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1 Introduction

Since the discovery of neutrino oscillations [1–4], it has been well understood that neu-
trinos have tiny masses and that their flavour eigenstates are different from, but merely
superpositions of their mass eigenstates. The mismatch between the flavour and mass basis
is described by lepton flavour mixing. The most important lepton flavour question mixing
remaining is whether CP is violated. A large CP violation is supported by the combined
analysis of current accelerator neutrino oscillation data [5] in the appearance channel of
neutrino oscillations [6, 7]. The next-generation large-scale neutrino experiments DUNE
and T2HK are projected to observe CP violation in the near future [8–10].

On the theoretical side, the origin of finite but tiny neutrino masses is still unknown.
The canonical seesaw mechanism [11–16] and its numerous variations are proposed to solve
this problem. The basic idea is that the small masses of left-handed neutrinos are attributed
to the existence of much heavier right-handed Majorana neutrinos. In this elegant picture
the flavour states are dominantly superpositions of massless left-handed neutrinos but also,
to a smaller degree, their heavy right-handed counterparts. The minimal seesaw model [17]
is a simplified version of the canonical seesaw mechanism with only two right-handed
neutrinos, which has been studied in depth [18]. The seesaw mechanism induces new sources
of CP violation in the heavy neutrino sector, providing the so-called leptogenesis, as one
of the most popular mechanisms to explain the observed matter-antimatter asymmetry in
our Universe [19].

Neutrinos are usually considered as electrically neutral particles which do not par-
ticipate in tree-level electromagnetic interactions. However, they may have electric and
magnetic dipole moments appearing at loop level. The study of the neutrino dipole mo-
ment dates back four decades [20–23]. In the Standard Model (SM), weak charged current
interactions contribute in the loops and induce non-zero dipole moment for neutrinos [24–
31], see also in [32–34]. A transition dipole moment between two different neutrino mass
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eigenstates can trigger a heavier neutrino radiatively decaying to a lighter neutrino through
the release of a photon. In fact, if neutrinos are Majorana particles, the property that Ma-
jorana fermions are their own antiparticles implies that neutrinos have only a transitional
component to their dipole moment [35].

In various studies of the neutrino dipole moment in the literature, CP symmetry is
always considered as an explicit symmetry for the relevant mass regions of neutrinos. How-
ever, a CP violating dipole moment has many interesting phenomenological applications.
It may contribute to leptogenesis to explain the observed baryon-antibaryon asymmetry in
our Universe [36]. It also provides a source of a circular polarisation of photons in the sky
for a suitable range of neutrino masses, [37]. In ref. [38], the general conditions required to
generate CP violation in the dipole moment was elucidated as well as the CP asymmetry
based on a widely studied Yukawa interaction. The latter was applied to both left- and
right-handed neutrino radiative decay scenarios as well as searches for dark matter via
direct detection and collider signatures.

This work will focus on discussing CP violation in the neutrino dipole moment with
right-handed neutrinos. We will provide the one-loop calculation of the CP asymme-
try of the neutrino transition dipole moment in full detail in the framework of the SM
with the addition of SU(2)L-singlet right-handed neutrinos. In section 2, we review the
model-independent neutrino dipole moment written in terms of form factors producing CP
violation. Section 3 contributes to a comprehensive analytical one-loop calculation of form
factors. Finally, a numerical scan of the CP asymmetry with inputs of current neutrino
oscillation data is performed in section 4. We summarise our results in section 5.

2 Neutrino electromagnetic dipole moment with CP violation

In this section we give a brief review of the framework for CP violation in neutrino radiative
decays. We refer to our former paper ref. [38] for the detailed derivation. Discussions in
section 2.1 assumes neutrinos are Dirac particles. The extension to Majorana neutrinos
will be given in section 2.2.

2.1 Form factors for Dirac neutrino

Assuming the decaying fermion is a Dirac particle, amplitudes for the processes νi → νfγ+
and νi → νfγ−, with respect to the photon polarisation + and − are given by

iM(νi → νfγ±) = iū(pf )Γµfi(q2)u(pi)ε∗±,µ(q) , (2.1)

where u(pi) and u(pf ) are spinors for the initial νi and final νf state neutrinos respec-
tively, and the photon momentum q = pi − pf . The vertex function Γµfi(q2) can in general
be decomposed into four terms, electric charge, magnetic dipole moment, electric dipole
moment and the anapole form factors [28–30, 39]. Without introducing a source for the
electric charge, the neutrino will remain electrically neutral forever. By requiring the pho-
ton to be on-shell q2 = 0 and choosing the Lorenz gauge q · εp = 0, the anapole does not
contribute to Γµfi. Therefore, the vertex function is simplified to [28–30, 39]

Γµfi(q2 = 0) = −fM
fi (iσµνqν) + fE

fi (iσµνqνγ5) , (2.2)
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where fE
fi and fM

fi are the electric and magnetic transition dipole moments of νi → νfγ

respectively. It is helpful to rewrite it in the chiral form

Γµfi(0) = iσµνqν [fL
fiPL + fR

fi PR] , (2.3)

where fL,R
fi = −fM

fi ± ifE
fi and the chiral projection operators are defined as PL,R = 1

2(1∓
γ5) [38]. The amplitudesM(νi → νfγ±) are directly correlated with the coefficients as [38]

M(νi → νfγ+) =
√

2fL
fi (m2

i −m2
f ) , M(νi → νfγ−) = −

√
2fR

fi (m2
i −m2

f ) . (2.4)

With the above justification, decay widths for νi → νfγ±, after averaging over the spin for
the initial neutrino, can be written in a simple form

Γ(νi → νfγ+) = A|fL
fi |2 , Γ(νi → νfγ−) = A|fR

fi |2 , (2.5)

with A = (m2
i −m2

f )3/(16πm3
i ). The total radiative decay width Γ(νi → νfγ) is obtained

by summing the decay widths for νi → νfγ+ and νi → νfγ−.
For antineutrinos, amplitudes for ν̄i → ν̄fγ+ and ν̄i → ν̄fγ− are given by

iM(ν̄i → ν̄fγ±) = iv̄(pi)Γ̄µif (q
2)v(pf )ε∗±,µ(q) , (2.6)

respectively, where v(pi) and v(pf ) are antineutrino spinors. The vertex function Γ̄µif when
the photon is on-shell is consequently written in a similar form as shown in eq. (2.3),

Γ̄µif (0) = iσµνqν [f̄L
ifPL + f̄R

if PR] . (2.7)

Where CPT invariance ensures f̄L
if = −fL

if , and f̄R
if = −fR

if [40]. Hence, amplitudesM(ν̄i →
ν̄fγ+) are simplified to [38]

M(ν̄i → ν̄fγ+) =
√

2fL
if (m2

i −m2
f ) , M(ν̄i → ν̄fγ−) = −

√
2fR

if (m2
i −m2

f ) . (2.8)

The antineutrino decay widths are then given by Γ(ν̄i → ν̄fγ+) = A
∣∣∣fL

if

∣∣∣2 and Γ(ν̄i →

ν̄fγ−) = A
∣∣∣fR

if

∣∣∣2.
In [38], we have defined a set of CP asymmetries between neutrino radiative decay and

antineutrino radiative decay. In terms of ratios specifying photon polarisations, we may
write

∆CP,+ = Γ(νi → νfγ+)− Γ(ν̄i → ν̄fγ−)
Γ(νi → νfγ) + Γ(ν̄i → ν̄fγ) , ∆CP,− = Γ(νi → νfγ−)− Γ(ν̄i → ν̄fγ+)

Γ(νi → νfγ) + Γ(ν̄i → ν̄fγ) ,

(2.9)
which can further be simplified to

∆CP,+ = |fL
fi |2 − |fR

if |2

|fL
fi |2 + |fR

fi |2 + |fR
if |2 + |fL

if |2
, ∆CP,− = |fR

fi |2 − |fL
if |2

|fL
fi |2 + |fR

fi |2 + |fR
if |2 + |fL

if |2
. (2.10)

In the case of CP conservation, fL,R
if = [fR,L

fi ]∗, we arrive at vanishing CP asymmetries
∆CP,+ = ∆CP,− = 0.
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2.2 Form factors for Majorana neutrinos

We now extend the discussion to Majorana neutrinos. The Majorana field satisfies ν =
CνT , where C is the charge-conjugation matrix. Compared with the Dirac field which
contains independent left-handed and right-handed components νL ≡ PLν and νR ≡ PRν,
the Majorana field enforces the right-handed component to be the charge conjugation of
the left-handed component, i.e., PRν = CνL

T , leading to the quantisation in the form
ν ∼ au(p)e−ip·x + a†v(p)eip·x. Taking this into account and applying the parametrisation
in eqs. (2.1) and (2.6), the amplitude for νi → νfγ± is proven to be

iMM(νi → νfγ±) = iū(pf )Γµfi(q2)u(pi)ε∗±,µ(q)− iv̄(pi)Γµif (q
2)v(pf )ε∗±,µ(q) (2.11)

in the Majorana case [40]. It can be explained as the sum of amplitudes of the Dirac neu-
trino radiative decay and antineutrino radiative decay channels, i.e., iMM(νi → νfγ±) =
iM(νi → νfγ±)+ iM(ν̄i → ν̄fγ±). Taking the explicit formulas for the amplitudes given in
eq. (2.4) and eq. (2.8), we obtain results with definite spins in the initial and final states as

MM(νi → νfγ+) = +
√

2[fL
fi −fL

if ](m2
i −m2

f ) , MM(νi → νfγ−) = −
√

2[fR
fi −fR

if ](m2
i −m2

f ) .
(2.12)

The decay widths are given by ΓM(νi → νfγ+) = A|fL
fi − fL

if |2 and ΓM(νi → νfγ−) =
A|fR

fi − fR
if |2.

For Majorana fermions, the CP violation is identical to that obtained from P -violation
alone i.e. the CP asymmetry is essentially the same as the asymmetry between the two
polarised photons. Hence, we have

∆M
CP,+ = −∆M

CP,− = ΓM(νi → νfγ+)− ΓM(νi → νfγ−)
ΓM(νi → νf + γ) = |f

L
fi − fL

if |2 − |fR
fi − fR

if |2

|fL
fi − fL

if |2 + |fR
fi − fR

if |2
.

(2.13)
For simplicity, we make the assignment ∆CP ≡ ∆M

CP,+ for use in the following phenomeno-
logical discussions.

3 CP violating form factors induced by charged-current interactions

We present below, the one-loop calculation of neutrino radiative decay νi → νfγ for massive
neutrinos with the existence of CP violation. We work in the framework of the SM extended
with an arbitrary number of SU(2)L-singlet right-handed neutrinos in the Feynman gauge.
The crucial operator for the charged-current interaction is

Lc.c. =
∑
α,m

g√
2
Uαm ¯̀

αγ
µPLνmW

−
µ + h.c. , (3.1)

where g is the electroweak (EW) gauge coupling constant, α is an index that represents
charged lepton flavours α = e, µ, τ and m is an index that represents the neutrino mass
eigenstates. In particular, νm = ν1, ν2, ν3 represent three light neutrino mass eigenstates
and νm = N1, N2, . . . representing heavy neutrino mass eigenstates. The matrix Uαm
denotes the lepton flavour mixing accounting for heavy neutrino mass eigenstates.
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Figure 1. All Feynman diagrams contributing to the neutrino electromagnetic transition dipole
moment, where χ is the charged Goldstone boson.

The one-loop Feynman diagrams for the radiative decay via the SM charged current
interaction are shown in figure 1. The vertex functions of each proper vertex diagram in
figure 1 is given by

Γµ,(1)
fi,α = i

eg2

2 UαiU∗αf

∫ d4p

(2π)4
γνPL(/pf−/p+mα)γµ(/pi−/p+mα)γνPL

[(pf−p)2−m2
α][(pi−p)2−m2

α][p2−m2
W ]

,

Γµ,(2)
fi,α = i

eg2

2 UαiU∗αf

∫ d4p

(2π)4
(mfPL−mαPR)(/pf−/p+mα)γµ(/pi−/p+mα)(mαPL−miPR)

m2
W [(pf−p)2−m2

α][(pi−p)2−m2
α][p2−m2

W ]
,

Γµ,(3)
fi,α = i

eg2

2 UαiU∗αf

∫ d4p

(2π)4
γρPL(/p+mα)γνPLV

µνρ

[(pf−p)2−m2
W ][(pi−p)2−m2

W ][p2−m2
α]
,

Γµ,(4)
fi,α = i

eg2

2 UαiU∗αf

∫ d4p

(2π)4
(2p−pi−pf )µ(mfPL−mαPR)(/p+mα)(mαPL−miPR)

m2
W [(pf−p)2−m2

W ][(pi−p)2−m2
W ][p2−m2

α]
,

Γµ,(5)
fi,α = i

eg2

2 UαiU∗αf

∫ d4p

(2π)4
γµPL(/p+mα)(mαPL−miPR)

[(pf−p)2−m2
W ][(pi−p)2−m2

W ][p2−m2
α]
,

Γµ,(6)
fi,α = i

eg2

2 UαiU∗αf

∫ d4p

(2π)4
(mαPR−mfPL)(/p+mα)γµPL

[(pf−p)2−m2
W ][(pi−p)2−m2

W ][p2−m2
α]
, (3.2)

where

V µνρ = gµν(2pi − p− pf )ρ + gρµ(2pf − p− pi)ν + gνρ(2p− pi − pf )µ . (3.3)

The non-vanishing CP asymmetry requires two conditions. Namely, a CP violating
contribution from coefficients of tree-level vertices and an imaginary part coming purely
from loop kinematics [38]. In the present work, the first condition is satisfied by the
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complex phases in the lepton flavour mixing matrix U and will be discussed in more detail
in subsequent sections. Here, we first contend with the second condition by completing the
loop calculation and deriving its imaginary part analytically.

We follow the standard procedure to integrate the loop momenta with the help of the
Feynman parametrisation. Then, we apply the Gordon decomposition taking chirality into
consideration, and factorise dipole moment terms with coefficients as

Γµ,(k)
fi,α = eg2

4(4π)2UαiU∗αf iσ
µνqν

∫ 1

0
dxdydz δ(x+ y + z − 1)P(k) , (3.4)

where

P(1) = −2x(x+ z)miPR − 2x(x+ y)mfPL
∆αW (x, y, z) ,

P(2) = [xzm2
f − ((1− x)2 + xz)m2

α]miPR + [xym2
i − ((1− x)2 + xy)m2

α]mfPL
m2
W∆αW (x, y, z)

,

P(3) = [(1− 2x)z − 2(1− x)2]miPR + [(1− 2x)y − 2(1− x)2]mfPL
∆Wα(x, y, z) ,

P(4) = [xzm2
f − x(x+ z)m2

α]miPR + [xym2
i − x(x+ y)m2

α]mfPL
m2
W∆Wα(x, y, z)

,

P(5) = −zmiPR
∆Wα(x, y, z) ,

P(6) = −ymfPL
∆Wα(x, y, z) , (3.5)

and

∆Wα(x, y, z) = m2
W (1− x) + xm2

α − x(ym2
i + zm2

f ) ,
∆αW (x, y, z) = m2

α(1− x) + xm2
W − x(ym2

i + zm2
f ) . (3.6)

Eq. (3.4) can be further simplified to

Γµ,(k)
fi,α = eGF

4
√

2π2UαiU∗αf iσ
µνqν(Ffi,αmiPR + Fif ,αmfPL) . (3.7)

Here, F is derived from the sum of the integrals P(k)

Ffi,α =
∫ 1

0
dx
{(
m2

i−m2
α−2m2

W

) (
m2
α+m2

fx
2)+m4

fi,αx(
m2

i−m2
f
)2
x

log
(
m2
α+
(
m2
W−m2

α−m2
i
)
x+m2

i x
2

m2
α+
(
m2
W−m2

α−m2
f
)
x+m2

fx
2

)

+
(
m2

i−m2
α−2m2

W

) (
m2
α+m2

f (1−x)2)+m4
fi,α(1−x)(

m2
i−m2

f
)2
x

log
(
m2
W+

(
m2
α−m2

W−m2
i
)
x+m2

i x
2

m2
W+

(
m2
α−m2

W−m2
f
)
x+m2

fx
2

)}

+m2
f−m2

α−2m2
W

m2
i−m2

f
,

(3.8)
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where we define m4
fi,α = −(m2

i − m2
α − m2

W )(m2
f + m2

α − 2m2
W ) + 2m2

αm
2
W , and Fif ,α is

obtained by exchanging mi and mf . Therefore, we obtain the coefficients fL
fi , fL

if , fR
fi and

fR
if as

fL
fi = eGF

4
√

2π2UαiU∗αfFif ,αmf , fR
fi = eGF

4
√

2π2UαiU∗αfFfi,αmi ,

fL
if = eGF

4
√

2π2UαfU∗αiFfi,αmi , fR
if = eGF

4
√

2π2UαfU∗αiFif ,αmf . (3.9)

The integrals Ffi,α and Fif ,α in eq. (3.8) can be further simplified when the limit of
small neutrino masses, i.e., m2

i ,m
2
f � m2

α,m
2
W is considered. In this case, the logarithm

terms can be expanded in a series of m2
i and m2

f , and after a straightforward calculation,
we prove that both Ffi,α and Fif ,α are identical to F (m2

α/m
2
W ), where

F (a) = 3
4

(
2− a
1− a −

2a
(1− a)2 −

2a2 log a
(1− a)3

)
(3.10)

which is a well known result for the loop factor obtained in the studies of neutrino dipole
moments and radiative decays [26, 28].

We now outline how to obtain non-zero imaginary parts for Ffi,α and Fif ,α when
neutrinos have large masses. They include integral terms of the form

∫ 1
0 dxf(x) log g(x),

where g(x) is not always positive in the domain (0, 1). Instead, one can prove that there
is an interval (x1, x2) ⊂ (0, 1) where g(x) < 0 is satisfied, and x1 and x2 are solutions of
g(x) = 0. The real and imaginary parts in the integral can then be split into∫ 1

0
dxf(x) log g(x) =

∫ 1

0
dxf(x) log |g(x)|+ iπ

∫ x2

x1
dxf(x) . (3.11)

The imaginary part of
∫ x2
x1

dxf(x) can then be analytical obtained. In this way, we derive
the analytical expression for the imaginary part of Ffi,α as

Im(Ffi,α) = πϑ(mi−mW−mα)
{
m2

i−m2
α−2m2

W(
m2

i−m2
f
)2

[
−µ2

i
m2

f
m2

i
+m2

α log
(
m2

i +m2
α−m2

W+µ2
i

m2
i +m2

α−m2
W−µ2

i

)]

+
(
2m2

i−m2
f−m2

α−2m2
W

)
m2
W(

m2
i−m2

f
)2 log

(
m2

i−m2
α+m2

W+µ2
i

m2
i−m2

α+m2
W−µ2

i

)}

+πϑ(mf−mW−mα)
{
−m

2
i−m2

α−2m2
W(

m2
i−m2

f
)2

[
−µ2

f +m2
α log

(
m2

f +m2
α−m2

W+µ2
f

m2
f +m2

α−m2
W−µ2

f

)]

+
(
2m2

i−m2
f−m2

α−2m2
W

)
m2
W(

m2
i−m2

f
)2 log

(
m2

f−m2
α+m2

W+µ2
f

m2
f−m2

α+m2
W−µ2

f

)}
,

(3.12)

where ϑ(x) is the Heaviside step function, and

µ2
i =

√
m4

i +m4
α +m4

W − 2m2
im

2
α − 2m2

im
2
W − 2m2

αm
2
W ,

µ2
f =

√
m4

f +m4
α +m4

W − 2m2
fm

2
α − 2m2

fm
2
W − 2m2

αm
2
W . (3.13)
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Again, Im(Fif ,α) is obtained from Im(Ffi,α) by exchanging mi and mf . Some comments on
the imaginary part of Ffi,α are

• In order to generate a non-zero imaginary part in the loop integration, a threshold
condition for the initial neutrino mass is required. That is mi > mW +mα, namely,
initial neutrino mass larger than the sum of theW -boson mass and the charged lepton
mass. This is consistent with optical theorem as discussed in ref. [38].

• Taking the charged lepton flavour to be the electron, α = e, the threshold condition
for initial neutrino masses is simplified to mi > mW +me ≈ mW .

• There is a second contribution to the imaginary part of Ffi,α if the neutrino in the final
state satisfies the threshold condition, mf > mW + mα. Due to the sign difference,
it partly cancels with the first contribution.

With the above results, we are now able to obtain the most general result for CP
asymmetries in neutrino radiative decays. For Dirac neutrinos, recall eq. (2.10). We derive
the CP asymmetry between νi → νfγ+ and ν̄i → ν̄fγ− and between νi → νfγ− and
ν̄i → ν̄fγ+ as

∆D
CP,+ =

−
∑
α,β J if

αβIm(Fif ,αF∗if ,β)m2
f∑

α,βRif
αβ

[
Re(Ffi,αF∗fi,β)m2

i + Re(Fif ,αF∗if ,β)m2
f

] ,
∆D
CP,− =

−
∑
α,β J if

αβIm(Ffi,αF∗fi,β)m2
i∑

α,βRif
αβ

[
Re(Ffi,αF∗fi,β)m2

i + Re(Fif ,αF∗if ,β)m2
f

] , (3.14)

where α, β run for charged lepton flavours e, µ, τ and

J if
αβ = Im(UαiU∗αfU∗βiUβf ) , Rif

αβ = Re(UαiU∗αfU∗βiUβf ) . (3.15)

We now outline the contribution of coefficients to the tree-level vertices. We have intro-
duced a set of Jarlskog-like parameters J if

αβ to describe the CP violation from the vertex
contribution. This parametrisation follows the famous definition of the Jarlskog invariant
used to describe CP violation in neutrino oscillations [41, 42]. The Jarlskog-like parameters
are invariant under any phase rotation of charged leptons and neutrinos. If the Jarlskog-like
parameters vanish, no CP violation is generated in the neutrino transition dipole moment.

For Majorana neutrinos, the relevant CP asymmetries, via eq. (2.13), are given by

∆M
CP,+ = −∆M

CP,−

=
∑
α,β J if

αβ

[
Im(Ffi,αF∗fi,β)m2

i − Im(Fif ,αF∗if ,β)m2
f

]
− 2V if

αβIm(Ffi,αF∗if ,β)mimf∑
α,βRif

αβ

[
Re(Ffi,αF∗fi,β)m2

i + Re(Fif ,αF∗if ,β)m2
f

]
− 2Cif

αβRe(Ffi,αF∗if ,β)mimf
,

(3.16)

where

V if
αβ = Im(UαiU∗αfUβiU∗βf ) , Cif

αβ = Re(UαiU∗αfUβiU∗βf ) . (3.17)
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V if
αβ is another type of Jarlskog-like parameters which appears only for Majorana neutrinos.

It was first defined in the study of neutrino-antineutrino oscillations in the context of only
three light neutrinos [43]. They are invariant under phase rotations for charged lepton but
not for neutrinos.

4 CP violation in heavy neutrino radiative decays

In the rest of this paper, we will discuss the CP violating radiative decay in the seesaw
model, where the tiny masses for left-handed neutrinos are generated due to the suppression
of heavy right-handed neutrinos. We recall that the notation ∆CP = ∆M

CP,+ for Majorana
neutrinos is used.

We consider the minimal seesaw model where only two copies of right-handed neutri-
nos are introduced [17]. This is the minimal number required to generate two non-zero
mass square differences i.e. ∆m2

21 ≡ m2
2 − m2

1 and ∆m2
31 ≡ m2

3 − m2
1. We denote two

right-handed neutrino mass eigenstates as NI for I = 1, 2, with masses M1 < M2. The
following discussion is straightforwardly generalised to a canonical seesaw model with three
right-handed neutrinos. Including more copies of right-handed neutrinos just increases the
number of free model parameters.

The minimal seesaw model predicts one massless neutrino m1 = 0 in the normal mass
ordering (m1 < m2 < m3) and m3 = 0 in the inverted mass ordering (m3 < m1 < m2)
schemes. In this section, we will only consider the normal mass ordering as we don’t expect
the inverted mass ordering to make a significant difference. Moreover, the inverted ordering
is slightly disfavoured (∆χ2 = 6.2) by the current neutrino oscillation global fit data [44].
We take the best fit (in the 3σ ranges) of mass square differences in the normal ordering
scheme [44], this is

m2 =
√

∆m2
21 = 8.60 (8.24→ 8.95) meV ,

m3 =
√

∆m2
31 = 50.2 (49.3→ 51.2) meV . (4.1)

We recall once again the lepton charged-current interaction in eq. (3.1). The three light
neutrino mixing is represented by the first 3 × 3 submatrix of U , i.e., Uαi for α = e, µ, τ

and i = 1, 2, 3. In the case of negligible non-unitary effect, Uαi is parametrised as

U ≡

 c12c13 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12c23s13e

iδ −c12s23 − c23s12s13e
iδ c13c23


 e

iρ 0 0
0 eiσ 0
0 0 1

 , (4.2)

where cij = cos θij , sij = sin θij , θij (for ij = 12, 13, 23) are three mixing angles, δ is the
Dirac-type CP violating phase and ρ and σ are two Majorana-type CP violating phases.
U is a 3 × 3 unitary matrix, U †U = UU † = 13×3. The three mixing angles and the Dirac
CP violating phase for normal mass ordering are measured to be

θ13 = 8.61◦ (8.22◦ → 8.99◦) ,
θ12 = 33.82◦ (31.61◦ → 36.27◦) ,
θ23 = 48.3◦ (40.8◦ → 51.3◦) ,
δ = 222◦ (141◦ → 370◦) (4.3)
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at the best fit (in the 3σ ranges) [44]. As we work in the minimal seesaw model where the
lightest neutrino mass m1 = 0 is massless, ρ is unphysical and will not be considered below.
We are left with two CP violating phases δ and σ from the mixing of light neutrinos.

Accounting for the non-unitary effect, namely, the fraction of heavy neutrinos con-
tributing to the flavour mixing Uα(I+3), which we denote as RαI from now on. Uαi is only
approximately equal to Uαi, Uαi = Uαi +O(RR†). RR† is constrained to be maximally at
milli-level [45, 46]. Therefore, Uαi ≈ Uαi is still a very good approximation.

The charged-current interaction for leptons in the mass eigenstates is now written as

Lc.c. =
∑

α=e,µ,τ

g√
2

¯̀
αγ

µPL
( ∑
i=1,2,3

Uαiνi +
∑
I=1,2

RαINI

)
W−µ +O(RR†) + h.c. . (4.4)

We use the Casas-Ibarra parametrisation [47] to express R in the form

RαI =
∑
i=1,2

UαiΩiI

√
mi+1
MI

. (4.5)

Here, Ω is a 2×2 complex orthogonal matrix satisfying ΩTΩ = ΩΩT = 1.1 We parametrise
it as

Ω =
(

cosω sinω
−ζ sinω ζ cosω

)
, (4.6)

where ω is a complex parameter and ζ = ±1. The two possible values of ζ correspond to
two distinct branches of Ω [48, 49]. The Yukawa coupling Y between lepton doublets and
right-handed neutrinos are directly connected with R via YαI = RαIMI/vH [50].

In the whole model, three CP violating parameters are induced, δ, σ and Im[ω], if
δ = 0, σ = 0 or π/2 and Im[ω] = 0, no CP violation can be generated.

The CP violation in the neutrino transition dipole moment can be checked by the study
of the CP asymmetry of neutrino radiative decay. There are three channels of interest,
νi → νjγ, NI → νiγ and N2 → N1γ. For the first channel, since the light neutrinos
have masses much lighter than the W boson, no CP violation can be generated. The CP
asymmetry for NI → νiγ is non-zero if NI has a massMI > mW +me ≈ mW . Note that in
this case, masses of three light neutrinos νi for i = 1, 2, 3 are negligible and photons released
in the relevant three channels are indistinguishable, so we sum these channels together and
calculate the overall CP asymmetry [cf. eq. (3.16)]

∆CP (NI → νγ) =
∑
i

∑
α,β J

(I+3)i
αβ Im(Fi(I+3),αF∗i(I+3),β)∑

i

∑
α,βR

(I+3)i
αβ Re(Fi(I+3),αF∗i(I+3),β)

. (4.7)

1In the case of three copies of right-handed neutrinos, Ω is a 3 × 3 matrix, this leads to each entry in
RαI for I = 1, 2, 3 to be expressed as

RαI =
∑
i=1,2,3

UαiΩiI
√

mi

MI
.
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Figure 2. The CP asymmetry (left panel) and branching ratio (right panel) for the radiative decay
process N2 → N1γ as a function of the heavy neutrino mass M2. Four different benchmarks for
the lightest right-handed neutrino M1 = 0.2M2, 0.5M2, 0.8M2 are considered as per the respective
plot legends. Values of ω are fixed at ω = 5 (top panel) and 5 − 5i (bottom panel), respectively.
In all cases, we use the best-fit oscillation data as inputs while we set ζ = 1 with a Majorana
phase σ = π/2.

This parameter is tiny, numerically confirmed to be maximally . 10−17. The reason
why it is so small can be understood as follows. Since mi is negligible, Fi(I+3),α =
F1(I+3),α, and ∆CP (NI → νγ) ∝

∑
i

∑
α,β J

(I+3)i
αβ =

∑
i

∑
α,β Im(Uα(I+3)U∗αiU∗β(I+3)Uβi) ≈∑

i

∑
α Im(Uα(I+3)U∗α(I+3)) = 0.

Finally, we focus on the CP asymmetry in N2 → N1γ, which is given by

∆CP (N2 → N1γ) =
∑
α,β J 54

αβ

[
Im(F45,αF∗45,β)M2

2−Im(F54,αF∗54,β)M2
1

]
−2V54

αβIm(F45,αF∗54,β)M2M1∑
α,βR54

αβ

[
Re(F45,αF∗45,β)M2

2 +Re(F54,αF∗54,β)M2
1

]
−2C54

αβRe(F45,αF∗54,β)M2M1
.

(4.8)
Here, Cif

αβ and V if
αβ were defined in eq. (3.17) and the Jarlskog-like parameters are given by

J 54
αβ = Im(Rα2R

∗
α1R

∗
β2Rβ1) and V54

αβ = Im(Rα2R
∗
α1Rβ2R

∗
β1).

The behaviour of the CP asymmetry as a function of the right-handed neutrino mass
M2 is shown in figure 2. We can see that the CP asymmetry of this channel is much larger
than that in N → νγ. In this figure, we vary M2 from 0.1 to 10TeV and consider three
benchmark scenarios where the mass ratio M1/M2 is fixed to 0.2, 0.5 and 0.8 respectively.
In all plots, we fix ζ = 1 and the Majorana phase σ = π/2. Therefore, no Majorana-type
CP violation is induced. We use the best-fit oscillation data as inputs which include a large
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CP violating value for δ. In the top panel, we fix ω to be real, ω = 5. Therefore, δ is the
only source of CP violation. We note that a large CP asymmetry ratio |∆CP | ∼ 10−5-10−3

is easily generated. Peaks of |∆CP | are generated due to the enhancement in the log term of
Im(Ffi,α) around M2 ≈ mW (cf. eq. (3.12)). Sharp changes refer to cancellations occurring
in ∆CP due to the selected values of inputs. In the bottom panel, ω = 5− 5i, both δ and
ω contribute to the CP violation. The constraints on |RR†| from the non-unitarity effect
has been included [45].

We also show the branching ratio B(N2 → N1γ) = Γ(N2 → N1γ)/ΓN2 . In the total
decay width ΓN2 , we include five main decay channels N2 → `−W+

L,T , νZL,T and νH [51].
Although the CP asymmetry is large, the branching ratio is suppressed as shown in the
right panel of figure 2, leading to very small ∆CP × B. We note that there is particularly
interesting phenomenology for ω = 5− 5i as the branching ratio is greatly enhanced when
assigning an imaginary part to ω. This is because the mixing R is enhanced by sinω and
cosω, which are both ∼ e|Im[ω]|. One can further increase the branching ratio to be much
larger than 10−13 by enlarging the imaginary part of ω, hence the combination ∆CP ×B is
also enhanced. Another feature of the right panels is that, in spite of the different orders of
magnitude, the shape profiles of the curves are almost the same between ω = 5 and 5− 5i.
This is because the inclusion of an imaginary part for ω simply changes the size of RαI but
rarely changes the correlation between the decay width and right-handed neutrino masses.

In figure 3 we show a numerical scan performed for M2 in the same range. We sample
M2 logarithmically in the range [0.1, 10]TeV and the ratioM1/M2 in the range [0.1, 1). The
blue points refer to purely real ω randomly sampled from [0, 2π). In this case, only two
of the CP violating phases δ and σ contribute to the CP violation. The CP asymmetry
∆CP shows a roughly linear correlation with M−1

2 . Most points of ∆CP are located in the
regimes (10−3, 10−5) for M2 ' 0.1TeV, (10−4, 10−6) for M2 ' 1TeV and (10−5, 10−7) for
M2 ' 10TeV. However, the branching ratio of the decay is tiny, between (10−20, 10−15),
which makes the CP asymmetry unobservable in experiments. For the red points, we
allow an imaginary part for ω as well, namely, Im[ω] ∈ [−5, 5]. A CP asymmetry of order
one is then easily achieved. The branching ratio of the radiative decay can maximally
reach ∼ 10−11. We have also checked that the combination ∆CP × B can maximally
reach 4× 10−15. Note that considering a larger imaginary part of ω could further enhance
the branching ratio and ∆CP × B. However, as this process happens at one loop and
there are constraints on the non-unitary effect, the branching ratio is always suppressed
by (16π2)−2|RR†|2/|RR†|. By taking RR† ∼ 10−3, we obtain a branching ratio which
maximally reaches ∼ 10−7 and is therefore challenging to probe in future experiments.

5 Conclusion

We study the CP violation in the neutrino electromagnetic dipole moment. A full one-loop
calculation of the transition dipole moment is performed in the context of the Standard
Model with an arbitrary number of right-handed singlet neutrinos. The CP asymmetry
is analytically derived in terms of the leptonic mixing matrix accounting for heavy neu-
trino mass eigenstates. A detailed explanation of how to generate a non-vanishing CP
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Figure 3. The CP asymmetry parameter ∆CP (left) and branching ratio (right) scanned in the
region M2 in [0.1, 10]TeV and the ratio M1/M2 in [0.1, 1), where both masses are scanned in the
logarithmic scale. The red region refers to ω = [0, 2π] + i[−5, 5] while the blue region is the smaller
ω = [0, 2π]. All oscillation parameters are scanned in the 3σ ranges, ω = [0, 2π] and ζ = +1 are
used. The scan performed for the ζ = −1 branch gives the same distribution and is thus omitted.

asymmetry in the neutrino transition dipole moment is provided. This requires a threshold
condition for the initial neutrino mass being larger than the sum of W -boson mass and
the charged leptons runnning in the loop and a CP violating phase in the lepton flavour
mixing matrix. The threshold condition is necessary to generate a non-zero imaginary part
for the loop function. An analytical formulation of this loop integral imaginary component
is derived. The lepton flavour mixing for vertex contributions has been parametrised in
terms of Jarlskog-like parameters. For Majorana particles, the CP asymmetry is identical
to the asymmetry of circularly-polarised photons released from the radiative decay.

The formulation is then applied to a minimal seesaw model where two right-handed
neutrinos N1 and N2 are introduced with the mass ordering M1 < M2. A complete study
of CP asymmetry in all radiative decay channels was performed, where the mass range
0.1 TeV < M2 < 10 TeV is considered. The CP asymmetry in N1,2 → νγ is very small,
maximally reaching 10−17. In the N2 → N1γ channel, the CP asymmetry is significantly
enhanced, with ∆CP achieving 10−5-10−3, even with the Dirac phase δ being the only
source of CP violation. There is a significant correlation between the CP violation in
radiative decay and that coming from oscillation experiments. We performed a parameter
scan of the CP asymmetry with oscillation data in 3σ ranges taken as inputs and found
that the CP asymmetry can maximally reach order one.
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