE bilayer and solvated via the PACKMOL-memgen tool 21 

available through the AmberTools(v.18+) package. Lipid and TIP3P water molecules are 

placed using a random seed, and 80 loops are performed during PACKMOL’s GENCAN 

routine to improve packing with a total of 120 nloops used for all-together packing. A 

tolerance of 2.4 Å is used to detect clashes between molecules. POPE residue names are then 

corrected to reflect the SLipid 24 nomenclature before the topology files are generated through 

GROMACS 22. Since the SLipid and Amber14SB 23 forcefields use different angle and 

dihedral descriptions, a small fix is applied to allow the two to work in conjunction after this 

step. Finally, the system is neutralised by swapping water molecules for the appropriate 

number of Na+ or Cl– counterions. 

 

 



Molecular Dynamics 

Here we provide details on the MD protocol used to simulate the binding partners, corresponding to 

step 3 of Figure 1. All simulations are run on the GROMACS 22 MD engine, with Amber14SB 23 and 

SLipid 24 force fields used for the protein and lipids respectively. The system is energy minimised 

using a steepest descent algorithm, with a tolerance threshold set to 200 kJ mol–1 nm–1. The initial 

step size is set to 1 pm, the maximum number of allowed steps to 5 × 106. The cut-offs for both 

Coulombic and van der Waals interactions are set to 1.2 nm. 

The protein is then equilibrated for 20 ns within an isothermal-isobaric ensemble, T is set to 310.15 

K, and the pressure to 1 bar with a 2 fs step size. The constraint algorithm LINCS 26 is applied to the 

bonds. A particle mesh Ewald summation is used to treat long-range interactions, and a velocity-

rescale temperature with a coupling constant of 0.1 ps is applied separately to protein, lipids and 

water/ions. A Berendsen pressure coupling method implemented semi-isotropically maintains the 

pressure with a coupling constant of 1.0 ps and compressibility of 4.5 × 10–5 bar–1. Velocities are 

randomly assigned from a Boltzmann distribution at T. A second equilibration stage is then run for 

40 ns with the same settings, but with all constraints removed. Finally, production occurs over a 10 

ns timescale, for reasons shown in Figure S1, again in an isothermal-isobaric ensemble with the same 

settings as the equilibration. Atomic coordinates are saved every 5 ps, and used to generate a STID 

map following the procedure outlined by Rudden and Degiacomi16.  

 

Homology Modelling 

Several test cases only had their ligand and/or receptor starting structure known from a homolog, 

sometimes bound to an alternative binding partner. For these cases, receptor and ligand crystal 

structures were mutated into their target counterparts via the Modeller program20. Motifs up to 15 

residues long were permitted to be patched if they were missing from the structure, and structures 



were kept frozen to prevent optimisation of models. The roto-translations returned by JabberDock 

were applied to these structures to yield the final predicted complexes. Table S1 reports on the 

sequence identity between homologs and the target structure. Their RMSD, determining case 

difficulty (see below), is also provided. We note that three benchmark cases (1ZOY, 2VT4 and 

1EHK) feature binding partners extracted from a known complex that is a homolog to the target. 

Although not a real-world test case, these are suitable benchmark cases as the conformations of 

subunits in the two dimers differ. 

 

Protein Docking 

Here we provide details on the docking process of protein surfaces generated from STID maps, 

corresponding to steps 5, 6 and 7 of Figure 1. An initial starting point with the two input monomers’ 

transmembrane region centres of mass centred at the origin is used prior to generating any models. 

JabberDock uses a seven-dimensional space for implementation comfort when roto-translating the 

STID maps. Three dimensions define ligand translation in the Cartesian space, three dimensions 

define an axis of rotation for this ligand, and one dimension defines a rotation angle around this axis. 

x and y translation values are limited by the size of the receptor, and the ligand is only allowed to 

move ±5 Å along the z-axis. The axis of rotation is the z-axis, which is permitted to precess by up to 

0.157 radians (9º) into the x-y plane. Possible rotation angles in radians range between 0 and 2π. 

To navigate the potential energy surface (PES) associated with the scoring function and produce an 

ensemble of possible docked poses, JabberDock leverages a distributed heuristic global optimisation 

algorithm featured in the POWer optimisation environment – particle swarm optimisation “kick and 

reseed” (PSO-KaR). 25 PSO-KaR is used to explore the PES over 300 iterations using 80 randomly 

initialised agents (“particles”). According to the “kick and reseed” procedure, particles converging to 

a local minimum (i.e. with a velocity decaying to less than 4% of the search space dimension in each 

direction) are randomly restarted, and a repulsion potential placed at their convergence location. The 



whole optimisation process is repeated three times, with the memory of previous repulsion potentials 

retained from one repetition to the next. In summary, this docking procedure requires the evaluation 

of 72000 docking poses. To obtain a diverse ensemble of solutions, 300 poses were finally selected 

as representatives from the pool of poses having a positive score using a K-means clustering algorithm 

on the 7-dimensional coordinates associated with each model. 

 

Assessment of Models Accuracy 

Following the CAPRI guidelines, we used three metrics to determine the quality of a model: the ratio 

of correct contact residues (a valid contact defined as an atom within 5 Å of the binding partner) to 

the number of residues in the predicted complex, fnat, the RMSD between the alpha carbons of the 

known crystal pose and the predicted pose, and the RMSD of the two poses between the α-carbons at 

the interface (defined as within 10 Å of the binding partner). CAPRI guidelines specify four levels of 

possible success criteria: (1) incorrect, where RMSD > 10.0 Å and interfacial RMSD > 4.0 Å OR fnat 

< 0; (2) acceptable quality, where RMSD ≤ 10.0 Å or interfacial RMSD ≤ 4.0 Å and 0.1 ≤ fnat < 0.3 

OR fnat ≥ 0.3 and RMSD > 5.0 Å and interfacial RMSD > 2.0 Å; (3) intermediate quality, where 

RMSD ≤ 5.0 Å or interfacial RMSD ≤ 2 Å and 0.3 ≤ fnat < 0.5 OR fnat ≥ 0.5 and RMSD > 1.0 Å and 

interfacial RMSD > 1.0 Å; (4) high quality, where RMSD ≤ 1.0 Å and interfacial RMSD ≤ 1.0 Å and 

fnat ≥ 0.5. The protocol for applying this list of inequalities follows the order provided, beginning with 

defining the incorrect predictions. In the text, we qualify the result of a test as of high, intermediate 

or acceptable quality if at least one in the top 10 ranked models matches the criteria above. 

 

Case Difficulty Classification 

Docking cases are classified under three levels of difficulty associated with their flexibility, which 

we quantify via the RMSD difference between the Cα atoms at the interface after superposing the 



bound and unbound interfaces. Cases can be classified as either rigid-body (or easy), medium or 

difficult. Easy cases are those with minimal difference between the unbound crystallised structures 

and the bound: < 1 Å difference. In medium cases, the RMSD difference is between 1 Å and 2.5 Å. 

Finally, difficult cases can be anything greater than 2.5 Å. Thus, the difficult cases are accordingly 

significantly more challenging than the other two, particularly given that the requirements for an 

acceptable success are close to the upper boundaries that define the difficult cases. Our benchmark 

set featured 2 easy, 15 medium and 3 difficult cases, as detailed in Table S1. The RMSDs reported in 

Table S1 refer to those between target structures and crystal structure, either of the unbound molecule 

or mutated structure from the homolog. 
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