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Abstract

Graph coloring is one of the most famous computational problems with applications in a wide
range of areas such as planning and scheduling, resource allocation, and pattern matching. So far
coloring problems are mostly studied on static graphs, which often stand in contrast to practice
where data is inherently dynamic. A temporal graph has an edge set that changes over time. We
present a natural temporal extension of the classical graph coloring problem. Given a temporal
graph and integers k and ∆, we ask for a coloring sequence with at most k colors for each vertex
such that in every time window of ∆ consecutive time steps, in which an edge is present, this edge
is properly colored at least once. We thoroughly investigate the computational complexity of this
temporal coloring problem. More specifically, we prove strong computational hardness results,
complemented by efficient exact and approximation algorithms.

Keywords: Time-varying Graph, Link Stream, NP-hardness, Parameterized Complexity, Fixed-
Parameter Tractability, Channel Assignment.

1 Introduction

A great variety of modern, as well as of traditional networks are dynamic in nature as their link availability
changes over time. Just a few indicative examples of such inherently dynamic networks are information
and communication networks, social networks, transportation networks, and several physical systems [29,
41]. All these application areas share the common characteristic that the network structure, i.e. the
underlying graph topology, is subject to discrete changes over time. In this paper, embarking from the
foundational work of Kempe et al. [33], we adopt a simple and natural model for time-varying networks,
given by a graph with time-labels on its edges, while the vertex set is fixed.

Definition 1.1 (Temporal Graph). A temporal graph is a pair G = (G,λ), where G = (V,E) is an
underlying (static) graph and λ : E → 2N \ {∅} is a time-labeling function which assigns to every edge
of G a set of discrete-time labels.

For every edge e ∈ E in the underlying graph G of a temporal graph (G,λ), we get that λ(e) denotes
the set of time slots at which e is active. Note that, to avoid trivial cases, we demand in Definition 1.1
that λ(e) 6= ∅ for every edge e. Due to their relevance and applicability in many areas, temporal graphs
have been studied from various perspectives and under different names such as time-varying [20, 43, 1],
dynamic [26, 12], evolving [8, 19, 15], and graphs over time [35]. For a comprehensive overview on
the existing models and results on temporal graphs from a (distributed) computing perspective see the
surveys [39, 34, 12, 10, 11].

The conceptual shift from static to temporal graphs imposes new challenges in algorithmic compu-
tation and complexity. Now the classical computational problems have to be appropriately redefined in
the temporal setting in order to properly capture the notion of time. Motivated by the fact that, due to
causality, information in temporal graphs can “flow” only along sequences of edges whose time-labels are
increasing, most temporal graph parameters and optimization problems that have been studied so far
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are based on the notion of temporal paths and other “path-related” notions, such as temporal analogues
of distance, reachability, separators, diameter, exploration, and centrality [2, 18, 36, 40, 3, 17, 48, 21, 13].

Recently only few attempts have been made to define and study “non-path” temporal graph problems.
Motivated by the contact patterns among high-school students, Viard et al. [45], introduced ∆-cliques,
an extension of the concept of cliques to temporal graphs (see also [28, 6]). Chen et al. [14] presented an
extension of the cluster editing problem to temporal graphs. Furthermore, Akrida et al. [4] introduced
the notion of temporal vertex cover, motivated by applications of covering problems in transportation and
sensor networks. Temporal extensions of the classical graph coloring problem have also been previously
studied by Yu et al. [47] (see also [25]) in the context of channel assignment in mobile wireless networks. In
this problem, every edge has to be properly colored in every snapshot of the input temporal graph (G,λ),
while the goal is to minimize some linear combination of the total number of colors used and the number
of color re-assignments on the vertices [47]. In this temporal coloring approach, the notion of time is
only captured by the fact that the number of re-assignments affects the value of the target objective
function, while the fundamental solution concept remains the same as in static graph coloring; that
is, every individual (static) snapshot has to be properly colored. Using this, Yu et al. [47] presented
generic methods to adapt known algorithms and heuristics from static graph coloring to deal with their
new objective function. Other temporal extensions of the classical vertex and edge coloring problems
have been recently studied by Vizing [46]. Vizing considered only temporal graphs of lifetime two, and
in his problems every object to color (vertex or edge) has to be colored in exactly one of the snapshots
of the input temporal graph in such a way that any two objects that are assigned the same color in
the same snapshot are not adjacent in this snapshot. The goal of the problems is to minimize the total
number of used colors.

In this paper we introduce and rigorously study a different, yet natural temporal extension of the
classical graph coloring problem, called Sliding Window Temporal Coloring (for short, SW-
Temporal Coloring). In SW-Temporal Coloring the input is a temporal graph (G,λ) and two
natural numbers ∆ and k. At every time slot t, every vertex has to be assigned one color, under the
following constraint: Every edge e has to be properly colored at least once during every time window
of ∆ consecutive time slots, in which e appears at least once, and this must happen at a time slot t in
this window when e is active. Now the question is whether there exists such a temporal coloring over
the whole lifetime of the input temporal graph that uses at most k colors. In contrast to the model
of Yu et al. [47], the solution concept in SW-Temporal Coloring is fundamentally different to that
of static graph coloring as it takes into account the inherent dynamic nature of the network. Indeed,
even to verify whether a given solution is feasible, it is not sufficient to just consider every snapshot
independently.

Our temporal extension of the static graph coloring problem is motivated by applications in mobile
sensor networks and in planning. Consider the following scenario: every mobile agent broadcasts infor-
mation over a specific communication channel while it listens on all other channels. Thus, whenever two
mobile agents are sufficiently close, they can exchange information only if they broadcast on different
channels. We assume that agents can switch channels at any time. To ensure a high degree of information
exchange, it makes sense to find a schedule of assigning broadcasting channels to the agents over time
which minimizes the number of necessary channels, while allowing each pair of agents to communicate
at least once within every small time window in which they are close to each other.

To further motivate the questions raised in this work, imagine an organization which, in order to
ensure compliance with the national laws and the institutional policies, requires its employees to reg-
ularly undertake special training that is relevant to their role within the organization. Such training
requirements can be naturally grouped within training “themes”, concerning –for example– the General
Data Protection Regulation (GDPR) of the EU for staff dealing with personal data or equality and di-
versity issues when hiring new employees for Human Resources staff, etc). One reasonable organizational
requirement for such a regular staff training is that every employee has to undertake all needed pieces
of training at least once within every time-window of a specific length ∆ (e.g. ∆ = 12 months). All
training sessions are offered by experts in predefined “training periods” (e.g. annually every January,
May, and September), while each session takes a fixed amount of time to run (e.g. a full day during the
corresponding training period). This situation can be naturally modeled as a temporal graph problem:
(i) each time slot t represents a predefined “training period”; (ii) each vertex v denotes one of the themes
that are offered for training by the organization; (iii) the different colors that a vertex v can take at
time slot t represent all different days in which the theme v can be taught during the training period t;
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(iv) an edge {u, v} that is active at the time slot t means that the themes u and v share at least one
participant at the corresponding training period. Note that, since the training needs of specific staff
members change over time, an edge between two themes u and v may repeatedly appear and disappear
over time, and thus the above graph is temporal. If a participant is planned to undertake training on
both themes u, v at the same time slot t, then these themes have to run at different days of the time
slot t, i.e. u and v have to be assigned different colors at time t. In such a situation, it is natural for the
organization to try to schedule all training sessions in such a way that the total duration (i.e. number of
different colors) of every training period t never exceeds k different days, while simultaneously meeting
all regular training requirements.

1.1 Our Contribution

In this paper we introduce the problem Sliding Window Temporal Coloring (for short, SW-
Temporal Coloring) and we present a thorough investigation of its computational complexity. All
our notation and the formal definition of the temporal problems that we study are presented in Section 2.
First we investigate in Section 3 an interesting special case of SW-Temporal Coloring, called Tem-
poral Coloring, where the length ∆ of the sliding time window is equal to the whole lifetime T of
the input temporal graph. We start by proving in Theorem 3.1 that Temporal Coloring is NP-hard
even for k = 2, and even when every time slot consists of one clique and isolated vertices. This is in wide
contrast to the static coloring problem, where it can be decided in linear time whether a given (static)
graph G is 2-colorable, i.e. whether G is bipartite. On the positive side, we show in Theorem 3.4 that,
given any input temporal graph (G,λ) for Temporal Coloring with n vertices and lifetime T , we can
compute an equivalent instance (G′, λ′) on the same vertices but with lifetime T ′ ≤ m, where m is the
number of edges in the underlying graph G. Moreover we show that the new instance can be computed
in polynomial time. Formally, Theorem 3.4 shows that Temporal Coloring admits a polynomial
kernel when parameterized by the number n of vertices of the input temporal graph. That is, we can
efficiently preprocess any instance of Temporal Coloring to obtain an equivalent instance whose size
only depends polynomially on the size of the underlying graph G and not on the lifetime T of (G,λ).

In Section 4 and in the remainder of the paper we deal with the general version of SW-Temporal
Coloring, where the value of ∆ is arbitrary. On the one hand, we show that the problem is hard
even on very restricted special classes of input temporal graphs. On the other hand, assuming the
Exponential Time Hypothesis (ETH), we give an asymptotically optimal exponential-time algorithm
for SW-Temporal Coloring whenever ∆ is constant. Moreover we show how to extend it to get
an algorithm which runs in linear time if the number n of vertices is constant. Note here that the
size of the input temporal graph also depends on its lifetime T whose value can still be arbitrarily
large, independently of n. Furthermore note that this assumption about n being a constant can be also
reasonable in practical situations; for example, in our motivation above about planning the training of
staff in an organization, the value of n equals the number of different “training themes” to be run, which
can be expected to be rather small.

Finally we consider in Section 4 an optimization variant of SW-Temporal Coloring where the
number of colors is to be minimized. We give an approximation algorithm with an additive error of 1
which runs in linear time on instances where the underlying graph G of the input temporal graph (G,λ)
has a constant-size vertex cover. From a classification standpoint this is also optimal since the problem
remains NP-hard to solve optimally on temporal graphs where the underlying graph has a constant-size
vertex cover.

2 Preliminaries and Notation

Given a (static) graph G, we denote by V (G) and E(G) the sets of its vertices and edges, respectively.
An edge between two vertices u and v of G is denoted by {u, v}, and in this case u and v are said to
be adjacent in G. A complete graph is a graph where every pair of vertices is adjacent. For simplicity
of presentation we may refer to a complete graph also as a clique. The complete graph on n vertices is
denoted by Kn. For every i, j ∈ N, where i ≤ j, we let [i, j] = {i, i+1, . . . , j} and [j] = [1, j]. Throughout
the paper we consider temporal graphs with finite lifetime T , that is, there is a maximum label assigned
by λ to an edge of G, called the lifetime of (G,λ); it is denoted by T (G,λ), or simply by T when no
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confusion arises. Formally, T (G,λ) = max{t ∈ λ(e) : e ∈ E}. We refer to each integer t ∈ [T ] as a time
slot of (G,λ). The instance (or snapshot) of (G,λ) at time t is the static graph Gt = (V,Et), where
Et = {e ∈ E : t ∈ λ(e)}. If Et = ∅, we call Gt = (V,Et) a trivial snapshot. For every subset S ⊆ [T ]
of time slots, we denote by E[S] =

⋃
i∈S Ei the union of all edges appearing in at least one of the time

slots in the set S. Furthermore, we denote by (G,λ)|S the restriction of (G,λ) to the time slots in S. In
particular, for the case where S = [i, j] for some i, j ∈ [T ], where i ≤ j, we have that (G,λ)|[i,j] is the
sequence of the instances Gi, Gi+1, . . . , Gj . We assume in the remainder of the paper that every edge of

G appears in at least one time slot until T , namely
⋃T
t=1Et = E.

In the remainder of the paper we denote by n = |V | and m = |E| the number of vertices and edges of
the underlying graph G, respectively, unless otherwise stated. Furthermore, unless otherwise stated, we
assume that the labeling λ is arbitrary, i.e. (G,λ) is given with an explicit list of labels for every edge.

That is, the size of the input temporal graph (G,λ) is O
(
|V |+

∑T
t=1 |Et|

)
= O(n + mT ). In other

cases, where λ is more restricted, e.g. if λ is periodic or follows another specific temporal pattern, there
may exist more succinct representations of the input temporal graph.

For every v ∈ V and every time slot t, we denote the appearance of vertex v at time t by the pair (v, t).
That is, every vertex v has T different appearances (one for each time slot) during the lifetime of (G,λ).
For every time slot t ∈ [T ] we denote by Vt = {(v, t) : v ∈ V } the set of all vertex appearances of (G,λ)
at the time slot t. Note that the set of all vertex appearances in (G,λ) is the set V × [T ] = ∪1≤t≤TVt.

2.1 Temporal Coloring

A temporal coloring of a temporal graph G = (G,λ) is a function Υ : V × [T ] → N, which assigns
to every vertex appearance (v, t) with t ∈ [T ] in G one color Υ(v, t) ∈ N. The size of Υ is the total
number |Υ| := |

⋃
v∈V,t∈[T ]{Υ(v, t)}| of colors used by Υ. For every time slot t ∈ [T ] we denote by Υt the

restriction of Υ to the vertex appearances at time slot t, that is, Υt : V → N, such that Υt(v) = Υ(v, t),
for every v ∈ V . We refer to Υt as the time slot coloring for the time slot t. Furthermore, to ease the
presentation, we will refer to the temporal coloring Υ as the ordered sequence (Υ1,Υ2, . . . ,ΥT ) of all its
time slot colorings. Let e ∈ E(G) be an edge of the underlying graph G. We say that an edge e = {u, v}
of the underlying graph G is properly temporally colored at time slot t if Υt(u) 6= Υt(v) and e ∈ Et, that
is, the edge e is present at time slot t. We are now ready to introduce the definition of a proper temporal
coloring.

Definition 2.1 (Proper Temporal Coloring). Let G = (G,λ) be a temporal graph. A proper temporal
coloring of G is a temporal coloring Υ = (Υ1,Υ2, . . . ,ΥT ) such that every edge e ∈ E(G) is properly
temporally colored in at least one time slot t ∈ [T ].

Using this definition, we can formally define the decision problem Temporal Coloring.

Temporal Coloring

Input: A temporal graph G = (G,λ) and an integer k ∈ N.
Question: Is there a proper temporal coloring Υ of G using |Υ| ≤ k colors?

Note that Temporal Coloring is a natural extension of the classic NP-complete Coloring prob-
lem [32, 24, 23] on static graphs to temporal graphs. In particular, Coloring is the special case of
Temporal Coloring where the lifetime of the input temporal graph is T = 1. Moreover, it is easy to
see that it can be verified in polynomial time whether a given temporal coloring Υ is proper. Hence, we
have that Temporal Coloring is NP-complete for each fixed k ≥ 3 and T ≥ 1 (since Coloring is
NP-complete for all k ≥ 3 [24, 23] and to get T > 1 we can add trivial snapshots to the temporal graph).

We remark that Temporal Coloring can be treated as a multi-layer graph problem: It is easy to
check that, given a temporal graph G = (G,λ) and an integer k ∈ N, it holds that for every permutation
π : [T ] → [T ] we have that (G, k) is a YES-instance if and only if (G′ = (V, (Eπ(i))i∈[T ]), k) is a YES-
instance.

2.2 Sliding ∆-Window Temporal Coloring

In the definition of a proper temporal coloring given in Definition 2.1, we require that every edge is
properly temporally colored at least once during the whole lifetime T of the temporal graph G. However,
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G1: G2: G3: G:

Figure 1: Example temporal graph with lifetime three and a proper sliding ∆-window temporal 2-coloring
for ∆ = 2. Notice that for example one edge of G2 is colored monochromatically, but this edge is also
active at time slots one and three and is colored properly in the corresponding snapshots.

in many real-world applications, where T is expected to be arbitrarily large, we may need to require that
every edge is properly temporally colored more often, and in particular, at least once during every ∆-time
window in which it appears, for some given ∆, regardless of how large the lifetime T is. We formalize this
in the definition of a proper sliding ∆-window temporal coloring, where we denote by W∆

t = [t, t+ ∆− 1]
the ∆-window starting at time slot t.

Definition 2.2 (Proper Sliding ∆-Window Temporal Coloring). Let G = (G,λ) be a temporal graph
and let ∆ ≤ T . A proper sliding ∆-window temporal coloring of G is a temporal coloring Υ =
(Υ1,Υ2, . . . ,ΥT ) such that, for every ∆-window W∆

t with t ∈ [T −∆ + 1] and for every edge e ∈ E[W∆
t ]

we have that e is properly temporally colored in at least one time slot t′ ∈W∆
t .

An example of a proper sliding ∆-window temporal coloring is given in Figure 1. Using this definition,
we can formally define the decision problem SW-Temporal Coloring.

SW-Temporal Coloring

Input: A temporal graph G = (G,λ) and two integers k ∈ N and ∆ ≤ T .
Question: Is there a proper sliding ∆-window temporal coloring Υ of G using |Υ| ≤ k colors?

Note that the problem Temporal Coloring defined above in this section is the special case of SW-
Temporal Coloring where ∆ = T , that is, where there is only one ∆-window in the whole temporal
graph. Moreover, it is easy to see that is can be verified in polynomial time whether a given temporal
coloring Υ is a proper sliding ∆-window temporal coloring. Hence, we have that SW-Temporal Col-
oring is NP-complete for each fixed k ≥ 3, ∆ ≥ 1, and T ≥ ∆. Moreover note that, in contrast to
Temporal Coloring (i.e. the problem version without a sliding window), SW-Temporal Coloring
cannot be treated any more as a multi-layer graph problem. In fact, as it can be easily checked, the
answer to SW-Temporal Coloring may change if we modify the ordering of the snapshots of the
input temporal graph.

2.3 Basic Observations

We start with the observation that computational hardness of SW-Temporal Coloring for some fixed
value of ∆ implies hardness for all larger values of ∆. This allows us to construct hardness reductions
for small fixed values of ∆ and still obtain general hardness results.

Observation 2.3. Let ∆ be a fixed constant. SW-Temporal Coloring on instances (G, k,∆ + 1) is
computationally at least as hard as SW-Temporal Coloring on instances (G, k,∆).

Proof. To see the correctness of Observation 2.3, we show that we can easily reduce from SW-Temporal
Coloring with input ∆ to SW-Temporal Coloring with input (∆+1) by inserting a trivial snapshot
after every ∆ consecutive snapshots. Let (G, k,∆) denote the original instance and (G′, k,∆ + 1) the
constructed instance. For a visualization see Figure 2.

(⇒): If G admits a proper sliding ∆-window temporal coloring, then we can easily modify this coloring
for G′. The inserted trivial snapshots can be colored arbitrarily and all other snapshots are colored in the
same way the corresponding snapshots from G are colored. This yields a proper sliding (∆ + 1)-window
temporal coloring for G′.
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G1

1

G2

2

· · · G∆

∆

(V, ∅)

∆ + 1

G∆+1

∆ + 2

· · · G2∆

2∆ + 1

(V, ∅)

2∆ + 2

· · · · · · · · · GT

T + bT/∆c

Figure 2: Inserting trivial snapshots to reduce SW-Temporal Coloring on instances (G,∆, k) to
SW-Temporal Coloring on instances (G,∆ + 1, k).

(⇐): If G′ admits a proper sliding (∆ + 1)-window temporal coloring, then we can easily modify this
coloring for G. We ignore how the inserted trivial snapshots are colored and color all snapshots of G in
the same way the corresponding snapshots from G′ are colored. This yields a proper sliding ∆-window
temporal coloring for G.

2.4 Parameterized complexity

We use standard notation and terminology from parameterized complexity [16]. A parameterized problem
is a language L ⊆ Σ∗ × N, where Σ is a finite alphabet. We call the second component the parameter
of the problem. A parameterized problem is fixed-parameter tractable (in the complexity class FPT) if
there is an algorithm that solves each instance (I, r) in f(r) · |I|O(1) time, for some computable function
f . A parameterized problem L admits a polynomial kernel if there is a polynomial-time algorithm that
transforms each instance (I, r) into an instance (I ′, r′) such that (I, r) ∈ L if and only if (I ′, r′) ∈ L
and |(I ′, r′)| ≤ rO(1).

In the following, we give definitions of the graph parameters we consider in this paper. The degeneracy
of a graph G is the smallest integer d ∈ N such that each subgraph G′ of G contains a vertex v with
degree at most d. The domination number of a graph G = (V,E) is the cardinality of a minimum vertex
subset V ′ ⊆ V such that every vertex v ∈ V is either contained in V ′ or has a neighbor that is contained
in V ′. The vertex cover number of a graph G = (V,E) is the cardinality of a minimum vertex subset
V ′ ⊆ V such that every edge e ∈ E has at least one endpoint in V ′. Note that most of the mentioned
parameters also have equivalent alternative definitions.

3 Temporal Coloring

In this section we investigate the parameterized computational complexity of Temporal Coloring.
We give two hardness results that in particular show that Temporal Coloring is already NP-complete
for two colors, even if the input temporal graph is very restricted. This stands in stark contrast to the
static case, where checking whether a graph is 2-colorable can be done in linear time.

On the algorithmic side, we show that Temporal Coloring admits a polynomial kernel when
parameterized by the number of vertices of the input temporal graph.

3.1 Refined NP-Hardness Results

We start by showing that Temporal Coloring is NP-complete even if each snapshot consists of a
clique together with some isolated vertices. From a motivation standpoint, this excludes an interesting
special case of the mobile agent scenario, where at each time slot exactly one group of agents meet such
that they can all pairwise communicate.

Theorem 3.1. Temporal Coloring is NP-complete for each fixed k ≥ 2 even if each snapshot consists
of one clique together with isolated vertices.

We show this result for k = 2 and later explain why our proof is easily adaptable for larger values of
k. First we show the following lemma, which we will make use of in the proof of Theorem 3.1.

Lemma 3.2. A graph G has two bipartite subgraphs that cover all edges of G if and only if G is 4-
colorable.
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Proof. Assume that a given graph G = (V,E) has two bipartite subgraphs G1 = (V,E1) and G2 = (V,E2)
that cover all edges E of G, that is, E = E1∪E2. Let Υi : V → {1, 2} be the coloring of Gi for i ∈ {1, 2}.
Then Υ(v) := π(Υ1(v),Υ2(v)) is a 4-coloring for G, where π is an arbitrary pairing function1: First note
that |

⋃
v∈V {Υ(v)}| ≤ 4 since Υ(v) ∈ {π(1, 1), π(1, 2), π(2, 1), π(2, 2)} for all v ∈ V . Now let {v, w} ∈ E.

By assumption we have that {v, w} ∈ E1 ∪ E2. Assume that {v, w} ∈ E1 (the other case is analogous),
then we have that Υ1(v) 6= Υ1(w). It follows that Υ(v) 6= Υ(w).

It remains to show that if a given graph G = (V,E) is 4-colorable, then it has two bipartite subgraphs
that cover all edges of G. Let Υ : V → {1, 2, 3, 4} be a 4-coloring for G. Let E1 := {{v, w} ∈ E | Υ(v) ∈
{1, 2} ∧ Υ(w) ∈ {3, 4}} and E2 := {{v, w} ∈ E | Υ(v) ∈ {1, 3} ∧ Υ(w) ∈ {2, 4}}. It is easy to check
that G1 = (V,E1) is bipartite: One part is formed by vertices colored in 1 or 2 and the second part by
vertices colored in 3 or 4. By definition E1 does not contain edges between vertices from the same part.
The argument for G2 = (V,E2) is analogous. They are both subgraphs since Ei ⊆ E for i ∈ {1, 2}. It
remains to show that E = E1 ∪E2: Let {v, w} ∈ E, then if {Υ(v),Υ(w)} ∈ {{1, 3}, {2, 3}, {1, 4}, {2, 4}},
then {v, w} ∈ E1, otherwise (if {Υ(v),Υ(w)} ∈ {{1, 2}, {3, 4}}) we have that {v, w} ∈ E2.

Now we prove Theorem 3.1 for the case that k = 2.

Proof of Theorem 3.1 for k = 2. We give a reduction from the NP-complete 4-Coloring problem [24,
23] where, given a graph H, we are asked whether a proper 4-coloring for H exists. Let H = (U,F ) be an
instance of 4-Coloring. We construct a temporal graph G = (G,λ) with V = U , E1 = E2 = E(K|U |),

T =
(|U |

2

)
− |F | + 2, and for every non-edge of H there is exactly one time slot i with 3 ≤ i ≤ T where

only this edge is present. Note that every snapshot is either complete or only contains a single edge.
Hence, every snapshot consists of a clique together with some isolated vertices.

Correctness. We now prove the correctness of our reduction, namely, show that the constructed temporal
graph can be properly temporally colored with two colors if and only if the input graph is 4-colorable.

(⇒): If H is 4-colorable, then we can use the 4-coloring of H to 2-color G1 and G2 using Lemma 3.2
and for every edge that is not present in G, color it properly in the snapshot where it is present.

(⇐): If G is properly colorable with k = 2 colors, then all edges present in H have to be properly
colored either in G1 or G2, that is, the edges of H can be covered by two bipartite graphs, and hence,
by Lemma 3.2, we can properly 4-color H.

To adapt this proof for larger values of k, it is necessary to generalize Lemma 3.2 to the statement “A
graph G has two k-colorable subgraphs that cover all edges of G if and only if G is k2-colorable”. It is easy
to check that this can be done in an analogous way for each fixed k. Using this more general lemma, one
can easily adapt the reduction in the proof of Theorem 3.1. We remark that, from a parameterized point
of view, this result implies that parameterizing Temporal Coloring by structural graph parameters
of the snapshots that are constant on a graph consisting of a clique with some isolated vertices cannot
yield fixed-parameter tractability unless P = NP, even if combined with k.

Now we show with a more refined reduction that Temporal Coloring remains hard even if each
snapshot has very few edges and the underlying graph has small degeneracy.

Theorem 3.3. Temporal Coloring is NP-complete for all k ≥ 2 even if the number of edges in each
snapshot is in O(k2), the degeneracy of the underlying graph is in O(k) and every snapshot as well as
the underlying graph has domination number four.

Proof. We present a reduction from Exact (3, 4)-SAT [44] to Temporal Coloring with k = 2. The
reduction can be easily modified to a larger number of colors, we explain how to do this at the end of
the proof. In Exact (3, 4)-SAT we are asked to decide whether a given Boolean formula φ is satisfiable
and φ is in conjunctive normal form where every clause has exactly three distinct literals and every
variable appears in exactly four clauses. Given a formula φ with n variables and m clauses, we construct
a temporal graph G = (G,λ) consisting of T = (n+2m) snapshots, that is, one snapshot for each variable
gadget and two snapshots for each clause gadget. An illustration of the construction is given in Figure 3.
We start by adding four vertices w1, w2, w3, and w4 which will help to encode the first, second, third,
and fourth appearance of a variable.

1A function π : N× N→ N is a pairing function if it is a bijection.
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w1 w2 w3 w4

. . . . . .

x1

(a) Variable gadget.

w1 w2 w3 w4

. . . . . .

x1

x2

x3

(b) First snapshot of clause gadget.

Figure 3: Illustration of the reduction from Exact (3, 4)-SAT to Temporal Coloring of the proof
of Theorem 3.3. Figure 3a depicts the variable gadget for x1. Figure 3b depicts the first snapshot of
the clause gadget for clause (x1 ∨¬x2 ∨ x3), where we have the first appearance of x1 (blue), the second
appearance of x2 (yellow), and the fourth appearance of x3 (green). The second snapshot of the clause
gadget contains only the red triangle and is not depicted. In both figures vertices corresponding to the
remaining variables are not depicted. Thick edges are present in exactly two snapshots and thin edges
are present in exactly one snapshot.

Variable gadget. For each variable xi with i ∈ [n] of φ we create nine vertices v
(1)
xi , v

(2)
xi , . . . , v

(8)
xi (which

we also refer to as “the vertices corresponding to xi”), and uxi
, and one new snapshot. In this new

snapshot, we connect v
(j)
xi with v

((j mod 8)+1)
xi for all j ∈ [8] and we connect v

(2h−1)
xi and v

(2h)
xi with wh

for all h ∈ [4]. Furthermore, we connect uxi
with w1, w2, w3, and w4. It is easy to check that every

snapshot corresponding to a variable contains twenty edges.

Clause gadget. For each clause ci with 1 ≤ i ≤ m of φ we add two new snapshots and one new vertex
uci . In the first new snapshot we connect it with w1, w2, w3, and w4. Let xj be a variable that appears

in clause ci and let this be the hth appearance of xj in φ. Then we connect wh with v
(2h−1)
xj and v

(2h)
xj in

the first new snapshot. Lastly, denote xj1 , xj2 , and xj3 the three variables in ci appearing for the h1th,
h2th, and h3th time, respectively, and let ys = 1 if xjs appears non-negated in ci and ys = 0, otherwise.

We pairwise connect v
(2h1−y1)
xj1

, v
(2h2−y2)
xj2

, and v
(2h3−y3)
xj3

in both the first and the second new snapshot,
we refer to these three vertices as “the triangle corresponding to clause ci”. It is easy to check that every
snapshot corresponding to a clause contains at most thirteen edges.

Before we show correctness, let us check that the underlying graph of G has constant degeneracy.
We can show this by using the following degeneracy ordering: First we order all vertices uxi and uci
arbitrarily and put them at the beginning of the degeneracy ordering. Then we order the vertices v

(j)
xi

arbitrarily and put them next in the ordering. Lastly, we add vertices w1, w2, w3, and w4 to the ordering.
Note that all vertices uxi

and uci for some variable xi or clause ci, respectively, have degree four since

they are only connected to w1, w2, w3, and w4. The vertices v
(j)
xi have degree five: In the snapshot of the

variable gadget for xi they are connected to two other vertices v
(j′)
xi and v

(j′′)
xi and to one of the vertices

w1, w2, w3, and w4. Then, depending on the value of j, there is at most one “clause triangle” that

contains v
(j)
xi . Once all these vertices are removed from the graph, the vertices w1, w2, w3, and w4 are

isolated. It follows that the degeneracy of G is at most five.
Furthermore, it is straightforward to check that the vertices w1, w2, w3, and w4 form a dominating

set in every snapshot as well as the underlying graph.

Correctness. It is easy to check that the reduction can be computed in polynomial time. It remains to
show that G admits a proper temporal 2-coloring if and only if φ is satisfiable.

(⇒): Assume that we are given a satisfying assignment for φ. Then we construct a proper temporal
2-coloring for G as follows. Let the two colors be red and blue. Whenever we do not specify the color
of vertices in a certain snapshot, those vertices can be colored arbitrarily in that snapshot. In each
snapshot, we color all vertices uxi

and ucj with i ∈ [n] and j ∈ [m] red and vertices w1, w2, w3, and w4

blue.
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Now consider the snapshots corresponding to variable gadgets. If variable xi is set to true in the
satisfying assignment for φ, then we color (in the snapshot corresponding to the variable gadget for xi)

vertices v
(2h−1)
xi red and vertices v

(2h)
xi blue for h ∈ [4]. Otherwise we color the vertices exactly in the

opposite way. This leaves exactly four edges monochromatic in each snapshot corresponding to a variable
gadget. These will be colored properly in the four clause gadgets corresponding to the four clauses where
the corresponding variable appears.

Next, consider the snapshots corresponding to clause gadgets, in particular the first snapshot cor-
responding to clause ci. Let x1, x2, and x3 be the three variables appearing in ci and, without loss of
generality, let x1 be contained in a literal that satisfies the clause and let that be the hth appearance

of x1. If x1 appears non-negated, then we color v
(2h−1)
x1 blue and all other vertices corresponding to

variables x1, x2, and x3 red. Otherwise, we color v
(2h)
x1 blue and all other vertices corresponding to

variables x1, x2, and x3 red. Since the literal containing x1 satisfies clause ci, we have that the edge

between wh and v
(2h−1)
x1 or v

(2h)
x1 , respectively, is colored properly in the snapshot corresponding to the

variable gadget of x1. Hence all edges between w1, w2, w3, w4 and vertices corresponding to variables
x1, x2, and x3 are colored properly. Out of the edges that form the triangle corresponding to ci in the
snapshot corresponding to clause ci, exactly one is colored monochromatically. We color the vertices of
the triangle in the second snapshot corresponding to the variable clause of ci such that exactly that edge
is colored properly. It is easy to verify that this describes a proper temporal 2-coloring for G.

(⇐): Assume that we are given a proper temporal 2-coloring for G. Then we construct a satisfying
assignment for φ in the following way: We start with the observation that in any proper temporal coloring,
vertices w1, w2, w3, and w4 have the same color in each snapshot that corresponds to a variable gadget
and in each first snapshot corresponding to a clause gadget. Further, in each snapshot corresponding to
a variable gadget there is a cycle of size eight containing all vertices corresponding to the variable of that
gadget. Let that variable be xi. Since all edges involved in this cycle only exists in this one snapshot,

there are exactly two ways to color this cycle. One of them leaves the edges between v
(2h−1)
xi and wh

monochromatic for h ∈ [4]. The other way to color the cycle is the inverse coloring and leaves the edges

between v
(2h)
xi and wh monochromatic for h ∈ [4]. In the first case, we set xi to false, and in the second

case we set xi to true. We claim that this yields a satisfying assignment for φ.
Assume for contradiction that it is not. Then there is a clause that is not satisfied. Let that clause

be ci. Recall that in a proper coloring, also vertices w1, w2, w3, and w4 have the same colors in each first
snapshot that corresponds to a clause gadget. Consider the triangle corresponding to clause ci in the first
snapshot of the clause gadget of ci. We have that in a proper temporal coloring, this triangle cannot be
monochromatic, since, otherwise, one of the three edges is not properly colored in any of the snapshots
of the temporal graph. Note that the triangle edges only exist in the two snapshots corresponding to the
clause gadget of ci and in the second snapshot, not all three edges can be colored properly. Hence, in
the first snapshot of the clause gadget, at least one of the vertices of the triangle corresponding to ci has
a different color than vertices w1, w2, w3, and w4. However, this means that the variable corresponding
to this particular vertex (i.e., the vertex with the different color) is set to a truth value that satisfies this
clause—a contradiction.

Modification for a Larger Number of Colors. To modify this reduction for more colors we introduce new
vertices and edges to all snapshots to “block” all colors except two from being used. Formally, we do the

following. Let k > 2. For each snapshot i ∈ [T ], we add k−2 fresh vertices c
(i)
1 , . . . , c

(i)
k−2, connect them to

form a clique in snapshot i, and connect them to all non-isolated vertices in snapshot i. In all snapshots

different from i the vertices c
(i)
1 , . . . , c

(i)
k−2 are isolated. All new edges exist in exactly one snapshot and

hence have to be colored properly in this snapshot. It follows that the vertices c
(i)
1 , . . . , c

(i)
k−2 have to be

colored with k− 2 distinct colors and these colors cannot be used to color any other non-isolated vertex
in snapshot i.

The modification introduces T · (k − 2) new vertices to the temporal graph and it is easy to check
that it introduces O(k2) new edges to each snapshot. The degeneracy of the underlying graph is in O(k)
since we can put all new vertices to the beginning of the degeneracy ordering described earlier in this
proof, and it is easy to check that all new vertices have degree in O(k) in the underlying graph. Vertices
w1, w2, w3, and w4 still form a dominating set in every snapshot as well as the underlying graph since
they are connected to all new vertices.
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We remark that Theorem 3.3 has some interesting implications from a parameterized point of view.
Parameterizing Temporal Coloring by structural graph parameters of the snapshots which are con-
stant on graphs that contain only constantly many edges cannot yield fixed-parameter tractability unless
P = NP, even if combined with k. Note that almost all popular structural parameters fall into this
category, such as for example “vertex cover number”, “feedback edge set”, “maximum degree” and all
structurally smaller parameters (including for example “treewidth” and “degeneracy”).

3.2 Polynomial Kernel for Temporal Coloring

We prove that, given a temporal graph G = (G,λ) for Temporal Coloring with n = |V (G)| vertices,
m = |E(G)| underlying edges, and lifetime T , we can efficiently compute an equivalent instance G′ =
(G′, λ′) with T ′ ≤ m time slots. The main idea is that if we have sufficiently many time slots, then
every edge can be colored in its own time slot and any excess time slots can be removed (as they could
be colored arbitrarily). Formally, Theorem 3.4 shows that Temporal Coloring admits a polynomial
kernel when parameterized by the number n of vertices.

Theorem 3.4. Let G = (G,λ) be a temporal graph of lifetime T . Then there exists a temporal graph
G′ = (G′, λ′) = (G,λ)|S for some S ⊆ [T ] with |S| ≤ m = |E(G)| such that for any k ≥ 2 we have that G
admits a proper temporal k-coloring if and only if G′ admits a proper temporal k-coloring. Furthermore,
G′ can be constructed in O(mT

√
m+ T ) time.

Proof. Let G = (G,λ) be a temporal graph with lifetime T . If T ≤ m, then we let G′ = (G′, λ′) = (G,λ)
and we are done. From now on we assume that T > m. We define B(G,λ) to be the bipartite graph with
two parts E = E(G) and [T ], and the edge set L = {(e, t) | e ∈ E, t ∈ [T ], t ∈ λ(e)}, that is, e ∈ E is
adjacent to t ∈ [T ] if and only if e appears in time slot t in (G,λ). Let M = {(e1, t1), (e2, t2), . . . , (es, ts)}
be a maximum matching in B = B(G,λ). We claim that (G′, λ′) = (G,λ)|{t1,t2,...,ts} admits a proper
temporal k-coloring if and only if (G,λ) admits a proper temporal k-coloring.

Given a set M ′ ⊆M let EM ′ = {e | (e, t) ∈M ′} and SM ′ = {t | (e, t) ∈M ′}. Let M1 ⊆M be the set
of edges such that every vertex in EM1 is reachable from a vertex in EM = E \EM by an M -alternating
path, i.e. a path whose edges belong alternately to M and not to M . Let M2 = M \M1.

We claim that no vertex in EM1
∪ EM has a neighbour outside SM1

. First, a vertex e ∈ EM1
∪ EM

does not have a neighbour in SM = [T ]\SM , as otherwise there would exist an M -augmenting path in B,
contradicting the maximality of M . Also, a vertex e ∈ EM1

∪ EM is not adjacent to a vertex tj ∈ SM2
,

as otherwise the corresponding matching neighbour ej of tj would be reachable by an M -augmenting
path from a vertex in EM , which would contradict the fact that (ej , tj) belongs to M2.

The above claim means that those edges of G that are in EM1 ∪ EM appear, and therefore can be
properly colored, only in time slots in SM1

. Furthermore, all the edges in EM2
can be properly colored

with 2 colors in slots in SM2
: every edge e ∈ EM2

can be properly colored in the separate time slot t,
where (e, t) ∈ M2. This implies that that (G′, λ′) admits a proper temporal k-coloring if and only if
(G,λ) admits a proper temporal k-coloring, as required.

We can construct the graph B = B(G,λ) in O(mT ) time, and find a maximum matching M in B in

O(mT
√
m+ T ) time [38].

4 SW-Temporal Coloring

In this section we investigate the parameterized computational complexity of SW-Temporal Color-
ing. We first give a refined NP-hardness reduction together with an ETH lower bound. We give an
exponential time algorithm that matches the lower bound for constant ∆ and show how to extend this
algorithm to obtain fixed-parameter tractability for SW-Temporal Coloring when parameterized
by the number of vertices of the input temporal graph. In contrast to Temporal Coloring we can
show that SW-Temporal Coloring does not admit a polynomial kernel when parameterized by the
number of vertices of the input temporal graph unless NP ⊆ coNP/poly. We proceed by showing that
SW-Temporal Coloring is NP-complete even if k = 2 and the underlying graph of the input temporal
graph has a vertex cover number that only depends on k. Lastly, we show how to adapt our algorithm
for SW-Temporal Coloring for a canonical optimization variant of the problem, where we want to
minimize the number of colors. We achieve an FPT-approximation algorithm that uses at most one
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(a) Snapshot one. (b) Snapshot two. (c) Snapshot three.

Figure 4: Illustration of the reduction from Exact (3, 4)-SAT to SW-Temporal Coloring of the
proof of Theorem 4.1. Vertices and edges in the red shaded areas (right) correspond to a clause gadget
for clause (¬x1 ∨ x2 ∨ x3). Vertices and edges in the green shaded areas (left) correspond to the variable
gadgets for x1, x2, and x3. Thick edges appear in every snapshot while thin edges only appear in one
snapshot. The vertices are colored according to a coloring that would be constructed for the assignment
x1 = true, x2 = true, x3 = false. In the first snapshot (a), the superscripts of the vertices used in the
proof of Theorem 4.1 are shown. To keep the figure clean, the superscripts are omitted in the illustrations
for snapshots (b) and (c).

extra color for Minimum SW-Temporal Coloring parameterized by the vertex cover number of the
underlying graph.

4.1 Refined NP-Hardness Results

We now present the main computational hardness result of this section. In particular, we show that
SW-Temporal Coloring is NP-complete for k = 2 even if the input temporal graph has lifetime
three.

Theorem 4.1. SW-Temporal Coloring is NP-complete for all k ≥ 2, ∆ ≥ 2, and T ≥ ∆ + 1, even
if

• the underlying graph is (k + 1)-colorable,

• the underlying graph has a maximum degree in O(k), and

• every snapshot has connected components with size in O(k).

Proof. We present a reduction from Exact (3, 4)-SAT [44] to SW-Temporal Coloring with k = 2
and ∆ = 2. The reduction can be easily modified to a larger number of colors, we explain how to do
this at the end of the proof. Recall that in Exact (3, 4)-SAT we are asked to decide whether a given
Boolean formula φ is satisfiable and φ is in conjunctive normal form where every clause has exactly three
distinct literals and every variable appears in exactly four clauses.

On an intuitive level, the main idea that we exploit in this reduction is that no matter how a triangle
is colored with two colors, always (exaclty) one of the three edges is monochromatic. We use this idea
both to construct variable gadgets (by further enforcing that a specific edge of the triangle always has
to be properly colored) and to construct clause gadgets, where the three edges of a triangle correspond
to the three literals in a clause and the monochromatic edge “selects” which literal should satisfy the
clause.

Given a formula φ with n variables and m clauses, we construct a temporal graph G = (G,λ)
consisting of T = 3 snapshots, which we will refer to as G1 = (V,E1), G2 = (V,E2), and G3 = (V,E3).
We construct the following variable gadgets and clause gadgets. An illustration of the construction is
given in Figure 4.

Variable gadget. For each variable xi with i ∈ [n] of φ we create five vertices v
(1)
xi , v

(2)
xi , v

(3)
xi , v

(4)
xi , and

v
(5)
xi . The vertices v

(1)
xi , v

(2)
xi , and v

(3)
xi form a (not necessarily induced) P3 in every snapshot, that is

{v(1)
xi , v

(2)
xi } ∈ Et and {v(2)

xi , v
(3)
xi } ∈ Et for all t ∈ [3]. Furthermore, we connect v

(1)
xi and v

(3)
xi in the second
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snapshot, that is, {v(1)
xi , v

(3)
xi } ∈ E2. Lastly, we create a full C5 in snapshot three, that is, {v(3)

xi , v
(4)
xi } ∈ E3,

{v(4)
xi , v

(5)
xi } ∈ E3, and {v(1)

xi , v
(5)
xi } ∈ E3.

Clause gadget. For each clause ci with i ∈ [m] of φ we create a total of 18 vertices. We create vertices

v
(1)
ci , v

(2)
ci , and v

(3)
ci and connect them to form a triangle in every snapshot, that is, {v(1)

ci , v
(2)
ci } ∈ Et,

{v(2)
ci , v

(3)
ci } ∈ Et, and {v(1)

ci , v
(3)
ci } ∈ Et for all t ∈ [3]. In this proof, we refer to these vertices as the core

of the clause gadget related to clause ci. Next, we add six vertices, which we refer to as the extension of

the core of the clause gadget related to clause ci. Let these vertices be called v
(1,1)
ci , v

(1,2)
ci , v

(2,1)
ci , v

(2,2)
ci ,

v
(3,1)
ci , and v

(3,2)
ci . We connect v

(j,1)
ci and v

(j,2)
ci for all j ∈ [3] in every snapshot, that is, {v(j,1)

ci , v
(j,2)
ci } ∈ Et

for all j ∈ [3] and for all t ∈ [3]. In the second snapshot, we connect the extension and the core in the
following way.

• Edge {v(1,1)
ci , v

(1,2)
ci } forms a C4 with edge {v(2)

ci , v
(1)
ci }, that is, {v(2)

ci , v
(1,2)
ci } ∈ E2 and {v(1)

ci , v
(1,1)
ci } ∈

E2.

• Edge {v(2,1)
ci , v

(2,2)
ci } forms a C4 with edge {v(2)

ci , v
(3)
ci }, that is, {v(2)

ci , v
(2,1)
ci } ∈ E2 and {v(3)

ci , v
(2,2)
ci } ∈

E2.

• Edge {v(3,1)
ci , v

(3,2)
ci } forms a C4 with edge {v(1)

ci , v
(3)
ci }, that is, {v(1)

ci , v
(3,2)
ci } ∈ E2 and {v(3)

ci , v
(3,1)
ci } ∈

E2.

Lastly, we introduce nine auxiliary vertices that help to connect clause gadgets and variable gadgets.

Let these vertices be called v
(j,1,1)
ci , v

(j,1,2)
ci , and v

(j,2,1)
ci for all j ∈ [3]. In the third snapshot, we connect

the extension of the core and these auxiliary vertices in the following way. For all j ∈ [3] we have that

{v(j,1,1)
ci , v

(j,1,2)
ci } ∈ E3, {v(j,1,2)

ci , v
(j,1)
ci } ∈ E3, and {v(j,2,1)

ci , v
(j,2)
ci } ∈ E3.

Connection of variable and clause gadgets. The clause gadgets and variable gadgets are connected in the
third snapshot. Let clause ci = (`i,1∨ `i,2∨ `i,3) with i ∈ [m] have literals `i,1, `i,2, and `i,3. Let xi,j with

i ∈ [m] and j ∈ [3] be the variable of the jth literal in clause ci. If `i,j = xi,j , then {v(2)
xi,j , v

(j,1,1)
ci } ∈ E3

and {v(3)
xi,j , v

(j,2,1)
ci } ∈ E3. If `i,j = ¬xi,j , then {v(1)

xi,j , v
(j,1,1)
ci } ∈ E3 and {v(2)

xi,j , v
(j,2,1)
ci } ∈ E3. This

completes the construction. Recall that ∆ = 2 and k = 2.

Properties of G. We can check that the underlying graph is 3-colorable: It is easy to see that we can
color each variable gadget with three colors in the underlying graph. The same for each clause gadget
(without the connecting auxiliary vertices). The auxiliary vertices can now be colored as follows. Vertices

v
(j,2,1)
ci are connected to two vertices with potentially different colors. Hence, we can use the third color

for v
(j,2,1)
ci . We can color v

(j,1,2)
ci with a color that is different from the color of v

(j,1)
ci . Now v

(j,1,1)
ci is

connected to two vertices with potentially different colors. Hence, we can use the third color for v
(j,1,1)
ci .

To see that the underlying graph has constant maximum degree recall that every variable appears in

exactly four clauses. Hence, the vertices v
(1)
xi have degree at most seven in the underlying graph. It is

straightforward to check that all other vertices also have degree at most seven.
Lastly, we can easily verify that all snapshots are composed of small connected components (see

also Figure 4). To see this, recall that every variable appears in exacty four clauses, hence in the third
snapshot, each variable gadget is connected to four extensions of clause gadgets.

Correctness. It is easy to check that the reduction can be computed in polynomial time. It remains to
show that G admits a proper sliding 2-window temporal 2-coloring if and only if φ is satisfiable.

(⇒): Assume that we are given a satisfying assignment for φ. Then we construct a proper sliding
2-window temporal 2-coloring for G as follows. We start coloring the second snapshot and then show
that we can color snapshots one and three in a way such that the complete coloring is a proper sliding
2-window temporal 2-coloring. If a variable xi with i ∈ [n] is set to true in the satisfying assignment,

then we color the triangle of the corresponding variable gadget in a way that leaves only edge {v(1)
xi , v

(2)
xi }

monochromatic. To be specific, assume (for the remainder of this paragraph) we have colors yellow and

blue, we color vertices v
(1)
xi and v

(2)
xi in yellow and vertices v

(3)
xi , v

(4)
xi , and v

(5)
xi in blue. If variable xi is

set to false in the satisfying assignment, then we color the triangle of the corresponding variable gadget

in a way that leaves edge {v(2)
xi , v

(3)
xi } monochromatic. To be specific, we color vertices v

(2)
xi and v

(3)
xi in

yellow and vertices v
(1)
xi , v

(4)
xi , and v

(5)
xi in blue. For each clause ci with i ∈ [m] we choose one of its
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literals that satisfies the clause. Let the jth literal with j ∈ [3] be a satisfying literal of clause ci for
the given assignment. Then we color the core of the corresponding clause gadget in a way that leaves

edge {v(j)
ci , v

(j mod 3+1)
ci } monochromatic. Note that coloring the core uniquely determines how we have

to color the extension of the core since the connecting edges are only present in the third snapshot and
hence have to be properly colored. The auxiliary vertices can be colored arbitrarily.

Now we show how to color snapshot one. For each variable xi with i ∈ [n], we color v
(2)
xi in yellow and

the remaining vertices of the corresponding gadget in blue. Note that this ensures that the edge which
remains monochromatic in the second snapshot is properly colored in the first snapshot. For each clause
ci with i ∈ [m] we color the core in a way that ensures that the edge which remains monochromatic in the
second snapshot is properly colored in the first snapshot. We properly color all edges of the extension and
the auxiliary vertices arbitrarily. It is not hard to see that now the first ∆-window is properly colored.

Lastly, we show how to color the third snapshot. Note that for the variable gadgets, the coloring
in snapshot two determines (up to renaming the colors) how to color the variable gadgets in the third
snapshot. This also determines how to color the auxiliary vertices and the extension of the core in
the third snapshot. This potentially leaves edges of the extension monochromatic. Note that in the
second snapshot, all extension edges are properly colored except the one which, in the third snapshot,
is connected to a variable that, in the given assignment, satisfies the clause. It is straightforward to
check that in this case, this particular extension edge is properly colored in the third snapshot. Lastly,
the core is colored in a way that ensures that the edge that is colored monochromatically in the second
snapshot is colored properly in the third snapshot. It is easy to check that now the second ∆-window is
also properly colored.

(⇐): Assume we are given a proper sliding 2-window temporal 2-coloring for G. Then we construct
a satisfying assignment for φ in the following way: Note that in the second snapshot each variable

gadget contains a triangle with exactly one monochromatic edge. The edge {v(1)
xi , v

(3)
xi } only exists in

the second snapshot and hence is colored properly by any proper sliding 2-window temporal 2-coloring.

This means that either edge {v(1)
xi , v

(2)
xi } or edge {v(2)

xi , v
(3)
xi } is colored monochromatic. If {v(1)

xi , v
(2)
xi } is

colored monochromatically, then we set xi to true, otherwise we set xi to false. We claim that this yields
a satisfying assignment for φ.

Assume for contradiction that it is not. Then there is a clause cj that is not satisfied. Without
loss of generality, let x1, x2, and x3 be the variables appearing in cj . Then in the third snapshot, the
clause gadget of cj is connected to the variable gadgets of x1, x2, and x3. It is easy to check that in
any proper sliding 2-window temporal 2-coloring, exactly one edge of the extension of any clause gadget
is colored monochromatic in the second snapshot, hence this is also the case in the clause gadget of cj .
Without loss of generality, let the monochromatically colored (in the second snapshot) extension edge
of the clause gadget of cj be connected to the variable gadget of x1 in the third snapshot. It is easy to
check that for the sliding 2-window temporal 2-coloring to be proper, the edge of the variable gadget of
x1 that is connected to the clause gadget of cj in the third snapshot needs to be colored properly in the
second snapshot. By construction of G this is a contradiction to cj not being satisfied by the constructed
assignment.

Modification for a Larger Number of Colors. To modify this reduction for more colors we introduce new
vertices and edges to all snapshots to “block” all colors except two from being used. Formally, we do

the following. Let k > 2. For each snapshot i ∈ [3], we add k − 2 fresh vertices c
(i)
1 , . . . , c

(i)
k−2 for each

connected component C in that snapshot. The vertices c
(i)
1 , . . . , c

(i)
k−2 form a clique in snapshot i, and

we connect them to all vertices in the connected component C. In all snapshots different from i the

vertices c
(i)
1 , . . . , c

(i)
k−2 are isolated. All new edges exist in exactly one snapshot and hence have to be

colored properly in this snapshot. It follows that the vertices c
(i)
1 , . . . , c

(i)
k−1 have to be colored with k− 2

distinct colors and these colors cannot be used to color any other vertex from the connected component
in snapshot i.

The number of new vertices introduced by this modification is in O(n ·k). It is easy to check that this
increases the number of colors necessary to color the underlying graph by k − 2. The maximum degree
of the underlying graph after the modification is in O(k) and the size of each connected component in
each snapshot is increased by k − 2.

With small modifications to the reduction we get that SW-Temporal Coloring remains hard
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under the following restrictions on the snapshots.

Corollary 4.2. SW-Temporal Coloring is NP-complete for all k ≥ 2,

• ∆ ∈ O(k2), and T ≥ ∆ + 1 even if every snapshot is a cluster graph (i.e. the disjoint union of
complete graphs), or

• ∆ ≥ 3, and T ≥ ∆ + 1 even if every snapshot has domination number one.

Proof. Both modifications rely on the following construction. We can insert additional vertices and edges
to each of the three snapshots of the reduction presented in the proof of Theorem 4.1. Between snapshots
two and three we add sufficiently many new snapshots containing exclusively new edges, such that all
new edges can be properly temporally colored at least once if ∆ is increased by the number of new
snapshots. Now all new edges can be colored properly in the newly inserted snapshots and the original
construction of the reduction is not affected.

To get the first property for all snapshots, we can add all edges that transform each connected
component into a clique to the three original snapshots. Since the components have size O(k), we
only add a number of new edges that is in O(k2) per component. Hence, we can add a number of new
snapshots in O(k2) each containing one new edge per component. The newly added snapshots are clearly
cluster graphs, hence we get the result.

To get the second property, we add one new universal vertex and one new snapshot that contains all
new edges. Clearly, now all snapshots have a dominating set of size one.

We remark that Theorem 4.1 and Corollary 4.2 have interesting implications from a parameterized
point of view. Parameterizing SW-Temporal Coloring by the maximum degree of the underlying
graph cannot yield fixed-parameter tractability unless P = NP, even if combined with k and T . Fur-
thermore, parameterizing SW-Temporal Coloring by structural graph parameters of the snapshots
that are constant if all connected components are constant-sized cannot yield fixed-parameter tractabil-
ity unless P = NP, even if combined with k and T . Parameters for which this holds are for example
“treedepth” and all structurally smaller parameters (including for example “treewidth”). The same holds
for structural graph parameters of the snapshots that are constant for cluster graphs, such as for example
“vertex deletion distance to cluster graph”.

The reduction presented in the proof of Theorem 4.1 also yields a running time lower bound assuming
the Exponential Time Hypothesis (ETH) [30, 31]. In the next section we will use this result to show
that an algorithm we present presumably is asymptotically optimal if ∆ is constant.

Corollary 4.3. SW-Temporal Coloring does not admit an f(k+ T )o(|G|) · |G|f(k+T )-time algorithm
for any computable function f unless the ETH fails.

Proof. First, note that any 3-SAT formula with m clauses can be transformed into an equisatisfiable
Exact (3, 4)-SAT formula with O(m) clauses [44]. The reduction presented in the proof of Theorem 4.1
produces an instance of SW-Temporal Coloring with a temporal graph of size |G| ∈ O(m), k = 2, and
T = 3. Hence an algorithm for SW-Temporal Coloring with running time f(k + T )o(|G|) · |G|f(k+T )

for some computable function f would imply the existence of an 2o(m)-time algorithm for 3-SAT. This
is a contradiction to the ETH [30, 31].

4.2 An Exponential-Time Algorithm for Sliding Window Temporal Coloring

In the following we give an exponential-time algorithm for SW-Temporal Coloring that, if ∆ is
constant, asymptotically matches the running time lower bound given in Corollary 4.3 assuming the
ETH to hold.

We start with an auxiliary technical observation that, intuitively, allows us to combine partial color-
ings if they agree on their overlap and the overlap is sufficiently large. The observation is illustrated in
Figure 5.

Observation 4.4. Let (G1 = (V,E1, E2, . . . , Ei), k,∆) and (G2 = (V,Ej , Ej+1, . . . , ET ), k,∆) be two
instances of SW-Temporal Coloring with j+∆−1 ≤ i ≤ T . Let Υ(1) and Υ(2) be sliding ∆-window
temporal colorings for G1 and G2, respectively, that use the same k colors and with the property that for
all v ∈ V and for all j ≤ i? ≤ i we have that Υ(1)(v, i?) = Υ(2)(v, i?).
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Υ(1)

Υ(2)

≥ ∆

Figure 5: Illustration of Observation 4.4. The ellipses visualize the snapshots of the temporal graphs.
The red and blue boxes indicate the snapshots that are colored by the proper sliding ∆-window temporal
colorings Υ(1) and Υ(2), respectively. By Observation 4.4, if Υ(1) and Υ(2) overlap on at least ∆ snapshots,
which are colored in the same way in both Υ(1) and Υ(2), then the combination of both colorings Υ(1)

and Υ(2) (illustrated by the green box) is also a proper sliding ∆-window temporal coloring.

Then we have that Υ(1) and Υ(2) are proper sliding ∆-window temporal colorings if and only

if (Υ
(1)
1 ,Υ

(1)
2 , . . . ,Υ

(1)
i ,Υ

(2)
i+1, . . . ,Υ

(2)
T ) is a proper sliding ∆-window temporal coloring for G =

(V,E1, E2, . . . , ET ).

Proof. It is easy to see that if (Υ
(1)
1 ,Υ

(1)
2 , . . . ,Υ

(1)
i ,Υ

(2)
i+1, . . . ,Υ

(2)
T ) is a proper sliding ∆-window tempo-

ral coloring for G = (V,E1, E2, . . . , ET ), then we have that Υ(1) and Υ(2) are proper sliding ∆-window
temporal colorings for (G1 = (V,E1, E2, . . . , Ei), k,∆) and (G2 = (V,Ej , Ej+1, . . . , ET ), k,∆), respec-

tively. For the other direction, assume for contradiction that (Υ
(1)
1 ,Υ

(1)
2 , . . . ,Υ

(1)
i ,Υ

(2)
i+1, . . . ,Υ

(2)
T ) is not

a proper sliding ∆-window temporal coloring for G = (V,E1, E2, . . . , ET ). Then there is a ∆-window
W∆
t for some t and an edge e ∈ Et′ for some t′ ∈ W∆

t that is never properly colored in W∆
t . However,

it is easy to check that W∆
t is completely contained in [i] or [j, T ] (because of the bounds on i and j)

and hence Υ(1) or Υ(2) color the whole ∆-window W∆
t . Since, by assumption, both Υ(1) and Υ(2) are

proper sliding ∆-window temporal colorings, there being an edge that exists in W∆
t and is not properly

colored is a contradiction.

Now we are ready to describe an exponential-time algorithm for SW-Temporal Coloring. The
main idea is to enumerate all partial proper sliding ∆-window temporal colorings for temporal subgraphs
of lifetime 2∆ and then to check whether we can combine them to a proper sliding ∆-window temporal
coloring for the whole temporal graph using Observation 4.4.

Theorem 4.5. SW-Temporal Coloring can be solved in O(k4∆·|V | · T ) time.

Proof. Let (G = (G,λ), k,∆) be an input instance for SW-Temporal Coloring. For the sake of
simplicity, we assume that T is divisible by ∆. If this is not the case, we can “mirror” the last snapshots:
we repeat snapshots {T − (T mod ∆) − 1, . . . , T − 1} in reverse order after the T th snapshot. We give
an algorithm for this problem that works as follows:

1. For 2∆-windows W 2∆
i∆+1 = [i∆ + 1, (i + 2)∆] for i ∈ {0, 1, . . . , T/∆ − 2}, enumerate all partial

proper sliding ∆-window temporal colorings Υ
(j)

W 2∆
i∆+1

that use at most k fixed colors, where each

trivial snapshot is colored in some fixed but arbitrary way2.

2. Create a directed acyclic graph (DAG) with all Υ
(j)

W 2∆
i∆+1

as vertices and connect Υ
(j)

W 2∆
i∆+1

and

Υ
(j′)

W 2∆
(i+1)∆+1

with a directed arc if the two proper sliding ∆-window temporal colorings agree on

the overlapping part.

3. Create a source vertex s and connect it to all Υ
(j)

W 2∆
1

with a directed arc and create a sink vertex z

and add a directed arc from all Υ
(j)

W 2∆
(T/∆−2)∆+1

to it.

2This is an important trick that allows us to use this algorithm for the FPT result in Theorem 4.6.
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. . .

. . .

. . .

...

W 2∆
1 W 2∆

∆+1 W 2∆
(T/∆−2)∆+1

s z

Figure 6: Illustration of the DAG constructed in the algorithm described in the proof of Theorem 4.5.
Each vertex in each column of vertices corresponds to a partial proper sliding ∆-window temporal coloring
for the 2∆-window written at the bottom of the column. Thick arcs are only included in the DAG if the
two connected partial proper sliding ∆-window temporal colorings agree on the overlapping part.

4. If there is a path from s to z, then answer YES, otherwise NO.

The constructed DAG is visualized in Figure 6.

Correctness. We now show that the above described algorithm is correct.

(⇒): Assume that we are given a proper sliding ∆-window temporal coloring Υ that uses at most k
colors for G. Without loss of generality, let the k colors be the same fixed k colors we use in the algorithm.
If G contains trivial snapshots, we assume without loss of generality that Υ colors them in the same fixed
but arbitrary way as we do in the algorithm. Then for 2∆-windows W 2∆

i∆+1 = [i∆ + 1, (i + 2)∆] for
i ∈ {0, 1, . . . , T/∆ − 2}, the partial coloring of W 2∆

i∆+1 that agrees with Υ appears in the constructed
DAG, since by assumption it is proper and we enumerate all of them. Now for any two 2∆-windows
W 2∆
i∆+1 and W 2∆

(i+1)∆+1 we obviously have that if we color them with Υ the overlapping part is colored in
the same way. Hence the vertices corresponding to the implied partial coloring for these two 2∆-windows
are connected. Following these connections, we can see that we find a path from s to z in the constructed
DAG.

(⇐): If there is a path from s to z in the constructed DAG, then, by Observation 4.4, we can
combine the partial proper sliding ∆-window temporal coloring corresponding to the vertices visited by
the path since, by construction, they overlap for ∆ time slots and agree on how to color the vertices in
the overlapping part. This gives us a proper sliding ∆-window temporal coloring for the whole graph.

Running Time. The running time is dominated by checking whether s and z are connected in the last
step of the algorithm. This can be done for example by a breadth-first-search on the constructed DAG.
The DAG has at most k2∆·|V | · T vertices and at most k4∆·|V | · T edges.

4.3 An FPT-Algorithm for Sliding Window Temporal Coloring

In this section, we show how to extend the algorithm presented in Theorem 4.5 to achieve linear time
fixed-parameter tractability with respect to the number of vertices. The main idea is to reduce the
number of non-trivial snapshots in each ∆-window. However, the procedure we describe only guarantees
a very large upper bound on the number of non-trivial snapshots in each ∆-window. Hence, the following
result is only of classification nature.

Theorem 4.6. SW-Temporal Coloring can be solved in 2O(2|V |
2
) · T time.

Proof. We present a preprocessing step to reduce the number of non-trivial snapshots in any ∆-window
and then use the algorithm of Theorem 4.5 to solve the problem.

The data reduction rule is based on the observation that if some snapshot appears at least |V |2 times
in a ∆-window, then the edges of this snapshot can be properly colored with two colors within the ∆-
window. In other words, all but |V |2 copies of the snapshot in the ∆-window are redundant for optimal
coloring and each of them could be replaced by the trivial snapshot. When implementing this idea one
should take care to guarantee that replacing a snapshot by the trivial one does not reduce the number
of copies of the snapshot in other ∆-windows which contain at most |V |2 copies of the snapshot.
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Formally, the data reduction rule is as follows. Since the number of different snapshots is at most

2(|V |2 ) ≤ 2|V |
2

, by the pigeonhole principle if ∆ > 2 · 2|V |2 · |V |2, then in every ∆-window there exists a
snapshot that appears more than 2|V |2 times in that ∆-window. For every such snapshot that contains
at least one edge, we replace one of its “middle” copies, that is, one that has at least |V |2 copies appearing
earlier and |V |2 copies that appear later in the ∆-window by a trivial snapshot. This data reduction rule
guarantees that every ∆-window that contains the modified snapshot also contains at least |V |2 copies
of the original snapshot appearing either earlier or later in the ∆-window.

The data reduction rule can be applied exhaustively by linearly sweeping over all ∆-windows once in
the following way. For each different graph (snapshot) we store a list of occurrences and update these
lists every time we move the ∆-window by one. Having these lists, it is straightforward to count the
occurrences and replace the middle ones by trivial snapshots. When we move the ∆-window, we just
have to update two lists: the one of the graph that enters the ∆-window and the one of the graph that

leaves. This requires a lookup table of size 2(|V |2 ) ≤ 2|V |
2

but takes only time linear in T . Note that after

this procedure, every ∆-window contains at most 2 ·2|V |2 · |V |2 ∈ 2O(2|V |
2
) non-trivial snapshots. Now we

apply the algorithm of Theorem 4.5. Since we can assume that k ≤ |V |, the number of colorings that are

enumerated in Step 1 of the algorithm in Theorem 4.5 is in 2O(2|V |
2
). This the case because the number

of enumerated colorings only depends on the number of non-trivial snapshots in each ∆-window. This
completes the proof.

We complement the fixed-parameter tractability result of Theorem 4.6 with the following proposition,
in which we exclude the possibility of a polynomial-sized kernel for SW-Temporal Coloring when
parameterized by the number |V | of vertices unless NP ⊆ coNP/poly. This stands in contrast to the
existence of a polynomial kernel for Temporal Coloring when parameterized by |V | [37].

Proposition 4.7. SW-Temporal Coloring parameterized by the number |V | of vertices does not
admit a polynomial kernel for all ∆ ≥ 2 and k ≥ 2 unless NP ⊆ coNP/poly.

We need the following notation for the proof. An equivalence relation R on the instances of some
problem L is a polynomial equivalence relation if

(i) one can decide for each two instances in time polynomial in their sizes whether they belong to the
same equivalence class, and

(ii) for each finite set S of instances, R partitions the set into at most (maxx∈S |x|)O(1) equivalence
classes.

An AND-cross-composition of a problem L ⊆ Σ∗ into a parameterized problem P (with respect to
a polynomial equivalence relation R on the instances of L) is an algorithm that takes n R-equivalent
instances x1, . . . , xn of L and constructs in time polynomial in

∑n
i=1 |xi| an instance (x, k) of P such

that
(i) k is polynomially upper-bounded in max1≤i≤n |xi|+ log(n) and

(ii) (x, k) is a yes-instance of P if and only if xi is a yes-instance of L for every i ∈ [n].
If an NP-hard problem L AND-cross-composes into a parameterized problem P , then P does not

admit a polynomial-size kernel, unless NP ⊆ coNP/poly [7, 16], which would cause a collapse of the
polynomial-time hierarchy to the third level.

Proof of Proposition 4.7. We provide an AND-cross-composition from Exact (3, 4)-SAT [44]. Recall
that in Exact (3, 4)-SAT we are asked to decide whether a given Boolean formula φ is satisfiable
and φ is in conjunctive normal form where every clause has exactly three distinct literals and every
variable appears in exactly four clauses. Intuitively, we can just string together instances produced by
the reduction we presented in the proof of Theorem 4.1 in the time axis with some extra snapshots in
between such that the large instance admits a proper sliding ∆-window temporal coloring if and only if
all original instances are YES-instances.

We define an equivalence relation R as follows: Two instances φ and ψ are equivalent under R if and
only if the number of variables and the number of clauses is the same in both formulas. Clearly, R is a
polynomial equivalence relation.

Now let φ1, . . . , φn be R-equivalent instances of Exact (3, 4)-SAT. We arbitrarily number all vari-
ables and clauses of all formulas. For each φi with i ∈ [n] we construct an instance of SW-Temporal
Coloring as defined in the proof of Theorem 4.1 (for an illustration see Figure 4) with the only
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difference that we add a fourth and fifth snapshot both of which are copies of the first snapshot (Fig-
ure 4a). Now we put all constructed temporal graphs next to each other in temporal order, that is,

if G(i) = (V,E
(i)
1 , E

(i)
2 , . . . , E

(i)
5 ) is the graph constructed for φi, then the overall temporal graph is

G = (V,E
(1)
1 , E

(1)
2 , . . . , E

(1)
5 , E

(2)
1 , E

(2)
2 , . . . , E

(2)
5 , . . . , E

(n)
1 , E

(n)
2 , . . . , E

(n)
5 ). Here, the vertex set stays the

same. We identify the vertices with their names according to the numbering of the variables and clauses
of the formulas. Further, we set ∆ = 2 and k = 2.

This instance can be constructed in polynomial time and the number of vertices is linearly upper-
bounded in the size of the formulas, hence |V | is polynomially upper-bounded by the maximum size of
an input instance. Furthermore, it is easy to check that the two extra copies of the first snapshot in the

construction (Figure 4a) allow to go from an arbitrary proper coloring of snapshot G
(i)
4 = (V,E

(i)
4 ) to

G
(i+1)
1 = (V,E

(i+1)
1 ) for any i ∈ [n− 1]. It follows from the proof of Theorem 4.1, that the constructed

SW-Temporal Coloring instance is a YES-instance if and only if for every i ∈ [n] formula φi is
satisfiable.

Since Exact (3, 4)-SAT is NP-hard [44] and we AND-cross-composed it into SW-Temporal Col-
oring with ∆ = 2 and k = 2 parameterized by |V |, the result follows.

4.4 Structural Graph Parameters and Approximation

In this section, we investigate the possibility to improve the fixed-parameter tractability result of Theo-
rem 4.6 by replacing the parameter |V | with a smaller parameter. We answer this negatively by showing
that SW-Temporal Coloring remains NP-complete even if the underlying graph has vertex cover
number in O(k), which is a fairly large structural parameter.

Theorem 4.8. SW-Temporal Coloring is NP-complete for all k ≥ 2, even if ∆ = 2 and the vertex
cover number of the underlying graph is in O(k).

Proof. We present a reduction from Monotone Exactly 1-in-3 SAT [42, 23] to SW-Temporal
Coloring with k = 2 and ∆ = 2. The reduction can be easily modified to a larger number of colors,
we explain how to do this at the end of the proof. In Monotone Exactly 1-in-3 SAT we are given a
collection of triples (clauses) of variables and the task is to determine whether there is an assignment of
truth values to variables such that each clause contains exactly one variable that is set to true. Given
an instance I of Monotone Exactly 1-in-3 SAT with n variables and m clauses, we construct a
temporal graph G = (G,λ) with T = 4m snapshots in the following way. The construction is visualized
in Figure 7.

Construction. In the construction, we classify the snapshots of the constructed temporal graph by the
remainders of their time slots when divided by four. This gives us type 1, type 2, type 3, and type 4
snapshots, where type 4 snapshots are the ones with a time slot that is divisible by four and the other
type numbers correspond to the remainders of the time slots. We start by adding four vertices u1,
u2, u3, and u4 to G. In snapshots of type 1 or type 3 we add edges {u1, u2}, {u1, u3}, and {u2, u4}.
In snapshots of type 2 or type 4 we add edge {u3, u4}. For each variable xi we add a vertex vi. We
connect each of u3 and u4 to all vi in all snapshots. Next, we add 13 further vertices w1, w2, . . . , w13

to V . In all snapshots we pairwise connect w1, w2, and w3, pairwise connect w11, w12, and w13, and
add edges {w4, w7}, {w5, w8}, and {w6, w9}. In snapshots of type 2 we add edges {w1, w4}, {w2, w5},
{w3, w6}, {u3, w10}, {w7, w10}, {w8, w10}, and {w9, w10} (see Figure 7b). In snapshots of type 3 we add
edges {w4, w9}, {w5, w7}, {w6, w8}, {w7, w11}, {w8, w12}, and {w9, w13} (see Figure 7c). Lastly, let xi1 ,
xi2 , and xi3 be the three variables contained in clause cj . Then we add edges {vi1 , w1}, {vi2 , w2}, and
{vi3 , w3} in snapshot 4j − 2 (see red edges in Figure 7b). Note that snapshot 4j − 2 has type 2.

Correctness. It is easy to check that this can be done in polynomial time. Note that vertices
u1, u2, u3, u4, w1, w2, . . . , w13 form a vertex cover in G. We are ready now to prove that the Mono-
tone Exactly 1-in-3 SAT instance I is a YES-instance if and only if G admits a proper sliding
2-window temporal 2-coloring.

(⇒): Assume we are given a YES-instance of Monotone Exactly 1-in-3 SAT with a satisfying
assignment. We show that the constructed instance of SW-Temporal Coloring is also a YES-instance
by presenting a proper sliding ∆-window temporal coloring with two colors. Let blue and yellow be the
two colors we use. We always color u1 and u4 yellow and u2 and u3 blue. If variable xi is set to true
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. . . . . .

(a) Type 1 snapshot.

. . . . . .

(b) Type 2 snapshot.

. . . . . .

(c) Type 3 snapshot.

. . . . . .

(d) Type 4 snapshot.

Figure 7: Illustration of the reduction from Monotone Exactly 1-in-3 SAT to SW-Temporal
Coloring of the proof of Theorem 4.8. The vertex numbering in the description of the construction
corresponds to a row-wise numbering from top-left to bottom-right. The first two rows correspond to
vertices u1 to u4. The third row corresponds to vertices v1 to vn. The remaining rows correspond to
vertices w1 to w13. Thin edges appear in all snapshots. Thick edges never appear consecutively and
hence need to be colored properly. Red edges correspond to clauses. The colors of the vertices correspond
to the proper sliding ∆-window temporal coloring constructed in the proof of Theorem 4.8.

in the satisfying assignment, then we color vi yellow in snapshots of type 1 and 3 and blue in snapshots
of type 2 and 4. If variable xi is set to false in the satisfying assignment, then we color vi yellow in
snapshots of type 2 and 4 and blue in snapshots of type 1 and 3. Vertex w10 is always colored yellow.

Let clause cj be satisfied by its sth variable (note that s ∈ [3]). We describe how to color vertices
w1, . . . , w9 in snapshot 4 · j − 2. Vertex ws is colored yellow. Vertices in {w1, w2, w3} \ {ws} are colored
blue. Vertex ws+3 is colored blue. Vertices in {w4, w5, w6} \ {ws+3} are colored yellow. Vertices w7, w8,
and w9 are colored blue. We further describe how to color vertices w4, . . . , w13 in snapshot 4 · j−1. Note
that w10 is already colored yellow.

• We color vertex w((s+1) mod 3)+4 blue and vertices in {w4, w5, w6} \ {w((s+1) mod 3)+4} yellow.

• We color vertex w(s mod 3)+7 yellow and vertices in {w7, w8, w9} \ {w(s mod 3)+7} blue.

• We color vertex w(s mod 3)+11 blue and vertices in {w11, w12, w13} \ {w(s mod 3)+11} yellow.

In all snapshots of type 1 and 4 we color vertices w4, w5, and w6 yellow and vertices w7, w8, and w9

blue. The coloring scheme so far is depicted in Figure 7. Note that the colors of some vertices in some
snapshots are not specified yet. These are the white vertices in Figure 7. All these vertices belong to
triangles, hence we can color them in a way that each triangle has one monochromatic edge. We choose as
the edge that should remain monochromatic an edge that is properly colored in both adjacent snapshots.
Such an edge always exists since all these triangles are also triangles in the adjacent snapshots and a
triangle is never colored completely monochromatic.

(⇐): Assume that the constructed instance of SW-Temporal Coloring is a YES-instance and that
we have a proper sliding ∆-window temporal coloring with two colors. We show that the given instance
of Monotone Exactly 1-in-3 SAT is also a YES-instance by constructing a satisfying assignment.
We claim that the following yields a satisfying assignment. For every variable xi, if edge {u3, vi} is
colored properly in the first snapshot, then we set xi to true, otherwise we set xi to false.

First we argue that if an edge {u3, vi} is colored properly in the first snapshot for some i ∈ [n], then
it is also colored properly in every odd snapshot (that is, every snapshot of type 1 and 3). Furthermore,
the edge is colored monochromatically in every even snapshot (that is, every snapshot of type 2 and 4).
Analogously, if an edge {u3, vi} is colored monochromatically in the first snapshot for some i ∈ [n],
then it is also colored monochromatically in every odd snapshot and colored properly in every even
snapshot. This follows from an easily verifiable fact that in every proper sliding ∆-window temporal
coloring vertex u3 is colored different from vertex u4 in every snapshot. It follows that if an edge {u3, vi}
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is colored monochromatically in a snapshot t for some i ∈ [n] and t ∈ [T − 1], then {u3, vi} needs to
be colored properly in snapshot t + 1 meaning that {u4, vi} is colored monochromatically in snapshot
t + 1. Symmetrically, if an edge {u4, vi} is colored monochromatically in a snapshot t for some i ∈ [n]
and t ∈ [T − 1], then {u4, vi} needs to be colored properly in snapshot t + 1 meaning that {u3, vi} is
colored monochromatically in snapshot t+ 1.

Now we are ready to argue that each clause of the Monotone Exactly 1-in-3 SAT instance is
satisfied. To see this we first take a look at snapshots of type 3. Note that the triangle consisting of
vertices w11, w12, and w13 has exactly one monochromatic edge. It cannot have three since not all three
edges can be colored properly in the adjacent snapshots. This means that exactly two out of the three
vertices w11, w12, and w13 have the same color. It follows that exactly two out of the three vertices w7,
w8, and w9 have the same color, since the edges {w7, w11}, {w8, w12}, and {w9, w13} need to be colored
properly. It is easy to check that this implies that exactly two out of the three edges {w4, w7}, {w5, w8},
and {w6, w9} are colored monochromatically, since edges {w4, w9}, {w5, w7}, and {w6, w8} need to be
colored properly.

Now we take a look at snapshots of type 2. From the last paragraph follows that at most one out of
the three edges {w4, w7}, {w5, w8}, and {w6, w9} is colored monochromatically. Since edges {u3, w10},
{w7, w10}, {w8, w10}, and {w9, w10} need to be colored properly, we have that vertices w7, w8, and w9

have the same color as vertex u3. It follows that at most one of the vertices w4, w5, and w6 is colored in
the same color as u3. Since vertices w1, w2, and w3 form a triangle and edges {w1, w4}, {w2, w5}, and
{w3, w6} need to be colored properly, it follows that exactly one out of the three vertices w1, w2, and w3

is colored differently from u3. Recall that w1, w2, and w3 are connected to vertices vi1 , vi2 , and vi3
corresponding to the three variables xi1 , xi2 , and xi3 that are contained in the clause that corresponds to
the snapshot. The connecting edges need to be colored properly. Consequently, exactly one of the edges
{u3, vi1}, {u3, vi2}, and {u3, vi3} is colored monochromatically and the other two are colored properly.
It follows that in the first snapshot, exactly one of the edges {u3, vi1}, {u3, vi2}, and {u3, vi3} is colored
properly and the other two are colored monochromatically. This means we set exactly one of the three
variables to true and the clause is satisfied.

Modification for a Larger Number of Colors. To modify this reduction for more colors we introduce new
vertices and edges to the snapshots to “block” all colors except two from being used. Formally, we do

the following. Let k > 2. We add 2k− 4 fresh vertices c
(1)
1 , . . . , c

(1)
k−2 and c

(2)
1 , . . . , c

(2)
k−2. In each snapshot

of type 1 or 3 the vertices c
(1)
1 , . . . , c

(1)
k−2 form a clique and we connect them to all other vertices. In each

snapshot of type 2 or 4 the vertices c
(2)
1 , . . . , c

(2)
k−2 form a clique and connect them to all other vertices.

All new edges exist exactly once during any ∆-window for ∆ = 2 and hence have to be colored properly

in every snapshot in which they appear. It follows that all vertices c
(i)
1 , . . . , c

(i)
k−1 have to be colored with

k − 2 distinct colors and these colors cannot be used to color any other vertex.
The number of new vertices introduced by this modification is in O(k) and we can simply add all of

them to the vertex cover of the underlying graph.

Finally, we consider a canonical optimization version of SW-Temporal Coloring, which we call
Minimum SW-Temporal Coloring, where the goal is to minimize the number of colors k. Using
Theorem 4.6, we provide an FPT-approximation algorithm with an additive error of one where the
parameter is the vertex cover number of the underlying graph. Considering that we cannot hope for
an exact FPT algorithm for parameter “vertex cover number of the underlying graph” unless P = NP
(Theorem 4.8), this is the best we can get from a classification standpoint.

Theorem 4.9. Minimum SW-Temporal Coloring admits an approximation algorithm with a run-

ning time in 2O(2
vc2
↓ ) · T and an additive error of one, where vc↓ is the vertex cover number of the

underlying graph.

Proof. Let G = (G,λ) be the input temporal graph. First, we compute a minimum vertex cover S ⊆ V
of the underlying graph G. Let the size of this vertex cover be vc↓ = |S|. Note that this can be done
in O(2vc↓ · (|V | + |E(G)|) time [9, 16]. We use the algorithm of Theorem 4.6 to compute the size of a
minimum proper sliding ∆-window temporal coloring for the temporal graph G[S] induced by the vertex

cover vertices3. By Theorem 4.6 this computation takes 2O(2
vc2
↓ ) · T time and the number of colors

3Note that the algorithm presented in Theorem 4.6 solves the decision version of SW-Temporal Coloring while we
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used is clearly a lower bound for the minimum number of colors necessary to properly color the whole
temporal graph. We color the remaining vertices with a fresh color. This clearly gives a proper sliding
∆-window temporal coloring for the whole temporal graph that uses at most one extra color compared
to the optimum.

5 Conclusion

In this paper we introduced and studied two natural temporal extensions of the classical graph coloring
problem, called Temporal Coloring and SW-Temporal Coloring, where Temporal Coloring
is the special case of SW-Temporal Coloring, where the sliding window size equals the lifetime of
the input temporal graph. For both variants we showed that they are NP-complete even under severe
restrictions, in particular even if the number of colors is two, which stands in stark contrast to the static
case, where this problem is polynomial-time solvable.

On the positive side, we provided a linear time FPT-algorithm for parameter “number |V | of vertices”
and a linear time FPT-approximation algorithm for parameter “vertex cover number of the underlying
graph” with an additive error of one. We leave as an open question whether for the latter, we can replace
vertex cover number by a structurally smaller parameter.

There are several natural extensions of our problem that one could consider in future work. Con-
sidering our motivating example of mobile agents, it would be reasonable to assume that agents do not
want to change a channel too frequently. In our model, this would translate to imposing a restriction on
the number of color reassignments per vertex, or imposing a minimum time period that each vertex has
to wait (after a color change) before it can change colors again. We remark that restricting the number
of vertices that may change their color when going from one time slot to the next (which would be a
somewhat similar condition as used in “multistage” problems [5, 27, 22]) presumably does not simplify
the problem, since in the reduction of the proof of Theorem 4.8 this number is constant (for a constant
number of colors k).
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