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Abstract. We propose a new algorithm for Adaptive Finite Element Methods (AFEMs) based
on smoothing iterations (S-AFEM), for linear, second-order, elliptic partial differential equations
(PDEs). The algorithm is inspired by the ascending phase of the V-cycle multigrid method: we
replace accurate algebraic solutions in intermediate cycles of the classical AFEM with the application
of a prolongation step, followed by a fixed number of few smoothing steps. Even though these
intermediate solutions are far from the exact algebraic solutions, their a-posteriori error estimation
produces a refinement pattern that is substantially equivalent to the one that would be generated by
classical AFEM, at a considerable fraction of the computational cost.

We quantify rigorously how the error propagates throughout the algorithm, and we provide a
connection with classical a posteriori error analysis. A series of numerical experiments highlights the
efficiency and the computational speedup of S-AFEM.

Key word. adaptive mesh refinement, finite element method, second-order elliptic PDEs, a
posteriori error analysis, inexact algebraic solution, iterative solvers, smoothing iterations, grid con-
struction.

AMS subject classifications. 65N15, 65N22, 65N30, 65N50, 65N55

1. Introduction. The efficient numerical simulation of complex real-world phe-
nomena requires the use of computationally affordable discrete models. The adaptive
finite element method (AFEM) is one such a scheme for the numerical resolution of
partial differential equations (PDEs) in computational sciences and engineering. In
finite element simulations (FEM), the domain of a PDE is discretized into a large set
of small and simple domains (the cells or elements) depending on a size parameter
h > 0. Typical shapes that are used for the discretization are triangles, quadrilaterals,
tetrahedrons, or hexahedrons. The solution space is constructed by gluing together
simpler finite dimensional spaces, defined on a piecewise manner on each cell, and the
original problem is solved on this simpler, finite dimensional space, transforming the
original PDE into an algebraic system of equations. Rigorous analysis of the numeri-
cal method allows one to estimate the discretization error both a priori (giving global
bounds on the total error that depend on a global size parameter h), and a posteriori
(providing a local distribution of the error on the discretized mesh in terms of known
quantities). Classical AFEM consists of successive loops of the steps

(1.1) Solve −→ Estimate −→Mark −→ Refine

to decrease the total discretization error, by repeating the FEM solution process
(Solve) on a mesh that has been refined (Refine) on areas where the a-posteriori
analysis (Estimate) has shown that the error is larger (Mark).

Intermediate solution steps are instrumental for the construction of the finally
adapted grid, and play no role in the final solution, which is the only one which is
retained for analysis and processing.

In this work we present and analyze a simple yet effective algorithm to reduce
the overall computational cost of the AFEM algorithm, by providing a fast procedure
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for the construction of a quasi-optimal mesh sequence that does not require the exact
solution of the algebraic problem in the intermediate steps of AFEM.

We propose a novel Smoothed Adaptive Finite Element algorithm (S-AFEM),
where the accurate Solve step for all intermediate loops is replaced by the application
of a prolongation step (Prolongate), followed by a fixed number of few smoothing
steps (Smooth):

Solve Estimate Mark Refine

ProlongateSmooth

Solve

In our setting, intermediate steps have non-negligible algebraic errors due to the
inexact solution of the linear system. This is in contrast with the common practical
assumption made in AFEM, where it is assumed that the Solve step produces the exact
solution of the algebraic system. Recent developments dedicated a great deal of effort
to account for inexactness of the algebraic approximations and introduce stopping
criteria based on the interplay between discretization and algebraic computation in
adaptive FEM. Among others, we mention the seminal contributions [10, 26, 4, 5, 34,
30, 33, 32, 21, 31, 29, 20].

Nevertheless, most of this literature focuses on ways to estimate the algebraic
error, without really exploiting the other side of the coin: inexact approximate so-
lutions, with large algebraic error, may still offer large computational savings when
used in the correct way.

The algebraic errors of the intermediate steps are the price we pay to improve
the speed of the overall algorithm. We analyze how these errors propagate through
the Estimate-Mark-Refine steps, and we show that the final grid sequence obtained
through S-AFEM provides the same accuracy of the one obtained through classical
AFEM, at a fraction of the computational cost.

S-AFEM takes its inspiration from the ascending phase of the V-cycle multigrid
method, where a sequence of prolongation and smoothing steps is applied to what
is considered an algebraically exact solution at the coarsest level. In the multigrid
literature, this procedure is used to transfer the low frequency information contained
in the coarse solution to a finer –nested– grid, where some steps of a smoothing
iteration are applied in order to improve the accuracy of the solution in the high
frequency range. We refer to the classical books [24, 25, 39, 13, 12] for a more in-
depth analysis of multigrid methods. The iteration of this procedure turns out to
be very effective in providing accurate algebraic solutions in O(N) time, where N is
the dimension of the final algebraic system. This procedure is based on the principle
that even a small number of smoothing iterations is sufficient to eliminate the high
frequency error, while the prolongation from coarser grids guarantees the convergence
in the low frequency regime, resulting in an overall accurate solution.

However, there is a main difference between the ascending phase of the V-cycle
multigrid method and AFEM: in AFEM the next grid in the sequence is unknown,
and requires an exact algebraic solution on the current grid to trigger the Estimate-
Mark-Refine steps.

The motivation behind the strategy at the base of S-AFEM is that classical
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Fig. 1.1. The values of the total er-
ror energy norm and of the error estima-
tor for each loop of the classical AFEM
(|u−uh|1 and Est(uh)) and S-AFEM with
` = 2 smoothing iterations (|u− u`

h|1 and
Est(u`

h)) for the classical L-shaped domain
problem in 2D. The first and last loop are
solved exactly by both methods.

residual-based a posteriori error estimators [38] used in the Estimate step are not
sensitive to low frequencies in the solution, as shown in Figure 1.1 for a benchmark
example. Consequently, their application to very inaccurate approximate solutions in
intermediate loops – only capturing high frequency oscillations through a smoother
– produces an equally good grid refinement pattern at each loop, at a fraction of the
computational cost.

The first and last loops of the S-AFEM algorithm coincide with those of the classi-
cal AFEM. In intermediate S-AFEM loops, however, the solution is far from the exact
algebraic solution. These intermediate solutions serve solely to the construction of the
final grid, and find no other use in the final computations, therefore their inexactness
is irrelevant, provided that the finally adapted grid provides a good approximation.
Their role is instrumental in triggering the Estimate−Mark −Refine steps.

We show that the a-posteriori error estimator applied to the intermediate approxi-
mations triggers aMark step where the refinement pattern is substantially equivalent
to the one that would be generated by a classical Solve step, at a considerable frac-
tion of the computational cost. For three dimensional problems, the speedup in the
intermediate loops is in the hundreds, and even if the final grid is not exactly identical
to the one that would be obtained with the classical AFEM, the accuracy of the final
solutions is comparable.

The article is organised as follows. We start by introducing a general multilevel
framework applied to a simple model problem in Section 2. Its algebraic properties
are analyzed in detail in Section 3. Section 4 is dedicated to the connection between
the algebraic error and the a posteriori error estimates. Section 5 provides a detailed
description of the S-AFEM algorithm, while Sections 6 and 7 present some numerical
examples that show the efficiency and the computational speedup of S-AFEM, and
provide some conclusions.

2. Multilevel framework. In this section we describe the Poisson model prob-
lem and discuss its algebraic resolution in a multilevel framework. In particular, we
motivate the reason behind the use of smoothing iterations applied to the prolongation
of the approximation from previous levels. This simple, but significant model prob-
lem serves as a prototype for the larger class of linear elliptic, second-order, boundary
value problems (BVPs).

The variational formulation of such problems reads: seek u ∈ V s.t. Au = f in V
under suitable boundary conditions, where (V, ‖•‖) is a normed Hilbert space defined
over a Lipschitz bounded domain Ω, the linear operator A : V → V ? is a second order
elliptic operator, and f ∈ V ? is a given datum. FEM provides numerical solutions
to the above problem in a finite dimensional solution space Vh ⊂ V , typically made
up by continuous and piecewise polynomial functions, and transforms the continuous
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problem above in a discrete model of type Ahuh = fh in Vh under suitable boundary
conditions, where e.g., Ah = A |Vh

. The overall procedure leads to the resolution of
a (potentially very large) linear algebraic system of equations of type Au = f in RN ,
where N = dim(Vh).

2.1. Model Problem. As a model problem, we consider Poisson’s equation
with homogeneous Dirichlet boundary conditions. Let Ω ⊂ Rd (d = 1, 2, 3) be a
bounded, polygonal domain (an open and connected set with polygonal boundary)
with Lebesgue and Sobolev spaces L2(Ω) and H1

0 (Ω). We look for the solution u ∈
H1

0 (Ω) such that

(2.1) −∆u = f in Ω and u = 0 on Γ := ∂Ω,

where f ∈ L2(Ω) is a given source term. We use the standard notation for norms and
scalar products in Lebesgue and Sobolev spaces (cf. [1]): for u ∈ H1

0 (Ω) and ω ⊂ Ω,
we write |u|1,ω := (

∫
ω
|∇u|2)1/2 and denote by (·, ·)ω the L2(ω)- scalar product with

corresponding norm ‖ · ‖ω. For ω = Ω, we omit the corresponding subscripts. The
weak form of (2.1) is to find u ∈ H1

0 (Ω) s.t.

(2.2) (∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω).

We consider a shape regular family of triangulations {Th}h of Ω in the sense of
Ciarlet [18], depending on a parameter h > 0 with shape regularity parameter CTh .
We will consider triangulations consisting of triangles or convex quadrilaterals in two
dimensions, and tetrahedrons or convex hexahedrons in three dimensions; we denote
them by T and we generically call them cells.

We denote by z the nodes of Th (i.e. the vertices of the cells) and by Nh the set
of all nodes, while Nh,int denotes the set of the free nodes. The set of all edges/faces
E of the cells is denoted by Eh and similarly, Eh,int := Eh \ Γ is the set of internal
edges/faces. Let ϕz be the nodal basis function associated to a node z ∈ Nh with
support ωz, which is equal to the patch ωz = ∪{T ∈ Th|z ∈ T}. We use the Courant
finite element space Vh := span{ϕz|z ∈ Nh,int} ⊂ H1

0 (Ω). The discrete approximation
uh ∈ Vh is called a Galerkin solution and it is defined by the discrete system

(2.3) (∇uh,∇vh) = (f, vh) ∀vh ∈ Vh.

In exact arithmetic, the discretization error eh := u − uh satisfies the standard or-
thogonality condition

(2.4) (∇(u− uh),∇vh) = 0 ∀vh ∈ Vh.

Equation (2.4) is the basic relation under which classical a posteriori error bounds
for the discretization error are derived (cf. Section 4).

Let N = dim(Vh), the discrete system (2.3) leads to a linear algebraic system of
type

(2.5) Au = f in RN ,

where A denotes the symmetric positive definite (SPD) stiffness matrix with entries
aij := (∇ϕj ,∇ϕi) ∀ i, j = 1, .., N, u = [u1, . . . , uN ]T denotes the coefficients vector in
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RN of the discrete approximation uh =
∑N

j=1 ujϕj ∈ Vh and f = [f1, . . . , fN ]T is the
vector with entries fj = (f, ϕj) ∀j = 1, .., N.

In our framework, we will consider a nested sequence of shape regular triangula-
tions Tk, for k = 1, . . . , k̄, which induces a nested sequence of finite element spaces

(2.6) V1 ⊂ V2 ⊂ · · · ⊂ Vk̄ ⊂ H1
0 (Ω).

Typical examples are the ones generated during global and local mesh-refinement
techniques, starting from a given (coarse) uniform triangulation T1.

Remark 2.0.1. Relation (2.6) does not hold true for all adaptive refinements. In
particular, refinement procedures involving red-green refinements do not satisfy this.
In this work we use a code based on the open source library deal.II, that handles
local refinement through hanging nodes (see [9, 7, 3, 6]), and this condition is always
satisfied if no de-refinement is applied. This will be the case for the numerical tests
described in Section 6.

We let Nk := dim(Vk), for k = 1, . . . , k̄. By construction, the inequalities N1 <
N2 < · · · < Nk̄ hold true. The associated discrete systems for each level k = 1, 2, . . . , k̄
read

(2.7) (∇uk,∇vk) = (f, vk) ∀ vk ∈ Vk

and they generate linear systems of type

(2.8) Akuk = fk

of respective dimensions Nk.

2.2. Smoothed multilevel methods. For the algebraic resolution of systems (2.8),
we will consider smoothing iterations. We recall that by the Spectral Theorem, the
eigenvectors of the stiffness matrices Ak form an orthonormal basis of RNk [27], there-
fore the error after any iteration that solves (2.8) can be decomposed in this basis. The
corresponding eigenvalues are ordered non-decreasingly. It is well known that eigen-
vectors corresponding to larger eigevenvalues are increasingly oscillatory. Smoothing
iterations have the characteristic to damp the components of the error in the directions
of the most oscillatory eigenvectors.

For simplicity of exposition, in this work we only use Richardson iteration as a
smoothing iteration, but other choices are possible, see, for example, the review in
[12, 23, 39].

Given ωk ∈ R a fixed parameter and u
(0)
k ∈ RNk an initial guess, Richardson

iteration for the resolution of (2.8) takes the form

(2.9) u
(i+1)
k = u

(i)
k + ωk(fk −Aku

(i)
k ) for i = 0, 1, . . .

From equation (2.9) it is immediate that the error after i+ 1 iterations e(i+1)
k satisfies

the error propagation formula e(i+1)
k = Mke

(i)
k = · · · = M i+1

k e
(0)
k , whereMk := IdNk

−
ωkAk is the iteration matrix of the method. The optimal choice of the parameter ωk is
ωk = 1/γk, where γk is a damping parameter of the same order of the spectral radius
of Ak. We refeer to the classical books [24, 35] for more details on the Richardson
iteration.
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Due to the error propagation formula, it can be easily seen that the error com-
ponents after a single Richardson iteration are reduced by a factor which is “close
to zero” in correspondence to the more oscillatory eigenvectors and “close to one” in
correspondence to the less oscillatory eigenvectors. As a consequence, after a single
Richardson iteration, the high frequency components of the error, corresponding to
the more oscillatory eigenvectors, will have been strongly reduced.

This characteristic of Richardson iteration makes it a good smoother candidate
for many multilevel algorithms, where one solves exactly on a coarse grid (reaching
convergence in all components), and then performs a sequence of prolongations fol-
lowed by a fixed number of few smoothing steps, to improve convergence in the finer
grids, under the assumption that lower frequencies have already been taken care of in
the previous levels.

The prolongation is achieved by considering the canonical embedding ik+1
k : Vk ↪→

Vk+1 that embeds functions uk ∈ Vk in the space Vk+1. We denote by Ik+1
k : RNk →

RNk+1 the corresponding discrete matrix. Notice that the matrix representation won’t
be the identity matrix, since we’re using different basis functions in Vk and in Vk+1. As
an example, consider linear finite element functions. These are uniquely determined
by their values in the nodes. For nodes that exist both in Tk and Tk+1, the value
at those nodes can be determined in Tk and it remains the same. For the nodes
in Tk+1 that are not in Tk, their values are determined by linear interpolation. We
will refer to multilevel algorithms that adopt the above procedure of resolution as
smoothed-multilevel methods.

The effect of the prolongation is that it allows the iterative solver to start from
an already good approximation of the solution in its low frequency part. In this
work, we will make the (inexact) assumption that the prolongation operation leaves
unaltered the low frequency components of vectors defined from the previous mesh
(cf. Subsection 3.2). Then, by applying smoothing iterations, we’re converging to-
wards the solution in the highest frequencies. Despite being far less competitive as
solvers for large systems in general, smoothing iterations turn out to be very useful
in this context, similarly to what happens in multigrid methods.

3. Algebraic Error Analysis. In this section we analyze the algebraic error
propagation in smoothed-multilevel methods. More precisely, we assume that the
algebraic system at the first level is solved arbitrarily, then we apply prolongations
between successive levels followed by a fixed number of smoothing steps. We first
provide a one step recursive formula for the error propagation. Afterwards, we in-
troduce the frequency-coupling and smoothing (FCS) matrices and derive a compact
formula for the propagation of the error across smoothing steps and mesh prolonga-
tions. Finally, we provide the algebraic error analysis under the assumption that the
prolongation operator preserves low frequencies from the previous level.

3.1. Error propagation.

Theorem 3.1 (Error propagation). Let e(`)
k and e

(`)
k+1 denote the algebraic errors

after ` smoothing iterations respectively at step k and k + 1, for k = 1, . . . , k̄ − 1. Let

(3.1) ak+1 := uk+1 − Ik+1
k uk ∈ RNk+1

denote the difference between the exact algebraic solution uk+1 at level k + 1 and the
prolongation of the exact algebraic solution uk from the previous level k to the current
level k+1, for k = 1, . . . , k̄−1. Notice that the vector a1 is not defined, so that defini-
tion (3.1) starts from the vector a2. Then, the following error propagation recursive
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formula holds true

e
(`)
k+1 = Mk+1

`(ak+1 + Ik+1
k e

(`)
k ), for k = 1, . . . , k̄ − 1.(3.2)

Proof. Let e1 = u1 − uc
1 be the error after the first cycle k = 1, where uc

1 is the
numerical computed approximation. After prolongating uc

1 to the next level k = 2,
there is an initial error

(3.3)
e

(0)
2 = u2 − I2

1u
c
1

= u2 − I2
1u1 + I2

1e1

= a2 + I2
1e1.

After ` smoothing iterations there is produced a smoothed approximation u
(`)
2 and

the final error is given by

(3.4)
e

(`)
2 = M2

`e
(0)
2

= M2
`a2 +M2

`I2
1e1.

Let now k = 2, 3, . . . , k̄ − 1 be generic. We prolongate the smoothed approximation
u

(`)
k = uk − e

(`)
k from step k to obtain the initial guess for step k + 1

(3.5)
u

(0)
k+1 = Ik+1

k u
(`)
k

= Ik+1
k uk − Ik+1

k e
(`)
k ,

which produces the initial error

(3.6)

e
(0)
k+1 = uk+1 − u

(0)
k+1

= uk+1 − Ik+1
k uk + Ik+1

k e
(`)
k

= ak+1 + Ik+1
k e

(`)
k .

After ` smoothing iterations the final error at step k + 1 is

(3.7)
e

(`)
k+1 = Mk+1

`e
(0)
k+1

= Mk+1
`(ak+1 + Ik+1

k e
(`)
k ),

which proves the recursive formula.

Observation 3.2. If we repetitively apply the one-step error propagation equation
(3.7), we get a recursion of the type

(3.8)

e
(`)
k+1 = Mk+1

`(ak+1 + Ik+1
k e

(`)
k )

= Mk+1
`(ak+1 + Ik+1

k (Mk
`(ak + Ikk−1e

(`)
k−1)))

. . .

= Mk+1
`(ak+1 + Ik+1

k Mk
`(ak + Ikk−1Mk−1

`(ak−1 + . . . ))).

By applying all the multiplications extensively we get the following extended error
propagation formula for smoothed-multilevel methods

e
(`)
k+1 = Mk+1

`ak+1 +Mk+1
`Ik+1

k Mk
`ak +Mk+1

`Ik+1
k Mk

`Ikk−1Mk−1
`ak−1 + . . .

· · ·+Mk+1
`Ik+1

k Mk
`Ikk−1Mk−1

` · · ·M3
`I3

2M2
`a2

+Mk+1
`Ik+1

k Mk
`Ikk−1Mk−1

` · · ·M3
`I3

2M2
`I2

1e1.

(3.9)
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Observation 3.3. If we let

a := ak+1 + Ik+1
k Mk

`ak + Ik+1
k Mk

` . . . Ikk−1Mk−1
`ak−1

· · ·+ Ik+1
k Mk

`Ikk−1Mk−1
` · · ·M3

`I3
2M2

`I2
1e1,

(3.10)

then equation (3.9) becomes

(3.11) e
(`)
k+1 = Mk+1

`a,

which means that the algebraic error at any step k + 1 is the result of ` smoothing
iterations applied to the vector a that defines the error accumulated from prolongating
the contribution of the algebraic errors coming from all previous steps.

Definition 3.4 (Frequency-coupling and smoothing (FCS) matrices). Define
the frequency-coupling and smoothing (FCS) matrix

(3.12) Bj+1,j := Ij+1
j M `

j ∈ RNj+1×Nj for j = 2, . . . , k.

and the frequency-coupling and smoothing product (FCSP)

(3.13) Bk+1,i := Bk+1,k . . . Bi+1,i ∈ RNk+1×Ni for i = 2, . . . , k.

Theorem 3.5 (Error propagation formula for smoothed-multilevel methods).
The algebraic error in smoothed-multilevel methods satisfies the following error prop-
agation formula for any step k, for k = 2, . . . , k̄ − 1

(3.14) e
(`)
k+1 = Mk+1

`

ak+1 +

k∑
j=2

Bk+1,jaj + Bk+1,2I
2
1e1

 ,

where the vectors aj are defined by (3.1).

Proof. The proof is a trivial consequence of substituting Definition 3.4 in the
extended error propagation formula (3.9), which gives

e
(`)
k+1 = Mk+1

`(ak+1 +Bk+1,kak + . . .

· · ·+Bk+1,kBk,k−1 . . . B3,2a2 +Bk+1,kBk,k−1

. . . B3,2I
2
1e1)

= Mk+1
`(ak+1 + Bk+1,kak + Bk+1,k−1ak−1+

· · ·+ Bk+1,2a2 + Bk+1,2I
2
1e1).

(3.15)

Let {w(i)
j }

Nj

i=1 be the eigenvectors of the stiffness matrix Aj at level j. From
the discussion in Subsection 2.2, any vector v ∈ RNj can be uniquely decomposed
as v :=

∑Nj

i=1 viw
(i)
j . The low frequency components of v are those from 1 to Nj/2,

corresponding to the less oscillatory eigenvectors, while the high frequency compo-
nents of v are the ones from Nj/2 + 1 to Nj , corresponding to the more oscillatory
eigenvectors [35, 24].

Next, we define the frequency cutoff projection operators, which are a useful tool
to analyze the structure of the FCS matrix Bj+1,j . In Theorem 3.7 we provide a
decomposition of the FCS matrix as the product of the prolongation matrix Ij+1

j

with the low frequency cutoff projection operator and another matrix, which has a
contraction effect on the norms of the vectors.
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Definition 3.6 (Frequency cutoff operators). We define the projection operator
Lj : RNj → RNj , such that v 7→ Ljv :=

∑Nj/2
i=1 viw

(j)
i and the projection operator

Hj : RNj → RNj , such that v 7→ Hjv :=
∑Nj

i=Nj/2+1 viw
(j)
i .

In particular,

(3.16) Lj +Hj = IdNj and ‖v‖2 = ‖Ljv‖2 + ‖Hjv‖2 ∀v ∈ RNj .

Theorem 3.7 (Structure of the FCS matrix). Let j = 2, . . . , k be fixed. The
FCS matrix can be decomposed as

(3.17) Bj+1,j = Ij+1
j Lj + Cj ,

where the matrix Cj ∈ RNj+1×Nj is defined as

(3.18) Cj := Ij+1
j ((Mj

` − IdNj )Lj +Mj
`Hj)

and satisfies

(3.19) ‖Cjv‖ ≤ c‖v‖ ∀v ∈ RNj , where c < 1.

Proof. We apply definition (3.12) of the FCS matrix and relation (3.16) and we
get

(3.20)

Bj+1,j = Ij+1
j Mj

`

= Ij+1
j Mj

`Lj + Ij+1
j Mj

`Hj

= Ij+1
j Lj + (Ij+1

j Mj
`Lj − Ij+1

j Lj + Ij+1
j Mj

`Hj)

= Ij+1
j Lj + Cj ,

where Cj := Ij+1
j ((Mj

` − IdNj
)Lj +Mj

`Hj).
Next, in order to prove (3.19), consider v ∈ RNj and estimate

(3.21)

‖Cjv‖2 = ‖Ij+1
j ((Mj

` − IdNj
)Lj +Mj

`Hj)v‖2

= ‖((Mj
` − IdNj

)Lj +Mj
`Hj)v‖2

≤ (‖(Mj
` − IdNj )Ljv‖+ ‖Mj

`Hjv‖)2

≤ 2(‖(Mj
` − IdNj

)Ljv‖2 + ‖Mj
`Hjv‖2),

where we’ve applied the triangle inequality and the discrete Cauchy-Schwarz inequal-
ity.

In order to analyze the terms in the rhs of (3.21), we decompose v in the orthonor-
mal basis of eigenvectors {w(i)

j }
Nj

i=1 of Aj . By construction, these are also the eigenvec-
tors of the Richardson iteration matrixMj = IdNj−ωjAj . Therefore, any time we ap-

ply Mj to v, we get Mjv = Mj

(∑Nj

i=1 viw
(i)
j

)
=
∑Nj

i=1 vi(Mjw
(i)
j ) =

∑Nj

i=1 θ
(i)
j viw

(i)
j ,

where θ(i)
j is the eigenvalue ofMj corresponding to w

(i)
j . It is well known [35, 25] that

θ
(i)
j is close to 1 for i ∈ [1, Nj/2], i.e., for low frequency components and close to 0 for
i ∈ (Nj/2, Nj ], i.e., for high frequency components.
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For the first term in the rhs of (3.21) we estimate

(3.22)

‖(Mj
` − IdNj

)Ljv‖2 =

∥∥∥∥∥∥
Nj/2∑
i=1

(
(θ

(i)
j )` − 1

)
viw

(i)
j

∥∥∥∥∥∥
2

=

Nj/2∑
i=1

(
(θ

(i)
j )` − 1

)2

v2
i

≤
(

(θ
(Nj/2)
j )` − 1

)2
Nj/2∑
i=1

v2
i

=
(

(θ
(Nj/2)
j )` − 1

)2

‖Ljv‖2.

Likewise,

(3.23)

‖Mj
`Hjv‖2 =

∥∥∥∥∥∥
Nj∑

i=Nj/2+1

(θ
(i)
j )`viw

(i)
j

∥∥∥∥∥∥
2

=

Nj∑
i=Nj/2+1

(θ
(i)
j )2`v2

i

≤ (θ
(Nj/2+1)
j )2`

Nj∑
i=Nj/2+1

v2
i

= (θ
(Nj/2+1)
j )2`‖Hjv‖2.

We let c := 2 max

{(
(θ

(Nj/2)
j )` − 1

)2

, (θ
(Nj/2+1)
j )2`

}
< 1, we substitute it into

(3.21), and we get estimate (3.19).

3.2. A qualitative analysis: non-interacting frequency coupling Hy-
pothesis. It is safe to state that local refinement in finite element simulations in-
troduces more frequencies in the higher part of the spectrum, perturbing only slightly
the lowest part of the spectrum. In order to give a qualitative interpretation to the
error propagation formula, we reinterpret Theorem 3.5 under the following (inexact)
assumption.

Assumption 3.8 (Non-interacting frequency coupling Hypothesis for smoothed-
multilevel methods). We assume that

(3.24) LjI
j
j−1Lj−1 = Ijj−1Lj−1 ∀j = 1, . . . k,

i.e. the prolongation operator preserves low frequencies from the previous level.

It is clear that this can only hold up to approximation order (in an a priori set-
ting) or up to the a posteriori error estimate for the low frequency eigenfunctions
in an adaptive setting. However, it is still useful to derive the propagation formula
for the algebraic error under Assumption 3.8 to understand how the algebraic error
propagates throughout the algorithm. For the proof, we take advantage of the de-
composition of the FCS matrix given by Theorem 3.7 to obtain a decomposition for
the FCSP (3.13) and we substitute the results in Theorem 3.5.
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Theorem 3.9 (Error propagation formula for smoothed-multilevel methods un-
der the non-interacting frequency coupling Hypothesis). The algebraic error in
smoothed-multilevel methods satisfies the following error propagation formula for any
step k, for k = 2, . . . , k̄ − 1

(3.25) e
(`)
k+1 = Mk+1

`

ak+1 +

k∑
j=2

Ik+1
j Ljaj + Ik+1

2 L2I
2
1e1+

k∑
j=2

Dk+1,jaj + Dk+1,2I
2
1e1

 ,

where the matrix Dk,m ∈ RNk×Nm is such that ‖Dk,mv‖ ≤ c‖v‖, ∀v ∈ RNm , where
c < 1, the matrix Ikm := Ikk−1 . . . I

m+1
m , ∀k > m+ 1 and the vectors aj are defined by

(3.1), i.e., aj := uj − Ijj−1uj−1.

Proof. Observing that

(3.26) Bk,m = Bk,k−1Bk−1,m, ∀k > m+ 1,

we can recursively apply the decomposition of Bk,k−1, and, using hypothesis (3.24),
we conclude that

(3.27) Bk,m = IkmLm + Dk,m,

where the matrix Dk,m is in RNk×Nm , and contains all the mixed products. In partic-
ular, in every one of these products, there will always be at least one of the matrices
Cj for some j, that is,

(3.28) ‖Dk,mv‖ ≤ c‖v‖, ∀v ∈ RNm ,

where c < 1. We conclude by substituting decomposition (3.27) to the error propa-
gation formula (3.14) in Theorem 3.5.

Remark 3.9.1. Theorem 3.9 quantifies the algebraic error that is accumulated
after k + 1 cycles in smoothed-multilevel methods, under the assumption that low
frequencies are preserved by the prolongation operator. The smoothing matrix at cycle
k + 1 is responsible for dumping the most oscillatory part of this error. There is a
contribution given by the accumulation of all low frequency-parts of the errors of all
previous cycles (c.f. second and third term in the summation in the rhs of (3.25)),
which is expected to be “small”, since low frequencies of the exact algebraic solution at
a mesh are close to the low frequencies of the exact algebraic solution at the successive
mesh. Finally there is a last type of contribution, which is given by mixed products
(cf. fourth and fifth term in the summation in the rhs of (3.25)), which is also “small”
due to c < 1.

Assumption 3.8 is useful to derive a formula that identifies qualitatively how the
error propagates between successive refinement levels, by distinguishing between high
and low frequency parts in the error propagation formula for smoothed-multilevel
methods (3.14). However, it is not essential for its proof, given in Theorem 3.5.
It can be interpreted as a condition on the distribution of the degrees of freedoms
between grids on different levels. In particular, it implies that all low eigenfunctions
of the space Vj−1, in particular those corresponding to the first Nj−1/2 eigenvalues,
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Fig. 3.1. An example of grid refinement that fails to satisfy Assumption 3.8, by introducing
a few elements with size comparable to the larger elements in the original mesh. Due to the large
number of smaller elements in the original grid, these elements may generate low frequency eigen-
functions (with respect to the new grid) that cannot be captured using only the lower part of the
spectrum of the original mesh.

can be represented exactly by low frequencies of Vj , i.e., they should be representable
as linear combinations of the first Nj/2 eigenfunctions of Vj .

This is false in general, and only holds up to approximation order (in an a priori
setting) or up to the a posteriori error estimate for the low frequency eigenfunctions
in an adaptive setting. However, it is safe to state that local refinement in finite
element simulations introduces more frequencies in the higher part of the spectrum,
perturbing only slightly the lowest part of the spectrum.

Theorem 3.9 should be modified to take into account that Assumption 3.8 is sat-
isfied only approximately. The main statement would still remain valid, but we would
also have higher order error terms appearing in the error propagation formula (3.25),
due to the inexactness of the low frequency prolongations.

Figure 3.1 provides an example of grid refinement that may be troublesome for the
above hypothesis: when passing from the left grid to the right one, we are introducing
some low-frequency terms (in the middle left side of the mesh), that may invalidate the
assumption. Notice that, from the practical point of view, the assumption is verified
with very good accuracy whenever the size of the newly added elements remains
smaller than the bottom 50% of the elements, i.e., for most refinements that do not
add too many degrees of freedom between refinement levels.

Even when this fails to occur, i.e., when Assumption 3.8 is clearly not satisfied,
the high frequencies that are added by the refinement are still damped very quickly
by the smoothing steps nonetheless, thanks to the presence of the matrix Mk+1

` in
front of the propagation formula (3.25).

4. A posteriori Error Analysis. In this section we first provide an insight
into classical a posteriori error estimation theory. Our focus is on residual-based a
posteriori error estimators, which were historically defined and derived in terms of
the discrete approximation uh. We introduce them in Subsection 4.1. The need for
accounting for inexact algebraic approximations is discussed in Subsection 4.2, where



S-AFEM 13

we describe the main issues that a posteriori error analysis accounting for the algebraic
error has to deal with. Our contribution in this analysis is in proving a bound on the
estimator for a generic function in terms of the estimator for uh and the corresponding
algebraic error in Subsection 4.3.

4.1. Classical a Posteriori Error Estimates and Analysis. Classical a pos-
teriori error estimation theory has been focused on measuring a suitable norm of the
discretization error eh by providing upper and lower bounds in terms of a posteriori
error estimators.

By definition, “regarded as an approximation to an (unknown) suitable norm of
the discretization error ‖eh‖, a (computable) quantity η(uh) is called a posteriori error
estimator if it is a function of the known domain Ω, its boundary Γ, the right-hand
side f as well as of the discrete solution uh, or the underlying triangulation” [14].

There are two main requirements that an a posteriori error estimator η(uh) should
satisfy, a part from being easy and cheap to compute: it has to be reliable in the sense
of an upper bound

(4.1) ‖eh‖ ≤ Crelη(uh) + h.o.t.rel

and efficient in the sense of a lower bound

(4.2) η(uh) ≤ Ceff‖eh‖+ h.o.t.eff.

The multiplicative constants Crel and Ceff are independent on the mesh size and h.o.t.
denote oscillations of the right-hand side f , which in generic cases are of magnitudes
smaller than ‖eh‖.

In adaptive mesh-refining procedures, a posteriori error estimators are used in the
module Estimate of AFEM. In particular, reliability (4.1) assures enough refinement,
while efficiency (4.2) prevents too much refinement.

Standard residual-based a posteriori error estimators are the most widely used for
adaptive techniques. They were first introduced in the context of FEM by Babuška
and Rheinboldt in [8] and they have been thereafter widely studied in the literature;
we refer, e.g., to the books by Verfürth [38] and by Ainsworth and Oden [2].

Their derivations is based on the residual functional associated to the Galerkin
solution, which is defined as R{uh} : H1

0 (Ω) −→ R, R{uh} := (f, •) − a(uh, •) with
corresponding dual norm

(4.3) ‖R{uh}‖? := sup
v∈H1

0 (Ω)\{0}

R{uh}(v)

|v|1
= sup

v∈H1
0 (Ω)\{0}

(f, v)− a(uh, v)

|v|1
.

The identity |eh|1 = ‖R{uh}‖? leads to reliable and efficient residual-based a poste-
riori bounds for the discretization error via estimation of the residual function. The
main tool exploited in the derivation is the Galerkin orthogonality (2.4), which fails
to be satisfied when algebraic errors are present.

4.2. A posteriori analysis with algebraic Error. When solving real-world
practical applications, the main difficulty one has to face is that exact (or even near-
to-exact) solutions of the algebraic problem associated to finite element problems
cannot be computed. The approximation uch that one obtains in a computer, does
not satisfy the Galerkin property (2.4). The total error can be written as the sum of
two contributions

(4.4) u− uch︸ ︷︷ ︸
total error

= (u− uh)︸ ︷︷ ︸
discretization error

+ (uh − uch)︸ ︷︷ ︸
algebraic error

.
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The algebraic error may have a significant effect on the computed approximation,
and the solution of the algebraic problem has to be considered an indivisible part of
the overall solution process [34].

This issue is reflected in adaptive mesh-refining procedures. The common prac-
tice in computational sciences and engineering community has been to replace uh by
uch in the expression of the error estimator η during the module Estimate. A vast
literature proposes the use of standard residual-based a posteriori error estimator
on the discretization error as a basic building block and extends it, using various
heuristics arguments, to incorporate the algebraic error. We refer to the seminal and
investigative paper by Papež and Strakoš [33] and the references therein for various
approaches.

Residual-based a posteriori error estimates for the total error for the model prob-
lem have been published in [11], [4] and [33].

In [33], the authors give the detailed proof of the residual-based upper bound on
the energy norm of the total error

(4.5) |u− vh|21 ≤ 2C2(J2(vh) + osc2) + 2C2
intp|uh − vh|21,

for vh ∈ Vh, with the positive multiplicative factors C and Cintp that are independent
of u, uh and h, but depend on the shape regularity of the triangulation. The term
accounting for the algebraic error is scaled by a multiplicative factor Cintp that was
introduced in [17]. It represents however a worst case scenario that can lead to an
overestimation and it is in general not easy to estimate.

The above discussed issues make the application of the residual-based error es-
timator for the mesh refinement adaptivity in presence of algebraic errors an open
problem, as claimed in [33]. Moreover, when considering h-adaptive algorithms, an-
other difficulty is added: in the bound (4.5) the algebraic error is estimated globally
and its local contributions cannot guarantee an indication of the spatial distribution
of the discretization error over the domain (cf. [28] and [31]). In this regard, there
have been recently developed flux reconstruction methodologies that introduce robust
stopping criteria and balance the algebraic and discretization error; we refer to the
work [34] and to the references therein for a more elaborated insight on the topic.

4.3. An upper bound on the Error Estimator applied to generic func-
tions. We recall standard upper bounds on the discretization error and lower bounds
on the total error (see [15] and [11]), and we prove an upper bound on the estimator
defined for a generic finite element function vh ∈ Vh, in terms of the estimator defined
for the Galerkin solution and the algebraic error. We briefly introduce the notation
that we will adopt for the estimates. Let hT=diam(T ) for T ∈ Th, hz=diam(ωz)
for z ∈ Nh,int, and hE=diam(E) for E ∈ Eh. Consider the mean value operator
πωz

: L1(Ω) −→ R, πωz
(f) :=

∫
ωz
f/|ωz|.

For a given z ∈ Nh, define an oscillation term

(4.6) oscz := |ωz|1/2‖f − πωz
f‖ωz

osc :=

(∑
z∈Nh

osc2
z

)1/2

.
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For a given function vh ∈ Vh, define for E ∈ Eh and T ∈ Th

(4.7)

JE(vh) := h
1/2
E

∥∥∥∥[ ∂vh∂nE

]∥∥∥∥
E

, JT (vh) :=
∑

E∈∂T

JE(vh),

J(vh) :=

(∑
E∈Eh

JE(vh)2

)1/2

=

(
1

2

∑
T∈Th

JT (vh)2

)1/2

,

where [•] is the standard notation for denoting the jump of a piecewise continuous
function across the edge/face E in normal direction nE and where we have taken into
consideration that when summing overall the elements each edge/face is counted twice.

Lemma 4.1 recalls the classical upper bound on the discretization error, which is
stated and proved in [15].

Lemma 4.1 (Upper bound on the discretization error). There exists a constant
C? > 0 which depends on the shape of the triangulation, on Ω, on Γ, and which is
independent of f and of the mesh-sizes hT such that

(4.8) |u− uh|1 ≤ C?(osc2 + J2(uh))1/2.

The a posteriori residual-based estimator in the rhs of (4.8) is made up by an oscillating-
contribution (volume-contribution) that measures the variations of the rhs function
f from its mean value πωz (f) on each patch ωz, and by an edge/face-contribution
that measures the jump of the gradient of the Galerkin solution across the inner
edges/faces. Notice that the global upper estimate (4.8) is made up by local cell-wise
estimations.

Remark 4.1.1. The proof of (4.8) is based on a quasi-interpolation operator
that was first introduced in [15]. It represents a modification of the classical quasi-
interpolation operator due to Clément [19] in the setting of a partition of the unity,
which has the effect that the volume contribution term (4.6) in the a posteriori residual
based estimate (4.8) is smaller compared to the one in the standard estimate [38], [2].
The edge/face-contribution (4.7) dominates the residual based standard a posteriori
estimates for affine finite element approximations [15], [17], and if the right-hand-side
f is smooth, a Poincaré inequality shows that the oscillating term (4.6) is of higher
order [15].

In [11], the authors use standard bubble-function techniques of [37] to prove a
global lower bound on the | • |1-norm distance between the true solution u ∈ H1

0 (Ω)
and a generic function vh ∈ Vh.

Lemma 4.2 (Lower bound on the total error). There exists a constant C? > 0
which only depends on the minimum angle of the triangulation, on Ω, on Γ, and which
is independent of f, u, uh and of the mesh-sizes hT such that

(4.9) J2(vh) ≤ C?(|u− vh|21 + osc2) ∀vh ∈ Vh.

Now we can use Lemma 4.1 and 4.1 to prove our main result for this section.

Theorem 4.3. There exist positive constants C1, C2, C3 that only depend on the
minimum angle of the triangulation, on Ω, on Γ, and which are independent of f, u, uh
and of the mesh-sizes hT such that

(4.10) J2(vh) ≤ C1J
2(uh) + C2|uh − vh|21 + C3osc

2 ∀vh ∈ Vh.
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Proof. For a given function vh ∈ Vh, we decompose u− vh = (u−uh) + (uh− vh)
and we apply the equality |u − vh|21 = |u − uh|21 + |uh − vh|21 (see, e.g. [28]) to the
lower bound (4.9)

(4.11)

J2(vh) ≤ C?(|u− vh|21 + osc2)

= C?(|u− uh|21 + |uh − vh|21 + osc2)

≤ C?(C?2(osc2 + J2(uh)) + |uh − vh|21 + osc2)

= C?C
?2J2(uh) + C?|uh − vh|21 + C?(C?2 + 1)osc2

= C1J
2(uh) + C2|uh − vh|21 + C3osc

2,

where we have used the upper bound (4.8) in (4.11).

Theorem 4.3 gives an upper bound on J2(vh) where vh is a generic function (for
instance, accounting for inexact approximations) in terms of J2(uh), the square energy
norm of the algebraic error, which is equal to |uh − vh|21 and oscillation terms which
only depend on the triagulation and the data, but are independent of uh and vh.

A related result is found in the paper [4], where the authors set the stopping
criterion for the CG method by using a residual-based error estimator in the context
of elliptic self-adjoint problems. They provide an upper bound on η(vh) in terms of
η(wh) and |vh − wh|1, where vh and wh are generic functions in Vh. However, their
proof proceeds differently, and it is based on the use of the full a -posteriori error
estimator, while here we prove that a similar result holds also for the case where only
J(vh) is used, i.e., when only face terms are considered in the estimator.

This result, together with Theorem 3.9, gives us a sound theoretical basis for a
smoothed AFEM algorithm, where the algebraic error |uh − vh|21 in the intermediate
steps is given explicitly by the error propagation formula (3.25).

5. S-AFEM. In this section, we introduce the smoothed AFEM algorithm (S-
AFEM). To fix the ideas, we provide a small discussion with some empirical numerical
evidence that justifies the use of S-AFEM in Subsection 5.1, and describe the algo-
rithm in Subsection 5.2.

We observe that the presence ofMk+1
` in front of the error expression in the error

propagation formula (3.25) guarantees that high frequencies would be damped very
quickly by the use of Richardson smoothing. On the other hand, the largest part of
the low frequency error is given by the term

(5.1) Ik+1
2 L2I

2
1e1,

and by the accumulation of the error in low frequency that is due to the difference
between the exat algebraic solutions in the different levels

(5.2)
k∑

j=2

Ik+1
j Ljaj .

Of all terms, the terms (5.1) that contain e1 could be controlled easily (and in a
computationally inexpensive way), by ensuring that first iteration of AFEM is solved
accurately, i.e., considering e1 = 0.

The remaining low frequency terms (5.2) will have in general a smaller influence
on the estimator. In particular, it is still acceptable to have a large difference between
uh and u`h (implying a large a posteriori error estimate on the algebraic approximation
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Fig. 5.1. Algebraic residual `2-norm (left) and error estimator (right) for intermediate cycles
of the classical AFEM algorithm when using Richardson iteration without preconditioner as a solver,
with prolongation from the previous solution as starting guess. Darker lines correspond to earlier
cycles. Only the first 30 iterations are shown.

J(u`h)), provided that this difference is roughly equally distributed over the grid, since
a (almost) constant difference between ηT (uh) and ηT (u`h) for all T would result in
(almost) the same cells marked for refinement.

5.1. Some Numerical Evidences. To fix the ideas, we consider the Peak Prob-
lem in two dimensions as described in Subsection 6.1, and we apply ten cycles of the
classical AFEM algorithm using non-preconditioned Richardson iterations for the al-
gebraic resolution of the system with initial guess given by the prolongation of the
previous approximation for each cycle. We use standard residual-based a posteriori
error estimators (4.7) which are locally defined through the jump of the gradient of
the discrete approximation across the edges/faces E of the cells (cf. Section 4). In
Figure 5.1 we plot the `2-norm of the residual r(`)

k := Ake
(`)
k and the value of the

estimator η(u`k) for all cycles as the Richardson iteration count ` increases from 1 to
30.

The same behaviour is present in every refinement cycle. The residual norm shows
two different speeds of convergence. The first few iterations induce a rapid drop in
the residual norm (due to convergence of the highly oscillatory terms in the solution),
while the second part of the iterations converge very slowly, corresponding to the
convergence speed of the low frequency in the solution. The estimator, on the other
hand, stagnates after very few Richardson iterations (around two or three). In other
words, J(u`h) is almost the same as J(uh) for ` ≥ 3, empirically suggesting that the
error estimator (4.7) is mainly affected by the highly oscillatory components of the
discrete algebraic solution u`h, and that the estimate provided by Theorem 4.3 may be
improved by exploiting the structure of the algebraic iterative solution in Richardson
iteration provided by Theorem 3.9.

Although the value we plot in Figure 5.1 for the estimator is a global one, and
gives no information on the distribution of the local estimator on the grid, it is a good
hint that the overall behaviour of such distribution will not be changing too much
after the first few Richardson iterations. We show some numerical evidence that this
is actually the case in the numerical validation provided in Section 6.

Motivated by these numerical evidences and by the earlier observations, we ar-
gue that in the intermediate AFEM cycles it is not necessary to solve exactly the
discrete system. What matters instead is to capture accurately the highly oscillatory
components of the discrete approximation. Low frequency components may have an
influence on the error estimator, however, this is mostly a global influence, that has
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a small effect on the cells that will actually be marked for refinement in the Mark
step.

5.2. S-AFEM algorithm. We start by recalling the standard adaptive mesh-
refining algorithm algorithm following [16].

Starting from an initial coarse mesh T1, do steps 1. − 4. for k = 1, . . . , k̄ − 1 or until
criterion met

1. Solve: Akuk = fk in RNk , where dim(Vk) = Nk, based on Tk.
2. Estimate: Compute ηT (uk) for all T ∈ Tk.
3. Mark: Choose set of cells to refineMk ⊂ Tk based on ηT (uk).
4. Refine: Generate a new mesh Tk+1 by refinement of the cells inMk.

Step k = k̄: Solve the discrete system Ak̄uk̄ = fk̄ based on Tk̄.
Output: nested sequence of meshes Tk, approximations uk, local estimators ηT (uk),
for k = 1, . . . , k̄−1, and final problem-adapted approximation uk̄ such that ‖ek̄‖ ≤ tol.

We present the Smoothed Adaptive Finite Element algorithm (S-AFEM), where
the exact algebraic solution in intermediate steps is replaced by the application of a
prolongation step (Prolongate), followed by a smoothing step (Smooth), according to
the loop:

Solve Estimate Mark Refine

ProlongateSmooth

Solve

Starting from an initial coarse mesh T1, Solve A1u1 = f1 in RN1 to high accuracy and
generate uC

1 . Then, do steps 1.− 4. for k = 2, . . . , k̄ − 1 or until criterion met
1. Smooth: Compute ` smoothing iterations on the discrete system Akuk = fk,

with initial guess u
(0)
k := Ikk−1u

(`)
k−1, which produce u

(`)
k ∈ RNk (take u

(`)
1 =

uC
1 ).

2. Estimate: Compute ηT (u`k) for all T ∈ Tk.
3. Mark: Choose set of cells to refineMk ⊂ Tk based on ηT (u`k).
4. Refine: Generate new mesh Tk+1 by refinement of the cells inMk.

Step k = k̄: Solve the discrete system Ak̄uk̄ = fk̄ to high accuracy.
Output : sequence of meshes Tk, smoothed approximations u`

k, estimators η(u`k), and
final adapted-approximation u`

k̄
such that ‖ek̄‖ ≤ tol.

In step k = 1, we capture the smoothest (i.e. less oscillatory) part of the discrete
approximation by solving the discrete system exactly on the coarsest level. As the
mesh is locally refined from one level to the other, we increase the higher portion of
the spectrum of the matrix Ak. Thanks to the structure of the refinement in typical
finite element methods, mostly high frequencies are added to the system, while low
frequencies are substantially left unaltered. We formalize this by Hypothesis (3.24)
on the prolongation operator for smoothed-multilevel methods.
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The advantage of S-AFEM is that, on one hand, we save a substantial amount of
computational time that would be needed for the algebraic solution in the intermediate
steps, and on the other hand we obtain roughly the same mesh-sequence, hence the
same refinement at each step, with an accuracy on the final approximation step that
is comparable to the classical AFEM algorithm, at a fraction of the computational
cost.

6. Numerical validation. The numerical results presented in this paper were
realized using a custom C++ code based on the deal.II library [9, 3, 6, 7], and on
the deal2lkit library [36]. We consider two classical experiments used to bench-
mark adaptive finite element methods. A classical marking strategy is used in our
implementation (see, e.g., [22]): for any level k we mark for refinement the subset of
elements

(6.1) Mk := {T ∈ Tk : ηT ≥ L},

where L is a treshold error, defined as the largest value such that

(6.2) Θ
∑
T∈Tk

η2
T ≤

∑
T∈Mk

η2
T .

The parameter Θ is such that 0 ≤ Θ ≤ 1, where Θ = 1 corresponds to an almost
uniform refinement, while Θ = 0 corresponds to no refinement. In our numerical tests,
unless otherwise stated, we set Θ = 0.3. The refinement strategy that we adopt in
this work is based on the use of “hanging nodes” (see [9] for a detailed discussion on
the implementation details).

6.1. Two-dimensional examples.
Smooth domain, peak right hand side. The first example we consider consists in

solving the model problem on a square domain, with a custom forcing term that
contains a peak in a specified point in the domain, forcing the exact solution to be

(6.3) u(x, y) = x(x− 1)y(y − 1)e−100
(

(x−0.5)2+(y−0.117)2
)
,

as shown in Figure 6.1.
L-shaped domain, smooth right hand side. In the second two-dimensional test

case, we consider a L-shaped domain, i.e., a square where the upper right corner
is removed, and the reentrant corner coincides with the origin. No forcing term is
added to the problem, but the boundary conditions are set so that the following exact
solution is obtained (when expressed in polar coordinates)

(6.4) u(r, θ) = r2/3 sin

(
2θ + 5π

3

)
,

as shown in Figure 6.2.
In both cases, we apply ten cycles of classical AFEM and of S-AFEM, respectively.

For the AFEM algorithm, we use the CG method as iterative solver, with an algebraic
multigrid preconditioner (AMG), and we iterate until the `2-norm of the residual is
below a tolerance of 10−12 for each cycle. For S-AFEM, we modify the intermediate
cycles and we only apply only three Richardson iterations. For reference, we report
a comparison between the cells marked for refinement by AFEM and S-AFEM after
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Fig. 6.1. Solution to the Peak Problem in 2D (6.3).

Fig. 6.2. Solution to the L-shaped domain Problem in 2D (6.4).

four cycles for the Peak Problem in Figure 6.3 and after nine cycles for the L-shaped
domain Problem in Figure 6.4.

In both cases, the set of marked cells, although different in some areas, produces
a refined grid that is very similar between the classical AFEM and the S-AFEM, and
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Fig. 6.3. Comparison between the cells marked for refinement in AFEM (left) and S-AFEM
(right) after 9 cycles for the Peak Problem in 2D.

Fig. 6.4. Comparison between the cells marked for refinement in AFEM (left) and S-AFEM
(right) after 5 cycles for the L-shaped domain Problem in 2D.

where the accuracy of the final solution is comparable.
In Figures 6.5 and 6.7 we compare the values of the global estimators J(uh)

and J(u`h) and of the H1 semi-norm of the total errors for each cycle for the Peak
Problem, and for the L-shaped domain Problem respectively, when using S-AFEM.
For reference, Figures 6.6 and 6.8 show the error and the estimator in the classical
AFEM algorithm for the two examples. Notice that the first step of AFEM and of
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Fig. 6.6. Values of the total error |u − uh|1 and error estimator J(uh) for the Peak Problem
in 2D, using classical AFEM.

S-AFEM are the same. The last step in the S-AFEM case shows comparable results
as in the AFEM algorithm for both examples.

Notice that in S-AFEM the value of the global estimator is almost the same of
the one that would be obtained by solving using CG and AMG (J(uh) in Figures 6.5
and 6.7), showing that in the two dimensional setting the error estimator (4.7) is
mainly affected by the high frequencies of the discrete solution, which are well cap-
tured with just a few Richardson iterations. On the other hand, the total error
increases in the intermediate cycles, due to the algebraic error that has been accu-
mulated by applying smoothing iterations instead of solving the algebraic problem
until convergence, as quantified by Theorem 3.9. This error measures the distance
between the exact algebraic solution and the smooth non-oscillatory components of
the approximate solution that are not captured by Richardson iteration, and have lit-
tle or no influence on the error estimator, and therefore on the generated grid. After
ten cycles, we solve the algebraic problem until converge using CG and AMG, as in
the first cycle, and we obtain a solution whose error is controlled by the estimator, as
expected.

6.2. Three-dimensional examples.
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103.4 103.6 103.8 104 104.2 104.4 104.6 104.8

10−2.5

10−2

10−1.5

1
2

Number of DOFs

E
rr
or

an
d
es
ti
m
at
or

|u− uh|1
J(uh)

Fig. 6.8. Values of the total error |u−uh|1 and error estimator J(uh) for the L-shaped domain
Problem in 2D, using classical AFEM.

Smooth domain, peak right hand side. The first three-dimensional test case that
we propose is a model problem on a cube domain, where the forcing term contains a
peak in a specified point that forces the exact solution to be given by

(6.5) u(x, y, z) = x(x− 1)y(y − 1)z(z − 1)e−100
(

(x−0.5)2+(y−0.117)2+(z−0.331)2
)

as shown in Figure 6.9.
Fichera corner domain, smooth right hand side. In the second three-dimensional

example, we consider the classic Fichera corner domain, i.e., a cube where the upper
right corner is removed, and the reentrant corner coincides with the origin. We set
the exact solution to be

(6.6) u(r, θ, φ) = r1/2,

and we add a forcing term that induces the above exact solution as shown in Fig-
ure 6.10.
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Fig. 6.9. Solution to the Peak Problem (6.5) in 3D.

Fig. 6.10. Solution to the Fichera domain Problem (6.6) in 3D.

In both examples, the estimator applied to the algebraic solution after three
smoothing steps (see Figures 6.11 and 6.13) seems to be more sensitive to the low
frequency content of u`h.

For reference, Figures 6.12 and 6.14 show the error and the estimator in the clas-
sical AFEM algorithm for the two examples. In other words, in the three-dimensional
case the combination of Theorems 3.9 and 4.3 provides a sharper estimate. This may
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Fig. 6.11. Values of the total error H1 semi-norm and of the error estimator for each loop of
the classical AFEM (|u− uh|1 and J(uh)) and S-AFEM with ` = 3 smoothing iterations (|u− u`
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and J(u`

h)) for the Peak Problem in 3D.

105 106

10−4

10−3

1
3

Number of DOFs

E
rr
or

an
d
es
ti
m
at
or

|u− uh|1
J(uh)

Fig. 6.12. Values of the total error |u− uh|1 and error estimator J(uh) for the Peak Problem
in 3D, using classical AFEM.

also be related to the fact that the increase on the number of degrees of freedom
between successive cycles in the three-dimensional setting is much more severe w.r.t.
the two-dimensional case, maybe hindering the non-interacting frequency coupling
hypothesis. Nonetheless, the difference in accuracy at the final step between AFEM
and S-AFEM is negligible also in the three-dimensional case, showing that the (small)
differences in the refinement patterns between AFEM and S-AFEM do not influence
the final accuracy.

6.3. Computational costs. In the following table we show a comparison of the
computational cost associated to the classical AFEM and to the smoothed AFEM,
for the four examples we presented in the previous section.

The results were obtained on a 2.8 GHz Intel Core i7 with 4 cores and 16GB of
RAM, using MPI parallelization on all 4 cores.

Table 6.1 only shows the comparison between AFEM and S-AFEM in the solve
phase, where S-AFEM is always faster than AFEM, offering an average speedup of a
factor three. In the table we compare the computational cost of all intermediate cycles
in S-AFEM (Intermediate solves (Richardson) in the table), with the corresponding
computational cost for standard AFEM (Intermediate solves (CG) in the table). The
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Fig. 6.14. Values of the total error |u−uh|1 and error estimator J(uh) for the Fichera corner
Problem in 3D, using classical AFEM.

first and last solve are the same in the two algorithms, and are reported to provide
a scaling with respect to the total computational cost of the solution phase in the
program. Other phases (like graphical output, mesh setup, assembling setup, and
error estimation) are not shown since they are identical in the two algorithms.

7. Conclusions. In this work we propose a new smoothed algorithm for adaptive
finite element methods (S-AFEM), inspired by multilevel techniques. In S-AFEM, the
classical algorithm of AFEM (Solve-Estimate-Mark-Refine) is modified to replace
the Solve step in intermediate cycles by successive applications of Prolongate and
Smooth steps, where the solution from the previous cycle is transferred to the current
grid, and a fixed number of smoothing iterations are applied to obtained an inexact
(but cheap to compute) approximation of the algebraic solution.

We analyzed the error propagation properties of the S-AFEM algorithm, and
provided a bound on the a-posteriori error estimator applied to the approximated
algebraic solution. Although the results are not sharp, they provide a good insight
on why the S-AFEM algorithm is capable of producing a mesh sequence that is very
close to the one obtained by classical AFEM, at a fraction of the computational cost.

An interesting question for future investigations is whether this technique may be
applied to more complex second-order elliptic problems, and whether one can obtain
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Peak 2D L-shaped 2D Peak 3D Fichera 3D
First and last solve 0.0187s 0.0601s 32s 101s
Intermediate solves (CG) 0.0663s 0.219s 76.4s 185s
Intermediate solves (Richardson) 0.005s 0.00892s 0.252s 0.426s
S-AFEM intermediate speedup 13.26 24.6 303.7 434.3
S-AFEM total speedup 3.59 4.045 3.361 2.819

Table 6.1
Comparison of the computational cost of the solution stage for ten cycles of adaptive refinement

using classical AFEM and S-AFEM.

better results with more articulated smoothing algorithms.
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