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The impact of public participation in environmental behavior on haze pollution and public health in China 

ABSTRACT 

This study extends the STIRPAT model based on Grossman’s health production function and uses Chinese provincial panel 

data from 2000 to 2017 to examine regional differences in the impacts of public participation in environmental behavior 

(PPEB), other socioeconomic factors related to haze pollution, and public health level (PHL) in China. We use four 

econometric techniques and obtain robust results. Overall, results from the system-GMM indicate that an inverted U-shaped 

relationship, which has not passed its inflection point, exists between PPEB and haze pollution, PPEB and PHL in the 

different regions, urbanization, and haze pollution except in the eastern region. Both fossil energy consumption and 

population density promote haze pollution. Income per capita contributes to haze pollution only in the country as a whole 

and the western region, but improves PHL in the whole of China and the three regions. There is a negative correlation 

between haze pollution and PHL in each sample. Medical services are substantially conducive to PHL, except in the western 

region.  

JEL classification: Q57 I18 R15 
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Highlights 

• An inverted U-shaped relationship exists between public participation in environmental behavior and haze 

pollution. 

• Urbanization and haze pollution have an inverted U-shaped relationship, except in the east. 

• Haze pollution could lower China’s PHL in the eastern, central, and western regions. 

• Both fossil energy consumption and population density promote haze pollution. 

• We employ four econometric techniques from panel estimations to obtain robust results. 
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1. Introduction 

Health is the collective effect of social, economic, and physical conditions (Jiang et al., 2020; Keček et al., 2019; Peres 

et al., 2019), and thus a country’s public health level is an important dimension and sensitive tracer of sustainable 

development. China has undergone rapid economic development since implementation of the “Reform and Opening-up” 

policy in 1978, and this economic development mainly depends on energy consumption, especially fossil fuels. Fossil 

energy is a determinant for sustainable development of the economy because of the imbalance in China’s energy 

consumption structure (Dong, Yu, et al., 2019; Wei & Zhang, 2020). Many air pollutants, such as sulfur dioxide (SO2), dust, 

soot, and total suspended particles (TSP) are injected into the atmosphere during fossil fuel burning and transformation 

processing (Oreggioni et al., 2019). These pollutants—and especially haze pollution, which mainly consists of particulate 

matter with a diameter of less than 2.5 micrometers (PM2.5)—not only damage air quality but are also harmful to public 

health. How to alleviate the amount of haze pollution and improve the public health level (PHL) is a major concern for both 

policymakers and academia. Previous research on haze pollution and PHL suggests that public participation in 

environmental behavior (PPEB), environmental regulation, urbanization, and enterprise environmental behavior are 

important enforcing factors for serious haze pollution and PHL. Therefore, PPEB can protect the public from serious haze 

pollution by consuming more green energy than fossil energy, supporting government regulation, and limiting the pollutant 

emissions of enterprises. These actions, in turn will reduce death rates.  

In recent years, with the increase in living standards, PPEB activity is increasingly more common and popular. PPEB, 

supported by public participation in environmental protection, is gradually becoming an essential part of China’s 

environmental governance. This is because it can help mitigate information asymmetry between governments and 

enterprises, support strict government supervision and green transformation for enterprises, and, even more important, 

advocate for low-carbon practices. These actions, in turn, decrease pollutant emissions and improve PHL. According to a 

report released by the Policy Research Center for Environment and Economy of China’s Ministry of Ecological 

Environment, the scale of PPEB has improved and more respondents believe that paying attention to information on the 



ecological environment and practicing green consumption is important for protecting the environment. Notably, the 

proportion of the population concerned with environmental governance increased by 10% in 2010 to 20% in 2016. It 

appears that the battle against haze pollution has achieved positive results, and ecological quality overall has improved in 

the past 3 years.  

The Chinese government pays great attention to environmental problems, and especially haze pollution due to an 

inadequate energy consumption structure. To this end, a series of haze pollution reduction policies, which include public 

participation in environmental protection, were formulated during the 18th National Congress of the Communist Party of 

China(Jia et al., 2019; Song et al., 2019). A growing body of literature documents qualitatively that PPEB has a highly 

positive impact on haze pollution regulation and, in turn, public health improvement as a result of complaints about 

environmental issues to governments and organizations connected to environmental protection (Drazkiewicz et al., 2015; Fu 

& Geng, 2019; Shen et al., 2019). The government has enacted measures to limit haze pollution and penalize the industrial 

emission of pollutants, based on public opinion, and consequently lead to the reduction of environmental pollutants and 

enhance PHL. In spite of the potentially significant role of PPEB in haze pollution reduction, however, there is limited 

empirical evidence regarding whether haze pollution is influenced by concerns about PPEB and little understanding of how 

to increase PPEB and PHL.  

Different levels of economic development and environmental cognition determine the extent of PPEB in a region or 

country. China is a large developing country in the process of forming a market economy, with diverse ethnic groups and 

cultures. Therefore, each region—eastern, central, and western—distinctly differs in the amount of PPEB. The eastern 

region is a comparatively developed area, in which the public has a higher level of environmental culture and is more 

concerned with self-health status, which results in better PPEB. The western region is relatively lagging in economic 

development; there is less PPEB and serious haze pollution because of the presence of numerous highly polluting 

enterprises, many of which consume fossil energy. Haze pollution is more serious in the central region than western region, 

likely because economic development is slightly better in the former than the latter, but the PPEB level is still not higher 

than in the eastern region. Thus it is essential that each region explore the heterogeneous influence of PPEB on haze 
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pollution and PHL, which can motivate the public to take PPEB more seriously, raise PPEB efficiency, and improve air 

quality and PHL. 

This study provides empirical answers to the following research questions: (1) How does PPEB influence haze 

pollution and PHL? (2) What is the relationship between PPEB and haze pollution and PPEB and PHL? (3) Is there an 

inverted U- shaped or linear relationship between them? (4) Are there regional differences in this relationship?  

As the survey by Fu and Geng (2019) demonstrates, the literature is surprisingly ambiguous regarding this relationship. 

Some qualitative research finds that there appears to be a linear relationship between PPEB and haze pollution (Wu et al., 

2018), while others do not find a linear relationship. Do regional differences exist in these regions? To address this 

ambiguity, we first investigated the regional effects of PPEB on haze pollution governance (HPG) and public health in 

China using dynamic panel estimation. Thus, this study provides policy implications for public health improvement in 

China in association with enhanced PPEB and the abatement of haze pollution.  

The aim of the present research is, therefore, to examine how PPEB influences haze pollution and PHL in China. To 

achieve these targets, based on an extended health production function, a STIRPAT model using four econometric 

techniques was employed to analyze panel data in China from 2000 to 2017 across 31 provinces. These provinces were 

divided into three regions—eastern, central, and western—based on location, geography, and economic development. We 

find an inverted U-shaped relationship between PPEB and haze governance and PPEB and PHL. 

The rest of the paper is organized as follows. Section 2 reviews the literature on the effects of PPEB on haze pollution 

and PHL. Section 3 describes our main models, econometric methodology, and data sources. In Section 4, we present the 

empirical results. Section 5 discusses the empirical results of the estimations. Section 6 concludes and offers policy 

suggestions. 

2. Literature review 

The analysis of factors that affect haze pollution in the environmental economics field has always attracted a great deal 

of attention. Most empirical research on these issues in China and abroad argues that the relationship between 

environmental pollution and the level of socioeconomic development is complicated (Evans & Kantrowitz, 2002; Ji et al., 



2018b). The first explanation assumes that haze pollution is mainly derived from an imbalance in the energy 

structure—specifically, the higher proportion of fossil energy in total consumption due to the imbalance of natural resources 

and constraints on the resource endowment based on energy economics (Bilgili et al., 2016; Lelieveld et al., 2015; Tong et 

al., 2016; Zhang et al., 2015). The second explanation attributes this issue to lower awareness of PPEB based on the theory 

of planned behavior (TPB), whereby individuals don’t act 100% voluntarily, but rather in response to certain influences, and 

normative activation theory (NAT), which holds that behavior can be predicted based on personal norms and societal duties. (Ru 

et al., 2019; Xu et al., 2020). The third argues that economic growth in a country accompanies environmental pollution, and 

particularly in developing countries (Liu et al., 2019). The fourth presumes that urbanization could increase haze pollution to a 

certain extent (Qu et al., 2018; Sharma, 2011). The fifth involves the population factor based on the theory of demography (Ho, 

2018). In this vein, it is worth mentioning that PPEB is the single most important factor with respect to improving PHL.  

First, PPEB could motivate the public to attach importance to environmental improvement for PHL by popularizing PPEB in 

China, which could lower haze pollution and have a significant effect on improving fundamental air quality, and is thus conducive 

to PHL to a certain extent(Li et al., 2018; Qu & Yan, 2017). Second, an increasing amount of PPEB will restrict pollutant 

emissions by higher-polluting enterprises to a larger degree, which also motivates enterprises to consider green production 

technologies and continually implement technological innovations. In turn, this would lead to less pollution or zero pollution, and 

gradually remove the threat to PHL from companies’ emissions, decrease death rates, and improve PHL(Chen et al., 2015). Third, 

PPEB could prompt governments to enact laws regarding PPEB to encourage the public to participate in environmental 

governance by pushing PPEB forward and improving air quality (Fu & Geng, 2019; Shen et al., 2019). For instance, Chengdu 

city in Sichuan province recently proposed a "dual path" to inclusive construction using low-carbon methods. These involve 

encouraging participation on a platform that connects the public with micro-enterprises that follow green and low-carbon 

practices to promote green and low-carbon construction. The effort can be summarized as “Everyone’s attention, everyone’s 

participation, everyone benefits,” and would be conducted in urban areas to enhance air quality and, consequently, improve 

the PHL. 

Considering the serious effects of haze pollution on public health, most studies have focused on the analysis of public 



health and air pollution. In contrast, few studies examine the relationship from the perspectives of both management and 

economics (Chen et al., 2020; Qu & Yan, 2015). In response to China’s emerging environmental and public health problems, 

the attention of medical scholars has been drawn to the effects of environmental pollution on public health. In the literature, 

the relationship between pollution and health has been extensively researched by scholars from public health and medical 

fields (Chen et al., 2017; Eckelman & Sherman, 2016; Kan et al., 2012). McKenzie et al. (2012) review the literature on air 

pollution and human health in China from three perspectives—chronic health effects, acute health effects, and intervention 

effects—and find that the overwhelming majority of studies support the adverse effects of air pollution on health. Guarnieri 

and Balmes (2014) argue that power generation and traffic are the main sources of urban air pollution, and show that PM2.5 

has significant importance for public health. Air pollution is considered to be the largest environmental cause of disease and 

premature death around the world; for instance, diseases caused by pollution accounted for an estimated 9 million premature 

deaths in 2015 (Chen et al., 2016; Landrigan et al., 2018; Seaton et al., 1995). Héroux et al. (2015) quantify the health 

impacts of ambient air pollutants and show that directional causality exists between them. Their results form the scientific 

basis for policies designed to improve air quality and thereby decrease the disease burden related to air pollution in Europe.  

The effects of economic growth on environmental pollution have become common ground for research by economists. 

A number of studies investigate the relationship between environmental pollution and the economic growth nexus using the 

framework of the environmental Kuznets curve (EKC) (Dinda, 2004; Gill et al., 2018; Qu et al., 2018). The EKC was 

derived from the original Kuznets curve, which examines the association between inequality and per capita income. Özokcu 

and Özdemir (2017) point out that at first, income inequality rises with an increase in per capita income, then declines when 

it reaches a critical value. Hence, the EKC hypothesis argues that environmentally polluting emissions increase with 

increased income, and when a given level of income is reached, these emissions start to reduce. Within this framework, 

emissions are specified as a function of income per capita, which supposes a unidirectional causality running from income 

to emissions. The validity of the EKC hypothesis and the causal association between emissions and income have been 

examined in many studies. However, The EKC hypothesis places emphasis on the objective factor of influential 

environmental pollution and fails to account for subjective factors such as PPEB. Omitting variables can be subjected to 



bias estimators in a model. 

Theories on PPEB mainly involve public complaints about environmental pollution, daily low-carbon consumption 

behavior, and PPEB regulation based on TPB and NAT. Public complaints about environmental pollution are used as a 

proxy for PPEB. First, PPEB could limit the number of pollutants from enterprises with high pollution as a result of public 

complaints about pollutants, which have a positive effect on green production by energy transformation and technological 

innovation. Second, low-carbon public consumption behavior is the embodiment of PPEB, to a certain extent; it motivates 

the public to save on energy use and form good habits for low-carbon consumption in daily life. It also reminds people to 

care for the environment, reduce pollution and, as a result, influence PHL. Third, optimal guidelines for PPEB ensure the 

legality of public participation in environmental governance, which lays a solid foundation for PPEB. The goal is to 

alleviate haze pollution and improve PHL by clarifying the responsibility borne by the public, governments, and enterprises 

and constructing a mechanism for dialogue and consultation based on equality and cooperation. 

In the past 20 years, environmentalism has become a major sociopolitical force in Chinese society, which one reason 

the environmental movement has received widespread support from the general public (Dunlap & Mertig, 2014). PPEB is a 

relatively new approach to environmental management that can improve the quality of environmental decision-making and 

sustainable development (Drazkiewicz et al., 2015; Reed, 2008; Rega & Baldizzone, 2015; Rowe et al., 2000). PPEB is also 

of crucial importance for the development of a healthy environmental governance system. However, public participation has 

not been well institutionalized in China, and the public’s role in environmental management is limited (Chen et al., 2015). A 

few scholars have investigated the correlation between PPEB and haze pollution and between PPEB and PHL, such as 

Brombal et al., 2017; Glucker et al., 2013; McKinley et al., 2017; and Yi et al., 2020. These studies find that PPEB helps 

reduce haze pollution and also argue that there appears to be a linear relationship between them. In representative studies, Li 

(2017) posits that local governments should pay attention to the role of PPEB in the environment, and Zhang et al. (2014) 

incorporates the theory of environmental public participation into the STIRPAT model and shows that there are significant 

regional disparities in the influences of PPEB on environmental quality. Specifically, the influence of environmental 

complaint letters on environmental quality is significantly positive in central China but nonsignificant in eastern or western 



China. Shen et al. (2019) shows that the stronger the appeals to the public for environmental awareness, the greater the 

degree to which governments address environmental pollution. For instance, in Hebei and Shanxi, where environmental 

pollution problems are more serious, appeals to the public are relatively strong. Li et al. (2018) find that if government 

policies, the public, and enterprises jointly cooperate, air pollutants could effectively be alleviated and allow for sustainable 

development goals to be achieved. 

The relationships between economic growth, environmental pollution, and public health have drawn great interest in 

recent years. Wu et al. (2017) use a computable general equilibrium (CGE) model to evaluate the effect of PM2.5 on health 

on the national and provincial economies of China based on the latest nonlinear exposure-response functions, which show 

that a high PM2.5 concentration in provinces has a seriously substantial impact on economics and PHL. Qu and Yan (2015) 

use panel data on 30 provinces in China from 1997 to 2010 to construct an entity fixed-effects model, and analyze the 

differences between the eastern, central, and western regions. They find a long equilibrium cointegration relationship 

between environmental pollution, economic growth, healthcare services, and public health; also, an inverted U-shaped curve 

is present between economic growth and public health in the eastern and central regions and the whole of China 

significantly.  

Moreover, economic and social factors may also affect public health. Li et al. (2016) employ data on sulfur dioxide 

(SO2) and inhalable particulate matter (PM10) from January 2015 to June 2015 in 74 cities by constructing lowest and 

highest limit scenarios. They show that in both scenarios, the health-related economic losses caused by PM10 and SO2 were 

1.63% and 2.32% of GDP, respectively. Health and disease are determined by several factors, including housing, 

environmental exposure, education, and social and economic status. Therefore, to improve the population’s health and 

health equity it is necessary to take intersectoral action and motivate social participation—goals that many Latin American 

countries have achieved (Andrade et al., 2015). Also, these studies demonstrate why PPEB has an important implication for 

haze pollution and PHL; however, the research is confined to the effects of objective factors on haze pollution and PHL The 

combination of objective and subjective factors, such as how PPEB affects haze pollution and PHL, is rarely examined 

empirically. 



The main contributions of this paper are the following. First, the paper pioneers the development of an extended 

STIRPAT model and health function theory (Grossman, 1972) to study the relationship between PPEB and haze pollution 

and PPEB and PHL, given that PPEB is an increasingly important subject in environmental governance, and to put it into an 

integrated model framework. Second, this paper reports novel results regarding the heterogeneous impacts of PPEB on haze 

pollution and PHL and finds a nonlinear relationship in the full sample of China and the eastern, central, and western 

regions, respectively. Third, this paper makes an important contribution to the literature by examining the inverted U-shaped 

relationship between PPEB and haze pollution, PPEB and PHL, and urbanization and haze pollution and replacing sulfur 

dioxide, nitrogen oxide, and soot with PM2.5 as the proxy for haze pollution. However, most previous studies use sulfur 

dioxide and nitrogen oxide as the proxy for haze pollution, given the difficulties accessing PM2.5 data. This has an 

implication for recognizing the importance of PPEB with respect to environmental governance and the mechanism of PPEB 

that affects haze pollution and HPL in different regions. Thus, it is essential that governments formulate different policies 

for haze pollution governance and public health improvement for different regions. 

3. Method and data 

3.1. Model specification 

Several studies on haze pollution, such as those by Shahbaz et al. (2016) and Shahbaz et al. (2017), include economic 

growth, urbanization rate, energy use, and total population variables in their empirical models, based on a STIRPAT model, 

to study the effects of these variables on air pollution. They typically find that these variables are importat and have a 

statistically significant impact on environmental quality. In addition, environmental pollution is the dominant factor in 

public health, and some scholars examine the relationship between the level of public health and influential 

factors—economic, environmental, social, etc. (Nasrollahi et al., 2018). The Stochastic Impacts by Regression on 

Population, Affluence, and Technology (STIRPAT) model, developed by York et al. (2003), is frequently used to analyze the 

effect of socioeconomic changes on environmental deterioration in previous studies. Also, the population is considered to be 

an explanatory variable in analyzing its effects on environmental conditions. This model rectifies the weakness of 

environmental Kuznets curves (EKC), in which income per capita is treated as an explanatory variable and CO2 emissions 



per capita as explained variables. The STIRPAT model, in its general form, can be represented as follows: 

𝐸𝑡 = 𝛼(𝐸𝐶)𝑎𝑃𝑡
𝑏𝐴𝑡

𝑐𝑇𝑡
𝑑𝜇𝑡  (1) 

where E denotes energy pollutants, EC energy use, P population, A affluence (economic growth), and T technology; μ 

represents an error term. We further develop the model by incorporating PPEB. On the one hand, PPEB is an essential entity 

in supervising firms’ polluting activities, and it is helpful for achieving the objective of reducing an enterprise’s emissions 

and thus having a substantial effect on reducing pollution. On the other hand, PPEB urges governments to intensify 

pollution treatment and foster a sound environment for public health. PPEB embodies the public’s concern about 

environmental pollution governance. According to our theoretical representation and data (Figs. 1 and 2), there is a 

nonlinear association between haze pollution and PPEB. In the early stage of haze pollution, citizens tend to pay more 

attention to the cost of participating in eco-environmental improvement than to the outcome of environmental pollution.  

Also, a lengthy timeline is required for PPEB to have an impact on haze pollution—namely, the guaranteed time—and 

cannot on a shorter timeline. However, as PPEB reaches a certain scale, citizens may become more concerned with 

environmental quality, and the effect of PPEB on haze pollution could gradually become obvious. Therefore, the quadratic 

terms of PPEB are also incorporated in the regression equation to reflect the nonlinear shape. Haze pollution governance 

(HPG) in a country can be a clear indicator of aspects of environmental protection behavior, since the effective performance 

of HPG requires long-term environmentally friendly behavior by the public. The HPG of the previous period, therefore, is 

expected to have a positive effect on the current period (Jia et al., 2019; Yue et al., 2017). In addition, the population’s death 

rate is considered to be a proxy for the level of public health (Dahal et al., 2018; Ford & Capewell, 2011; Qu & Yan, 2015). 

Therefore, taking the logarithm of (1) and adding the variable of PPEB, our empirical model of the influence of PPEB on 

HPG (Model PPEB-HPG) also includes some commonly used control variables so that the model can mitigate the potential 

for misspecification and biased estimation, as given by: 

 

          𝑙𝑛 𝑝 𝑚25𝑖𝑡 = 𝛼0 + 𝛼1 𝑙𝑛 𝑝 𝑚25𝑖𝑡−1 + 𝛼2 𝑙𝑛 𝑝 𝑝𝑒𝑏𝑖𝑡 + 𝛼3 𝑙𝑛2 𝑝 𝑝𝑒𝑏𝑖𝑡 + 𝛼4 𝑙𝑛 𝑟 𝑔𝑑𝑝𝑖𝑡 + 

                                    𝛼5 𝑙𝑛 𝑖 𝑛 𝑠𝑒𝑐𝑖𝑡 + 𝛼6 𝑙𝑛 𝑢 𝑟𝑏𝑎𝑛𝑝𝑖𝑡 + 𝛼7 𝑙𝑛2 𝑢 𝑟𝑏𝑎𝑛𝑝𝑖𝑡 + 𝛼8 𝑙𝑛 𝑝𝑜𝑝𝑑𝑖𝑡 + 𝜇𝑖𝑡    (Model PPEB-HPG) 



 

            

   Fig.1. The trend of haze pollution and PPEB in China         Fig.2. The trend of haze pollution and PPEB in eastern China 

 

where lnpm25 denotes haze pollution; lnrgdp measures income per capita, which is an economic factor; lninsec measures 

the proportion of fossil energy in total energy consumption, which is an energy factor; lnurbanp measures urbanization; 

lnpopd measures population density, which is a demographic factor. These five factors are the key variables that influence 

haze pollution (Qu et al., 2018; Qu & Yan, 2014; Yi et al., 2020). Provinces are denoted by the subscript i (i=1,2……31) and 

the time period is denoted by the subscript t (t=1,2……18). 𝛼1, 𝛼2, ⋯ 𝛼8, are the coefficients for the regressors estimated by 

the regression analysis. 𝜇𝑖𝑡 is an error term. In addition, referring to relevant research (Ji et al., 2018a; Qu & Yan, 2015), T, 

which is a technological factor, is not be incorporated into Model PPEB-HPG given that the proportion of fossil energy and 

income per capita is more closely related to technology. 

The level of public health is mainly affected by serious haze pollution in China. Haze pollution has not only seriously 

affected the normal lives of residents, but also may post a threat to the PHL. 

A theoretical health production function (HPF) was developed by Grossman (1972) and can be expressed as 

  𝐻 = 𝐹(𝑥)   (2) 

where H is individual health level and x is a vector of individual inputs to the HPF. The vector elements mainly include 

nutrient intake, public goods use, income, time devoted to health-related procedures, education, and individual endowments 

such as genetic makeup, postnatal environment, etc. 

This theoretical model was intended to be used for HPF analysis at the micro-level. However, our focus here is to 

analyze the HPF system at the macro-level. To change from micro to macro research, without losing the theoretical basis, 



vector elements X were represented by variables per capita and regrouped into subsectoral vectors of social, economic, and 

environmental factors as 

 ℎ = 𝐹(𝑌, 𝑆, 𝑉)       (3) 

where Y is a series of economic variables per capita, S a series of social variables per capita, and V a vector of 

environmental factors per capita. In its scalar form, Equation 3 can be expressed as 

    ℎ = 𝑓(𝑦1, 𝑦2, ⋯ 𝑦𝑛, 𝑠1, 𝑠2 ⋯ 𝑠𝑚, 𝑣1, 𝑣2, ⋯ 𝑣𝑙)    (4) 

where h represents an individual’s health level proxied by life expectancy at birth, (𝑦1, 𝑦2, ⋯ 𝑦𝑛) = 𝑌, (𝑠1, 𝑠2 ⋯ 𝑠𝑚) =

𝑆, (𝑣1, 𝑣2, ⋯ 𝑣𝑙) = 𝑉, and n, m, l represents the number of variables in each subgroup, respectively. Using calculus, model 

(4) can be changed into its explicit form and given as 

                                      ℎ = 𝛺 ∏ 𝑦𝑖
𝛼𝑖 ∏ 𝑠

𝑗

𝛽𝑗 ∏ 𝑣
𝑗

𝛾𝑗   (5) 

where 𝛼𝑖, 𝛽𝑗, 𝛾𝑘 are elasticities. With respect to empirical research, the list of each subgroup’s variables across different 

regions in the study may not necessarily be uniform, because these factors may partly be influenced by the specific culture 

and national environment. Behrman and Deolalikar (1988) emphasize that the model was built in empirical research to take 

a proper range of inputs into account, rather than those that are closely connected to public health or therapeutic measures in 

developed countries. Based on the above discussion and analysis, for our empirical analysis, the yi variables are economic 

factors that are restricted to include income per capita; βj variables are social factors that are restricted to population and the 

proportion of secondary industry; and 𝛾𝑘variables are environmental factors—namely, urbanization and haze pollution. 

Taking the logarithm of (5) and rearranging it yields 

 𝑙𝑛 ℎ 𝑒𝑎𝑙𝑡ℎ = 𝑙𝑛 𝛺 + ∑ 𝛼𝑖(𝑙𝑛 𝑦𝑖) + ∑ 𝛽𝑗(𝑙𝑛 𝑠𝑗) + ∑ 𝛾𝑘(𝑙𝑛 𝜈𝑘)   (6) 

where i=1, j=1,2, and k=1,2 and 𝛺 is an estimate of the initial health stock of the region. Equation (6) lacks the  

subjective variables, such as PPEB; equation (6) is added into the factor of PPEB because PPEB has an important influence 

on the PHL. In addition, we have observed that the relationship between PPEB and the PHL is not linear based on data 

presentation, so we add the quadratic terms of PPEB to the model (Figs. 3 and 4). In addition, worse PHL in the previous 

period might lead to a higher death rate. Finally, the model with the impact of PPEB on PHL (Model PPEB-PHL) is 



developed as follows: 

 𝑙𝑛 𝑑 𝑒𝑎𝑡ℎ𝑖𝑡 = 𝛽0 + 𝛽1 𝑙𝑛 𝑑 𝑒𝑎𝑡ℎ𝑖𝑡−1 + 𝛽2 𝑙𝑛 𝑝 𝑝𝑒𝑏𝑖𝑡 + 𝛽3 𝑙𝑛2 𝑝 𝑝𝑒𝑏𝑖𝑡 + 𝛽4 𝑙𝑛 𝑝 𝑚2. 5𝑖𝑡 + 𝛽5 𝑙𝑛 𝑟 𝑔𝑑𝑝𝑖𝑡 + 

           𝛽6 𝑙𝑛 𝑝 𝑑𝑜𝑐𝑖𝑡 + 𝜀it     (Model PPEB-PHL) 

where lndeath measures PHL; lnppeb is the human factor; lnpm2.5 measures HPG as an environmental factor; lnrgdp is an 

economic factor; and lnpdoc measures the factor of medical service. These four factors are the main factors that affect PHL 

(Eckelman & Sherman, 2016; Qu & Yan, 2014). Provinces are denoted by the subscript i (i=1,2……31), and the time period 

is denoted by the subscript t (t=1,2……18). 𝛽1, 𝛽2, ⋯ 𝛽6, are the coefficients of the regressors estimated by regression 

analysis. 𝜀it is an error term. 

                           

Fig.3. The trend of death rates and PPEB in China                                          Fig.4. The trend of death rates and PPEB in eastern China 

 

 

Fig.5. The distribution of PM2.5 in each province, 2000      Fig.6. The distribution of PM2.5 in each province, 2017 

3.2. Measures and data source 

In the PPEB-HPG model, pm25 represents the extent of HPG, since PM2.5 accounts for haze pollution that also 

includes other pollutants. ppeb represents PPEB, measured by the number of public environmental letters of complaint 



about environmental pollution, considering the availability of the data referring to relevant scholars (Liao, 2018; Wu et al., 

2018). The variable rgdp represents real GDP per capita measured for per capita income. The variable insec represents the 

proportion of secondary industry to total GDP, measured as the energy use, since haze pollution as a result of energy 

consumption in the industrial sector—compared with agriculture and tertiary industries—is much higher. The variable 

urbanp represents the urbanization level in a country, which is measured by the ratio of urban population to the total 

population, in line with several studies (Ji et al., 2018b; Shahbaz et al., 2016). The variable popd represents population 

density, measured by the degree of population agglomeration. The number of people who immigrate from one place to 

another one will affect the energy consumption required to maintain normal activities—such as daily life, production, and 

traffic, which can give rise to haze pollution emissions. Consequently, increasing the population could influence haze 

pollution (Cao et al., 2018; Liu et al., 2017).  

In the PPEB-PHL model, pm25, ppeb, and rgdp are the same as in the PPEB-HPG model. The variable pdoc represents 

the number of doctors per 10,000 population. This variable is measured by the level of medial service in a country or a 

region, according to Qu and Yan (2015) and Cesari et al. (2016). 

The dataset is a balanced panel that consists of observations for 31 provinces covering the period 2000-2017, with a 

sample of 549 observations. China is divided into three regions (see Table 1), according to Shi et al. (2010) and Qu et al. 

(2017). PM2.5 data are from the Socioeconomic Data and Applications Center (sedac) at Columbia University. The 

distribution of PM2.5 is given by Figs. 5 and 6 for 2010 and 2017, respectively; we find that the concentration of PM2.5 in 

2017 is XXXX than in 2010. Province-level data are collected from the China Statistical Yearbook, China Environmental 

Statistical Yearbook, Statistical Yearbooks of each province, and a compilation of statistics from the New China database  

for 60 year The variable pm25 denotes the concentration of haze emissions per year (unit: μg/m3); ppeb denotes the number 

of public letters complaining about environmental issues (unit: number/year); insec denotes the share of secondary industry 

to total GDP (unit: %); the unit for urbanp is also percentage; population density is obtained by dividing the population by 

the total area in each province (unit: %); and pdoc is the number of doctors per 10,000 population (unit: 

number/10,000population). To ensure comparability, real GDP per capita (rgdp) is calculated at constant 1990 ¥, and all 



variable are expressed in natural logarithms. Descriptive statistics and the correlation matrix are presented in Tables 2 and 3. 

 

Table 1 

Distribution of the 31 administrative regions in the three regios of China. 

Area Administrative regions 

Eastern Liaoning, Shanghai, Jiangsu, Zhejiang, Tianjin, Fujian, Shandong, Hebei, Guangdong, Hainan, Beijing 

Central Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan 

Western Neimenggu, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Guangxi, Xizang, Chongqing 

 

Table 2 presents descriptive statistics of all variables, on average, after taking the natural logarithm of haze pollution, 

PHL, and PPEB for the whole country, eastern, central, and western regions, respectively; haze pollution is 3.680, 3.768, 

3.801, and 3.518; PHL is 1.785, 1.765, 1.800, and 1.793; and PPEB is 8.542, 9.118, 8.656, and 7.938. For the whole country, 

the standard deviation of PPEB is 1.592 and the minimum and maximum are 2.773 and 12.452, respectively, which means 

that the difference in PPEB is great for the whole of China. The standard deviations reveal that the data for all series are 

fairly dispersed around the mean. This allows us to proceed with the data to conduct further estimation for the whole of 

China, eastern China, central China, and western China. 

Table 2  

Descriptive statistics for all variables in the study. 

Variable Obs Mean     

Std.Dev

. Min Max Variable Obs Mean Std.Dev. Min Max 

The full sample in China  Eastern China 

lnpM25 558 3.680 0.550 1.526 4.49 lnpM25 198 3.768 0.501 2.116 4.49 

lnPPEB 558 8.542 1.592 2.773 12.452 lnPPEB 198 9.118 1.625 4.828 12.452 

lnPPEB2 558 75.496 25.459 7.687 155.063 lnPPEB2 198 85.763 27.903 23.313 155.063 



lnrgdp 558 8.208 0.478 7.223 9.714 lnrgdp 198 8.567 0.511 7.811 9.714 

lninsec 558 3.812 0.294 2.944 8.535 lninsec 198 3.803 0.442 2.944 8.535 

lnurbanp 558 3.844 0.312 2.941 4.495 lnurbanp 198 4.084 0.26 3.261 4.495 

lnpopd 558 5.272 1.483 0.742 8.256 lnpopd 198 6.409 0.723 5.447 8.256 

lndocp 558 2.884 0.342 1.099 4.069 lndocp 198 3.028 0.369 2.339 4.069 

lndeath 558 1.785 0.127 1.437 2.077 lndeath 198 1.765 0.138 1.437 2.045 

Variable Obs Mean Std.Dev. Min Max Variable Obs Mean     Std.Dev. Min Max 

Central China Western China 

lnpM25 144 3.801 0.365 2.797 4.482 lnpM25 216 3.518 0.649 1.526 4.308 

lnPPEB 144 8.656 1.049 4.883 10.343 lnPPEB 216 7.938 1.654 2.773 11.55 

lnPPEB2 144 76.027 17.028 23.842 106.975 lnPPEB2 216 65.729 24.081 7.687 133.406 

lnrgdp 144 8.051 0.274 7.498 8.522 lnrgdp 216 7.983 0.34 7.223 8.732 

lninsec 144 3.868 0.14 3.239 4.119 lninsec 216 3.783 0.168 3.016 4.067 

lnurbanp 144 3.797 0.215 3.144 4.084 lnurbanp 216 3.656 0.264 2.941 4.16 

lnpopd 144 5.531 0.58 4.383 6.366 lnpopd 216 4.056 1.509 0.742 5.923 

lndocp 144 2.816 0.275 2.238 3.258 lndocp 216 2.797 0.313 1.099 3.34 

lndeath 144 1.800 0.092 1.556 1.985 lndeath 216 1.793 0.134 1.449 2.077 

 

The correlation matrix is presented in Table 3. The correlation between PPEB and HPG is positive, while the 

correlation between the quadratic term of PPEB2—namely, the quadratic term of PPEB—is negative. The association 

between public health and the variable for the quadratic term of PPEB is negative, and then the first power of PPEB is 

positive. The correlation between the number of doctors per 10,000 and PHL is negative, and the correlation between GDP 

per capita and public health is positive. 

 



Table 3  

Correlation between the variables used in the regression models for the whole of China.  

 

lnpm25 lnppeb lnppeb2 lnrgdp lninsec lnurbanp lnpopd lndocp lndeath 

lnpm25 1 

        

lnppeb 0.3457 1 

       

lnppeb2 -0.1141 0.9882 1 

      

lnrgdp 0.2851 0.0728 0.0845 1 

     

lninsec 0.322 0.2377 0.2276 -0.0144 1 

    

lnurbanp 0.3348 0.2079 0.2103 0.8684 0.0631 1 

   

lnpopd 0.5062 0.4802 0.4753 0.3649 0.0959 0.5117 1 

  

lndocp 0.2519 -0.012 -0.0376 0.7121 -0.0833 0.6714 0.1532 1 

 

lndeath 0.0748 0.0363 -0.0073 -0.3491 0.1096 -0.2395 0.1495 -0.2777 1 

 

3.3. Estimation and endogeneity issues 

3.3.1. Estimation procedures 

Our empirical strategy is mainly based on the system generalized method of moments (GMM). This GMM estimator is 

particularly suitable in this context. Besides controlling for province-specific effects, it retains the cross-province dimension 

of the data, which could be lost when the data is estimated using only the first differenced equation. Furthermore, using the 

GMM estimator, reverse causality and endogeneity issues are widely addressed.  

A few main variables might be endogenous because of inverse causation between the explained variable and the 

explanatory variable in our models. For example, the literature shows that feedback effects may exist between PPEB and 

HPG, and PPEB and PHL. The empirical and theoretical literature has shown that differences in PPEB demonstrate a 

considerable part of cross-province differences in HPG. The evidence further shows that the broader and more in-depth 

PPEB effectively mitigates HPG and ameliorates the environment; thus it improves public health. Conversely, a case has 



been made whereby PPEB is affected by HPG and public health. Moreover, omitted unobservable and observable variable 

bias, which also produces endogeneity, may be an issue. Thus, a dynamic system GMM model (GMM-SYS) is employed to 

address potential endogeneity and ensure the reliability of our estimates for our model. The GMM estimation for the 

dynamic panel can be separated into two-step and one-step estimation according to different choices of the weight matrix. 

Bond (2001) finds that the standard error of the two-step GMM estimation value within limited samples will have an 

obvious downward bias. Furthermore, Roodman (2009) argues that system GMM produces by default a high number of 

instruments with an increasing number of periods, which can cause overfitting endogenous variables and render model 

specification estimations weak. Hence, for the model with fewer provinces and a longer time span (eastern, central, and 

western regions), one-step system GMM is employed—whereas for the model with a larger number of provinces and a 

shorter time span (31 provinces and 18 years), two-step system GMM is employed.  

3.3.2. Endogeneity issues 

It is difficult to address endogeneity issues using two-stage least squares with searching for instrumental variables that 

are not easily obtained. We adopted a dynamic panel model to address issues of endogeneity, following several studies 

(Bhattacharya et al., 2017). The GMM model may be written as follows: 

𝑌𝑘𝑡
′ = 𝛿1𝑌𝑘𝑡−1

′ + 𝛿2𝑍𝑘𝑡
′ + 𝜗𝑖 + 𝜖𝑡 + 𝜀𝑖𝑡

′   (7) 

where 𝑌𝑘𝑡
′  denotes 𝑙𝑛 𝑝 𝑚25𝑖𝑡  and 𝑙𝑛 𝑑 𝑒𝑎𝑡ℎ𝑖𝑡 . 𝑌𝑘𝑡−1

′  represents the lagged explained variable of 𝑙𝑛 𝑝 𝑚25𝑖𝑡  and 

𝑙𝑛 𝑑 𝑒𝑎𝑡ℎ𝑖𝑡 in PPEB-HPG and PPEB-PHL models, respectively. 𝑍𝑘𝑡
′  is a vector of control variables. 𝜗𝑖 represents the 

unobserved term of fixed effect, 𝜖𝑡 is time effects, and 𝜀𝑖𝑡
′  represents an error term. 𝛿1, 𝛿2 are respective elasticities with 

respect to the PPEB-HPG and PPEB-PHL models. Variables are taken in logarithm for estimation purposes. Rewriting 

equation (7) as a difference equation yields 

𝑌𝑘𝑡
′ − 𝑌𝑘𝑡−1

′ = 𝛿1(𝑌𝑘𝑡−1
′ − 𝑌𝑘𝑡−2

′ ) + 𝛿2(𝑍𝑘𝑡
′ − 𝑍𝑘𝑡−1

′ ) + 𝜀𝑖𝑡
′ − 𝜀𝑖𝑡−1

′     (8) 

Differencing leads to unbiased estimates. In particular, unobserved province (𝜗𝑖) and time (𝜖𝑡) fixed effects that are 

likely sources of omitted variable bias may be eliminated using differencing methods. Based on Arellano and Bond (1991), 

to correct issues of potential endogeneity bias and the correlation between an explained variable and error terms, the 



regressor’s lagged levels are used as instruments; this is often considered to be the first difference GMM (GMM-DIF) 

estimation, assuming weak regressors’ exogeneity and the noncorrelation of error terms. Based on this, Blundell and Bond 

(1998) suggest that the estimator of GMM-DIF may cause biased estimates, given the existence of weak instruments that 

arise from lagged variables under the condition of persistent explanatory variables. Blundell and Bond (1998) also 

demonstrate that the GMM-SYS estimator is more efficient than that of the GMM-DIF. Generally speaking, GMM-SYS 

estimators produce instruments that can be good predictors for endogenous variables, and thus perform better compared 

with the GMM-DIF estimator under the condition of persistent series (Bhattacharya et al., 2017; Blundell & Bond, 1998). 

This paper uses one-step and two-step estimators, consistent with Roodman (2009), to run the regressions using 

STATA 16. To be consistent, the estimator must pass the Hansen J-test of overidentifying restriction and should have no 

second-order serial correlation within the differencing error term for the estimator (Islam & McGillivray, 2020; Uddin et al., 

2017). In GMM-SYS estimations, the joint validity of all instruments is examined using overidentifying restriction tests 

that work with the null hypothesis, in which the overidentifying restrictions are valid. The second-order autocorrelations 

test finds no autocorrelation for the null hypothesis, or the error term is serially correlated. We conducted these required 

tests in order to correct the validity of the models. Tables 6 and 7 list the estimation results at the bottom. Specifically, the 

null hypothesis—that the full set of orthogonality conditions are valid—cannot be rejected. In the first-differenced error 

terms, given the p-values for the autocorrelation test, the null hypothesis of no second-order serial correlation cannot be 

rejected as well. 

4. Empirical results  

4.1. Panel unit root test  

Before examining the cointegration analysis, it is necessary to examine a panel unit root for all regression variables by 

identifying the existence of unit-roots in order to avoid any false results and determine the feasibility of panel cointegration. 

In this paper, we conduct four types of unit root tests—those of LLC (Levin et al., 2002) and IPS (Im et al., 2003). In 

addition, we follow the procedures of Maddala and Wu (1999) and Choi (2001) by using the nonparametric unit root test of 

the Fisher-ADF and Fisher-PP statistics. 



Table 4 lists test results for the panel unit root. The four tests have the null hypothesis whereby all of the panels 

contain a unit root. The statistics solidly confirm that each variable in this regression model is the I(1) process. Therefore, a 

cointegration relationship that exists among the variables is examined using the panel cointegration method.  

 

Table 4 

Panel data unit root results. 

  LLC Test   IPS Test   Fisher- ADF   Fisher-PP   

  At level At first difference At level 

At first 

difference At level 

At first 

difference At level At first difference 

The whole of China 

lnpm25 

-2.280 

(0.011) 

-5.338*** 

(0.000) 

0.887  

(0.813) 

-6.890*** 

(0.000) 

59.218 

(0.577) 

163.482 *** 

(0.000) 

128.757 

(0.000) 

443.935 *** 

(0.000) 

lnppeb 

-1.091 

(0.138) 

-2.471*** 

(0.007) 

-1.630 

(0.052) 

-5.616***  

(0.000) 

73.761 

(0.164) 

130.952 *** 

(0.000) 

123.953 

(0.000) 

471.100 *** 

(0.000) 

lnppeb2 

-5.404 

（0.000） 

-22.836*** 

(0.000) 

-4.835 

（0.000） 

-20.242 

(0.000)  

116.083 

(0.000) 

414.653 *** 

(0.000) 

112.511 

(0.000) 

773.493 *** 

(0.000) 

lninsec 

-1.752 

(0.040） 

-10.129*** 

(0.000) 

5.054 

(1.000) 

-7.584*** 

(0.000) 

37.573 

(0.994) 

159.113 *** 

(0.000) 

28.321 

(1.000) 

303.628 *** 

(0.000) 

lnurbanp 

-3.763 

(0.000) 

-7.118*** 

(0.000) 

-0.445 

(0.328) 

-6.551*** 

(0.000) 

81.556 

(0.049) 

151.768 *** 

(0.000) 

106.860 

(0.000） 

384.023 *** 

(0.000) 

lnrgdp 

3.603 

(1.000） 

 -7.107*** 

(0.000)  

4.355 

(1.000) 

-3.419*** 

(0.000) 

22.771 

(1.000) 

106.076 *** 

(0.000) 

24.032 

(1.000) 

189.112 *** 

(0.000） 

lnpopd 

3.253 

(0.999) 

-5.266 *** 

(0.000) 

4.8902 

(1.000) 

-4.934***  

(0.000) 

65.382 

(0.3602) 

152.955 *** 

(0.000) 

48.452 

(0.896) 

160.250 *** 

(0.000) 



lndocp 

7.148 

(1.000) 

-17.213 *** 

(0.000)  

8.126 

(1.000) 

-15.342*** 

(0.000) 

31.169 

(1.000) 

324.478 *** 

(0.000) 

32.503 

(0.999) 

499.742 *** 

(0.000) 

lndeath 

-4.041 

(0.000) 

-20.431*** 

(0.000) 

-3.302 

(0.001) 

-18.924*** 

(0.000) 

103.100 

(0.001) 

391.060 *** 

(0.000) 

111.771 

(0.000) 

820.897 *** 

(0.000) 

Eastern China 

lnpm25 

0.452 

(0.675) 

-0.860 

(0.195) 

1.998 

(0.977) 

-3.966 *** 

(0.000) 

8.148  

(0.997) 

53.568 *** 

(0.000) 

46.001 

(0.002) 

166.023 *** 

(0.000) 

lnppeb 

0.180 

(0.571) 

-0.558 *** 

(0.289) 

-0.985 

(0.162) 

-2.675 *** 

(0.004) 

26.095 

(0.248) 

39.646 *** 

(0.012) 

39.545 

(0.122) 

159.762 *** 

(0.000) 

lnppeb2 

0.779 

(0.7822) 

-2.909 *** 

(0.002) 

-0.31708 

(0.3756) 

-5.040 *** 

(0.000) 

21.125 

(0.513) 

64.662 *** 

(0.000) 

29.028 

(0.144) 

202.056 *** 

(0.000) 

lninsec 

-4.282 

(0.000) 

-6.076 *** 

(0.000) 

1.164 

(0.878) 

-4.892 *** 

(0.000) 

22.517 

(0.878) 

63.343 *** 

(0.000) 

15.238 

(0.852) 

133.922 *** 

(0.000) 

lnurbanp 

-3.745 

(0.000) 

-7.6489 *** 

(0.000) 

0.640 

(0.739) 

-4.293 *** 

(0.000) 

24.316 

(0.331) 

56.325 *** 

(0.000) 

32.861 

(0.064) 

148.512 *** 

(0.000) 

lnrgdp 

1.023 

(0.867) 

-5.486 *** 

(0.000) 

2.343 

(0.990) 

-2.957 *** 

(0.002) 

8.468 

(0.996) 

47.008 *** 

(0.002) 

15.685 

(0.831) 

90.065 *** 

(0.000) 

lnpopd 

-2.059 

(0.020） 

-4.843 *** 

(0.000) 

2.484 

(0.994) 

-4.213 *** 

(0.000) 

19.251 

(0.630) 

56.282 *** 

(0.000) 

3.932 

(1.000) 

51.998 *** 

(0.000) 

lndocp 

2.915 

(0.998) 

-12.801 *** 

(0.000) 

3.090 

(0.999) 

-13.071 *** 

(0.000) 

24.656 

(0.314) 

161.767 *** 

(0.000) 

26.199 

(0.243) 

283.177 *** 

(0.000) 

lndeath 

-0.506 

(0.307) 

-12.308 *** 

(0.000)  

-0.978 

(0.164) 

-11.164 *** 

(0.000) 

29.625 

(0.128) 

136.238 *** 

(0.000) 

32.687 

(0.066) 

159.283 *** 

(0.000) 

Central China 



lnpm25 

-1.103 

(0.135) 

-3.526 *** 

(0.002) 

0.207 

(0.582) 

-2.856 *** 

(0.002) 

16.919 

(0.391） 

35.330 *** 

(0.004) 

26.748  

(0.044) 

103.288 *** 

(0.000) 

lnppeb 

-0.746 

(0.228) 

-0.765 

(0.222) 

0.143 

(0.557) 

-3.265 *** 

(0.001) 

12.780 

(0.689) 

36.963 *** 

(0.002) 

22.977 

(0.114) 

143.848 *** 

(0.000) 

lnppeb2 

-2.431 

(0.008) 

-9.649 *** 

(0.000) 

-1.946 

(0.026) 

-9.417 *** 

(0.000) 

26.799 

(0.044) 

98.240 *** 

(0.000) 

26.761  

(0.044) 

128.699 *** 

(0.000) 

lninsec 

0.427 

(0.665) 

-3.121 *** 

(0.001) 

3.004 

(0.999) 

-2.375 *** 

(0.009) 

3.352 

(1.000) 

33.077 *** 

(0.007） 

1.587 

(1.000) 

46.103 *** 

(0.000) 

lnurbanp 

-0.620 

(0.268) 

-2.376 *** 

(0.009) 

-0.293 

(0.615) 

-3.185 *** 

(0.001) 

18.180 

(0.314) 

39.638 *** 

(0.001) 

36.878  

(0.002) 

105.604 *** 

(0.000) 

lnrgdp 

2.114 

(0.983) 

-4.467 *** 

(0.000) 

2.482 

(0.994) 

-2.010 ** 

(0.022) 

3.830 

(0.999) 

27.579 ** 

(0.035) 

1.968 

(1.000) 

48.937 *** 

(0.000) 

lnpopd 

3.695 

(1.000) 

-5.487 *** 

(0.000) 

2.002 

(0.977) 

-4.299 *** 

(0.000) 

17.059 

(0.382) 

48.151 *** 

(0.000) 

18.041 

(0.322) 

48.322 *** 

(0.000) 

lndocp 

5.075 

(1.000) 

-7.907 

(0.000) 

6.235 

(1.000) 

-5.220 *** 

(0.000) 

0.992 

(1.000) 

59.921 *** 

(0.000) 

3.095 

(1.000) 

85.600 *** 

(0.000) 

lndeath 

-1.979 

(0.024) 

-9.759 *** 

(0.000) 

-1.672 

(0.047) 

-9.337 *** 

(0.000) 

24.938 *** 

(0.071) 

100.207 *** 

(0.000) 

24.786 

(0.074) 

173.389 *** 

(0.000) 

Western China 

lnpm25 

-0.428 

(0.335) 

-2.872 *** 

(0.002) 

1.655 

(0.951) 

-4.871 *** 

(0.000) 

25.067 

(0.947) 

88.898 *** 

(0.000) 

72.749 

(0.000) 

269.311 *** 

(0.000) 

lnppeb 

-0.341 

(0.367) 

-0.920 

(0.179) 

-0.656 

(0.256) 

-4.154 *** 

(0.000) 

38.874 

(0.432) 

76.608 *** 

(0.000) 

62.523 

(0.007) 

303.610 *** 

(0.000) 

lnppeb2 -4.228 -14.929 *** -4.156 -12.768 *** 56.043 164.111 *** 56.722 442.738 *** 



(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

lninsec 

-3.526 

(0.998) 

-6.622 *** 

(0.000) 

2.835 

(0.998) 

-5.263 *** 

(0.000) 

25.868 

(0.933) 

96.420 *** 

(0.000) 

16.825 

(0.999) 

180.024 *** 

(0.000) 

lnurbanp 

-2.622 

(0.004) 

-6.890 *** 

(0.000) 

0.677 

(0.751) 

-5.333 *** 

(0.000) 

42.495 

(0.284) 

95.961 *** 

(0.000) 

69.739 

(0.001) 

254.117 *** 

(0.000) 

lnrgdp 

2.185 

(0.986) 

-6.955 *** 

(0.000) 

3.393 

(0.100) 

-3.554 *** 

(0.000) 

12.298 

(1.000) 

74.587 *** 

(0.000) 

17.653 

(0.998) 

139.002 *** 

(0.000) 

lnpopd 

4.517 

(1.000) 

-0.144 

(0.443) 

3.833 

(1.000) 

-0.434 

(0.332) 

29.072 

(0.217) 

48.523 *** 

(0.002) 

26.478 

(0.329) 

59.929 *** 

(0.000) 

lndocp 

4.518 

(1.000) 

-9.085 *** 

(0.000) 

5.011 

(1.000) 

-7.959 *** 

(0.000) 

5.522 

(1.000) 

102.791 *** 

(0.000)  

3.208 

(1.000) 

130.966 *** 

(0.000) 

lndeath 

-4.413 

(0.000) 

-13.225 *** 

(0.000) 

-3.035 

(0.001) 

-12.112 *** 

(0.000) 

48.537 

(0.002) 

154.615 *** 

(0.000) 

54.297 

(0.000) 

488.225 *** 

(0.000) 

Notes: Unit root tests are estimated using constant and trend variables; ‘***’ indicates 1% significance level. 

4.2. Panel cointegration test 

In this section, we examine whether there is a stable equilibrium relationship between the explained variable and the 

explanatory variables that were proposed by Pedroni (Pedroni, 1999, 2001, 2004) and Kao (1999). The results show that the 

statistics reject the null hypothesis of non-cointegration at 1% and 5% levels of significance in the panel cointegration test 

(Table 5). This indicates that all of the variables have a long-run stable relationship. Also, combined with the panel 

nonparametric (t-statistic) and parametric (ADF-statistic) statistics, they are more reliable based on the constant plus time 

trend Pedroni (1999). Therefore, in the panel data sets, we can obtain a strong conclusion that there is a long-run 

cointegration within our variables. 

Table 5 

Panel cointegration results test. 



    The whole of China Eastern China  Central China Western China 

Model PPEB-HPG   Test statistic Prob Test statistic Prob Test statistic Prob Test statistic Prob 

With-Dimension                   

Panel v-Statistic 

Deterministic intercept -3.040 0.999 -0.887 0.812 -1.766 0.961 -2.334 0.990 

Deterministic intercept and trend -5.306 1.000 -2.027 0.979 -2.839 0.998 -3.862 1.000 

No intercept or trend   -2.227 0.987 -0.249 0.598 -1.432 0.924 -1.783 0.963 

Panel rho-Statistic 

Deterministic intercept 6.652 1.000 0.756 0.775 2.164 0.985 2.963 0.999 

Deterministic intercept and trend 5.583 1.000 1.881 0.970 3.163 0.999 4.086 1.000 

No intercept or trend   2.203 0.986 -0.135 0.446 1.353 0.912 2.042 0.979 

Panel PP-Statistic 

Deterministic intercept -6.925 0.000 -11.340 0.000 -1.682 0.046 -5.305 0.000 

Deterministic intercept and trend -12.455 0.000 -13.958 0.000 -3.395 0.000 -6.036 0.000 

No intercept or trend   -7.782 0.000 -9.535 0.000 -1.684 0.046 -4.095 0.000 

Panel ADF-Statistic 

Deterministic intercept -3.209 0.001 -5.652 0.000 -1.622 0.052 -3.640 0.000 

Deterministic intercept and trend -5.264 0.000 -4.904 0.000 -2.544 0.006 -2.533 0.006 

No intercept or trend   -5.543 0.000 -6.076 0.000 -1.745 0.041 -3.269 0.001 

Between-Dimension                   

Group rho-Statistic 

Deterministic intercept 8.484 1.000 2.480 0.993 3.130 0.999 3.991 1.000 

Deterministic intercept and trend 7.324 1.000 3.424 1.000 4.211 1.000 5.054 1.000 

No intercept or trend   4.233 1.000 1.545 0.939 2.534 0.994 3.255 0.999 

Group PP-Statistic 

Deterministic intercept -18.751 0.000 -11.476 0.000 -1.119 0.132 -7.221 0.000 

Deterministic intercept and trend -14.574 0.000 -12.350 0.000 -5.209 0.000 -7.347 0.000 

No intercept or trend   -11.104 0.000 -9.738 0.000 -1.164 0.122 -7.574 0.000 

Group ADF-Statistic Deterministic intercept -4.284 0.000 -7.395 0.000 -1.947 0.026 -4.953 0.000 

  Deterministic intercept and trend -7.292 0.000 -6.270 0.000 -2.703 0.003 -3.510 0.000 



  No intercept or trend   -8.148 0.000 -7.965 0.000 -1.715 0.043 -4.070 0.000 

Kao Test Deterministic intercept -6.936 0.000 -7.767 0.000 -3.265 0.001 -3.273 0.005 

Model PPEB-PHL                   

With-Dimension                   

Panel v-Statistic Deterministic intercept -2.969 0.999 -0.151 0.560 -0.526 0.701 -2.855 0.998 

  Deterministic intercept and trend 5.250 1.000 -0.444 0.672 -1.824 0.966 -4.410 1.000 

  No intercept or trend   -4.893 1.000 -0.956 0.831 -1.712 0.957 -3.366 1.000 

Panel rho-Statistic Deterministic intercept 1.276 0.899 0.802 0.789 0.870 0.808 0.694 0.756 

  Deterministic intercept and trend 3.260 0.999 2.088 0.982 1.909 0.972 1.888 0.971 

  No intercept or trend   2.723 0.997 1.061 0.856 1.170 0.879 1.785 0.963 

Panel PP-Statistic Deterministic intercept -8.530 0.000 -2.705 0.003 -5.369 0.000 -6.227 0.000 

  Deterministic intercept and trend -11.089 0.000 -4.163 0.000 -6.312 0.000 -7.570 0.000 

  No intercept or trend   -0.324 0.373 -1.298 0.097 -0.303 0.381 -0.061 0.476 

Panel ADF-Statistic Deterministic intercept -6.892 0.000 -1.576 0.058 -1.000 0.000 -4.994 0.000 

  Deterministic intercept and trend -7.739 0.000 -3.161 0.001 -3.663 0.000 -5.328 0.000 

  No intercept or trend   0.533 0.703 0.195 0.577 -0.225 0.411 0.408 0.658 

Between-Dimension                   

Group rho-Statistic Deterministic intercept 3.821 1.000 2.177 0.985 2.015 0.978 2.412 0.992 

  Deterministic intercept and trend 5.351 1.000 3.011 0.999 2.800 0.997 3.431 1.000 

  No intercept or trend   4.099 1.000 2.375 0.991 1.930 0.973 2.739 0.997 

Group PP-Statistic Deterministic intercept -11.712 0.000 -4.246 0.000 -7.217 0.000 -8.866 0.000 

  Deterministic intercept and trend -15.200 0.000 -7.754 0.000 -9.863 0.000 -8.954 0.000 

  No intercept or trend   -4.319 0.000 -3.487 0.000 -0.642 0.260 -3.079 0.001 

Group ADF-Statistic Deterministic intercept -5.859 0.000 -1.811 0.035 -4.215 0.000 -4.242 0.000 



  Deterministic intercept and trend -6.860 0.0000 -3.661 0.000 -3.786 0.000 -4.429 0.000 

  No intercept or trend   -1.656 0.049 -0.787 0.216 -1.702 0.044 -0.517 0.303 

Kao Test Deterministic intercept -3.452 0.000 -0.639 0.261 -3.485 0.000 -4.716 0.000 

Note: ⁎, ⁎⁎, ⁎⁎⁎indicates rejection of the null hypothesis of non-cointegration at the 10%, 5%, and 1% level of significance, respectively.  

4.3. Estimations with the PPEB-HPG model for the full sample 

For empirical purposes, regressions are run for the entire sample and estimation across regions. The results of these 

models are reported and discussed below.  

     Results for the full sample of 31 provinces and the eastern, central, and western regions are presented in Table 6. The 

PPEB-HPG model is presented for the POLS, FE-effects, and RE-effects estimates (Columns 1-3), while the last column 

(Column 4) provides system GMM estimators. For the PPEB-HPG model, the coefficients of GDP per capita, urbanization, 

fossil energy consumption, and population are significantly strong and positive across various estimation techniques. 

According to the discussion in the prior section, we find system GMM estimates to be consistent for both the PPEB-HPG 

and PPEB-PHL models and verify the validity of the instruments using estimations for autocorrelation and 

overidentification. 

      Based on the system GMM results in the PPEB-HPG model, we estimate the dynamic model of the inverted U 

relationship in the fourth column of the table. We first perceive that the coefficient for the lnppeb variable is significantly 

positive and that of lnppeb2 is negative significantly and consistently across all estimations. These results thus support the 

existence of an inverted U-shaped relationship between PM2.5 emissions and PPEB in China, which indicates that PM2.5 

emissions initially increase and then decrease after reaching a turning point in PPEB. Second, coefficients for the lagged 

explained variable are highly and significantly positive in regressions, which implies that emissions of PM2.5 are positively 

serially correlated and hence warrant this dynamic specification in our study. Moreover, consistent with prior studies(Cao et 

al., 2016; Cheng et al., 2017; Liu et al., 2017), the signs for fossil energy use, GDP per capita, and population density are 

positive and significant at the 1% level. Specifically, at the 1% level of significance, a 1% increase in fossil energy 

consumption is associated with a 0.188% increase in HPG. We are further aware that both GDP per capita and population 



density are positively associated with HPG, but the effect of GDP per capita appears to be relatively stronger than that of 

population density. In this respect, a 1% increase in GDP per capita and population density is related to a 0.348% and 0.102% 

increase in HPG, respectively. In addition, we note that the coefficients for urbanization are significantly positive, but the 

coefficients for lnurbanp2 are significantly negative; this suggests the existence of an inverse U-shaped relationship 

between PM2.5 emissions and urbanization (Wang et al., 2018). 

4.4 Estimations with the PPEB-HPG model for the three regions  

To investigate the differences between the impact of PPEB on HPG in different regions and to conduct robustness tests, 

we estimated similar regressions for the three regions—eastern, central, and western. The estimated results in each region in 

the PPEB-HPG model in Table X are presented. For each region, four models are employed, The first model uses the POLS 

method, the second fixed effects, the third random effects, and the fourth Sys-GMM.  

As shown in models (ii)-(iv) of Table 6, we notice that the coefficients for lnppeb and lnppeb2 from the four methods is 

significantly positive and negative, respectively, at the 10% confidence level in each region, which demonstrates that there 

is an inverted U-shaped relationship between PPEB and HPG for these regions. These findings suggest that PPEB plays an 

important role in PM2.5 pollution governance across regions to the extent that PPEB gradually rises spontaneously with the 

development of a country and PPEB could promote the reduction in PM2.5 pollution, although PPEB initially leads to an 

increase in PM2.5. More specifically, 
𝜕𝑙𝑛𝑝𝑚25

𝜕𝑙𝑛𝑝𝑢𝑏
= 𝛼1𝑖 − 𝛼2𝑖𝑙𝑛𝑝𝑢𝑏, where 𝑖 =1, 2, 3, represents the eastern, central, and 

western regions, respectively. We calculate and get lnppeb 13.671 in the eastern region, 12.417 in the central region, and 

10.513 in the western region, while the scale of PPEB still doesn’t reach the turning point, according to Table 1. The 

average value of PPEB is less than that at the turning point. This result shows that the scale of PPEB is highest in the eastern 

region, second highest in the central, and lowest in the western. The reasons lie in the fact that there is a higher level of 

economic development and environmental culture in the eastern region than the central or western regions . People who 

have more knowledge about PM2.5 pollutants’ harmful effects on public health in the eastern region can be proactive with 

respect to environmental protection compared with those in the central and western regions. The value of lnpm25t-1 (0.594) 

in the eastern region, lnpm25t-1 (0.326) central region, and lnpm25t-1 (0.493) in the western region implies that PM2.5 



pollution governance is corrected by 59.4%, 32.6%, and 49.3%, respectively, each year. As noted previously, there is also an 

inverted U-shaped relationship between HPG and urbanization, except in the eastern region. This, of course, relies on the 

fact that China's urbanization level tends to be ladder-like in each region: higher in the east, lower in the west, and 

intermediate in the central region, and the level of urbanization in eastern China has passed the inflection point out-of-the 

sample; those of the central and western regions have not passed this inflection point. Also, we notice that the coefficient of 

lninsec is positively related to HPG. Specifically, at the 10% significance level, a 1% increase in fossil energy is related to a 

0.119%, 0.427%, and 0.651% increase in haze pollution in the eastern, central, and western region, respectively. The 

coefficient for the western region is more than three times that of the central region and five times that of the eastern region. 

This indicates that the proportion of fossil energy is much higher in the western region than the eastern and central regions. 

GDP per capita is positive and significantly related to haze pollution at the 5% and 10% level, except in the eastern and 

central regions. Finally, the coefficient for population density shows that population density has a significantly positive 

effect on haze pollution at the 10% level across three regions. A 1% increase in population density raises haze pollution by 

0.104%, 0.383%, and 0.052% for the eastern, central, and western region, respectively.  

 

  Table 6 

  Results for the PPEB-HPG model. 

The whole of China (i) Eastern China (ii) 

 

Pooled  

OLS 

Fixed  

effect 

Random  

effect 

Sys-GMM Pooled OLS Fixed effect Random effect Sys-GMM 

 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 

lnpm25     lnpm25    

lnpm25t-1    0.474    0.594 

    (0.000)    (0.000) 

lnppeb 0.379*** 0.325*** 0.216*** 0.211*** 0.345* 0.168* 0.047* 0.246** 



 (0.000) (0.000) (0.000) (0.000) (0.100) (0.100) (0.111) (0.015) 

lnppeb2 -0.238*** -0.348*** -0.245*** -0.012*** -0.019* -0.015* -0.020* -0.009** 

 (0.000) (0.000) (0.000) (0.000) (0.100) (0.100) (0.100) (0.09) 

lninsec 0.381*** 0.124*** 0.148*** 0.188*** 0.287* 0.092* 0.063* 0.119* 

 (0.000) (0.000) (0.000) (0.000) (0.100) (0.100) (0.100) (0.100) 

lnurbanp 8.652*** 6.473*** 5.673*** 4.704*** 0.475 0.710* (1.160) 0.061 

 (0.000) (0.000) (0.000) (0.000) (0.231) (0.100) (0.200) (0.112) 

lnurbanp2 -1.234** 0.904** -0.878** -0.673*** -0.174 -0.127 -0.102 -0.066 

 (0.050) (0.050) (0.050) (0.000) (0.251) (0.213) (0.110) (0.210) 

lnrgdp 0.697*** 0.324*** 0.491*** 0.348*** 0.685 0.261 0.275 0.681 

 (0.000) (0.000) (0.000) (0.000) (0.120) (0.114) (0.050) (0.470) 

lnpopd 0.189*** 0.283*** 0.268*** 0.102*** 0.115* 0.090* 0.053* 0.104* 

 (0.000) (0.000) (0.000) (0.000) 0.100 (0.100) (0.100) (0.100) 

_cons -20.848 -15.78 -16.72 -11.104 -4.102 -1.710 -2.502 -1.810 

 (0.00) (0.00) (0.10) (0.00) (0.100) (0.100) (0.100) (0.120) 

Hansen    30.231    3.790 

(p-value)    0.556    (0.891) 

AR(1) test    -2.681    -2.000 

(p-value)    0.007    (0.045) 

AR(2) test    0.340    1.240 

(p-value)    0.731    (0.216) 

Central China (iii) Western China (iv) 

 Pooled OLS Fixed effect Random effect Sys-GMM Pooled OLS Fixed effect Random effect Sys-GMM 

 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 



lmpm25         

lnpm25t-1    0.326    0.493 

    (0.000)    (0.000) 

lnpub 0.187* 0.179** 0.207* 0.273* 0.184* 0.042* 0.034* 0.294* 

 (0.100) (0.090) (0.100) (0.100) (0.100 (0.100) (0.100) (0.100) 

lnpub2 -0.172* -0.312* -0.291* -0.011* -0.087* -0.023* -0.034* -0.014* 

 (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) 

lninsec 0.130 0.415** 0.375* 0.427** 1.504** 0.641*** 0.731*** 0.651*** 

 (0.210) (0.051) (0.100) (0.041) (0.011) (0.002) (0.002) (0.061) 

lnurbanp 7.172* 10.760** 7.379* 7.288*** 13.264*** 4.128** 3.251*** 7.191*** 

 (0.100) (0.073) (0.100) (0.009) (0.002) (0.075) (0.002) (0.000) 

lnurbanp2 -0.131* -1.503** -1.043** -1.029*** -1.818*** -0.538* -0.478* -0.976*** 

 (0.100) (0.072) (0.087) (0.007) (0.007) (0.100) (0.100) (0.000) 

lnrgdp 0.786*** -0.065 0.7986 0.590 0.697** 0.315* 0.327* 0.348** 

 (0.000) (0.134) (0.134) (0.465) (0.041) (0.100) (0.100) (0.043) 

lnpopd 0.665*** 0.217* 0.665*** 0.383*** 0.126 -0.891** 0.034* 0.052* 

 (0.000) (0.100) (0.000) (0.000) (0.100) (0.033) (0.100) (0.100) 

_cons  -16.061 -18.542 -15.583 -30.195*** -15.213* -15.389* -15.221*** 

  (0.100) (0.017) (0.000) (0.003) (0.100) (0.100) 0.000 

Hansen    -1.891    6.531 

(p-value)    (0.059)    (0.988) 

AR(1) test    -1.890    -2.171 

(p-value)    (0.059)    (0.030) 

AR(2) test    -1.010    -1.49 



(p-value)    (0.213)    (0.135) 

Notes: Variable notations are from Table 6; each variable is in logarithmic form; P-value in parentheses; ***, **, and * indicate rejection of the null hypothesis at 1%, 5% and 10% levels, respectively. 

POLS: A method of Pooled-OLS; Panel-RE, and Panel-FE: random and fixed effects methods; SYS-GMM: the method of system GMM . Hansen J-test refers to the overidentification test 

for the restrictions on GMM estimation; the AR (2) test is the Arellano-Bond test for the existence of second-order autocorrelation in first differences. 

4.5. Estimations with the PPEB-PHL model for the full sample 

Table 7 presents results from the PPEB-PHL model, in which we use the death ratio proxy for the level of public health 

as the dependent variable. In Columns 1-3, pooled, fixed effects, and random analysis is employed, respecitively, to estimate 

the PPEB-PHL model in the full sample. As reported, the coefficient on 𝑙𝑛𝑝𝑝𝑒𝑏2 is negative and significant and 𝑙𝑛𝑝𝑝𝑒𝑏 

is positive and also significant, indicating that there is an inverted U-shaped relationship between PHL and PPEB in the full 

simple. The GMM method is then used to estimate this model to address endogeneity problems. The fourth column of the 

sys-GMM model shows that the value of 𝑙𝑛𝑑𝑒𝑎𝑡ℎ𝑡−1(0.633) implies that the PHL is corrected by 63.3% each year. We also 

see that the first and second powers of the PPEB are positive and negative significant, respectively, in which evidence is 

provided that there exists an inverted U-shaped relationship between PPEB and PHL. We also notice that there is a 

significantly positive relationship between lndeath and PM2.5 emissions, and PM2.5 emissions contribute to the increase in 

the death ratio, which is similar to the findings of Gao et al. (2017) and Agarwal et al. (2020); that is, PHL is reduced by 

PM2.5 emissions. The coefficient of lnrgdp is negative and significant at the 10% level. This implies that a 1% increase in 

GDP per capita decreases lndeath by 0.056%, which is consistent with the findings of Dong, Zhang, et al. (2019). At the 

same time, Table 7 also indicates that lndocp has a negative and significant impact on lndeath at the 10% level. Medical 

services, in other words, could improve PHL significantly, which further supports the views of Qu and Yan (2015) and Peres 

et al. (2019). 

4.6. Estimations with the PPEB-PHL model for the three regions 

In order to further research the regional differences in PPEB, HPG, and PHL, we also examined the eastern (vi), central 

(vii) and western (viii) regions of China. Results are shown in Table 7. Pooled, fixed effects, and random analysis is 



employed to estimate the effect of PPEB on PHL for the three regions, respectively. As shown in Table 7, all of the first 

power and quadratic coefficients of lnppeb,are significantly positive and negative, respectively, in the three regions. 

Furthermore, the GMM method also shows that the first power and quadratic term on lnppeb are positive and negative, 

respectively, which implies that an inverted U-shaped relationship exists between lndeath and lnppeb. It follows that in the 

short run, PPEB might have a negative impact on public health—but it could contribute to public health in the long run with 

an increasing degree of PPEB. We also observe that there is a positive relationship between lnpm25 and lndeath, except for 

the fixed effects and random effects methods in eastern China, and the fixed effects method in western China. We also find 

that PHL is more influenced by haze pollution in the central region than in the other two regions. The coefficient of lnpm25 

against lndeath is 0.071 at the 5% significance level in the central region, 0.028 at the 1% significance level in the eastern 

region, 0.018 at the 10% significance level for the whole of China, and 0.007 at the X% significance level in western China, 

which confirms our important conclusion that haze pollution could seriously damage PHL. Accordingly, the death rate rises 

by 0.018%, 0.028%, 0.071%, and 0.007%, respectively, in the whole of China and the eastern, central, and western region 

when haze pollution increases by 1%. The results also show that lnrgdp has a significantly negative effect on lndeath except 

for the pooled method in the central region, where the significance level of lnrgdp is 0.23. Specifically, at the 1% 

significance level, a 1% increase in income per capita is associated with a 0.056% decrease in the death rate in the whole of 

China and at the 10%, 10%, and 5% significance level in the eastern, central, and western regions, respectively. Also, a 1% 

increase in income per capita is associated with a 0.072%, 0.069% and 0.114% decrease in the death rate in the different 

regions. In addition, it follows that lndocp has a negative effect on lndeath at the 1% significance level, except in the 

western region, and the coefficient for the effect of lndocp on lndeath rate is ranked in the central region as 0.090, in the 

western region as 0.060, in the eastern region as 0.054 and in the XXXX as 0.053 using the Sys-GMM method. In addition, 

the lagged lndeath is positively and strongly significant at the 1% level with a coefficient of 0.633, 0.765, 0.517, and 0.521 

for the whole of China and the eastern, central, and western regions, respectively. 

 

Table 7 

Results for the PPEB-PHL model. 



The whole of China (v) Eastern China (vi) 

 

Pooled OLS Fixed effect Random effect Sys-GMM Pooled OLS Fixed effect Random effect Sys-GMM 

 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 

 

lndeath 

   

lndeath 

   

lndeatht-1 

   

0.633*** 

   

0.765*** 

    

(0.000) 

   

(0.000) 

lnpub 0.081*** 0.043*** 0.045*** 0.041*** 0.095** 0.066** 0.052* 0.026* 

 

(0.000) (0.000) (0.000) (0.000) (0.030) (0.040) (0.100) (0.100) 

lnpub2 -0.005*** -0.0024*** -0.0026*** -0.0028** -0.006** -0.003** -0.003* -0.002* 

 

(0.000) (0.000) (0.000) (0.050) (0.020) (0.080) (0.100) (0.10) 

lnpm25 0.037*** 0.024*** 0.028*** 0.018* 0.113*** -0.048 -0.013 0.028*** 

 

(0.000) (0.000) (0.000) (0.100) (0.000) (0.200) (0.687) (0.00) 

lnrgdp -0.073*** -0.049** -0.048** -0.056*** -0.027 -0.220*** -0.127*** -0.072* 

 

(0.000) (0.090) (0.080) (0.000) (0.200) (0.000) (0.000) (0.10) 

lndocp -0.055*** -0.042** -0.012** -0.053* -0.178*** -0.162*** -0.145*** -0.054* 

 

(0.000) (0.090) (0.090) (0.100) (0.000) (0.000) (0.000) (0.10) 

cons 2.101 1.709 1.823 0.691 1.794*** 0.232* 0.913** 0.453** 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.100) (0.030) (0.02) 

Hansen 

   

-2.891 

   

4.271 

(p-value) 

   

(0.021) 

   

(0.473) 

AR(1) test 

   

-2.41 

   

-2.21 

(p-value) 

   

(0.021) 

   

(0.09) 

AR(2) test 

   

1.191 

   

1.030 

(p-value) 

   

(0.234) 

   

(0.303) 



Central China (vii) Western China (viii) 

 

Pooled OLS Fixed effect Random effect Sys-GMM Pooled OLS Fixed effect Random effect Sys-GMM 

lndeath Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 

         

lndeatht-1 

   

0.517*** 

   

0.521*** 

    

(0.000) 

   

(0.000) 

lnppeb 0.045* 0.043* 0.044* 0.044* 0.101*** 0.074*** 0.073*** 0.048*** 

 

(0.100) (0.100) (0.100) (0.100) (0.000) (0.000) (0.000) (0.000) 

lnppeb2 -0.004* -0.003* -0.003* -0.009* -0.007*** -0.005*** -0.005*** -0.003*** 

 

(0.100) (0.100) (0.100) (0.100) (0.000) (0.000) (0.000) (0.000) 

lnpm25 0.117*** 0.081*** 0.100*** 0.071** 0.013 -0.065 -0.004** 0.007* 

 

(0.000) (0.000) (0.000) (0.030) (0.100) (0.143) (0.080) (0.100) 

lnrgdp -0.045 -0.065** -0.069** -0.069** -0.240*** -0.067** -0.084*** -0.114** 

 

(0.230) (0.080) (0.080) (0.080) (0.000) (0.080) (0.000) (0.030) 

lndocp 0.112* 0.114*** 0.114*** 0.090* 0.019 0.049 0.055 0.060 

 

(0.100) (0.000) (0.000) (0.100) (0.540) (0.070) (0.000) (0.180) 

cons 1.245 1.500 1.500 1.271 3.244 2.176 2.201 1.407 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.010) 

Hansen 

   

0.130 

   

3.190 

(p-value) 

   

(1.000) 

   

(0.980) 

AR(1) test 

   

-2.300 

   

-1.870 

(p-value) 

   

(0.021) 

   

(0.060) 

AR(2) test 

   

1.460 

   

0.660 

(p-value) 

   

(0.143) 

   

(0.510) 



Notes: Variable notations are from Table 6; each variable is in logarithmic form; P-values in parentheses; ***, **, and * indicate rejection of the null hypothesis at 1%, 5% and 10% levels, respectively. 

POLS: A method of Pooled-OLS; Panel-RE and Panel-FE: random and fixed effect methods; SYS-GMM: the method of System GMM. Hansen J-test refers to the overidentification test for the 

restrictions in GMM estimation; the AR (2) test is the Arellano-Bond test for the existence of second-order autocorrelation in first differences. 

 

4.7. Robustness checks 

This section performs robustness checks by replacing PM2.5 with sulfur dioxide emissions at the province level and 

PHL with death rates from cardiovascular and cerebrovascular diseases. Sulfur dioxide is also seen as the main air pollutant 

and could trigger cardio-cerebrovascular and respiratory disease. The results of robustness test indicate that the coefficients 

of the level terms lnpub and lnurbanp are all positive, while those of quadratic terms are all negative for the PPEB-HPG 

model, and signs of the other variables are the same as in Table 6 in the full sample and the eastern, central, and western 

regions. Furthermore, robustness checks also show that the coefficient of the level term lnpub is positive, while that of the 

quadratic term is negative for the PPEB-PHL model, and signs of the other variables are similar to those in Table 7 in the 

four samples. It is obvious that our empirical results are robust. 

 

5. Discussion 

According to the results of Sys-GMM estimation reported in Tables 5 and 6, we can draw the following conclusions. 

First, for PM2.5 in the whole of China, the coefficient of lnppeb is estimated to be significantly positive at the 5% level, 

while the coefficient of its quadratic term is significantly negative at the 1% level. These results indicate that there is an 

inverted U-shaped relationship between PPEB and haze emissions, which is expected given the subject of this paper. We 

can calculate that lnppub is 8.791 from the equation1 for the whole of China, while the median of lnppub is 8.542. Since 

8.791 is more than 8.542, this means that the majority of people are concerned about air quality, and it is important that they 

continue to be so; PPEB becomes gradually more popular when people take an active part in environmental management 

(Wang et al., 2016). In addition, China’s government has taken many steps to deal with serious haze pollution by replacing 

 
1 𝑙𝑛𝑝𝑚25/𝜕𝑙𝑛𝑝𝑢𝑏 = 𝛼1𝑖 − 2𝛼2𝑖𝑙𝑛𝑝𝑝𝑢𝑏 



fossil energy, such as coal and oil, with cleaner energy, and cities that depend on a resource economy are being transformed; 

this also contributes to the reduction of haze pollution (Sun et al., 2019; Wang & Ye, 2017; Zhang & Sun, 2016). The 

inflection of PPEB has not yet emerged in China; however, it will reach that point soon, if the public and government 

cooperate to protect the environment. With improvements in the regulation of PPEB and the emphasis on self-health, PPEB 

will ultimately have radically positive effects on haze pollution.  

For the eastern, central, and western regions, an inverted U-shaped relationship is confirmed between PPEB and haze 

pollution, and the coefficient of PPEB in the eastern region is more significant than in the other two regions. From the 

equation2, we can calculate that lnppeb is 13.671 more than the median of 9.112 in the eastern region, 12.417 more than the 

median of 8.656 in the central region, and 10.513 more than the median of 7.938 in the western region, which implies that 

the inflection point of PPEB has still not been reached. This probably explains why there is a higher living standard, higher 

environmental awareness, and greater concern about self-health in the eastern region than in the other two regions. Also, 

there is more rapid development in eastern tertiary industries than in the other two regions, so the extent to which the public 

attaches importance to the management of environmental protection will easily have an impact on the reduction of 

environmental pollution. In particular, haze pollution will decrease when the PPEB rises increasingly and reaches a 

threshold value, although haze pollution might initially increase until the scale of PPEB gets larger. 

Incidentally, there an inverted U-shaped relationship exists between urbanization and haze pollution; the coefficient of 

lnurbanp is significantly positive, while that of its quadratic term is significantly negative at the 1% significance level for 

the full sample, which is consistent with some recent studies (Wang et al., 2018). According to the estimation results shown 

in Table 6, the levels of urbanization that correspond to the turning points of the curve for haze pollution could be calculated 

for the whole country; namely, according to the equation3, 𝑙𝑛𝑢𝑟𝑏𝑎𝑛𝑝 = 3.495, which is less than the median of 3.844 in 

Table 1. It also follows that the reciprocal U kink of urbanization with respect to haze pollution has just arrived in China. 

Although a growing population’s vehicles and fossil energy consumption would generate a lot of soot dust, smoke, PM2.5, 

and so on, given the decades of an increasing pace of urbanization and industrialization, China’s governments have 

 
2 𝜕𝑙𝑛𝑝𝑚25/𝜕𝑙𝑛𝑝𝑢𝑏 = 𝛼1𝑖 − 2𝛼2𝑖𝑙𝑛𝑝𝑝𝑢𝑏 
3 

𝜕𝑙𝑛𝑝𝑚25𝑖𝑡

𝜕𝑙𝑛𝑢𝑟𝑏𝑎𝑛𝑝𝑖𝑡
= 𝛼6 + 𝛼7𝑙𝑛𝑢𝑟𝑏𝑎𝑛𝑝𝑖𝑡 



implemented a wide range of strong measures that are mainly used to restrict the emission of pollutants—for example, 

transititioning from resource economics to the new energy economics, improving cycling equipment, strengthening and 

innovative power. Similarly, there is also a confirmed inverted U-shaped relationship between haze pollution and 

urbanization at the 10% and 1% levels of significance for central and western China, respectively, but not for eastern China. 

This is probably one reason China’s eastern region is the most developed in its economy, and residents’ incomes are much 

higher than in other regions. This allows their cities to develop quicker, and there is a more highly developed culture in the 

eastern region. As a result, the extent to which their cities develop rapidly has surpassed the inflection point. This result 

strongly supports the viewpoints of Wang et al. (2018) and Behera and Dash (2017). In addition, more PPEB can accelerate 

the pace of eastern regional urbanization, because people have been immigrating from the central and western regions to the 

eastern region, which means that the eastern region will consume more energy and lead to more environmental pollutants. 

Meanwhile, people can spend more on natural gas, electrical power, and other renewable energy sources for household 

energy use in daily life than when they lived in rural areas, which substantially reduces the proportion of fossil energy of 

total energy consumption(Mrabet et al., 2019; Salim et al., 2019; Yang et al., 2016). For the central and western regions, 

although they continue to progress in that many companies have been transforming from energy-intensive industries to 

service ones with the encouragement of local governments, the public’s environmental awareness is not as high as in the 

eastern region. Enterprises located in the western region don’t have the more advanced technical skills for fossil energy, 

whereby a lot of fossil energy hasn’t been used more efficiently; this results in pollutant emissions to a certain degree(C. 

Zhang et al., 2019; Zhu et al., 2019). Undoubtedly, more and more people place an emphasis on their environment as it 

related to a higher standard of living, and PPEB has become an essential aspect of environmental management. Thus, to a 

certain degree, PPEB will lead to the reduction of haze pollution. 

The effect of fossil energy consumption on haze pollution is significantly positive in the full sample and the eastern, 

central, and western regions, and this paper’s results are as expected—similar to the outcomes of Hou et al., 2019; Jiang et 

al., 2020; and Qu and Yan, 2015. The uneven structure of energy consumption could significantly differentiate haze 

pollution in each region of China. In addition, there are several possible reasons for the distinctive difference between GDP 



per capita and haze pollution in each region. First, local economic growth has mainly been increased by industries that use 

large amounts of fossil energy, because there are fewer tertiary industries in the western region (Jiang et al., 2020; Li et al., 

2019). Second, there are more service industries and more highly technical industries in the eastern and central regions, 

which do not contribute to environmental pollution such as haze(Liu et al., 2019). Third, haze pollution could have spillover 

effects adjacent to the region, and there is no significance level in the eastern and central regions that can’t offset by the 

significance level in the western region. These reasons for the positive effects of popd on haze pollution can summed up as 

follows. (1) The population scale will lead to the amount of energy consumption and further contribute to more haze 

pollution with the faster urbanization and industrialization of China (Chen & Chen, 2019). (2) The rapid population growth 

causes a series of social problems, such as building shortages and insufficient land, which means less vegetation; thus, less 

haze pollution is absorbed (Weber & Sciubba, 2019).  

For the PPEB-PHL model, the U-shaped relationship between PPEB and PHL in the full sample and each region; these 

are important and pioneering findings; previous studies have not examined the effects of PPEB on PHL using econometric 

methods. Prior studies have only described their relationships; for example, G. Zhang et al. (2019) and Qu and Yan (2017). 

Moreover, the higher significance level for the coefficient of PPEB to PHL is present in the whole country and the western 

region compared with the eastern and central regions. This might be due to two reasons. First, PPEB, by itself, to some 

extent could help people become aware of the environmental issues involved in public health improvement. People in China 

are becoming more concerned about environmental pollution, and especially haze pollution as a trigger for 

cardio-cerebrovascular diseases. The influence of PPEB on environmental issues may not emerge for some length of time 

because this is a longer process; also, the strength of the PPEB will not hinder environmental pollutants at first or reduce the 

death rate. This shows the positive relationship between the death rate and PPEB—in other words, there exists a negative 

relationship between HPG and PPEB. However, PPEB will broadly contribute to environmental improvement, and thus also 

enhance PHL with the horizon of PPEB largely; in the end, PPEB will have a substantial positive impact on PHL. Second, 

for the western region, environmental pollution is more serious than in the eastern and central regions, and the economic 

level is also lower than in those two regions. Undoubtedly, the effect of PPEB on pollution in the western region is more 



sensitive than in the eastern and central regions. Additionally, there is a large difference in educational level and the degree 

of environmental culture and awareness among three regions, and attention to PPEB is still not enough overall. 

Consequently, this demonstrates that the relationship between PPEB and HPG is significantly negative for the whole 

country at the beginning stage. With more attention to public health and environmental issues, PPEB will contribute to 

public health improvement when it reaches a certain degree. 

For PM2.5, the coefficient is significantly positive in the full sample and each subsample. This result is expected, given 

the paper’s objective, which is similar to several previous studies (Gao et al., 2017; Qu & Yan, 2015). PM2.5 can damage the 

human respiratory and cardiovascular systems, because it can enter the lungs and blood via the respiratory tract, and can 

cause death (Li et al., 2016; Yuan et al., 2018). This is especially true in the central region, which is famous for producing 

energy from coal. The impact of income on the death rate is significantly negative in each region, and the increase in life 

expectancy could contribute to PHL to a degree, which is confirmed by previous studies (Greco et al., 2016; Qu & Yan, 

2015). Also, living conditions in the western region are more arduous than in the other regions, and more educated people 

are not volunteering to settle there. To a degree, this phenomenon gives rise to the poor level of productivity and more haze 

pollution; this is one reason the scale of physicians has a statistically insignificant effect on PHL. 

6. Conclusions and policy implications 

Since the early 1980s, China has witnessed substantial progress in urbanization and industrialization and consumed 

more fossil energy with the fast development of the economy. However, it  has also suffered from severe environmental 

deterioration, and especially haze pollution, which is a trigger for respiratory, cardiovascular, neurological, etc., disease. 

There is an extensive literature that finds that PPEB has an inhibiting effect on haze pollution caused by fossil energy 

consumption and thus improves public health; however, previous quantitative studies that examine the influencing factors of 

haze pollution and public health do not incorporate PPEB. 

We argue that PPEB is indeed an essential factor in haze governance and PHL, and are the first to empirically examine 

the nonlinear relationship between PPEB and haze pollution and PPEB and PHL with other relevant variables using a panel 

dataset that consists of 31 provinces in mainland China from 2000 to 2017. We employ a panel unit root test, cointegration 



test, pool OLS, fixed effects, random effects, and Sys-GMM, which have the advantage of overcoming endogenous 

problems caused by the correlation between explanatory variables and error terms. We further split the full sample into 

eastern, central, and western regions in order to reexamine and confirm results for the whole country. Our main conclusions 

are as follows. 

With respect to the PPEB-HPG model, (1) there exists an inverted U-shaped relationship between PPEB and HPG, 

which shows that PPEB, to a large extent, could contribute to the governance of haze pollution in China and each region. 

The different significance levels of the PPEB coefficient relevant to HPG are also evident in the full sample and subsamples. 

For example, the most significant impact of PPEB on the whole country and the eastern region was evidenced by the greater 

levels of PPEB than in the central and western regions. (2) The extent of PPEB has not increased, and it still has not reached 

an inflection point, which demonstrates the different features of the whole country and each region. (3) We also find an 

inverted U-shaped relationships between urbanization and HPG, except in the eastern region. (4) Fossil energy has a 

positive effect on HPG except in the eastern region, but appears to have different significance levels because of the 

unbalanced structure of energy in China. (5) There is evidence that people’s income per capita and HPG have a positive 

relationship, except in the eastern and central regions, which implies that environmental pollution will not absolutely 

deteriorate with economic development. (6) Population density could cause haze pollution to increase in the whole country 

and each region. 

With respect to the PPEB-PHL model: (1) the results show that PPEB also has an inverted U-shaped relationship with 

the death rate; namely, the U-shaped relationship with the PHL, but with different significance levels of PPEB with respect 

to the death rate in the whole country and each region. (2) Haze pollution is a greater threat to public health improvement in 

the whole of China and the central region. (3) The increase in income per capita will promote the improvement of public 

health and reduce death rates. (4) To some extent, medical services could improve public health and inhibit death rates. 

Drawing on the above findings, we can make some policy recommendations for the whole country and each region that 

implement HPG and improve PHL. First, as the primary obstacle to inhibiting resource economic transformation, the lack of 

public awareness about environmental protection causes serious air pollution except for fossil energy. Thus, passive and 



forced PPEB is not advisable in the urbanization process, even with restricted governmental regulation. Instead, the 

implementation of PPEB is given priority to local areas and communities, and this is a good example for the whole society 

of advertising for environmental protection.  

Specifically, for the eastern region where people have a relatively higher income, the emphasis on environmental 

culture is part of daily life—for example, saving energy, using green products, separating garbage, and so on. It is necessary 

that the public advertise the importance of PPEB, and make people aware of the nonnegligible effects of PPEB on HPG and 

PHL. People should be told how haze pollution affects public health and how it triggers illness. Policymakers should clearly 

understand the essential role of PPEB in environmental management in order to enact efficient environmental laws, and 

motivate efficient PPEB. At the same time, the government should improve the mechanism of information disclosure so that 

the public is informed on a timely basis environmental quality. It is difficult for the public to understand information about 

corporate environmental behavior if an institutional system of information disclosure is not established, if this is 

accomplished, however, PPEB would have a real effect on environmental governance. In addition, with reference to 

European countries’ experience with PPEB, it is necessary to make the public proactive participants before, during, and 

after the event, and for policymakers to make better use of PPEB to improve haze pollution and PHL from the legal 

regulation. 

For the central and western regions, on the one hand, governments should make great effort to emphasize the positive 

effects of PPEB on environmental improvement and foster public awareness of environmental protection. On the other hand, 

governments should encourage the public to establish environmental groups—and even environmental children's 

organizations to highlight PPEB concepts. More importantly, governments should attach importance to publicizing the 

threat of haze pollution to PHL, which acts as a trigger for cardiovascular and cerebrovascular diseases, and especially for 

the elderly and children. As shown by our results, medical services have a positive effect on PHL; therefore, it is urgent that 

medical workers take an active part in the governance of haze pollution to enlargie the scale of PPEB and serve as good 

examples for the general public. Policymakers should consider incorporating medical workers into groups within PPEB. 

Also, attention to PPEB should be fostered during urbanization in people’s daily lives to encourage the public to drive 



green—for example, the electric taxis in Shanxi province should be popularized throughout the whole country. 

Governments should make PPEB indispensable in supervising enterprises’ emissions. On the one hand, policymakers 

encourage enterprises themselves to decrease pollution via energy technological innovation to improve air quality. On the 

other hand, governments should give priority to the general public in environmental supervision, and make the role of PPEB 

more efficient. Hence, adding investment in PPEB and renewable energy is expected to contribute significantly to abating 

haze pollution instead of aggravating it and reducing PHL Only then will a combination of PPEB and the transformation of 

energy reach its potential; haze pollution could be completely reduced, and in turn improve PHL. Short-term policies, such 

as subsidizing the cost of PPEB, and long-term policies, such as guiding and encouraging the public to join in 

environmental regulation, should be made as complete as possible. It is imperative that differentiated policies of PPEB be 

implemented in different regions due to the variety of environmental knowledge, culture, and awareness.  

For remote villages, the government should publicize the role of PPEB in environmental governance by TV 

advertisements and posters and encourage the public to learn about the hazards of haze pollution to PHL, such as respiratory 

and cerebrovascular diseases. In order to improve rural eco-environmental quality and quicken the step of rural urbanization, 

it is important to strengthen rural residents’ environmental awareness and deeply root PPEB in the village. In accelerating 

the transformation of fossil energy for cooking and heating, it might be wise to develop methane energy, which not only 

makes efficient use of animal dung but also reduces air pollution. Hence, the government should encourage residents to 

invest more in methane energy. 

Although this research obtains important results that previously unknown and provides beneficial findings and 

implications for governments, it is necessary to highlight the study’s limitations. First, due to data availability, the measure 

of PPEB only includes people’s environmental letters; other environmental behavior is not incorporated, which could be 

improved in future work. Second, many other factors come into play for the effects of HPG, such as international 

cooperation; this aspect should be considered in future researches. Last, as significant differences exist across countries, 

such as the degree of participation in and cultural education about PPEB, our findings may not apply to other countries. 

More quantitative analysis is encouraged to reexamine the role of PPEB in the field of public participation in environmental 



protection and in other countries. 
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