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Abstract
Magnetic monopoles in hyperbolic space are in correspondence with certain
algebraic curves in mini-twistor space, known as spectral curves, which are in
turn in correspondence with rational maps between Riemann spheres. Hyper-
bolic monopoles correspond to circle-invariant Yang–Mills instantons, with an
identification of the monopole and instanton numbers, providing the curvature
of hyperbolic space is tuned to a value specified by the asymptotic magnitude
of the Higgs field. In previous work, constraints on ADHM instanton data have
been identified that provide a non-canonical realization of the circle symmetry
that preserves the standard action of rotations in the ball model of hyperbolic
space. Here formulae are presented for the spectral curve and the rational map of
a hyperbolic monopole in terms of its constrained ADHM matrix. This extends
earlier results that apply only to the subclass of instantons of JNR type. The
formulae are applied to obtain new explicit examples of spectral curves that are
beyond the JNR class.

Keywords: monopoles, instantons, spectral curves

1. Introduction

Magnetic monopoles in three-dimensional hyperbolic space share many of the features of their
counterparts in Euclidean space [1]. In both systems, there is a moduli space of solutions
of the Bogomolny equation, with dimension 4N − 1 for monopoles of topological charge N.
Twistor methods provide a correspondence between points in the monopole moduli space and
spectral curves, which are certain algebraic curves in the complex surface that is the space
of oriented geodesics of three-dimensional space, whether it be hyperbolic or Euclidean. If
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the curvature of hyperbolic space is equal to minus four times the square of the asymptotic
magnitude of the Higgs field then hyperbolic monopoles are more tractable than their Euclidean
cousins. In this tuned case, a hyperbolic monopole of charge N is equivalent to a circle-invariant
charge N Yang–Mills instanton in four-dimensional Euclidean space, with the Higgs field of
the monopole given by the component of the instanton gauge field associated with the circle
action [1]. This is the case of interest in the present paper, so this relation shall be assumed
from now on, in units in which the tuned curvature is −1.

The ADHM construction [2] is a twistor transform mapping a Yang–Mills instanton to a
quaternionic matrix satisfying a nonlinear reality condition, with the size of the matrix related
to the charge of the instanton. A general study of the imposition of circle invariance within
the ADHM construction was performed by Braam and Austin [3] and in the tuned case of
interest here this simply corresponds to a reduction of the quaternionic ADHM matrix to a
complex matrix. This provides a transform between a hyperbolic monopole and a complex
ADHM matrix. Furthermore, a simple formula exists for the spectral curve in terms of this
matrix [4, 5]. It might therefore appear that the construction of spectral curves for hyperbolic
monopoles is a solved problem in the tuned case. However, the difficulty with implementing
this approach lies in finding complex ADHM matrices, which is further complicated by the
fact that the natural circle action used by Braam and Austin yields the upper half space model
of hyperbolic space, where spatial rotations act in a non-canonical manner. This has prevented
the use of symmetry methods, despite the fact that symmetry reductions have been successfully
applied in the past to find quaternionic ADHM matrices.

Some progress has been made [6] by restricting the Yang–Mills instanton to the subclass
of JNR instantons [7] given by a harmonic ansatz [8]. Invariance under the canonical circle
action is simple to impose within this restriction and yields explicit results for all monopoles
with N = 1, 2, 3. For N > 3 this provides the construction of a (3N + 2)-dimensional subspace
of the (4N − 1)-dimensional moduli space, in terms of free data given by N + 1 points on the
sphere together with a set of positive relative weights. Furthermore, an explicit expression for
the spectral curve is also available in terms of this free data [5]. However, for tuned hyperbolic
monopoles that are beyond this JNR class, there is only one known example of a spectral
curve [9]: this has N = 4 and cubic symmetry and is obtained by working directly with the
spectral curve and applying methods from algebraic geometry.

Imposition of a non-canonical circle action on Yang–Mills instantons leads to hyperbolic
monopoles within the ball model of hyperbolic space, with the advantage that rotations are
given by the standard action of rotations of the ball. Constraints on quaternionic ADHM matri-
ces have been obtained [6] that realize this non-canonical circle action and are compatible
with the symmetry methods used to construct examples of ADHM matrices beyond the JNR
class. However, the spectral curves of the associated hyperbolic monopoles were not known.
Here a simple formula is presented for the spectral curve of the monopole in terms of its con-
strained quaternionic ADHM matrix. The previously known example of the N = 4 spectral
curve with cubic symmetry is reproduced within this formalism together with new examples
that are beyond the JNR class.

Another characterization of a charge N hyperbolic monopole is via a based degree N rational
map between Riemann spheres (modulo a phase) [10], this being the hyperbolic analogue of
Donaldson’s rational map for Euclidean monopoles [11]. Braam and Austin [3] provided a
formula for the rational map from its complex ADHM matrix and within the JNR class this
provides a simple expression for the rational map in terms of the free data of weighted points on
a sphere [5]. Here a formula is presented for the rational map from its constrained quaternionic
ADHM matrix.
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2. A tale of two circles

In standard form, the ADHM matrix for an SU (2) charge N Yang–Mills instanton in R4 is an
(N + 1) × N quaternionic matrix M̂. It is convenient to split this matrix into its top row, given
by the non-zero vector L, and the remaining symmetric square part M,

M̂ =

(
L
M

)
. (2.1)

The ADHM matrix is required to satisfy the reality condition that M̂† M̂ is a real invertible
N × N matrix, where † denotes quaternionic conjugate transpose.

Using the quaternionic representation of a point in R4, x = x4 + x1i + x2 j + x3k, the
conformal group of R4 acts as quaternionic Möbius transformations

x $→ x′ = (Ax + B)(Cx + D )−1. (2.2)

The canonical circle action used by Braam and Austin [3] is
(

A B
C D

)
=

(
eiθ/2 0

0 e−iθ/2

)
. (2.3)

The fixed point set of this circle action is the plane x4 = x1 = 0. The quotient of R4 with this
plane removed is conformal to hyperbolic space, naturally identified with the upper half space
model

ds2 =
dx2

2 + dx2
3 + dr2

r2 , (2.4)

with r =
√

x2
1 + x2

4 > 0. The requirement that the instanton is invariant under this circle action,
and therefore descends to a hyperbolic monopole, is simply the restriction that the quaternionic
ADHM matrix M̂ is now complex. Lower case letters will be used to denote this restriction, so
that a complex ADHM matrix is written as

m̂ =

(
ℓ
m

)
, (2.5)

where m̂†m̂ is real, and † is now the complex conjugate transpose.
The fixed point set of the non-canonical circle action

(
A B
C D

)
=

(
cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)
, (2.6)

is the unit sphere x2
1 + x2

2 + x2
3 = 1 in the hyperplane x4 = 0. The quotient of R4 with this

sphere removed is conformal to hyperbolic space, naturally identified with the unit ball model

ds2 =
4(dX2

1 + dX2
2 + dX2

3)
(1 − R2)2 , (2.7)

with R =
√

X2
1 + X2

2 + X2
3 < 1. The relation to the quaternionic representation of a point in

R4 is

x =
(1 − R2) sin θ + 2(X1i + X2 j + X3k)

1 + R2 + (1 − R2) cos θ
, (2.8)
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with the fixed point set being R = 1. The advantage of this non-canonical circle action is that
it commutes with the standard rotations of the ball

(
A B
C D

)
=

(
q 0
0 q

)
, (2.9)

where q is a unit quaternion corresponding to the SU (2) representative of the rotation.
The instanton is invariant under the circle action (2.6), and therefore corresponds to a

hyperbolic monopole, if its ADHM matrix satisfies the following three constraints [6]

M is pure quaternion, (2.10)

M̂† M̂ is the identity matrix, (2.11)

LM = µL, where µ is a pure quaternion. (2.12)

It is perhaps worthwhile making a comment regarding the relation to instantons on S4. In
terms of the geometry of S4, all circle actions are equivalent with a fixed point set S2. The
quotient of S4 with this S2 removed is conformal to hyperbolic space. To go from instantons
in R4 to instantons on S4 requires compactification by the addition of a point at infinity. The
canonical circle action has the point at infinity inside the fixed point set of the circle action,
whereas the non-canonical circle action has the point at infinity outside the fixed point set. This
distinguishes the two circle actions when considering instantons in R4.

At this stage, the relation between the two alternative ADHM descriptions of a hyperbolic
monopole, as a quaternionic matrix satisfying the above three constraints, or as a complex
matrix (2.5), is not at all clear. At the end of this section a formula will be presented to obtain
the second description from the first, but before this the formulae for the spectral curve and
rational map of the monopole will be described in both manifestations.

The mini-twistor space of a real three-manifold with constant curvature is the complex
surface given by the space of its oriented geodesics [12]. The mini-twistor space of three-
dimensional hyperbolic space is (almost) CP1 × CP1, with coordinates (η, ζ) that are a pair of
points on the Riemann sphere that is the boundary of the unit ball model of hyperbolic space.
The associated oriented geodesic starts at −1/η̄ and ends at ζ, so the anti-diagonal η̄ζ = −1
must be removed, hence the word almost in the previous sentence.

The spectral curve of a hyperbolic monopole is an algebraic curve in mini-twistor space
satisfying certain reality and non-singularity conditions. In detail, the spectral curve of a charge
N hyperbolic monopole is a biholomorphic curve in CP1 × CP1 of bidegree (N, N). Writing
the spectral curve as

N∑

i=0, j=0

ci jη
iζ j = 0, (2.13)

the reality condition on the complex constants ci j, that follows from reversing the orientation
of the geodesic, is

c̄i j = (−1)N+i+ jcN− j,N−i. (2.14)

The spectral curve describes all geodesics along which a certain linear operator, constructed
from the monopole fields, has a normalizable solution. This is equivalent to imposing non-
singularity conditions [1, 13, 14] on the algebraic curve that can be written in terms of relations
between integrals of holomorphic differentials around particular cycles. In general this is an
intractable problem in algebraic geometry, however for low values of N and in symmetric cases
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this line of attack is a viable, although complicated, method to obtain the spectral curve. The
spectral curve of an N = 3 monopole with tetrahedral symmetry and an N = 4 monopole with
cubic symmetry have been obtained using this approach [9].

An alternative procedure to obtain the spectral curve of a hyperbolic monopole uses its
ADHM matrix. In terms of the complex ADHM matrix (2.5) the spectral curve is [4, 5]

det
(
ηζm† + ζ − ηm̂†m̂ − m

)
= 0. (2.15)

The problem of imposing the non-singularity constraint on the spectral curve has now been
transferred to the task of finding solutions of the ADHM condition that m̂†m̂ is real. Having
simply shifted the difficulty, it is no surprise that the general 4N − 1 parameter family of solu-
tions (up to equivalence) of this nonlinear equation cannot be found explicitly for arbitrary N.
The JNR subfamily referred to earlier, that gives the general solution for N ! 3 and a 3N + 2
parameter family of solutions for N > 3, corresponds to a conformal extension of the ’t Hooft
solution in which m is diagonal and ℓ is real, so that m̂†m̂ is automatically real.

The rational map of a charge N hyperbolic monopole is a degree N based rational map
between Riemann spheres, R(z), with the base point condition R(∞) = 0. A pair of rational
maps are equivalent if they differ only by the multiplication by a constant phase. There is a one-
to-one correspondence between these equivalence classes of rational maps and the (4N − 1)-
dimensional moduli space of hyperbolic monopoles [1, 10]. The rational map may be viewed
as scattering data, in the background of the monopole, along the geodesic associated with
the point (η, ζ) = (0, z) in mini-twistor space. The rational map corresponding to the complex
ADHM matrix (2.5) is given by [3]

R(z) = ℓ(z − m)−1ℓt. (2.16)

Some quaternionic solutions of the ADHM equation beyond the JNR family have been
obtained by applying symmetry methods to reduce the difficulty by imposing finite subgroups
of the SU (2) group of spatial rotations (2.9). However, as these rotations do not commute with
the circle action (2.3) then this approach is not easy to implement directly for complex ADHM
matrices, and no solutions have yet been found for complex matrices beyond the JNR class. In
contrast, the circle action (2.6) commutes with these spatial rotations and this allows the con-
struction of ADHM matrices that are beyond the JNR class and also satisfy the constraints,
(2.10)–(2.12), required to represent hyperbolic monopoles. Unfortunately, as analogues of
the formulae (2.15) and (2.16) were unknown for constrained ADHM matrices, the spectral
curves and rational maps of the associated monopoles could not be calculated. Here this issue
is resolved, by introducing the formulae required to calculate the spectral curve and the rational
map from the constrained ADHM matrix.

Given a constrained ADHM matrix satisfying (2.10), (2.11), (2.12), extract a triplet of real
N × N matrices M1, M2, M3 from M by writing M = iM1 + jM2 + kM3. The formula for the
spectral curve is the simple expression

det (ηζ(M1 − iM2) + ζ(1 − M3) − η(1 + M3) − (M1 + iM2)) = 0. (2.17)

To compute the rational map is a little more complicated. Define the Hermitian matrix

H = (1 − M3)−1/2 (1 + M3 − (M1 − iM2)(1 − M3)−1(M1 + iM2)
)

(1 − M3)−1/2, (2.18)

where (1 − M3)−1/2 is the inverse of the principal square root of the matrix 1 − M3. In all the
examples presented in this paper, as can be verified by direct calculation, 1 − M3 is a positive
definite matrix and H has rank one. The expectation is that the constraints (2.11) and (2.12)
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imply these conditions in general, although a proof has not yet been found. Let v be the unit-
length eigenvector of H corresponding to the non-zero eigenvalue λ. Note that v is defined up
to multiplication by an overall phase. The rational map is given by

R(z) = λv†
(

z − (1 − M3)−1/2(M1 + iM2)(1 − M3)−1/2
)−1

v̄. (2.19)

Note the unexpected feature that the formulae (2.17)–(2.19) involve only the square part of the
ADHM matrix and not the vector L. This implies that it must be possible to recover L given
M. This is indeed the case and the explicit expression is given by

L =
(1 − M2

1 − M2
2 − M2

3)• + i[M2, M3]• + j[M3, M1]• + k[M1, M2]•√
(1 − M2

1 − M2
2 − M2

3)••
, (2.20)

where (1 − M2
1 − M2

2 − M2
3)• denotes the first non-zero row of the matrix 1 − M2

1 − M2
2 − M2

3
and the operation P• on any other matrix P denotes the corresponding row of P. The double
application P•• denotes the first non-zero entry of the row vector P•. The properties required
of the triplet (M1, M2, M3) so that the constraints (2.11) and (2.12) are satisfied by (2.20) are
not clear.

To make contact with the complex form of the ADHM matrix the formula is

m̂ =

( √
λv†

(1 − M3)−1/2(M1 + iM2)(1 − M3)−1/2

)
. (2.21)

Using (2.21) and the relation λvv† = H , together with the definition (2.18), gives

m̂†m̂ = (1 − M3)−1/2(1 + M3)(1 − M3)−1/2, (2.22)

which is obviously real, hence the ADHM condition is indeed satisfied. It is simple to check
that substituting (2.21) into (2.15) and (2.16) yields (2.17) and (2.19) respectively, thereby
validating these formulae.

In section 3 a couple of low charge JNR examples are presented to see how these known
examples fit within the new formalism. Section 4 contains some new spectral curves that are
obtained by turning attention to constrained ADHM matrices that are not within the JNR class.

3. Examples of JNR type

The N = 1 hyperbolic monopole with position X = (X1, X2, X3) inside the unit ball has an
ADHM matrix that splits into the real triplet

M1 =
2X1

1 + |X|2 , M2 =
2X2

1 + |X|2 , M3 =
2X3

1 + |X|2 . (3.1)

The constraints (2.11) and (2.12) are satisfied by taking L = (1 − |X|2)/(1 + |X|2), as given
by (2.20). Substituting (3.1) into (2.17) gives the spectral curve

2ηζ(X1 − iX2) + ζ(1 + |X|2 − 2X3) − η(1 + |X|2 + 2X3) − 2(X1 + iX2) = 0, (3.2)

corresponding to all geodesics through the point X. This is known as the star at X.
The Hermitian matrix (2.18) is just a number in this case, given by

H =

(
1 − |X|2

1 + |X|2 − 2X3

)2

, (3.3)
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so the eigenvalue is λ = H with the one-dimensional unit-length eigenvector v = 1. Using
these expressions, the formula (2.19) for the rational map yields

R(z) =
(1 − |X|2)2/(1 + |X|2 − 2X3)2

z − 2(X1 + iX2)/(1 + |X|2 − 2X3)
, (3.4)

where the position of the pole taken together with the square root of the residue can be
recognized as the upper half space coordinates of the point in hyperbolic space with ball
coordinates X.

The associated complex ADHM matrix obtained from (2.21) simply consists of these upper
half space coordinates

m̂ =
1

1 + |X|2 − 2X3

(
1 − |X|2

2X1 + 2iX2

)
, (3.5)

and the reality condition is clearly satisfied as

m̂†m̂ =
1 + |X|2 + 2X3

1 + |X|2 − 2X3
. (3.6)

Turning to a slightly more complicated example, the triplet of real matrices from the
constrained ADHM matrix of an N = 3 monopole with tetrahedral symmetry are [6, 15]

M1 =
1√
3

⎛

⎝
0 0 −1
0 0 0
−1 0 0

⎞

⎠, M2 =
1√
3

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠, M3 =
1√
3

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠. (3.7)

Applying (2.20) gives the row vector L = 1√
3
(1,−k,−i) that can be used to check that the

constraints are indeed satisfied. Substituting these matrices into the formula (2.17) reproduces
the spectral curve

(η − ζ)3 +
i√
3

(η + ζ)(η2ζ2 − 1) = 0, (3.8)

first obtained using the direct algebraic geometric approach [9] and later via the JNR class,
by taking the free data of four points on the sphere to be located at the vertices of a regular
tetrahedron [5]. The tetrahedral symmetry of this curve is manifest by its invariance under the
generators of the tetrahedral group

(η, ζ) $→ (−η,−ζ), (η, ζ) $→
(
η − i
η + i

,
ζ − i
ζ + i

)
. (3.9)

In this example, the rank one Hermitian matrix (2.18) is

H =
3
2

⎛

⎝
1 eiβ 0

e−iβ 1 0
0 0 0

⎞

⎠, (3.10)

where the phase eiβ = (5 + i
√

2)/(3
√

3) has been defined for notational convenience. The non-
zero eigenvalue of this matrix and the associated unit-length eigenvector are

λ = 3, v =
1√
2

⎛

⎝
eiβ

1
0

⎞

⎠, (3.11)
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producing, via (2.19), the rational map

R(z) =
5iz2 +

√
3√

3z3 + iz
e−i(β+π/2). (3.12)

This agrees, up to the arbitrary constant phase, with the expression for the rational map obtained
from the associated JNR data [5].

Using (2.21) provides the realization of this N = 3 tetrahedral monopole as a complex
ADHM matrix

m̂ =

√
3

2

⎛

⎜⎜⎝

√
2 e−iβ

√
2 0

0 0 s− − s+
0 0 s− + s+

s− − s+ s− + s+ 0

⎞

⎟⎟⎠ (3.13)

where s± = (i ± 1)3−3/4(
√

3 ± 1)−1/2. By making use of the identity s−s̄+ = i sin β, it is easy
to verify that m̂†m̂ is indeed real and is given by

m̂†m̂ =

⎛

⎝
2

√
3 0√

3 2 0
0 0 1

⎞

⎠. (3.14)

4. New spectral curves

This section contains new examples of spectral curves that are obtained by using known ADHM
matrices that satisfy the constraints (2.10)–(2.12), but are outside the JNR class.

There is a one-parameter family, θ ∈ (−π/2, π/2), of tetrahedrally symmetric N = 4 hyper-
bolic monopoles [6, 16]. Set a = 1√

3
sin θ and b = 1

2
√

2
cos θ, then the real triplet of matrices

is given by

M1 =

⎛

⎜⎜⎝

a 0 −b −b
0 a −b b
−b −b −a 0
−b b 0 −a

⎞

⎟⎟⎠, M2 =

⎛

⎜⎜⎝

a −b 0 −b
−b −a b 0
0 b a −b
−b 0 −b −a

⎞

⎟⎟⎠,

M3 =

⎛

⎜⎜⎝

a −b −b 0
−b −a 0 −b
−b 0 −a b
0 −b b a

⎞

⎟⎟⎠, (4.1)

with L = 1
2 cos θ (1, i, j, k), as obtained from (2.20), confirming that the constraints are

satisfied.
Applying (2.17) gives the spectral curve

(η − ζ)4 +
8 − 5 cos2 θ

8 + cos2 θ
(η4ζ4 + 6η2ζ2 + 4ηζ(η2 + ζ2) + 1)

− 16
√

3 i sin θ

8 + cos2 θ
(η2 − ζ2)(η2ζ2 − 1) = 0, (4.2)

that is invariant under the tetrahedral generators (3.9).
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In the limit θ → ± π/2 the curve becomes

(η4 + 1)(ζ4 + 1) + 12η2ζ2 ∓ 2i
√

3(η2 − ζ2)(η2ζ2 − 1) = 0, (4.3)

which is the product of four stars (3.2) with positions given by the vertices of a regular tetra-
hedron on the sphere at infinity in hyperbolic space, X = 1√

3
(± 1, ± 1, ± 1) with an odd (even)

number of minus signs for θ negative (positive). This agrees with the description of this fam-
ily as four monopoles approaching the origin from infinity on the vertices of a tetrahedron and
receding to infinity on the vertices of the dual tetrahedron, as θ varies through its allowed inter-
val (−π/2, π/2). At the midpoint, θ = 0, the symmetry is enhanced to cubic symmetry, with
the additional generator (η, ζ) → (iη, iζ), and this is the one member of this family of spectral
curves that was already known [9],

(η − ζ)4 +
1
3

(η4ζ4 + 6η2ζ2 + 4ηζ(η2 + ζ2) + 1) = 0. (4.4)

Although this spectral curve for the N = 4 monopole with cubic symmetry was already known,
the associated rational map was not. However, it can now be obtained by using the expression
(2.19). Restricting to the cubic case, the Hermitian matrix (2.18) is

H =
2
3

⎛

⎜⎜⎝

1 −e−iπ/4 −eiπ/4 −i
−eiπ/4 1 i −e−iπ/4

−e−iπ/4 −i 1 eiπ/4

i −eiπ/4 e−iπ/4 1

⎞

⎟⎟⎠, (4.5)

with non-zero eigenvalue and associated eigenvector

λ =
8
3

, v =
1
2

⎛

⎜⎜⎝

−i
−e−iπ/4

eiπ/4

1

⎞

⎟⎟⎠. (4.6)

Substituting these expressions into (2.19) gives the rational map

R(z) =
8
√

3z2

3z4 + 1
, (4.7)

where the square symmetry is evident as the relation R(iz) = −R(z).
Applying (2.21) yields the complex form of the ADHM matrix for the cubic N = 4

monopole

m̂ =

√
2

12⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

i 4
√

3 −4
√

3 eiπ/4 4
√

3 e−iπ/4 4
√

3

2 eiπ/4 + (
√

3 − 2)
√

2 e−iπ/4
√

2 − 4i −4 −
√

2i −(
√

3 + 2)
√

2 eiπ/4 − 2 e−iπ/4

√
2 − 4i (

√
3 − 2)

√
2 eiπ/4 − 2 e−iπ/4 2 eiπ/4 − (

√
3 + 2)

√
2 e−iπ/4 4 +

√
2i

−4 −
√

2i 2 eiπ/4 − (
√

3 + 2)
√

2 e−iπ/4 −(
√

3 − 2)
√

2 eiπ/4 + 2 e−iπ/4
√

2 − 4i

−(
√

3 + 2)
√

2 eiπ/4 − 2 e−iπ/4 4 +
√

2i
√

2 − 4i −2 eiπ/4 − (
√

3 − 2)
√

2 e−iπ/4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

providing the first example of a complex ADHM matrix that is not within the JNR class.
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The reality condition can be verified explicitly,

m̂†m̂ =

⎛

⎜⎜⎜⎝

5 −2
√

2 −2
√

2 0
−2

√
2 5 0 −2

√
2

−2
√

2 0 5 2
√

2
0 −2

√
2 2

√
2 5

⎞

⎟⎟⎟⎠
. (4.9)

There is an icosahedrally symmetric N = 7 hyperbolic monopole that is related to the
dodecahedron [6, 17] and has the triplet of real matrices

M1 =
1
4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0
√

5 + 1

0 0 0 0 0
√

5 − 1 0

2 0 0 0 0 0 0

0 0 0
√

5 − 1 0 0 0

0 0
√

5 + 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.10)

M2 =
1
4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 2 0

0 0 0 0 0 0
√

5 − 1

0 0 0 0 0 0 0

0 0 0 0
√

5 + 1 0 0

0 0 0
√

5 + 1 0 0 0

2 0 0 0 0 0 0

0
√

5 − 1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.11)
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M3 =
1
4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 2

0 0 0 0 0
√

5 + 1 0

0 0 0 0
√

5 − 1 0 0

0 0 0 0 0 0 0

0 0
√

5 − 1 0 0 0 0

0
√

5 + 1 0 0 0 0 0

2 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.12)

with (2.20) producing the companion quaternionic vector L = 1
2 (1, i, j, k, 0, 0, 0). Applying

(2.17) produces the icosahedrally symmetric spectral curve

(η − ζ)7 +

√
5

60
(η − ζ)

(
(3 +

√
5)(η + ζ)2 − 2(η ζ − 1)2

)

×
(

(3 −
√

5)(η + ζ)2 + 2(η ζ + 1)2
)(

(
√

5 η ζ − 1)2 + 4
)

= 0.

(4.13)

The order two symmetry, (η, ζ) $→ (−η,−ζ), of this spectral curve is clear but the remaining
symmetries of the icosahedral group, of order three and five, are not as transparent. They are
given by

(η, ζ) $→
(

(2 − i(
√

5 + 1))η + 1 −
√

5
(
√

5 − 1)η + 2 + i(
√

5 + 1)
,

(2 − i(
√

5 + 1))ζ + 1 −
√

5
(
√

5 − 1)ζ + 2 + i(
√

5 + 1)

)
,

(4.14)

and

(η, ζ) $→
(

(2i −
√

5 − 1)η + i(
√

5 − 1)
i(
√

5 − 1)η − 2i −
√

5 − 1
,

(2i −
√

5 − 1)ζ + i(
√

5 − 1)
i(
√

5 − 1)ζ − 2i −
√

5 − 1

)
,

(4.15)

respectively. These formulae are simply the standard formulae in a different orientation, as
follows. A more convenient form of the spectral curve can be obtained by applying a rotation
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so that the order five symmetry becomes a rotation around a Cartesian axis. After applying the
rotation

(η, ζ) $→
(

(
√

5 − 1)η − (2 +
√

10 − 2
√

5)

−η(2 +
√

10 − 2
√

5) +
√

5 − 1
,

(
√

5 − 1)ζ − (2 +
√

10 − 2
√

5)

−ζ(2 +
√

10 − 2
√

5) +
√

5 − 1

)
,

(4.16)

followed by the rotation (η, ζ) $→ (eiπ/5η, eiπ/5ζ), the spectral curve takes the more compact
form

(η − ζ)
(
η
(
η5 − 2

) (
2ζ5 + 1

)
+ ζ

(
ζ5 − 2

) (
2η5 + 1

)
+ 25η2ζ2 (η2 + ζ2)) = 0.

(4.17)

In this orientation the order five symmetry is

(η, ζ) $→ (ωη,ωζ), (4.18)

where ω = e2πi/5, and the order three symmetry is

(η, ζ) $→
(

(ω3 − 1)η + ω − ω2

(ω − ω2)η + 1 − ω3 ,
(ω3 − 1)ζ + ω − ω2

(ω − ω2)ζ + 1 − ω3

)
. (4.19)

As a final example, there is an N = 17 hyperbolic monopole with icosahedral symmetry [6,
18] that is related to the truncated icosahedron and has a real triplet of matrices that can be
written in the block matrix form

Mi =
1

24

⎛

⎜⎜⎝

0 4Tt
i 0 4U t

i
4Ti 0 εi jkT jU t

k 0
0 εi jkU kTt

j 0 2εi jkU jU t
k

4U i 0 2εi jkU kU t
j 0

⎞

⎟⎟⎠. (4.20)

Here εi jk is the totally antisymmetric tensor and the matrices that appear in the blocks are
given by

T1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0

0 0 0

0 0
√

5 + 1

0
√

5 − 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, U 1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2 0 0

0 0 0

−
√

2
√

3 0 0

0 −
√

5 − 1 0

0 0
√

5 − 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.21)
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T2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0

0 0
√

5 − 1

0 0 0

√
5 + 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, U 2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

2 0

0 0
√

5 + 1

0
√

2
√

3 0

√
5 − 1 0 0

0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.22)

T3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2

0
√

5 + 1 0

√
5 − 1 0 0

0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, U 3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −2
√

2

0 −
√

5 + 1 0

0 0 0

0 0 0

−
√

5 − 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.23)

The companion quaternionic vector (2.20) is L = 1
2 (0, 0, 0, 1, i, j, k, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Using (2.17) and applying the same rotations as in the previous example, to obtain a
convenient orientation, the spectral curve is

(η − ζ)
((
−3η15 + 41η10 − 33η5 + 1

)
ζ16 +

(
−3η16 + 3η11 − 51η6 − 11η

)
ζ15

+
(
438η12 + 768η7 + 162η2) ζ14 +

(
338η13 + 468η8 − 338η3) ζ13

+
(
438η14 − 132η9 + 1462η4) ζ12 +

(
3η15 + 5025η10 − 6291η5 + 33

)
ζ11

+
(
41η16 + 5025η11 + 4273η6 + 51η

)
ζ10 +

(
−132η12 − 17252η7 − 768η2) ζ9

+
(
468η13 + 648η8 − 468η3) ζ8 +

(
768η14 − 17252η9 + 132η4) ζ7

+
(
−51η15 + 4273η10 − 5025η5 + 41

)
ζ6 +

(
−33η16 − 6291η11 − 5025η6 + 3η

)
ζ5

+
(
1462η12 + 132η7 + 438η2) ζ4 +

(
−338η13 − 468η8 + 338η3) ζ3

+
(
162η14 − 768η9 + 438η4) ζ2 +

(
−11η15 + 51η10 + 3η5 + 3

)
ζ

+ η16 + 33η11 + 41η6 + 3η
)

= 0. (4.24)
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This icosahedrally symmetric curve is invariant under the generators (4.18) and (4.19) of the
icosahedral group. It would seem to be a challenge to obtain this spectral curve directly using
the approach of algebraic geometry rather than the ADHM method used here.

5. Conclusion

A simple formula has been presented for the spectral curves of hyperbolic monopoles in terms
of ADHM matrices satisfying conditions that imply circle invariance of the associated instan-
tons and commuting rotations that act canonically on the ball model of hyperbolic space. This
is a hyperbolic analogue of the construction of spectral curves from Nahm data for monopoles
in Euclidean space [19, 20]. In both contexts this provides an integrable systems approach to
obtain the spectral curve that is more tractable than the direct methods of algebraic geometry.

The results in this paper are applicable when the curvature of hyperbolic space is tuned
so that the charge of the hyperbolic monopole is equal to the charge of the associated circle-
invariant instanton. A similar relation between hyperbolic monopoles and instantons exists for
an infinite set of discrete values of the curvature, with the instanton charge being any integer
multiple of the monopole charge [1]. For the canonical circle action (2.3) this yields a discrete
integrable system for complex matrices on a lattice, with the number of lattice points equal
to the ratio of the instanton and monopole charges [3]. A generalization of the expression
(2.15) provides the formula for the spectral curve [4]. However, for the circle action (2.6) the
generalization of the constraints (2.10)–(2.12) on ADHM matrices is an open problem once
the instanton charge is greater than the monopole charge. It would be interesting to find the
appropriate generalization of the constraints and to see if a formula similar to (2.17) provides
the spectral curve in this more general situation.
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