
J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

Published for SISSA by Springer

Received: November 14, 2020
Accepted: January 12, 2021

Published: February 24, 2021

Quantum machine learning for particle physics using a
variational quantum classifier

Andrew Blancea,b and Michael Spannowskya
aIPPP, Department of Physics, Durham University,
Durham DH1 3LE, U.K.

bInstitute for Data Science, Durham University,
Durham, DH1 3LE, U.K.

E-mail: andrew.t.blance@durham.ac.uk, michael.spannowsky@durham.ac.uk

Abstract: Quantum machine learning aims to release the prowess of quantum computing
to improve machine learning methods. By combining quantum computing methods with
classical neural network techniques we aim to foster an increase of performance in solving
classification problems. Our algorithm is designed for existing and near-term quantum
devices. We propose a novel hybrid variational quantum classifier that combines the quan-
tum gradient descent method with steepest gradient descent to optimise the parameters of
the network. By applying this algorithm to a resonance search in di-top final states, we
find that this method has a better learning outcome than a classical neural network or a
quantum machine learning method trained with a non-quantum optimisation method. The
classifiers ability to be trained on small amounts of data indicates its benefits in data-driven
classification problems.

Keywords: Beyond Standard Model, Hadron-Hadron scattering (experiments), Jet
physics, Particle correlations and fluctuations, Top physics

ArXiv ePrint: 2010.07335

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2021)212

mailto:andrew.t.blance@durham.ac.uk
mailto:michael.spannowsky@durham.ac.uk
https://arxiv.org/abs/2010.07335
https://doi.org/10.1007/JHEP02(2021)212

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

Contents

1 Introduction 1

2 Structure of a Variational quantum classifier 3
2.1 State preparation 5
2.2 Model circuit 5
2.3 Measurement and postprocessing 6

3 Optimisation 7
3.1 Backpropagation 8
3.2 From gradient descent to quantum gradient descent 8

4 Analysis setup 10

5 Network performance 11

6 Conclusions 14

A The Fubini-Study metric and the Quantum Geometric Tensor 14

1 Introduction

To discover new physics at the LHC, highly complex rare signal events have to be sepa-
rated from a large number of Standard Model background events. Novel reconstruction
techniques often rely on machine learning algorithms which show an outstanding abil-
ity to find correlations in high-dimensional parameter spaces to discriminate signal from
background processes. In collider phenomenology, the feature space on which the machine-
learning methods are trained to classify events into signal and background consists usually
of physical observables of reconstructed objects, e.g. the transverse momentum of a jet pT,j
or the total amount of missing transverse energy /ET .

The most popular machine learning techniques in recent years are artificial neural
networks (NN), which are built on three pillars:

i. an adaptable complex system that allows approximating a complicated function,

ii. the calculation of a loss function in the output layer which is used to define the task
the NN algorithm should perform by minimising this function, and

iii. a way to update the network continuously while minimising the loss function, e.g.
through backpropagation.

– 1 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

In NNs the adaptable system in (i) consists of a variable number of layers made of inter-
connected neurons. The neurons receive inputs from previous layers in terms of weights
and a bias, which are then processed as arguments of an activation function. Due to its
modular setup and variable complexity an NN can be trained to perform a large spectrum
of tasks.1

Quantum machine learning is an emergent research field which aims to release the
prowess of quantum computing to improve machine learning methods. At the moment a
full quantum neural network, where all three pillars are combined in an algorithm that
is entirely built on the principles of quantum information processing, is not attainable.
However, with present or at least with near-term quantum devices dedicated quantum
algorithms can support pillars (i)-(iii) individually in form of a hybrid quantum machine
learning approach.

In relation to NNs novel techniques are being developed and applied in a beneficial
way for each of the pillars (i)-(iii) above. For example and concreteness, to support (i)
quantum nodes can be connected with each other to form a variational circuit [8–10] or
added to a classical neural network in a hybrid approach [11, 12]. For (ii) the loss func-
tion can be calculated using a quantum algorithm, e.g. in variational quantum algorithm
approaches [13, 14]. Whereas for (iii) one can minimise the loss function using a quantum
annealer [15, 16] or a quantum optimisation algorithm [17, 18].

Thus, by combining quantum computing methods with a NN and applying this ap-
proach to tackle challenges in particle physics we aim to foster an increase of performance
associated with quantum computing algorithms2 which can then translate into an improved
sensitivity in searches for novel physical phenomena. One of the most popular applications
of machine learning in particle physics is classification. To pursue this task using quantum
machine learning, we construct a novel hybrid neural network, based on a quantum varia-
tional classifier. Quantum variational classifiers are known to have an advantage in model
size compared to classical neural networks [10]. This allows us to augment the optimisation
process of our hybrid network using the quantum gradient descent (QGD) method, which
is inspired by the natural gradient descent method. Such complex optimisation methods
are often computationally prohibitive for deep neural networks. Variational quantum clas-
sifiers are structurally very similar to classical neural networks and provide therefore an
instructional framework to discuss in how far (i)-(iii) of classical NNs can be augmented
using quantum computing elements.

Specifically, we use a quantum neural network approach, i.e. trainable quantum nodes
connected in a circuit, and also include classic neural network elements, i.e. a bias term.

1Applications range from playing Go [1] or Chess [2], over classification and image recognition [3, 4] to
natural language processing [5] and generative algorithms [6]. Beyond classification and the regression of
data points NN can also be used to find solutions to functionals and integro-differential equations [7].

2Relevant to particle physics, a recent surge in proposals has emerged in how quantum computing can
provide benefits for a variety of tasks. Quantum annealers, for example, perform continuous time quantum
computations and are therefore well-suited to study the dynamics of quantum systems, even quantum field
theories [19, 20], and in solving optimisation problems [21]. Quantum gate computers are in particular a
popular choice to calculate multi-particle processes [22–32], often with field theories mapped onto a discrete
quantum walk [33–36] or a combined hybrid classical/quantum approach [37–40].

– 2 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

During training, we use a modified quantum optimisation algorithm, based on quantum
gradient descent [18], designed to account for the classic elements of our model. We apply
this method to a Z ′ resonance search, which decays to a pair of top quarks [41–43]. This
provides a timely and realistic playground for a phenomenologically relevant classification
problem. Samples of top quark pairs where one top quark decays hadronically and the
other leptonically can be purified to a very high degree, i.e. the confidence that one trains
on a pure tt̄ sample is very high. Although tt̄ production results in jet and lepton-rich final
states, for the purpose of a transparent discussion of how variational quantum classifiers
can be used to support searches of new physics, we limit ourselves to only two feature
variables as input to the NNs, i.e. the transverse momentum of the hardest bottom quark
pT,b1 and the amount of missing transverse energy in the event /ET . Extending the feature
space is conceptually straightforward and will improve the networks ability to discriminate
between signal and background, however, it will impact on the size of the network and
the number of qubits, which would prevent us from running our hybrid quantum neural
network on a real quantum device.

We will compare our VQC model against a classical neural network model of similar
complexity, i.e. with a similar number of trainable parameters. This will allow us to answer
the question of whether there can be a quantum advantage due to a more efficient training
of the VQC or the exploitation of quantum gradient descent. Current quantum devices are
limited in their numbers of qubits and are prone to noise errors. Thus, the implementation
of larger models is currently prohibitive. State-of-the-art classical neural networks that
include more features in the dataset and a larger number of trainable parameters would
easily outperform a small-scale VQC. Conversely, we hope that the quantum advantage we
observe in such a VQC over small-scale classical neural networks prevails when quantum
devices that can accommodate more complex models become accessible.

The paper is structured as follows: section 2 is dedicated to a pedagogical overview to
variational quantum classifiers (VQC) and to how VQC contribute to pillars (i) and (ii) in
the context quantum machine learning algorithms. Section 3 addresses pilar (iii), where
we introduce various optimisation methods applicable to the training of the NN during
backpropagation. In section 4 we outline the technical setup for the analysis on pseudo-
data. Subsequently, as described in section 5, we train and test two different quantum
machine learning models. One will use an entirely classical approach of gradient descent
while the other is trained using a quantum optimisation method. To provide a baseline
we compare to a classical neural network. Finally, we provide a summary and concluding
remarks in section 6.

2 Structure of a Variational quantum classifier

Variational quantum classifiers are a form of quantum neural network that can be used
for supervised learning. This is achieved by designing a quantum circuit that behaves
similarly to a traditional machine learning algorithm. The quantum machine learning
algorithm contains a circuit which depends on a set of parameters that, through training,
will be optimised to reduce the value of a loss function. This trained circuit is described

– 3 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

Figure 1. A variation classifier described by 3 parts. The state preparation circuit is desgined to
take our input, x ∈ Rn, and encode it in a N-qubit quantum state. The model circuit will apply
trainable and non-trainable gates to this state. In the final steps we measure the states and apply
any postprocessing necessary. This model is inspired by circuit-centric quantum classifiers [10].

in functional form by
f(w, b, x) = y, (2.1)

where f is the network, y is the network output used to calculate the loss function L, the
network has trainable parameter w, b and input data x. Thus, the structure of a VQC
shares many similarities with a traditional neural network. In both cases, the network f

is built from discrete modular blocks, i.e. nodes in the classical neural network while a
quantum circuit is composed of quantum gates, and share techniques used for training.

Our classifier, is designed as a circuit-centric quantum classifier [10]. It is structurally
depicted in figure 1 and consists of three parts: (1) the state preparation circuit, (2) the
model circuit and (3) the measurement and postprocessing. These three parts of our model
can be related in turn to the three pillars of machine learning, discussed in section 1. Our
classifier corresponds to (i) a complex adaptable system that (ii) calculates the value of
a loss function. The continuous adaptation of the parameters w and b, after obtaining y
through a measurement with the aim to continually reduce the loss function L, directly
relates to the network optimisation of (iii).

More specifically, the state preparation step, shown in figure 2, encodes the input data
to an N-qubit quantum state. In classical computer algorithm this is carried out with
bits, whereas on a quantum computer this is performed using qubits. A qubit is a 2-state
quantum system which can be parametrised by

|ψ〉 = α|0〉+ β|1〉 = cosθ2 |0〉+ eiϕsinθ2 |1〉 =
(

cos θ2
sin θ2eiφ

)
. (2.2)

The state of eq. (2.2) can be visualised as a vector on the Bloch sphere. By performing op-
erations on a qubit one rotates the vector on the Bloch sphere. Circuits can be constructed
to act on numerous qubits, where a 2-qubit state can be described as a tensor product of

– 4 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

two 1-qubit states
|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 . (2.3)

The model circuit is constructed from gates that evolve the input state. The circuit
is based on unitary operations and depends on external parameters which will be adjusted
during training.

Finally, the postprocessing step measures the state. Traditionally, we measure the
output of the first qubit. This step will also include any classical postprocessing we may
wish to include.

2.1 State preparation

Before applying the model circuit of our classifier, we use a state preparation circuit Sx to
encode the input data into a quantum state. Sx acts on the initial state |φ〉

x 7→ Sx|φ〉 = Sx|0〉⊗n = |x〉 , (2.4)

where |φ〉 = |0〉⊗n. The number of qubits n is defined by the number of features in our
dataset.

The parametrisation of the encoding can affect the decision boundaries of the classifier
and can therefore be chosen in a form that suits the problem at hand [44]. Here, we use
the so-called angle encoding

|x〉 =
n⊗
i=1

cos(xi)|0〉+ sin(xi)|1〉 , (2.5)

where x = (x0, . . . xN)T . Practically, this amounts to using the input data, x, as angles in
a unitary quantum gate. We take the state preparation circuit as the unitary gate

Ry(θ) =
(
cos(θ/2) -sin(θ/2)
sin(θ/2) cos(θ/2)

)
. (2.6)

2.2 Model circuit

Given a prepared state, |x〉, the model circuit, U(w), maps |x〉 to another vector |ψ〉 =
U(w)|x〉. In turn U(w) consists of a series of unitary gates and can be decomposed as

U(w) = Ulmax(wlmax) . . . Ul(wl) . . . U1(w1) , (2.7)

where every Ul(wl) is a layer in the circuit, with its corresponding weight parameters, and
lmax is the maximum number of layers. These are constructed from a set of single and
two qubit gates which will evolve the state |x〉. The gates include parameters that will be
trained during the optimisation of the network. A single qubit gate can be written as a
2× 2 unitary matrix with the form

G(α, β, γ, φ) = eiφ
(

eiβcosα eiγsinα
−e−iγsinα e−iβcosα

)
. (2.8)

We can neglect eiφ as it only gives rise to a global phase that has no measurable effect.
Thus, the parameters α, β, and γ suffice to parametrise a single qubit gate.

– 5 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

Figure 2. Circuit diagram for our variational quantum classifier model, made of two qubits in
each of the two layers.

We use a rotation gate, R, and CNOT in our model. The rotation gate is a single
qubit gate that is applied to both qubits in our system. This gate is designed to rotate our
state based on a set of learnable parameters w = (α, β, γ)

R(α, β, γ) = RZ(γ)RY (β)RZ(α) =
(
e−i(α+γ)cos(β/2) −e−i(α−γ)sin(β/2)
e−i(α−γ)sin(β/2) ei(α+γ)cos(β/2)

)
(2.9)

The angles of eq. (2.9) are a subset of the parameters in the weight vector w ∈ Rn×3×l,
where n is the number of qubits and l is the number of layers in our network. This object, w,
will contain some of the parameters that will be learned during training time. The number
of qubits will mirror the number of features in our dataset whereas l is a hyperparameter we
can tune. In the circuit centric design we are using the number of qubits is held constant,
however, the model could be extended or other frameworks used for a more flexible network
design [9].

Each layer in our model contains two CNOT gates, a standard 2-qubit gate in quantum
computing with no learnable parameters. A CNOT, if used alongside a Hadamard gate,
could be used to introduce entanglement into our circuit. These gates flip the state of a
qubit based on the value of another control bit.3 Each gate in the layer uses a different
qubit as the control bit. The model circuit of the VQC used here is shown in figure 2.

2.3 Measurement and postprocessing

After applying U(w) to the initial state we need to measure its output. We do this by
applying the Pauli Z operator on the first qubit and taking the expectation value

E(σz) = 〈0|Sx(x)†U(w)†OU(w)Sx(x)|0〉 = π(w, x) , (2.10)

where O = σz ⊗ I⊗(n−1). To obtain an estimate we run the circuit repeatedly. The number
of repetitions we do is known as the number of Shots (S).

3The controlled NOT (CNOT) gate is a quantum register that can be used to entangle and disentangle
quantum states. The matrix representation of a CNOT gate is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

– 6 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

Classical postprocessing is applied to the expectation value of the circuit before return-
ing a final classifier output. Like in a classical neural network approach, the postprocessing
step gives a great deal of flexibility to the user to tackle the problem how they see fit.
Generally, it will include the addition of any bias terms, the drawing of a classification
decision boundary, the calculation of a loss function and the optimisation procedure.

The bias term b will be a trainable parameter. Its introduction increases model flexibil-
ity and ensures the classifier output is continuous. We can write the output of our model,
before thresholding, by combining the expectation value of the model circuit π(w, x) and
the bias term b:

f(w, b, x) = π(w, x) + b . (2.11)

A decision boundary is drawn to seperate the value of f(w, b, x) into the two classes.
The binary classification result, cls(w, b, x), is calculated as

cls(w, b, x) =

1 if f(w, b, x) > 0 ,
−1 else .

(2.12)

The final steps, the calculation of the loss function and carrying out the optimisation
procedure will be discussed in section 3.

3 Optimisation

As alluded to above, during training we aim to find the values of w and b to optimise a
given loss function. We can perform optimisation on a quantum neural network similar
to how it is done on a classical neural network. In both cases, we perform a forward pass
of the model and calculate a loss function. We can then backpropagate over the network
and update our trainable parameters. This is the equivalent of the third pillar of machine
learning, mentioned in section 1.

During training we use the mean squared error (MSE) as loss function.4 This allows
us to find a distance between our predictions and truth, represented by the value of the
loss function

L = 1
n

n∑
i=1

(
ytruth
i − f(w, b, xi)

)2
. (3.1)

We will train our model using vanilla gradient descent and quantum gradient descent [18].
The latter is a quantum optimisation algorithm designed to be performed on a hybrid
network we have proposed above. Further, we will exploit the advantage in model size
of a variational quantum classifier compared to a classical neural network to improve its
backpropagation method.

4Often, for classification tasks using classical neural networks, the cross entropy is a preferred measure
for the loss function. We find the difference between cross entropy and MSE to be numerically irrelevant for
the application discussed in section 5 and therefore follow the choice for the loss function of refs. [10, 45].
On testing the difference between using MSE or cross entropy to define the loss function, we find that either
loss function results in very similar model performance, with both methods achieving around 70% accuracy.

– 7 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

3.1 Backpropagation

To perform backpropagation for a network with adjustable parameters θ = (w, b) we com-
pute the change of it’s output when varying θ as the gradient ∂

∂θf . For a quantum circuits
the gradient of the network output is calculated using the parameter-shift rules [46, 47].
Being able to calculate gradients for quantum circuit outputs opens up the possibility of
using gradient descent methods to train our variational quantum circuit. The methodology
is identical to how optimisation and training is performed on classical neural networks.

For the parameter-shift rules to be correctly applied to a quantum circuit certain
conditions must be met. We can represent a unitary gate in the form

U(θ) = eiθV , (3.2)

where θ are our network parameters and V is the Hermitian generator of U(θ). For a
circuit f that includes gates that can be represented in the form of eq. (3.2), if V has at
least two distinct eigenvalues, the parameter-shift rules provide the relation

∂

∂θ
f = r

[
f(θ + s)− f(θ − s)

]
, (3.3)

where the shift s = π/4r. The value of r is an arbitrary normalisation factor which we
choose in our implementation to be r = 1/2. Following eq. (3.3) we can calculate gradients
over quantum gates by shifting the parameters. As the difficulty of calculating ∂

∂θf has been
reduced to probing the quantum circuit at different parameter points, it is now possible to
evaluate the gradient fast and efficiently on a quantum device.

3.2 From gradient descent to quantum gradient descent

The geometry of the parameter space has a direct impact on the reliability and efficiency
of an optimisation algorithm [48]. Thus, a suitable choice of optimisation strategy is a
key performance factor for a variational quantum circuit. It is an open question as to
what is the best form of parameter space to use and whether l2 Euclidean geometry is an
appropriate choice for variational models [49].

For our problem at hand, we propose to augment the vanilla gradient descent method,
often used in classical neural networks, by the quantum gradient descent method [18].

In the vanilla gradient descent method, the network parameter vector θt at iteration
step t is updated with the goal that θt+1 results in a smaller loss function L(θ). Thus, one
approach is to update θt in the direction of the steepest decline, −OL(θ), weighted by the
learning rate η

θt+1 = θt − ηOL(θ). (3.4)

However, this optimisation is performed on the geometry of an l2 vector space, which
influences the performance and how new parameters are found. While all parameters are
updated with the same step size, the rate at which the loss function changes for each model
parameter can vary greatly. By using this form of gradient descent it is possible to miss the
global minimum in the space of the loss function. An improvement would be to change the

– 8 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

coordinate system to ensure the loss function changed consistently with each step for each
parameter or to find an optimisation method that was invariant under re-parametrisation.

One way to address this problem is the use of natural gradient descent, which makes
use of the Fisher Information Matrix [50, 51] and is a classical extension to vanilla gradient
descent method. The parameters of a network (the weights and biases) exist on a param-
eter space that has a Riemannian geometry. The Fisher Information Matrix is the metric
that defines this space. Since this metric includes information on the geometric structure
of the Riemannian space of the network parameters, its inclusion into the gradient de-
scent optimisation leads the network to learn more effectively. In addition, it is invariant
under re-parametrisation, and thus advantageous in finding an effective parametrisation.
Algorithmically natural gradient descent can be written as

θt+1 = θt − ηF−1OL(θ) , (3.5)

where F is the Fisher Information Matrix. In each optimisation step, the parameters are
updated in the direction of steepest descent of the information geometry rather than the
Euclidean l2 geometry. Although the inclusion of F−1 in eq. (3.5) in general improves
the performance of the optimisation algorithm, in most classical deep neural networks
calculating the inverse of a large matrix becomes computationally prohibitively expensive.
However, in our hybrid network, which benefits from a small model size, the parameter
space is rather small. Thus, our aim is to use a quantum optimisation equivalent of this
method that we can use on variational circuits.

The parameter space of quantum states does indeed have a geometry that can be
described by an invariant metric. Similar to how the Fisher Information Matrix is used to
promote the gradient descent method to the natural gradient descent method, the Fubini-
Study metric g, derived and elaborated on in appendix A, exploits the geometric structure
of the variational quantum classifier’s parameter space to establish the quantum gradient
descent method. Here, the optimisation algorithm reads [18]

θt+1 = θt − ηg+OL(θ) , (3.6)

where g+ is the pseudo-inverse of the Fubini-Study metric. We implement this algorithm
using the PennyLane package [52], which will allow us to find the steepest descent in
the parameter space of the quantum states. The approach of eq. (3.6) is designed to
optimise the parameters of the quantum variational circuit only, i.e. the quantum gates
with trainable parameters w = (α, β, γ). To perform a full optimisation of our hybrid model
we need to consider the classical components of our model — the bias. Thus, we propose
to optimise our weights using quantum gradient descent (3.7) while using vanilla gradient
descent for the classical bias term b. Calculating both gradients at each optimisation step,

θwt+1 = θwt − ηg+OwL(θ) ,
θbt+1 = θbt − ηObL(θ) , (3.7)

ensures our entire range of parameters is optimised simultaneously.

– 9 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

0 200 400 600 800 1000
pT,b1

[GeV]

0

0.001

0.002

0.003

0.004
1/
σ
d
σ
/d
p T

,b
1

[1
/6

7
G

eV
−

1
]

Signal

Background

(a)

0 200 400 600
/ET [GeV]

0

0.001

0.002

0.003

0.004

1/
σ
d
σ
/d
/ E
T

[1
/3

9
G

eV
−

1
]

Signal

Background

(b)

Figure 3. Distribution of signal and background of the (a) pT of the hardest b-jet and the (b)
missing energy.

4 Analysis setup

The background and signal samples used here consist of pp→ tt̄ events and pp→ Z ′ → tt̄

events, respectively. The background events have been generated with a centre-of-mass
energy of 14TeV. When the top quarks are decayed we have forced one quark to have a
hadronic decay while the other has a leptonic decay. A heavy new boson, Z ′ [53], is used
as signal, with a mass of 2TeV and a width chosen to be 89.6GeV [54]. Similar to the
background one top quark decays hadronically and the other leptonically. For all events,
a cut of pT > 500GeV is placed on the transverse momentum of the top quarks. All
events are generated using MadGraph5_aMC@NLO [55] while the parton showering
and hadronisation is performed with Pythia 8.2.

Using the Cambridge-Aachen algorithm [56] the hadrons and the non-isolated leptons
are clustered into jets with radius R = 1.0. This is based on work using fat jets to
reconstruct highly boosted top quarks [57–60]. Using FastJet [61] the kT algorithm is
implemented to recluster the hardest two fat jets into jets with radius R = 0.2. Based
on proximity to a B-meson, jets are b-tagged while requiring them to have a transverse
momentum pT > 30GeV. We also demand any isolated leptons to have a transverse
momentum pT > 10GeV.

The selection of these events is then based on numerous criteria. For the two fat jets
in an event, one must contain at least one b-jet while the other must contain at least two
light jets and one b-jet. The events must also contain a minimum of one isolated lepton
and are required to have a scalar-summed transverse momentum of HT > 1TeV.

In the following, the analysis performed is exclusively based on the transverse momen-
tum of one b-jet (pT,b1) and the event’s missing energy (/ET). We show these observable’s
distributions in figure 3 and heatmaps in figure 4.

– 10 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

0 200 400 600 800
pSignalT,b1

[GeV]

0

200

400

600

800

/ E
S
ig
n
a
l

T
[G

eV
]

0

1

2

3

4

5

1/σ
d
σ
/d
/E
T
/d
p
T
,b

1
[1/2470

G
eV
−

2]

×10−6

(a)

0 200 400 600
pBackgroundT,b1

[GeV]

0

100

200

300

400

500

600

/ E
B
a
ck
g
ro
u
n
d

T
[G

eV
]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1/σ
d
σ
/d
/E
T
/d
p
T
,b

1
[1/1490

G
eV
−

2]
×10−5

(b)

Figure 4. Heatmaps of signal and background of the (a) pT of the hardest b-jet and the (b)
missing energy.

Our data x is normalised using min-max scaling such that xscaled ∈ [0, π]. This allows
our features to be encoded as an angle in a qubit rotation when we begin training. The
target labels are defined as −1 for the background set and 1 for the signal set.

5 Network performance

We are comparing three models: a classic neural network trained with standard gradient
descent (NN-GD), a VQC trained with standard gradient descent (VQC-GD) and a VQC
trained with our quantum gradient descent method (VQC-QGD) of section 3.2.

The VQC model consists of two qubits, corresponding to the two features pT,b1 and
/ET , and two layers. Each layer has a rotation gate for each qubit followed by two CNOT
gates. We implement this model, depicted in figure 2, using PennyLane [52] and train it
for 30 epochs with a batch size of 32 events and an initial learning rate of η = 0.01. During
training, for all models, we reduce the learning rate value whenever the loss plateaus.
However, learning rate reduction, in this instance, appears to have little effect on the
performance of the network during training. The networks poor capacity to discriminate
signal from background is reflective of the similarity between the two. Figure 4 shows
the probability density for the events to populate areas in the feature space (pT , /ET).
The similarity between signal and background prevents the networks to benefit from a
continuous learning rate reduction, for classical NNs and our hybrid method alike.

We anticipate that a significant advantage of the variational quantum classifier lies
in its smaller network structure, which allows to employ computationally more expensive
optimisation algorithms, as detailed in section 3, giving in turn rise to a faster learning
rate. Such a method would be particularly advantageous in cases where one has to train
directly on a limited amount of data, e.g. rare decays or processes with small production
cross section.

– 11 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

Device Accuracy (%)
PennyLane default.qubit 72.6
ibmq_qasm_simulator 72.6
ibmqx2 71.4

Table 1. Test set results from model trained with quantum gradient descent sent to PennyLanes
in-built simulator, IBM Q simulator and IBM Q Yorktown (ibmqx2).

Thus, to compare the network’s ability to learn quickly, we limit ourselves to a total
of 2500 events for the signal and background samples respectively. We impose a 60-20-
20 split between training-validation-test sets, i.e. we train on 1500 events. To get an
understanding of the effect the size of training samples have on the model performance, we
train a second set of models using only 500 events each. While we carry out the training on
the PennyLane’s inbuilt simulator throughout, we test their performance on the PennyLane
simulator, the IBM Q simulator5 and IBM Q Yorktown.6 Accessing the IBM hardware was
done through PennyLane’s Qiskit plugin [62, 63]. For all backends, in training and testing,
we use a total of 8192 shots.

To provide a baseline we trained a classical neural network with a vanilla gradient
descent optimiser. To provide a fair and instructive comparison the network has been
constructed to have a similar number of trainable parameters as the variational classifier
model. The network consists of one hidden layer with 3 nodes and a ReLu activation
function. The rest of the hyperparameters match what was used to train the variational
classifier. To implement the network we used Keras [64] with a TensorFlow backend [65].

We found that training a classical network of this size was unstable, sometimes resulting
in the loss plateauing around 1 and being unable to classify the samples. To account for
the instability we saw during training of the classifier we ran each model 15 times. The
results presented in figure 5 show the average loss from these runs, for each model. We see,
from figure 5, optimisation using the quantum gradient leads to a faster convergence than
using the traditional gradient descent optimisation and the classical neural network.

Out of each of the three sets of 15 trained models, one was chosen that had a loss
value that had converged to a point during training that was similar to the average. These
models where used for testing. Figure 6 shows the ROC curve for the chosen VQC-QGC,
VQC-GD and NN-GD models. Table 1 shows the performance of the quantum gradient
descent method when the test data is applied to it. We see that the model, trained on the
simulator, still performs well on the real hardware. In figure 6 we see an example of the
variational classifier output before the decision boundary is applied and the ROC curve for
each model.

532-qubit backend: IBM Q team, “IBM Q simulator backend specification V0.1.547,” (2020). Retrieved
from https://quantum-computing.ibm.com.

65-qubit backend: IBM Q team, “IBM Q 5 Yorktown (ibmqx2) backend specification V2.1.0,” (2020).
Retrieved from https://quantum-computing.ibm.com.

– 12 –

https://quantum-computing.ibm.com
https://quantum-computing.ibm.com

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

1 11 21 30
Epoch

0.8

0.9

1.0

1.1

1.2

1.3

T
ra

in
in

g
L

os
s

NN− GD

VQC− GD

VQC− QGD

(a)

1 11 21 30
Epoch

0.8

0.9

1.0

1.1

1.2

1.3

T
ra

in
in

g
L

os
s

NN− GD

VQC− GD

VQC− QGD

(b)

Figure 5. Comparison of the averaged training history for 15 runs of the QVC models trained with
quantum gradient descent, QVC models trained using vanilla gradient descent and the classical NN
models. Figure (a) show models trained with 1500 samples and figure (b) shows models trained
with 500 samples.

−1.0 −0.5 0.0 0.5 1.0
Classifier Output

0

0.5

1.0

1.5

N
or

m
al

is
ed

N
u

m
b

er
of

E
ve

nt
s

Background

Signal

(a)

0 0.2 0.4 0.6 0.8 1.0
Background Rejection

0

0.2

0.4

0.6

0.8

1.0

S
ig

n
al

E
ffi

ci
en

cy

VQC−QGD AUC = 0.794

VQC−GD AUC = 0.773

NN−GD AUC = 0.738

(b)

Figure 6. (a) Output of a QVC model trained with quantum gradient descent and (b) ROC
curve for a QVC model trained with quantum gradient descent, a QVC model trained with vanilla
gradient descent and the classical NN.

– 13 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

6 Conclusions

One of the tasks with paramount importance for searches of new physics at collider ex-
periments is the design of methods to distinguish rare signal events from large Standard
Model backgrounds. In recent years increasing effort was dedicated to developing novel
machine learning methods to help find correlations in high-dimensional parameter spaces.
Harnessing the advantages found in quantum computing and combining them with classi-
cal neural networks to form a hybrid approach would provide another way to continue the
improvement of these algorithms, possibly already accessible on near-term devices.

Quantum machine learning is an emergent research field that aims to apply these
benefits to machine learning. To explore the potential quantum advantage that could come
along with quantum machine learning we propose a novel hybrid neural network, based on
a variational quantum classifier. Variational quantum classifier models are in many ways
analogous classical neural networks. An advantage that a VQC classifier provides over
a classical neural network is its small model size. The model proposed uses a quantum
algorithm equivalent of natural gradient descent. Typically, due to the need to invert large
matrices, natural gradient descent is computationally prohibitive on deep neural networks.
However, thanks to the model-size advantage of the VQC we can make use of quantum
gradient descent to optimise our network.

Thus, we combine the use of quantum gradient descent to optimise the quantum gate
parameters in the model while using classical gradient descent to optimise the classical
bias term. This model was used to perform a Z ′ resonance search. We compared the
performance against a purely classical neural network and a VQC optimised with standard
gradient descent. The hybrid approach proved successful in maximising the learning out-
come. The hybrid approach learns faster than an equivalent classical neural network or
the classically trained VQC. Even on small data samples the hybrid VQC still retains a
high classification ability. While we applied this methodology to generated data we believe
this approach can prove useful in data-driven classification problems where there is a small
amount of data available.

Acknowledgments

We acknowledge use of the IBM Q for this work. We thank Steve Abel for helpful
discussions. We acknowledge funding from the STFC under grant ST/P001246/1 and
ST/T001011/1.

A The Fubini-Study metric and the Quantum Geometric Tensor

Geometric quantum mechanics states that the traits of a quantum system can be described
by geometric features on a complex projective space. In this space, there is an invariant
metric tensor, the Fubini-Study tensor (FST), that can be used to describe distances be-
tween quantum states [66–68]. The FST can be found by taking the real part of the
Quantum Geometric Tensor (QGT).

– 14 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

We will give a general introduction to this tensor, before briefly discussing how it can
be approximated on real hardware and how it relates to our VQC. We will construct the
QGT by investigating the distance between the two states |ψ0(θ)〉 and |ψ0(θ + dθ)〉, where
ψ is a general wave function state. We can write the probability to excite the parameter
from θ to θ + dθ as

ds2 ≡ 1− |〈ψ0(θ)|ψ0(θ + dθ)〉|2 . (A.1)

The amplitude of a state being excited from |ψ0(θ)〉 to |ψn(θ)〉 can be written as

an = 〈ψn(θ + dθ)|ψ0(θ)〉 , (A.2)

whereas the probability for a transition between states to occur can be found by evaluating

ds2 =
∑
n 6=0

∣∣∣a2
n

∣∣∣ = dθidθjGij +O(|dθ|3) , (A.3)

where Gij is the Quantum Geometric Tensor, defined as

Gij = 〈∂iψ0|∂jψ0〉 − 〈∂iψ0|ψ0〉 〈ψ0|∂jψ0〉 . (A.4)

This tensor therefore signifies the distance between the two quantum states [69]. The
Fubini-Study metric is the real part of this tensor, gij(θ) = Re[Gij(θ)]. We can view
the Fubini-Study metric as a distance measure between the wave functions, or transition
probability between the states [67].

Consequently, Gij can be calculated on quantum hardware [18]. We consider a vari-
ational circuit where each layer l is parametrised by θl and includes gates U(θl). These
gates U and their functional relation to the Hermitian generator matrix V are described in
section 2.2 and eq. (3.2), resulting in the relations

∂iUl(θl) = −iViUl(θl) ,
∂jUl(θl) = −iVjUl(θl) , (A.5)

where Vi and Vj are Hermitian generator matrices. From eq. (A.5) we can find

〈∂iψθ|∂jψθ〉 = 〈ψl|ViVj |ψl〉 , (A.6)
i 〈ψθ|∂jψθ〉 = 〈ψl|Vj |ψl〉 . (A.7)

By considering both (A.6) and (A.7) a representation of the Quantum Geometric
Tensor can be formed for a block of parameters that exist in layer l

Glij = 〈ψl|ViVj |ψl〉 − 〈ψl|Vi|ψl〉 〈ψl|Vj |ψl〉 . (A.8)

The quantum states ψl can be determined experimentally from the variational quantum
classifier. Importantly, this approximation of the QGT also allows to find the Fubini-Study
metric by taking the real part, such that glij = Re[Glij]. To calculate the inverse, we use
the Moore-Penrose pseudo inverse

g+ = (gT g)−1gT . (A.9)

This method allows to finding an inverse matrix even if the matrix cannot be inverted, as
shown in eq. (A.9). In cases where the matrix is invertible the matrix pseudo inverse and
matrix inverse are identical.

– 15 –

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] D. Silver et al., Mastering the game of go without human knowledge, Nature 550 (2017) 354.

[2] D. Silver et al., A general reinforcement learning algorithm that masters chess, shogi, and go
through self-play, Science 362 (2018) 1140.

[3] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image
recognition, arXiv:1409.1556.

[4] A. Butter et al., The Machine Learning Landscape of Top Taggers, SciPost Phys. 7 (2019)
014 [arXiv:1902.09914] [INSPIRE].

[5] I. Sutskever, O. Vinyals and Q. Le, Sequence to sequence learning with neural networks, Adv.
Neural Inf. Process. Syst. 4 (2014).

[6] I.J. Goodfellow et al., Generative Adversarial Networks, arXiv:1406.2661 [INSPIRE].

[7] M.L. Piscopo, M. Spannowsky and P. Waite, Solving differential equations with neural
networks: Applications to the calculation of cosmological phase transitions, Phys. Rev. D 100
(2019) 016002 [arXiv:1902.05563] [INSPIRE].

[8] E. Farhi and H. Neven, Classification with quantum neural networks on near term processors,
arXiv:1802.06002.

[9] N. Killoran, T.R. Bromley, J.M. Arrazola, M. Schuld, N. Quesada and S. Lloyd,
Continuous-variable quantum neural networks, Phys. Rev. Res. 1 (2019) 033063.

[10] M. Schuld, A. Bocharov, K.M. Svore and N. Wiebe, Circuit-centric quantum classifiers,
Phys. Rev. A 101 (2020) 032308.

[11] J.R. McClean, J. Romero, R. Babbush and A. Aspuru-Guzik, The theory of variational
hybrid quantum-classical algorithms, New J. Phys. 18 (2016) 023023.

[12] A. Mari, T.R. Bromley, J. Izaac, M. Schuld and N. Killoran, Transfer learning in hybrid
classical-quantum neural networks, arXiv:1912.08278.

[13] A. Peruzzo et al., A variational eigenvalue solver on a photonic quantum processor, Nat.
Commun. 5 (2014) .

[14] E. Farhi, J. Goldstone and S. Gutmann, A quantum approximate optimization algorithm,
arXiv:1411.4028.

[15] H. Neven, V. Denchev, M. Drew-Brook, J. Zhang and W. Macready, Nips 2009
demonstration: Binary classification using hardware implementation of quantum annealing.

[16] E. Farhi, J. Goldstone, S. Gutmann and M. Sipser, Quantum computation by adiabatic
evolution, quant-ph/0001106.

[17] Y. Aharonov, L. Davidovich and N. Zagury, Quantum random walks, Phys. Rev. A 48 (1993)
1687.

[18] J. Stokes, J. Izaac, N. Killoran and G. Carleo, Quantum natural gradient, Quantum 4 (2020)
269.

– 16 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nature24270
https://doi.org/10.1126/science.aar6404
https://arxiv.org/abs/1409.1556
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://arxiv.org/abs/1902.09914
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.09914
https://arxiv.org/abs/1406.2661
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.2661
https://doi.org/10.1103/PhysRevD.100.016002
https://doi.org/10.1103/PhysRevD.100.016002
https://arxiv.org/abs/1902.05563
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.05563
https://arxiv.org/abs/1802.06002
https://doi.org/10.1103/physrevresearch.1.033063
https://doi.org/10.1103/physreva.101.032308
https://doi.org/10.1088/1367-2630/18/2/023023
https://arxiv.org/abs/1912.08278
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.22331/q-2020-05-25-269
https://doi.org/10.22331/q-2020-05-25-269

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

[19] S. Abel, N. Chancellor and M. Spannowsky, Quantum computing for quantum tunneling,
Phys. Rev. D 103 (2021) 016008 [arXiv:2003.07374] [INSPIRE].

[20] S. Abel and M. Spannowsky, Observing the fate of the false vacuum with a quantum
laboratory, arXiv:2006.06003 [INSPIRE].

[21] A. Mott, J. Job, J.R. Vlimant, D. Lidar and M. Spiropulu, Solving a Higgs optimization
problem with quantum annealing for machine learning, Nature 550 (2017) 375 [INSPIRE].

[22] S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Computation of Scattering in Scalar
Quantum Field Theories, Quant. Inf. Comput. 14 (2014) 1014 [arXiv:1112.4833] [INSPIRE].

[23] L. García-Álvarez et al., Fermion-Fermion Scattering in Quantum Field Theory with
Superconducting Circuits, Phys. Rev. Lett. 114 (2015) 070502 [arXiv:1404.2868] [INSPIRE].

[24] S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Algorithms for Fermionic Quantum Field
Theories, arXiv:1404.7115 [INSPIRE].

[25] S.P. Jordan, H. Krovi, K.S.M. Lee and J. Preskill, BQP-completeness of Scattering in Scalar
Quantum Field Theory, Quantum 2 (2018) 44 [arXiv:1703.00454] [INSPIRE].

[26] J. Preskill, Simulating quantum field theory with a quantum computer, PoS LATTICE2018
(2018) 024 [arXiv:1811.10085] [INSPIRE].

[27] C.W. Bauer, W.A. de Jong, B. Nachman and D. Provasoli, Quantum Algorithm for High
Energy Physics Simulations, Phys. Rev. Lett. 126 (2021) 062001 [arXiv:1904.03196]
[INSPIRE].

[28] A.H. Moosavian, J.R. Garrison and S.P. Jordan, Site-by-site quantum state preparation
algorithm for preparing vacua of fermionic lattice field theories, arXiv:1911.03505
[INSPIRE].

[29] NuQS collaboration, σ Models on Quantum Computers, Phys. Rev. Lett. 123 (2019) 090501
[arXiv:1903.06577] [INSPIRE].

[30] NuQS collaboration, Gluon Field Digitization for Quantum Computers, Phys. Rev. D 100
(2019) 114501 [arXiv:1906.11213] [INSPIRE].

[31] NuQS collaboration, Parton physics on a quantum computer, Phys. Rev. Res. 2 (2020)
013272 [arXiv:1908.10439] [INSPIRE].

[32] NuQS collaboration, Suppressing Coherent Gauge Drift in Quantum Simulations,
arXiv:2005.12688 [INSPIRE].

[33] I. Márquez-Mártin, P. Arnault, G. Di Molfetta and A. Pérez, Electromagnetic lattice gauge
invariance in two-dimensional discrete-time quantum walks, Phys. Rev. A 98 (2018) 032333
[arXiv:1808.04488] [INSPIRE].

[34] P. Arrighi, G. Di Molfetta, I. Márquez-Martín and A. Pérez, Dirac equation as a quantum
walk over the honeycomb and triangular lattices, Phys. Rev. A 97 (2018) 062111
[arXiv:1803.01015] [INSPIRE].

[35] G. Jay, F. Debbasch and J.B. Wang, Dirac quantum walks on triangular and honeycomb
lattices, Phys. Rev. A 99 (2019) 032113 [arXiv:1803.01304] [INSPIRE].

[36] G. Di Molfetta and P. Arrighi, A quantum walk with both a continuous-time and a
continuous-spacetime limit, arXiv:1906.04483 [INSPIRE].

[37] H. Lamm and S. Lawrence, Simulation of Nonequilibrium Dynamics on a Quantum
Computer, Phys. Rev. Lett. 121 (2018) 170501 [arXiv:1806.06649] [INSPIRE].

– 17 –

https://doi.org/10.1103/PhysRevD.103.016008
https://arxiv.org/abs/2003.07374
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.07374
https://arxiv.org/abs/2006.06003
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.06003
https://doi.org/10.1038/nature24047
https://inspirehep.net/search?p=find+J%20%22Nature%2C550%2C375%22
https://arxiv.org/abs/1112.4833
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.4833
https://doi.org/10.1103/PhysRevLett.114.070502
https://arxiv.org/abs/1404.2868
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.2868
https://arxiv.org/abs/1404.7115
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.7115
https://doi.org/10.22331/q-2018-01-08-44
https://arxiv.org/abs/1703.00454
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.00454
https://doi.org/10.22323/1.334.0024
https://doi.org/10.22323/1.334.0024
https://arxiv.org/abs/1811.10085
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.10085
https://doi.org/10.1103/PhysRevLett.126.062001
https://arxiv.org/abs/1904.03196
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.03196
https://arxiv.org/abs/1911.03505
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.03505
https://doi.org/10.1103/PhysRevLett.123.090501
https://arxiv.org/abs/1903.06577
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.06577
https://doi.org/10.1103/PhysRevD.100.114501
https://doi.org/10.1103/PhysRevD.100.114501
https://arxiv.org/abs/1906.11213
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.11213
https://doi.org/10.1103/PhysRevResearch.2.013272
https://doi.org/10.1103/PhysRevResearch.2.013272
https://arxiv.org/abs/1908.10439
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.10439
https://arxiv.org/abs/2005.12688
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12688
https://doi.org/10.1103/PhysRevA.98.032333
https://arxiv.org/abs/1808.04488
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.04488
https://doi.org/10.1103/PhysRevA.97.062111
https://arxiv.org/abs/1803.01015
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.01015
https://doi.org/10.1103/PhysRevA.99.032113
https://arxiv.org/abs/1803.01304
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.01304
https://arxiv.org/abs/1906.04483
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.04483
https://doi.org/10.1103/PhysRevLett.121.170501
https://arxiv.org/abs/1806.06649
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.06649

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

[38] NuQS collaboration, Quantum Simulation of Field Theories Without State Preparation,
arXiv:2001.11490 [INSPIRE].

[39] A.Y. Wei, P. Naik, A.W. Harrow and J. Thaler, Quantum Algorithms for Jet Clustering,
Phys. Rev. D 101 (2020) 094015 [arXiv:1908.08949] [INSPIRE].

[40] K.T. Matchev, P. Shyamsundar and J. Smolinsky, A quantum algorithm for model
independent searches for new physics, arXiv:2003.02181 [INSPIRE].

[41] CMS collaboration, Search for Anomalous tt̄ Production in the Highly-Boosted All-Hadronic
Final State, JHEP 09 (2012) 029 [Erratum ibid. 03 (2014) 132] [arXiv:1204.2488]
[INSPIRE].

[42] ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using
lepton-plus-jets events in proton-proton collisions at

√
s = 13 TeV with the ATLAS detector,

Eur. Phys. J. C 78 (2018) 565 [arXiv:1804.10823] [INSPIRE].

[43] ATLAS collaboration, Search for heavy particles decaying into a top-quark pair in the fully
hadronic final state in pp collisions at

√
s = 13TeV with the ATLAS detector, Phys. Rev. D

99 (2019) 092004 [arXiv:1902.10077] [INSPIRE].

[44] R. LaRose and B. Coyle, Robust data encodings for quantum classifiers, arXiv:2003.01695.

[45] A. Macaluso and Others, A variational algorithm for quantum neural networks, in
Computational Science — ICCS 2020, (Cham), Springer International Publishing (2020),
pp. 591–604.

[46] K. Mitarai, M. Negoro, M. Kitagawa and K. Fujii, Quantum circuit learning, Phys. Rev. A
98 (2018) 032309.

[47] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac and N. Killoran, Evaluating analytic gradients
on quantum hardware, Phys. Rev. A 99 (2019) 032331.

[48] B. Neyshabur, R. Salakhutdinov and N. Srebro, Path-sgd: Path-normalized optimization in
deep neural networks, arXiv:1506.02617.

[49] A. Harrow and J. Napp, Low-depth gradient measurements can improve convergence in
variational hybrid quantum-classical algorithms, arXiv:1901.05374.

[50] S.-i. Amari, Natural gradient works efficiently in learning, Neural Comput. 10 (1998) 251.

[51] S. ichi Amari, R. Karakida and M. Oizumi, Fisher information and natural gradient learning
of random deep networks, arXiv:1808.07172.

[52] V. Bergholm et al., Pennylane: Automatic differentiation of hybrid quantum-classical
computations, arXiv:1811.04968.

[53] G. Altarelli, B. Mele and M. Ruiz-Altaba, Searching for New Heavy Vector Bosons in pp̄
Colliders, Z. Phys. C 45 (1989) 109 [Erratum ibid. 47 (1990) 676] [INSPIRE].

[54] A. Blance, M. Spannowsky and P. Waite, Adversarially-trained autoencoders for robust
unsupervised new physics searches, JHEP 10 (2019) 047 [arXiv:1905.10384] [INSPIRE].

[55] J. Alwall et al., The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014)
079 [arXiv:1405.0301] [INSPIRE].

[56] Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms,
JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

– 18 –

https://arxiv.org/abs/2001.11490
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.11490
https://doi.org/10.1103/PhysRevD.101.094015
https://arxiv.org/abs/1908.08949
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.08949
https://arxiv.org/abs/2003.02181
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.02181
https://doi.org/10.1007/JHEP09(2012)029
https://arxiv.org/abs/1204.2488
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.2488
https://doi.org/10.1140/epjc/s10052-018-5995-6
https://arxiv.org/abs/1804.10823
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.10823
https://doi.org/10.1103/PhysRevD.99.092004
https://doi.org/10.1103/PhysRevD.99.092004
https://arxiv.org/abs/1902.10077
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.10077
https://arxiv.org/abs/2003.01695
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1103/physreva.99.032331
https://arxiv.org/abs/1506.02617
https://arxiv.org/abs/1901.05374
https://doi.org/10.1162/089976698300017746
https://arxiv.org/abs/1808.07172
https://arxiv.org/abs/1811.04968
https://doi.org/10.1007/BF01556677
https://inspirehep.net/search?p=find+J%20%22Z.Phys.%2CC45%2C109%22
https://doi.org/10.1007/JHEP10(2019)047
https://arxiv.org/abs/1905.10384
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.10384
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.0301
https://doi.org/10.1088/1126-6708/1997/08/001
https://arxiv.org/abs/hep-ph/9707323
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9707323

J
H
E
P
0
2
(
2
0
2
1
)
2
1
2

[57] T. Plehn and M. Spannowsky, Top Tagging, J. Phys. G 39 (2012) 083001
[arXiv:1112.4441] [INSPIRE].

[58] T. Plehn, M. Spannowsky and M. Takeuchi, How to Improve Top Tagging, Phys. Rev. D 85
(2012) 034029 [arXiv:1111.5034] [INSPIRE].

[59] D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev.
D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].

[60] D.E. Soper and M. Spannowsky, Finding physics signals with event deconstruction, Phys.
Rev. D 89 (2014) 094005 [arXiv:1402.1189] [INSPIRE].

[61] M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012)
1896 [arXiv:1111.6097] [INSPIRE].

[62] D.C. McKay et al., Qiskit backend specifications for openqasm and openpulse experiments,
arXiv:1809.03452.

[63] H. Abraham et al., Qiskit: An open-source framework for quantum computing, (2019), DOI.

[64] F. Chollet et al., Keras, https://keras.io, (2015).

[65] M. Abadi et al., Tensorflow: Large-scale machine learning on heterogeneous distributed
systems, arXiv:1603.04467.

[66] T.W.B. Kibble, Geometrization of Quantum Mechanics, Commun. Math. Phys. 65 (1979)
189 [INSPIRE].

[67] D.C. Brody and L.P. Hughston, Geometric quantum mechanics, J. Geom. Phys. 38 (2001) 19
[quant-ph/9906086] [INSPIRE].

[68] R. Cheng, Quantum geometric tensor (fubini-study metric) in simple quantum system: A
pedagogical introduction, arXiv:1012.1337.

[69] M. Kolodrubetz, D. Sels, P. Mehta and A. Polkovnikov, Geometry and non-adiabatic
response in quantum and classical systems, Phys. Rept. 697 (2017) 1.

– 19 –

https://doi.org/10.1088/0954-3899/39/8/083001
https://arxiv.org/abs/1112.4441
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.4441
https://doi.org/10.1103/PhysRevD.85.034029
https://doi.org/10.1103/PhysRevD.85.034029
https://arxiv.org/abs/1111.5034
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.5034
https://doi.org/10.1103/PhysRevD.87.054012
https://doi.org/10.1103/PhysRevD.87.054012
https://arxiv.org/abs/1211.3140
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.3140
https://doi.org/10.1103/PhysRevD.89.094005
https://doi.org/10.1103/PhysRevD.89.094005
https://arxiv.org/abs/1402.1189
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.1189
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.6097
https://arxiv.org/abs/1809.03452
https://doi.org/arXiv:1809.03452
https://keras.io
https://arxiv.org/abs/1603.04467
https://doi.org/10.1007/BF01225149
https://doi.org/10.1007/BF01225149
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C65%2C189%22
https://doi.org/10.1016/S0393-0440(00)00052-8
https://arxiv.org/abs/quant-ph/9906086
https://inspirehep.net/search?p=find+J%20%22J.Geom.Phys.%2C38%2C19%22
https://arxiv.org/abs/1012.1337
https://doi.org/10.1016/j.physrep.2017.07.001

	Introduction
	Structure of a Variational quantum classifier
	State preparation
	Model circuit
	Measurement and postprocessing

	Optimisation
	Backpropagation
	From gradient descent to quantum gradient descent

	Analysis setup
	Network performance
	Conclusions
	The Fubini-Study metric and the Quantum Geometric Tensor

