
18

GPU Fast Convolution via the Overlap-and-Save Method in

Shared Memory

KAREL ADÁMEK, Oxford e-Research Centre, Department of Engineering Science, University of Oxford,

United Kingdom

SOFIA DIMOUDI, Centre for Advanced Instrumentation, Durham University, United Kingdom

MIKE GILES, Mathematical Institute, University of Oxford, United Kingdom

WESLEY ARMOUR, Oxford e-Research Centre, Department of Engineering Science, University of

Oxford, United Kingdom

We present an implementation of the overlap-and-save method, a method for the convolution of very long

signals with short response functions, which is tailored to GPUs. We have implemented several FFT algo-

rithms (using the CUDA programming language), which exploit GPU shared memory, allowing for GPU

accelerated convolution. We compare our implementation with an implementation of the overlap-and-save

algorithm utilizing the NVIDIA FFT library (cuFFT). We demonstrate that by using a shared-memory-based

FFT, we can achieved significant speed-ups for certain problem sizes and lower the memory requirements of

the overlap-and-save method on GPUs.

CCS Concepts: • Applied computing; • Computing methodologies → Parallel computing methodologies;

Additional Key Words and Phrases: Fast convolution, CUDA, GPU, overlap-and-save, FFT

ACM Reference format:

Karel Adámek, Sofia Dimoudi, Mike Giles, and Wesley Armour. 2020. GPU Fast Convolution via the Overlap-

and-Save Method in Shared Memory. ACM Trans. Archit. Code Optim. 17, 3, Article 18 (August 2020), 20 pages.

https://doi.org/10.1145/3394116

1 INTRODUCTION

Convolution is one of the most fundamental signal filtering techniques, widely used in signal

processing, to aid discovery in many areas of natural sciences. It is a linear operation involving

an input signal s of length Ns and a response function (or a filter) h of length M . There are two

principal approaches to linear filtering, where their usability depends on the length of the response

function h.

This work has received support from STFC Grant No. ST/R000557/1. This work is also supported by a Leverhulme Trust

Project Grant (ARTEMIS: Real-time discovery in Radio Astronomy).

Authors’ addresses: K. Adámek and W. Armour (corresponding author), Oxford e-Research Centre, Department of Engi-

neering Science, University of Oxford, 7 Keble Road, Oxford, OX1 3QG, United Kingdom; emails: karel.adamek@gmail.com,

wes.armour@oerc.ox.ac.uk; S. Dimoudi, Centre for Advanced Instrumentation, Department of Physics, Science Laborato-

ries, South Road, Durham, DH1 3LE, United Kingdom; email: sofia.dimoudi@durham.ac.uk; M. Giles, Mathematical Insti-

tute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter (550), Woodstock Road, Oxford, OX2

6GG, United Kingdom; email: mike.giles@maths.ox.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2020 Copyright held by the owner/author(s).

1544-3566/2020/08-ART18

https://doi.org/10.1145/3394116

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

https://doi.org/10.1145/3394116
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3394116

18:2 K. Adámek et al.

When the filter (h) is short it might be beneficial to calculate convolution in the time-domain

using the formula for discrete convolution,

y[n] = h[k]� s[n] =

M−1∑

k=0

s[n − k]h[k], (1)

where y[n] are elements of the filtered signal, and brackets [] denote quantities that are discrete

(sampled). The complexity of time-domain convolution is O
(
N 2

s

)
.

If we have a longer filter, then it might be better to invoke the convolution theorem and calculate

convolution in the frequency-domain using a Fourier transformation. The convolution theorem

states that [14]

h[k]� s[n] = FT−1 (H [m] · S[m]) , (2)

where H = FT(h) and S = FT(s) are Fourier pairs of h and s and FT and FT−1 is discrete Fourier

transformation and its inverse, respectively. By using Fourier transformation in the convolution

calculation, we are performing circular convolution (as opposed to linear convolution (Equa-

tion (1))), which introduces an aliasing effect, where samples at the edges1 of the input sig-

nal are added together rendering them useless for convolution. Therefore, we have to pad both

the filter and the input signal with zeros (called zero padding), to the same size of at least

0 ≤ m < Ns +M − 1.

The convolution theorem allows us to replace convolution in the time-domain by point-wise

multiplication in the frequency-domain. This, however, would not be computationally feasible

without the Fast Fourier Transformation (FFT) algorithm, which decreases the cost of the discrete

Fourier transformation to O (Ns log2 (Ns)). Using the FFT algorithm and the convolution theorem

to perform convolutions is often called fast convolution.

Determining when to use time-domain convolution as opposed to frequency-domain convolu-

tion depends on many factors including the character of the problem being solved, implementation,

the hardware used, and so on.

As mentioned above, frequency-domain convolution requires that the input signal and the filter

are both of the same length. To calculate the convolution of a long input signal in the frequency-

domain, we have to perform long FFTs on both. This can be very inefficient in terms of compu-

tations and memory storage, particularly if we are applying multiple filters. Two commonly used

algorithms to overcome these shortcomings are the overlap-and-save (OLS) or overlap-and-add

(OLA) [19] methods.

The overlap-and-save (add) is a hybrid method that combines advantages of time-domain con-

volution with frequency-domain convolution. It allows us to break the input signal into segments

of length N and use fast convolution independently on each segment. The two methods differ in

the way they deal with aliased samples and how the output is constructed. The overlap-and-save

method discards the aliased samples from each segment and saves only the correct part of the

segment to an appropriate place in the output signal. The overlap-and-add method adds together

aliased samples from the neighboring segments to create the correct output. Therefore a parallel

implementation of the overlap-and-add method requires exclusive access to the areas of memory

that contain the aliased output signal.

The fast convolution, which is performed on each segment, has four steps: forward FFT of a

segment; point-wise complex multiplication of the filter and the segment in frequency-domain;

1This depends on the character of the filter used. Filters that use only future samples will be aliased with the end of

the segment, filters that use past samples will be aliased with the beginning of the segment, while a time-centred filter

introduces aliasing at both ends. The number of aliased samples is equal to the unpadded length M of the filter.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory 18:3

inverse FFT of the convolved segment; and rejection of the edges. These steps are traditionally

performed using libraries or custom code, with the input and output stored in the GPU device

memory2 for each step. This is a limiting factor when considering the convolution of the segment

as a whole.

The novelty of this work and its focus is to enable fast convolution by storing signal segments

and filters in the fastest areas of GPU memory. Performing the convolution and the associated

inverse FFT on data held in these fast memories allows us to eliminate device memory traffic and

hence accelerate the convolution algorithm on GPUs.

The novelty of this work and its focus is to enable fast convolution by exploiting the fastest

areas of GPU memory, registers and shared memory. To do this, we needed to write FFT codes

that will operate directly on data stored in shared memory (NVIDIA library functions do not do

this). Using these codes, we are able to perform the convolution and the associated forward and

inverse FFT on data held in the fastest areas of GPU memory and hence accelerate the convolution

algorithm on GPUs. Specifically, we can eliminate expensive access to the device (global) memory,

which is otherwise required. With this goal in mind, we have implemented a basic version of

the Cooley-Tukey FFT algorithm [11] for complex-to-complex FFTs and a basic version of the

Stockham FFT algorithm [3] for real-to-complex and complex-to-real FFTs. We have implemented

these FFT algorithms so that they can execute on data held in shared memory.3 The purpose of

this work is to demonstrate the viability of our approach of moving operations into GPU kernels

using device ready algorithms. The choice of the optimal FFT algorithm and implementation of

optimized and efficient FFT algorithms on GPUs is beyond the scope of this work but will serve as

a focus of our future work.

We have chosen to focus only on the overlap-and-save method rather than on the overlap-and-

add method, because the overlap-and-add method would require a synchronization step between

segments due to a race condition that would occur when neighbouring segments try to write their

computed data to the output signal stored in GPU device memory.

The work presented in this article was developed for NVIDIA GPUs; therefore, we have used

the CUDA language extension for our work. The investigation of OpenCL or any other framework

is outside the scope of this work. This work has been used to enable real-time processing of time-

domain radio astronomy data [1, 4, 5].

Our GPU implementation of the overlap-and-save method with a basic user interface is avail-

able on GitHub.4 The user interface we provide allows the user to test the functionality of our

implementation. A more detailed description is provided on our Github wiki.

2 RELATED WORK

The comprehensive study of the convolution algorithms on CPUs, GPUs, and FPGAs was con-

ducted by Fowers et al. [8]. They have compared convolution algorithms by their computational

cost, energy efficiency and execution time for a range of input signal sizes and filter lengths. Their

investigation shows that the time-domain convolution is faster for either short filters or short in-

put signals. For longer input signals and longer filters, it is beneficial to use the overlap-and-save

method. The performance of the NVIDIA cuDNN library, in the context of convolutional neural

networks, was investigated by Jordà et al. [12]. The authors present different algorithms used by

2Device memory (sometimes called main memory or global memory) has the lowest memory bandwidth on the GPU and

as such takes the most time to access.
3Shared memory is a small but fast area of GPU memory and can be treated as a user managed cache.
4https://github.com/KAdamek/GPU_Overlap-and-save_convolution.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

https://github.com/KAdamek/GPU_Overlap-and-save_convolution

18:4 K. Adámek et al.

the cuDNN to calculate two-dimensional convolution. Although this is for two-dimensional convo-

lutions it shows the advantage of frequency-domain convolution for larger filters and input signals.

Both overlap-and-save (or OLA) and FFT algorithms are well known and extensively researched,

having lots of coverage in literature. Both OLS and OLA methods have been implemented on

GPUs [6, 13]. The theory of these methods is also actively developed, for example [7, 16, 25], and

references within.

The FFT algorithm and its implementation on GPUs is equally well researched and extensive

publications can be found on the subject, for example [9, 10, 15, 22, 23, 26]. Govindaraju et al.

[9] focused on providing a set of FFT routines that would be applicable to a wide range of input

signal lengths. The authors have used the Stockham algorithm to avoid reordering of the elements,

which is required when the Cooley-Tukey algorithm is used. Gutierrez et al. [10] deals with longer

FFT from the host perspective with emphasis on long input signals. They have implemented the

decimation-in-time Cooley-Tukey algorithm where part of the FFT is performed in shared memory

and Moreland and Angel [15] described the implementation of the two-dimensional FFT real-to-

real algorithm for image processing. More on FFTs in general can be found in Ref. [21].

There is also a number of GPU FFT source codes available [22, 23, 26]. However, these FFT

codes were not suited for our needs for integration into the overlap-and-save method. The primary

reason for this is that these FFT codes were not designed as device callable functions.

The FFT by Volkov and Kazian [23] stores larger FFTs (16 elements or more) using thread reg-

isters. Our implementation of convolution uses registers to store the values of the signal segment

and current filter value. Further register utilization would lead to code slowdown.

The FFT code by Vasilache et al. [22] focuses on FFT lengths that are too small for our inten-

tions. The FFT length considered in the article is N < 256. We require our implementation to work

with the largest filters permitted by either shared memory5 or the number of active threads per

thread-block. For example a filter size of 512 elements would require an FFT length of at least 1,024

elements or longer.

Last, the FFT code by Yang and Zhou [26] was written for the Fermi generation of GPUs and

has not been updated for more modern GPU architectures.

Our FFT implementation differs from the previously published works, because it is designed

to use shared memory only and to be called from the GPU kernel itself. Therefore, it deals only

with short FFT lengths due to size limitation of the shared memory (currently N ≤ 4,096) and

where N is a power of two. Moreover, our implementation of the Cooley-Tukey FFT algorithm

cannot be used as a standalone FFT routine as it lacks element reordering, which is not required

for calculation of the convolution.

3 IMPLEMENTATION

We present our implementation of the overlap-and-save (OLS) method for NVIDIA GPUs using

the CUDA programming language, which uses a shared-memory implementation of standard FFT

algorithms to calculate one-dimensional convolutions. Our implementation of the OLS method

can calculate complex-to-complex6 (C2C) and real-to-real (R2R) convolutions. These implemen-

tations are compared to an implementation of (direct) convolution that uses the NVIDIA cuDNN

library and also to an implementation of the OLS method, which uses the NVIDIA cuFFT library

to perform the FFT parts of the OLS algorithm on the GPU.

In this section, we describe all implementations used in this article starting with the NVIDIA

cuDNN library [17] implementation of convolution. Next, we describe the overlap-and-save

5The size of shared memory ultimately limits the size of a signal segment that can be processed in our method.
6Depending on the post-processing step this might be the complex-to-real convolution as well.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory 18:5

method and its implementation using the NVIDIA cuFFT library [18] (cuFFT OLS), which con-

tains highly optimized and GPU ported FFT algorithms. Our implementation of the OLS method

with shared-memory FFT (SM-OLS) is described last.

3.1 Convolution via NVIDIA cuDNN

The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated library of deep

neural networks primitives. The cuDNN library offers (among many other routines) forward con-

volution, which we have used as a comparison.

Our cuDNN convolution implementation is a real-to-real. The cuDNN library uses a range

of different algorithms based on the task and the size of the input. We have left the cuDDN

library to chose the most suitable convolution algorithm for our test case by using the flag

CUDNN_CONVOLUTION_FWD_PREFER_FASTEST. Our tests are performed with one-dimensional data

with a single channel7; therefore, we have used the CUDNN_TENSOR_NCHW data layout. Since we

cannot be sure how many operations are performed by the cuDNN library, we have not calculated

the number of FLOPS for the cuDNN convolution implementation in our comparisons; instead, we

use the number of processed elements per second.

3.2 Overlap-and-save Method

We will first describe the common steps of the OLS method, which are performed by all imple-

mentations. These steps apply to both C2C and R2R convolutions, since both are performed in the

Fourier domain, which is complex.

A flow diagram of the overlap-and-save algorithm is shown in Figure 1 and the method is rep-

resented pictorially in Figure 2. We begin by separating the input signal of size S into Nseg inde-

pendent segments, all subsequent operations are then applied independently on each and every

segment. Next a forward FFT is applied to each segment. What follows is the frequency domain

convolution of the segment A with every filter f from Nfil filters, that is complex multiplication of

the segment with one or more filters. After that, we apply an inverse FFT to the results and then

discard the aliased edges of each block, recombining the samples from all blocks into the output.

Optionally, we can apply some post-processing to the resulting output. In essence, this operation

transforms a blocked circular convolution into one that is linear and continuous.

In the overlap-and-save technique (shown in Figure 2), the length of the segment, that is the FFT

length, N must be chosen such that it minimizes the fraction of discarded samples compared to

the segment length. The number of discarded samples depends on the filter length M that is being

applied to the signal and are equal toM − 1. Thus, the number of correct (unaliased) samples in the

segment is L = N −M + 1. A higher fraction of discarded samples increases the overall number

of segments required by the OLS method. To ensure good performance of the FFT algorithm on a

signal segment, we limit the segment length N to be lengths equal to powers of two. The lengths

of the segments from which we combine the convolved signal can be different for each implemen-

tation. The cuFFT-OLS performs better with longer segments while SM-OLS performs better with

a shorter segment length. The convolved signal is not affected by the choice of the segment size.

3.3 OLS Method Using cuFFT Library

Using the cuFFT library, we have implemented one-dimensional convolution via the OLS method

(cuFFT-OLS) for two variants of input data. We have implemented complex-to-complex and real-

to-real convolutions. The pseudo-code for both variants of the cuFFT-OLS is shown in Algorithm 1.

7Channels in the context of cuDNN library are equivalent to the number of elements per structure in array-of-structures

vs. structure-of-arrays data layouts. Since we have a simple data layout, we have used the equivalent of structure-of-arrays.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

18:6 K. Adámek et al.

Fig. 1. Flow diagram of the overlap-and-save method: Our input is a signal that is to be convolved with
a set of filters. The first step is to Fourier transform the padded filters. These will be used for convolution
with each segment. In the next step, we separate the input signal into independent overlapping segments.
The total overlap length for each segment is equal to the filter length, these segments need to be Fourier
transformed. The third step is convolution in the form of complex point-wise multiplication. The convolved
segment is then inverse Fourier transformed. In the last step, we remove the aliased part of each segment
and merge the clean parts to produce a continuous output. Optionally, we can perform a post-processing
step at the end.

These variants only differ in the type of FFT used for the forward and the backward Fourier trans-

form. Both using the cuFFT library to perform FFT routines.

The most efficient way to implement cuFFT-OLS is to utilize a feature of the cuFFT library called

callbacks. The cuFFT callbacks allow the user a per-element access to the data that are loaded or

stored by the cuFFT routine and allow the user to perform pre- or post- processing of the data

without any additional GPU kernels.

We can use callbacks together with the forward FFT to perform frequency domain convolution

(complex multiplication of the sample segment with the appropriate sample from multiple filters)

and also with the inverse FFT, where we can remove the aliased samples from the segment. While

the latter eliminates problematic global memory access, the former callback has less effect.

The callback used together with the inverse FFT means we do not need to store intermediate

segments with aliased samples into the device memory. This is a significant bandwidth saving,

since the intermediate result is of size NsegSF and it would have to be written to main memory

(the output from cuFFT), then read so that aliased samples can be removed, then sorted as the final

(corrected) output.

The forward FFT callback eliminates proportionally only a small device memory access to the

segments after the forward FFT. The main device memory access, which stores the result of the

frequency domain multiplication, remains intact. Therefore, the impact of this callback is marginal

for a large number of filters.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory 18:7

Fig. 2. Overlap-and-save method: The input signal, of length Ns , is separated into overlapping segments
(A,B,C,. . .), where the amount of overlap is given by the filter length M . These segments are then processed
independently, where FT denotes Fourier transformation. At the end the aliased samples of the segment,
which are equal to the filter length are discarded. This example uses a time-centred filter, which aliases both
ends of the segment.

The cuFFT library also allows the user to use some shared memory. The amount is however

limited to 16 kB, which can accommodate only 2,048 FFT elements, while the optimal FFT length for

cuFFT library is 8,192 elements. Furthermore, this does not allow us to use forward and backward

transform and as such does not remove problematic device memory access.

The disadvantages of the cuFFT-OLS implementation are that it has to load and store inter-

mediate data to the device memory in between the frequency domain convolution (forward FFT

step) and the inverse FFT. Another disadvantage is higher memory requirements as the last step

(where we remove the aliased samples of the segments) cannot be performed in-place due to the

non-deterministic nature of thread-block scheduling on GPUs. The advantage of the cuFFT imple-

mentation is that it works for any filter length and only relies on NVIDIA supported libraries.

3.4 OLS Method Using Shared-memory FFT

We present two versions of the one-dimensional overlap-and-save (OLS) method, which is

performed in the shared memory for NVIDIA GPUs using the CUDA programming language.

The first implementation of OLS is for complex-to-complex8 (C2C) convolutions, using a shared-

memory implementation of the Cooley-Tukey [11] FFT algorithm. The second implementation of

the OLS method is for real-to-real (R2R) convolutions. This implementation uses a shared-memory

8Depending on the post-processing step this might be complex-to-real convolution as well.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

18:8 K. Adámek et al.

ALGORITHM 1: Pseudo-code for the cuFFT-OLS implementation. For the input, we have

input data x and set of filters f . The output is the convolved result y. The FFT routines

(ForwardFFT and InverseFFT) are either C2C for the complex input or R2C and C2R, respec-

tively, for the real input.

Input: x , f ;

Output: y;

Forward FFT of the filters;

F = ForwardFFT (f);

Separation of the signal into segments a, b, c, . . . ;

(a, b, c , . . .) = Separate (x);

Forward FFT of the individual segments;

(A, B, C , . . .) = ForwardFFT (a, b, c , . . .);

Callback begin

Per-element complex multiplication of the segment a with Nfil filters;

for s = 0 to Nseg do

for r = 0 to Nfil do

A[s] = A[s] × F [r][s];

end

end

end

(a, b, c , . . .) = InverseFFT (A, B, C , . . .);

Callback begin

y = RemoveAliasedSamples (a, b, c , . . .);

end

implementation of the Stockham FFT algorithm [3]. Our shared-memory implementation of

the OLS method follows the same steps as the cuFFT-OLS implementation, but has a significant

difference, it incorporates all the steps required by the OLS method into one GPU kernel. This

is possible because we can call forward and inverse FFT device functions directly from the GPU

kernel, which eliminates the computationally costly device memory transactions, working instead

on data held in shared memory and GPU registers. The pseudo-code for our shared-memory OLS

method is presented in Algorithm 2.

In our implementation of convolution through the OLS method in shared memory, each thread-

block9 is assigned to one segment of the input data. Each thread-block applies a shared-memory

forward FFT and stores segment samples, which are now in the frequency domain, into registers.

Each thread from the thread-block works with four samples. These segment samples are reused

throughout the execution of the thread-block. Stored segment samples are then complex multi-

plied with appropriate samples from one or more filters. These filters are already in the frequency

domain, since they were Fourier transformed before thread-block execution. When the complex

multiplication step is finished, the resulting samples are brought back to the time domain by ap-

plying an inverse FFT in shared memory and aliased samples are removed before storing them to

the device memory. This ensures high data reuse of both segment and filter samples.

9A thread-block is a set of GPU threads that execute the same code and can cooperate using shared memory.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory 18:9

ALGORITHM 2: Pseudo-code for the shared-memory OLS implementation. For input, we

have input data x and set of filters f . The output is the convolved resulty. The shared-memory

FFT functions (ForwardFFT and InverseFFT) are either Cooley-Tukey C2C FFT for the com-

plex input or Stockham FFT R2C and C2R, respectively, for the real input.

Input: x , f ;

Output: y;

t = threadId;

b = blockId;

Forward FFT of the filters;

F = ForwardFFT (f);

Each thread-block process one segment;

GPU kernel begin

Reading signal segment;

a[t] = x[bNSeg + t];

Forward FFT of the individual segments;

A = ForwardFFT (a);

Per-element complex multiplication of the segment a with F filters;

for r = 0 to Nfil do

A[t] = A[t] × F[r][t];

a = InverseFFT (A);

y = RemoveAliasedSamples (a);

end

end

We have chosen different FFT algorithms for C2C and R2R OLS implementations. The

Cooley-Tukey FFT algorithm is more suited to complex-to-complex convolutions, because we can

use the fact that, for a point-wise frequency domain convolution, the order of the data elements in

the convolved arrays does not matter as long as the order of the elements is the same for both the

input signal segment and the filter, provided that the inverse FFT can work with the same order

of elements. In normal circumstances, the Cooley-Tukey FFT algorithm requires a reordering to

take place on the input or output data, but when used in convolution, we can forgo this step and

save some execution time.

The Stockham FFT algorithm is used to facilitate real-to-complex and complex-to-real Fourier

transformation [19] these require that the elements of the input and output of the FFT algorithm

are in the correct order. The Stockham FFT algorithm is an auto-sort algorithm, which satisfies

this condition. Our shared-memory implementation of the Stockham FFT algorithm is 30% slower

on average than our shared-memory implementation of the Cooley-Tukey FFT algorithm without

the reordering step. This performance penalty is redeemed by the fact that for real-to-complex and

complex-to-real Fourier transformations, we can use an FFT length of half the size (compared to a

C2C FFT) as described in Reference [19].

The benefit of having one GPU kernel is not only eliminating device memory accesses, but it

also lowers memory requirements, because we do not need to store intermediate results as with

the cuFFT-OLS implementation. The disadvantage of this approach is that it works well only for

small filter sizes M � 3,300 (for Titan V GPU). This limitation is imposed by the size of the GPU

shared memory.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

18:10 K. Adámek et al.

Table 1. GPU Card Specifications

P100 P4 TITAN V

CUDA Cores 3,584 2,560 5,120

SMs 56 20 80

Base/Max Core Clock 1,126/1,303 MHz 810/1,063 MHz 1,220/1,455 MHz

Memory Clock 1,406 MHz 6,000 MHz 850 MHz

Gl. m. bandwidth 720 GB/s 192 GB/s 652 GB/s

Shared m. bandwidth 9121 GB/s 2657 GB/s 14550 GB/s

Memory size 16 GB 8 GB 12 GB

TDP 250 W 75 W 250 W

Max. sh. memory per thread-block 48 kB 48 kB 48/96 kB

The shared-memory bandwidth is calculated as BW(bytes/s) = (bank bandwidth (bytes)) × (clock frequency (Hz)) ×
(32 banks) × (# multiprocessors). We have used CUDA version 10.0.130 and cuDNN version 7.5.0.

The analysis of the SM-OLS GPU kernel reveals that it is limited by the shared-memory band-

width. For R2R version the kernel utilizes around 75% of the shared-memory bandwidth. The uti-

lization is lower (50%) for a segment size of 4096 elements. For the C2C version, the bandwidth

utilization of the shared-memory bandwidth is 50%. This is in part because, for the first few iter-

ations in the FFT routine, we use shuffle instructions, which are not reflected by shared-memory

bandwidth utilization. The use of the shuffle instructions, however, increases utilization of the

load-store instruction, which is also high. The floating point (FP32) compute utilization is also

high. The occupancy, a ratio of the maximum amount of active threads per streaming multipro-

cessor (SM) and active threads per SM, is only 50%. This is a consequence of high register count

used by the convolution kernel. The GPU registers are used to store the signal segment elements

after forward Fourier transform, which is reused, and they are also used for storage of the currently

processed signal segment, which undergoes inverse Fourier transformation. The device memory

bandwidth utilization ranges from 60% down to 25% for longer signal segments. The situation is

similar for GPU kernels with non-local post-processing.

4 RESULTS

For our investigation, we have used three NVIDIA GPU cards, the P100 GPU, the P4 GPU, and the

TitanV GPU (hardware specifications can be found in Table 1).

We have compared both shared-memory implementations (C2C, R2R) of OLS convolution (SM-

OLS) for several different filter and signal lengths and also for a varying number of filters with

convolution implementations based on the cuDNN library and our implementation of the OLS

method, which uses cuFFT (cuFFT-OLS). For our results presented here, we have chosen to limit

the input signal length to 2 million points or the number of filters to 8 (unless otherwise stated), to

include the P4 GPU in our comparisons. The reason for this is that the P4 GPU card has a smaller

device memory capacity and as such cannot process the same problem sizes as the P100 GPU or

TitanV GPU.

The length of the input signal or filter length, as well as the number of filters in our implemen-

tation, can be arbitrary and they are not limited to presented values. We have chosen the value of

these quantities to present the scaling behaviour of the problem. The input signal length is arbi-

trary from the nature of the OLS method and limited only by available memory. The filter length

is arbitrary, but in the case of the shared-memory OLS it is limited by the maximum size of the

FFT that can be processed (currently N = 4,096 points). The number of filters is also arbitrary and

limited only by available memory.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory 18:11

Fig. 3. Comparison of the execution time of convolution without OLS method using cuFFT, convolution via
OLS method using cuFFT and convolution via custom FFT in shared memory. Results are for 8 filters of
length 64 on TITAN V.

First, we have compared convolution without the OLS method using cuFFT, although OLS is a

well established method this comparison shows how ineffective the standard convolution through

the frequency domain can be for the case of convolution with multiple small filters. The execution

time for convolution without OLS is presented in Figure 3.

4.1 Comparison with cuDNN Library Convolution

We begin by comparing the one-dimensional real-to-real SM-OLS convolution with one-

dimensional real-to-real convolution via the cuDNN library. The execution time for the different

input signal lengths and for the different number of filters is shown in Figure 4. The speedup factor

for the same configurations is shown in Figure 5.

4.2 Comparison with cuFFT OLS Convolution

Next, we present results for the comparison of complex-to-complex (C2C) Fourier domain con-

volution implementations. The execution time and the number of processed elements versus the

number of filters, and versus input signal length is presented in Figure 6.

The speed-up factors for different filter lengths versus the number of filters and versus the input

signal length used are presented in Figure 7. Furthermore, speedups for signal length other then

2M samples are shown in Figure 8.

The cuFFT-OLS convolution performs best with segment size N = 8,192 for most of the filter

sizes that we have investigated. The best performing segment size in the case of the SM-OLS con-

volution varies, this is because our FFT implementation performs better for smaller FFT lengths.

Figure 9 shows how the performance of the SM-OLS convolution depends on the chosen FFT length

(for TitanV GPU). Smaller FFT sizes become less effective with longer filter lengths, because the

aliased part of the segment becomes a higher fraction of the overall FFT size and more segments

are necessary to calculate the OLS convolution.

The comparison of real-to-real SM-OLS with cuFFT-OLS is similar. The execution time and the

number of elements processed per second versus the number of filters, and versus input signal

length is shown in Figure 10.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

18:12 K. Adámek et al.

Fig. 4. The execution time of the R2R convolution on the left and the number of elements processed per
second on the right-hand side via cuDNN (gray) and shared-memory OLS (black) for different input signal
lengths (top) and different number of filters (bottom).

Fig. 5. The speedup factors of the R2R SM-OLS convolution with respect to the cuDNN convolution for
different input signal lengths (left) and different number of filters (right).

The speed-up factors for different filter lengths versus the number of filters and versus the input

signal length used for 2M signal length are presented in Figure 11. Speedups for signal lengths other

than 2M samples are shown in Figure 12.

4.3 Non-local Post-processing

The advantage of the SM-OLS method is that it has access to all output elements of a given seg-

ment. This allows us to perform, in addition to per-element post-processing (for example, the

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory 18:13

Fig. 6. The execution time of the C2C convolution on the left and the number of elements processed per
second on the right-hand side of the SM-OLS convolution (black) and the cuFFT-OLS convolution (gray) for
different number of filters (top) and increasing input signal length (bottom).

Fig. 7. The speed-up of the C2C SM-OLS convolution with respect to the C2C cuFFT-OLS convolution im-
plementation for different filter lengths vs. the number of filters (left), and vs. the signal length (right).

calculation of the power spectrum), non-local post-processing as well (for example, the numeri-

cal derivative or interpolation). The non-local post-processing of output data requires access to

the immediate or extended neighborhood of the element to be processed. The cuFFT-OLS method

with callbacks offers only limited capabilities when an output element needs to access the val-

ues of neighboring elements. The achieved speedups with non-local post-processing are shown

in Figure 13, where we have calculated the derivative of the convolved signal. We have chosen

to calculate the derivative, because it does not require a larger memory footprint for the output,

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

18:14 K. Adámek et al.

Fig. 8. The speed-up of the C2C SM-OLS convolution with respect to the C2C cuFFT-OLS convolution imple-
mentation for different filter lengths vs. the number of filters (left) for signal lengths 250k and 8M samples.
The number of filters is limited by amount of device memory the GPU has, this is why there are missing
points for P4 GPU (8 GB) and TitanV GPU (12 GB).

Fig. 9. The execution time of the SM-OLS convolution vs. filter length for different segment (FFT) sizes. The
execution time of the cuFFT-OLS convolution is added for comparison.

thus the amount of data that needs to be transferred to and back from device memory remains the

same.

4.4 PCI-e Latencies

The SM-OLS convolution implementation presented here is most efficient when used as a part of

larger signal processing/data reduction pipeline. If run independently, then the execution time,

which includes PCI-e transfer times, would be dominated by the time taken to transfer the output

data to the host. Further processing of the output data from the convolution output (such as peak

finding or candidate selection) would reduce the amount of output data transferred to the host to

a point where the transfer of the output data could be hidden by the computations.10

10Using, for example, CUDA Streams.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory 18:15

Fig. 10. The execution time of the R2R convolution on the left and the number of elements processed per
second on the right-hand side of the SM-OLS convolution (black) and the cuFFT-OLS convolution (gray) for
different number of filters (top) and increasing input signal length (bottom).

Fig. 11. The speed-up of the R2R SM-OLS convolution with respect to the R2R cuFFT-OLS convolution im-
plementation for different filter lengths vs. the number of filters (left), and vs. the signal length (right).

5 DISCUSSION

The main source of the speedup for our shared-memory OLS implementation for one-dimensional

convolution is the elimination of device memory accesses during the convolution step in the OLS

method. If every other aspect of the computations in SM-OLS and cuFFT-OLS were equal, then the

elimination of device memory accesses would result in a constant speedup for all filter lengths,

the number of filters or signal length, since the only difference between the two cases would be

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

18:16 K. Adámek et al.

Fig. 12. The speed-up of the R2R SM-OLS convolution with respect to the R2R cuFFT-OLS convolution im-
plementation for different filter lengths vs. the number of filters (left) for signal lengths 250k and 8M samples.
The number of filters is limited by the amount of device memory the GPU has, this is why there are missing
points for P4 GPU (8 GB) and TitanV GPU (12 GB).

Fig. 13. The speed-up of the SM-OLS over cuFFT-OLS when non-local post-processing is included into con-
sideration. The speed-up for C2C convolution is at the top and speed-up for R2R convolution is at the bottom.

the per-sample device memory accesses that were not realised. In real calculations, there are many

other effects which affect the speedup of our shared-memory implementation of OLS convolution.

The primary effect is determined by the segment size N , which needs to be set appropriately so

that the number of aliased samples which are given by the filter length M is proportionally small

compared to the number of uncontaminated output samples contained in the output segment. The

segment size in the cuFFT-OLS convolution implementation is not limited to any particular size.

This is not true for our implementation of the SM-OLS convolution. Our SM-OLS is limited to a

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory 18:17

segment length of 4,096 samples. This limitation is imposed by the size of the shared memory and

also by the number of samples we are able to process per thread.

If we fix the segment size N , then any increase in filter length leads to a decrease in the number

of correct output samples per segment, thus more segments are required to calculate the whole

convolution. The effect of this can be observed in Figure 9 where different black lines represent

the execution time of the SM-OLS implementation with a fixed segment (FFT) size. Figure 9 shows

that each segment size is optimal only for a limited range of filter lengths and after that, it is

better to switch to a different segment size. Since our implementation of the SM-OLS convolution

is limited to segment size N = 4,096, we cannot use a longer segment size when the number of

correct samples per segment decreases below a certain limit and at that point cuFFT-OLS becomes

the better performing implementation.

The caching of filters is also governed by the size of the segment. The filter length in the fre-

quency domain is equal to the size of the segment N , so by increasing segment size, we are de-

creasing the number of filters which can be cached by the GPU’s fixed size cache at any instant.

5.1 Comparison with cuDNN Convolution

Figure 4 shows the comparison of the execution time of our SM-OLS convolution implementation

and our implementation of convolution via cuDNN library. The execution time scales linearly with

the input signal length shown on the left-hand side of Figure 4. Different scaling can be seen as

the number of filters increase. Our implementation of SM-OLS scales linearly, but cuDNN has the

same execution time up until the number of filters reaches 32, at which point it scales linearly.

This is due to under-utilization of the GPU resources, which is most probably caused by different

work distribution, which favours more filters.

Figure 5 shows speedup factors of SM-OLS convolution implementation over the cuDNN con-

volution. The speedup factors for different filter lengths (different line types) versus the signal

length (on the left-hand side of Figure 5) shows that both implementations scale at the same rate

as the signal length increases. Figure 5 indicates that the cuDNN library is optimised for small fil-

ter lengths, since convolutions with smaller filters have lower speedups. The reverse is true when

SM-OLS convolution is compared to cuFFT-OLS convolution. The high speedups shown on the

right-hand side of Figure 5 are due to poor scaling of the cuDNN library for a number of filters

below 32.

5.2 Comparison with cuFFT Convolution

The execution time, as shown for C2C convolutions in Figure 6 and for R2R convolutions in

Figure 10, scales linearly with an increasing number of filters and increasing input signal length.

Both implementations achieve roughly constant performance in the number of processed elements

per second past 16 filters or a signal length of two million samples.

The speedup factors of SM-OLS convolution over cuFFT-OLS convolution are shown for C2C

convolutions in Figures 7 and 8 and for R2R convolutions in Figures 11 and 12. The speedup fac-

tors are, in the majority of cases, constant and do not change with the number of filters or the

length of the input signal. This is because the segment size is not affected by these parameters,

the only difference between the two implementations is the number of device memory accesses

performed, or rather not-performed, per sample by the SM-OLS implementation. The total num-

ber of processed samples, which includes also the aliased samples, might be different between the

two implementations due to different segment sizes used, but the ratio of device memory transfers

between these two implementations of the OLS method remains constant and as such the speedup

remains constant as well.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

18:18 K. Adámek et al.

There are exceptions to this rule. In the case of complex-to-complex convolutions, we observe

(in Figure 7 and on the left-hand side of Figure 8) that for a small number of filters or short signal

lengths, we have higher speedups.

The higher speedup for short signal lengths is due to the slower performance of the cuFFT-

OLS convolution, which under-utilises GPU resources in this regime. The cuFFT-OLS performs

best with longer segment sizes (8,192), which, for shorter signal lengths, does not provide enough

parallelism for the GPU to utilise. The Titan V GPU, which has the most SM,11 has the highest

speedups, while P4 GPU, which has the fewest SMs, is barely affected.

The high speedups for the small filter numbers are caused by the overhead of creating segments

in the cuFFT-OLS implementation. This step is, in the case of SM-OLS, included in the GPU kernel

and does not create additional device memory accesses.

The situation is different for R2R convolutions. Speedup factors of SM-OLS convolution over

cuFFT-OLS convolution are shown in Figures 11 and 12. We see that for cases with short signal

lengths the SM-OLS achieves low or below one speedups. This is caused by the under-utilisation

of the GPU resources in our SM-OLS implementation. In the case of R2R convolutions, we are

able to convolve a segment of size N with an FFT size N /2 [19], meaning that we are able to fit

(depending on the FFT size) up to four thread-blocks per SM, which leads to under-utilization,

even for signal sizes of 500k samples. This can be best observed in Figure 12 on the left-hand side,

where we show speedups for short signal lengths (250k). GPU cards that are most affected (TitanV

GPU, P100 GPU) have also the most SMs, while the P4 GPU with a smaller number of SMs shows

speedups comparable to what we can see in Figure 11.

Last, our SM-OLS has lower performance for shorter filters. This is due to shared-memory bank

conflicts in our shared-memory implementation of the Stockham FFT algorithm. These shared-

memory bank conflicts occur in the first few iterations of the algorithm. The execution time of

these first few iterations dominates the execution time of the shorter FFTs and thus decreases the

performance of the whole convolution.

5.3 Non-local Post-processing

Figure 13 shows the speedup of SM-OLS over cuFFT-OLS when performing a non-local post-

processing step. Examples, where this might be required, include interpolation of the output or

numerical differentiation (which we have used to demonstrate this). The change in the perfor-

mance depends on the filter size used. The speedup can also decrease when compared to convolu-

tion without non-local post-processing. This can be seen for P100 and P4 GPUs when performing

real-to-real convolutions with filters longer than 1,025 samples, but for shorter filter lengths the

speedup can be as great as 30% as in the case of the Titan V GPU for filter lengths 257 and 513.

6 CONCLUSIONS

We have presented an implementation of the shared-memory overlap-and-save method for the

one-dimensional convolution of a large data set with a set of short filters. We have demonstrated a

significant speed-up for our shared-memory implementation of overlap-and-save, over an imple-

mentation of the overlap-and-save method that uses a vendor-supplied FFT library (cuFFT). We

have also demonstrated a speedup in the calculation of convolution over a vendor-supplied library

for deep neural network primitives (cuDNN) for NVIDIA GPUs. This work has been used to enable

real-time data processing in AstroAccelerate software package [24] that performs the Fourier Do-

main Acceleration Search for the Square Kilometre Array [1, 4, 5]. Considering the significance of

11The SM or streaming multiprocessor is a set of computing cores, the exact number of cores depends on the architecture,

which executes threads instruction in parallel.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory 18:19

convolution in signal processing this implementation could have a noticeable impact in fields such

as natural language processing, monitoring and listening services, speech recognition or pattern

matching.

Future work includes the incorporation of the shared-memory FFT presented in this article, into

our implementation of a polyphase filter [2] to increase its data throughput.

ACKNOWLEDGMENT

The authors acknowledge the use of the University of Oxford Advanced Research Computing

(ARC) [20] facility in carrying out this work.

REFERENCES

[1] K. Adámek, S. Dimoudi, M. Giles, and W. Armour. 2017. Improved acceleration of the GPU fourier domain acceleration

search algorithm. In Proceedings of the 27th Astronomical Data Analysis Software and Systems Conference (ADASS’17).

arxiv:astro-ph.IM/1711.10855

[2] K. Adámek, J. Novotný, and W. Armour. 2016. A polyphase filter for many-core architectures. Astron. Comput. 16

(July 2016), 1–16. DOI:https://doi.org/10.1016/j.ascom.2016.03.003 arxiv:astro-ph.IM/1511.03599

[3] W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel, W. W. Lang, G. C. Maling, D. E. Nelson, C. M.

Rader, and P. D. Welch. 1967. What is the fast Fourier transform?Proc. IEEE 55, 10 (Oct. 1967), 1664–1674. DOI:https://

doi.org/10.1109/PROC.1967.5957

[4] S. Dimoudi, K. Adamek, P. Thiagaraj, S. M. Ransom, A. Karastergiou, and W. Armour. 2018. A GPU implementation

of the correlation technique for real-time Fourier domain pulsar acceleration searches. The Astrophysical Journal

Supplement Series 239, 2 (2018). DOI:10.3847/1538-4365/aabe88

[5] S. Dimoudi and W. Armour. 2015. Pulsar acceleration searches on the GPU for the square kilometre array.

In Proceedings of the 25th Astronomical Data Analysis Software and Systems Conference (ADASS’15). arxiv:astro-

ph.IM/1511.07343.

[6] T. Dobashi and H. Kiya. 2013. A parallel implementation method of FFT-based full-search block matching algo-

rithms. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 2644–2648. DOI:
https://doi.org/10.1109/ICASSP.2013.6638135

[7] J. A. Fernandez and B. V. K. V. Kumar. 2013. Multidimensional overlap-add and overlap-save for correlation and

convolution. In Proceedings of the IEEE International Conference on Image Processing. 509–513. DOI:https://doi.org/10.

1109/ICIP.2013.6738105

[8] Jeremy Fowers, Greg Brown, John Wernsing, and Greg Stitt. 2013. A performance and energy comparison of con-

volution on GPUs, FPGAs, and multicore processors. ACM Trans. Archit. Code Optim. 9, 4 (Jan. 2013). DOI:https://

doi.org/10.1145/2400682.2400684

[9] Naga Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Manferdelli. 2008. High performance

discrete fourier transforms on graphics processors. In Proceedings of the ACM/IEEE Conference on Supercom-

puting. Retrieved from https://www.microsoft.com/en-us/research/publication/high-performance-discrete-fourier-

transforms-on-graphics-processors/.

[10] Eladio Gutierrez, Sergio Romero, Maria A. Trenas, and Emilio L. Zapata. 2008. Memory Locality Exploitation Strategies

for FFT on the CUDA Architecture. Springer-Verlag, Berlin, 430–443. https://doi.org/10.1007/978-3-540-92859-1_39

[11] John W. Tukey and James W. Cooley. 1965. An algorithm for the machine calculation of complex fourier series. Math.

Comp. 19, 90 (1965), 297–301. Retrieved from http://www.jstor.org/stable/2003354.

[12] M. Jordà, P. Valero-Lara, and A. J. Peña. 2019. Performance evaluation of cuDNN convolution algorithms on NVIDIA

volta GPUs. IEEE Access 7 (2019), 70461–70473. DOI:https://doi.org/10.1109/ACCESS.2019.2918851

[13] A. Lavin and S. Gray. 2015. Fast algorithms for convolutional neural networks. ArXiv e-prints arxiv:1509.09308.

[14] R. G. Lyons. 2011. Understanding Digital Signal Processing. Prentice Hall.

[15] Kenneth Moreland and Edward Angel. 2003. The FFT on a GPU. In Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS’03). Eurographics Association, Aire-la-Ville,

Switzerland, 112–119. Retrieved from http://dl.acm.org/citation.cfm?id=844174.844191.

[16] M. J. Narasimha. 2006. Modified overlap-add and overlap-save convolution algorithms for real signals. IEEE Signal

Process. Lett. 13, 11 (Nov. 2006), 669–671. DOI:https://doi.org/10.1109/LSP.2006.879475

[17] NVIDIA. 2019. NVIDIA CUDA Deep Neural Network Library (cuDNN). Retrieved from https://developer.nvidia.com/

cudnn.

[18] NVIDIA. 2019. NVIDIA CUDA Fast Fourier Transform Library (cuFFT). Retrieved from https://developer.nvidia.com/

cufft.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

https://doi.org/10.1016/j.ascom.2016.03.003
https://doi.org/10.1109/PROC.1967.5957
https://doi.org/10.1109/PROC.1967.5957
https://doi.org/10.3847/1538-4365/aabe88
https://doi.org/10.1109/ICASSP.2013.6638135
https://doi.org/10.1109/ICIP.2013.6738105
https://doi.org/10.1109/ICIP.2013.6738105
https://doi.org/10.1145/2400682.2400684
https://doi.org/10.1145/2400682.2400684
https://www.microsoft.com/en-us/research/publication/high-performance-discrete-fourier-transforms-on-graphics-processors/
https://www.microsoft.com/en-us/research/publication/high-performance-discrete-fourier-transforms-on-graphics-processors/
https://doi.org/10.1007/978-3-540-92859-1_39
http://www.jstor.org/stable/2003354
https://doi.org/10.1109/ACCESS.2019.2918851
http://dl.acm.org/citation.cfm?id=844174.844191
https://doi.org/10.1109/LSP.2006.879475
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft

18:20 K. Adámek et al.

[19] W. H. Press. 1992. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press.

[20] Andrew Richards. 2015. University of Oxford Advanced Research Computing. DOI:https://doi.org/10.5281/zenodo.

22558

[21] C. Van Loan. 1992. Computational Frameworks for the Fast Fourier Transform. Society for Industrial and Applied Math-

ematics. Retrieved from arXiv:http://epubs.siam.org/doi/pdf/10.1137/1.9781611970999.

[22] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and Y. LeCun. 2014. Fast convolutional nets with fbfft:

A GPU performance evaluation. ArXiv e-prints arxiv:cs.LG/1412.7580. https://research.fb.com/wp-content/uploads/

2016/11/fast-convolutional-nets-with-fbfft-a-gpu-performance-evaluation.pdf.

[23] Vasily Volkov and Brian Kazian. 2008. Fitting FFT onto the G80 architecture. University of California, Berkeley (2008).

https://pdfs.semanticscholar.org/eb3a/82ddfc4e73de18a4004ecb9c1109730ae3eb.pdf.

[24] W. Armour, K. Aámek, J. Novotný, S. Dimoudi, C. Carels, and N. Ouannoughi. 2019. AstroAccelerate. https://github.

com/AstroAccelerateOrg/astro-accelerate.git.

[25] Frank Wefers and Michael Vorländer. 2013. Using fast convolution for FIR filtering Overview and guidelines for

real-time audio rendering. In Proceedings of the International Conference on Acoustics (AIA-DAGA’13). Retrieved from

http://pub.dega-akustik.de/AIA_DAGA_2013/data/articles/000683.pdf.

[26] Yi Yang and Huiyang Zhou. 2014. A Highly Efficient FFT Using Shared-memory Multiplexing. Springer International

Publishing, Cham, 363–377. DOI:https://doi.org/10.1007/978-3-319-06548-9_17

Received October 2019; revised March 2020; accepted April 2020

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 18. Publication date: August 2020.

https://doi.org/10.5281/zenodo.22558
https://doi.org/10.5281/zenodo.22558
http://epubs.siam.org/doi/pdf/10.1137/1.9781611970999
https://research.fb.com/wp-content/uploads/2016/11/fast-convolutional-nets-with-fbfft-a-gpu-performance-evaluation.pdf
https://research.fb.com/wp-content/uploads/2016/11/fast-convolutional-nets-with-fbfft-a-gpu-performance-evaluation.pdf
https://pdfs.semanticscholar.org/eb3a/82ddfc4e73de18a4004ecb9c1109730ae3eb.pdf
https://github.com/AstroAccelerateOrg/astro-accelerate.git
https://github.com/AstroAccelerateOrg/astro-accelerate.git
http://pub.dega-akustik.de/AIA_DAGA_2013/data/articles/000683.pdf
https://doi.org/10.1007/978-3-319-06548-9_17

