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ABSTRACT 23 

A knowledge of the timing of closure of the Meso-Tethys Ocean represented by 24 

the Bangong–Nujiang Suture Zone (BNSZ), i.e., the timing of the 25 

Lhasa-Qiangtang collision, is critical for understanding the Mesozoic tectonics of 26 

the Tibetan Plateau. But this timing is hotly debated with existing suggestions 27 

varying from Middle Jurassic (ca. 166 Ma) to Late Cretaceous (ca. 100 Ma). In 28 

this study, we describe the petrology of the Zhonggang igneous–sedimentary 29 

rocks in the middle segment of the BNSZ, and present results of zircon U–Pb 30 

geochronology, whole-rock geochemistry, and Sr–Nd isotope analysis of the 31 

Zhonggang igneous rocks. The Zhonggang igneous–sedimentary rocks have a 32 

thick basaltic basement (> 2 km thick) covered by limestone with interbedded 33 

basalt and tuff, trachyandesite, chert, and poorly-sorted conglomerate 34 

comprising limestone and basalt debris. There is an absence of terrigenous 35 

detritus (e.g., quartz) within the sedimentary and pyroclastic rocks. These 36 

observations, together with the typical exotic blocks-in-matrix structure between 37 

the Zhonggang igneous–sedimentary rocks and the surrounding flysch deposits, 38 

lead to the conclusion that the Zhonggang igneous–sedimentary rocks are 39 

remnants of an ocean island within the Meso-Tethys Ocean. This conclusion is 40 

consistent with the ocean island basalt-type geochemistry of the Zhonggang 41 

basalts and trachyandesites, which are enriched in light rare earth elements 42 

(LaN/YbN = 4.72–18.1 and 5.61–13.7, respectively) and have positive Nb–Ta 43 

anomalies (NbPM/ThPM > 1, TaPM/UPM > 1), low initial 87Sr/86Sr ratios (0.703992–44 GS
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0.705428), and positive mantle εNd(t) values (3.88–5.99). Zircon U–Pb dates 45 

indicate that the Zhonggang ocean island formed at 141–135 Ma; therefore, 46 

closure of the Meso-Tethys Ocean and collision between the Lhasa and 47 

Qiangtang terranes must have happened after ca. 135 Ma. 48 

 49 

INTRODUCTION 50 

The Tibetan Plateau is the highest topographic feature on Earth. It consists of 51 

Gondwana-derived terranes that accreted progressively onto the southern margin of 52 

Eurasia during the Phanerozoic opening, growth, and closure of the Paleo-, Meso- and 53 

Neo-Tethys oceans (Fig. 1a; Yin and Harrison, 2000; Zhu et al., 2013; Metcalfe, 2013; 54 

Xu et al., 2015; Kapp and DeCelles, 2019). 55 

The Meso-Tethys Ocean, which is represented by the Bangong–Nujiang Suture 56 

Zone (BNSZ) in the central Tibetan Plateau, places important constraints on the 57 

Mesozoic tectonic history of the Tibetan Plateau (Kapp et al., 2007; Pan et al., 2012; 58 

Zhang et al., 2014a; Zhu et al., 2016), and provides insights into widespread late 59 

Mesozoic mineralization within central Tibet (Geng et al., 2016; Li et al., 2018). The 60 

BNSZ has been studied extensively since the 1980s (Allègre et al., 1984; Yin and 61 

Harrison., 2000; Kapp et al., 2007; Pan et al., 2012; Shi et al., 2008, 2012; Zhang et 62 

al., 2014a, 2017; Li et al., 2014, 2018, 2019 a, b, 2020; Zhu et al., 2016; Wang et al., 63 

2016; Zeng et al., 2016; Geng et al., 2016; Liu et al., 2017; Chen et al., 2017; Fan et 64 

al., 2018a; Hao et al., 2019; Yan and Zhang, 2020; Tang et al., 2020), but many 65 

aspects about the evolution of the Meso-Tethys Ocean remain controversial. The 66 GS
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timing of closure of the Meso-Tethys Ocean is central to these controversies. 67 

Timing of closure of the Meso-Tethys Ocean are commonly assigned to the latest 68 

Jurassic (ca. 145 Ma) because ophiolitic rocks and flysch deposits in the BNSZ 69 

overlain by Upper Jurassic to Lower Cretaceous shallow-marine strata, and the 140–70 

130 Ma arc-related pause in igneous activity within the southern Qiangtang Terrane 71 

were interpreted to result from the Lhasa-Qiangtang collision (Girardeau et al., 1984; 72 

Wang and Dong, 1984; Chen et al., 2004; Zhu et al. 2016; Huang et al., 2017; Li et al., 73 

2019a, b). Some studies suggest that the Meso-Tethys Ocean closed as early as 74 

Middle Jurassic (ca. 166 Ma), based on a Middle Jurassic unconformity and 75 

associated shift in provenance from arc-related to uplifted orogenic source within the 76 

southern Qiangtang Terrane, consistent with a major tectonic event such as the Lhasa–77 

Qiangtang collision (Ma et al., 2017). 78 

These ideas of early (ca. 166 or ca. 145 Ma) Meso-Tethys Ocean closure, 79 

however, cannot explain the well-exposed Early Cretaceous igneous rocks (e.g., basalt, 80 

trachyandesite and gabbro) and the related sedimentary rocks (e.g., limestone and 81 

chert) in the Zhonggang and Tarenben areas of the BNSZ (Figs. 1b–1c). The 82 

geochemistry of the Early Cretaceous basalts resembles those of modern ocean island 83 

basalts (OIB); therefore, some studies inferred that they record intraplate ocean island 84 

magmatism (Zhu et al., 2006; Bao et al., 2007; Fan et al., 2014, 2018a; Zhang et al., 85 

2014a). In this case, the Meso-Tethys Ocean must have remained open until the Early 86 

Cretaceous (Fan et al., 2018a). Therefore, the interpretation of early closure times (ca. 87 

166 or ca. 145 Ma) needs revision. The abundant late Mesozoic mineralization in 88 GS
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central Tibet must be genetically associated with the Meso-Tethys seafloor subduction 89 

(Li et al., 2014; Fan et al., 2015). 90 

However, the question is whether the Early Cretaceous geochemically OIB-like 91 

igneous rocks and the related sedimentary rocks in the Zhonggang and Tarenben areas 92 

of the BNSZ indeed represent remnants of intraplate ocean islands. Some studies 93 

suggest these rocks formed in a marine setting on continental crust after the Lhasa–94 

Qiangtang collision, rather than as ocean islands in deep water (Zhu et al., 2016; 95 

Huang et al., 2017; Li et al., 2019a, b). In this model, the source of the igneous rocks 96 

was enriched asthenosphere that ascended through slab windows formed by slab 97 

break-off after the Lhasa–Qiangtang collision (Zhu et al., 2016; Wu et al., 2018), and 98 

the sedimentary rocks formed within a post-collisional submarine basin (Zhu et al., 99 

2016; Li et al., 2019a). 100 

In this study, we present detailed petrological descriptions of the igneous and 101 

sedimentary rocks in the Zhonggang area, and results of U–Pb zircon geochronology, 102 

whole-rock geochemistry, and Sr–Nd isotope analysis of the igneous rocks. All these 103 

data show a strong affinity of the Zhonggang igneous–sedimentary rocks association 104 

with an intraplate ocean island, allowing us to conclude that they were remnants of an 105 

ocean island in the Meso-Tethys Ocean. The new U–Pb ages of the Zhonggang 106 

igneous rocks are Early Cretaceous (141–135 Ma), consistent with late closure of the 107 

Meso-Tethys Ocean and Lhasa–Qiangtang continental collision after ca. 135 Ma. 108 

 109 
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GEOLOGICAL BACKGROUND 111 

The Tibetan Plateau is located within the eastern Alpine–Himalayan tectonic 112 

domain, and is divided into the Himalayan, Lhasa, southern Qiangtang, northern 113 

Qiangtang, Bayan Har–Garze, and Qaidam terranes. These terranes are separated by 114 

the Indus–Yarlung Zangbo (IYZSZ), Bangong–Nujiang (BNSZ), Longmuco–115 

Shuanghu–Lancangjiang (LSLSZ), Jinshajiang (JSSZ), and East Kunlun– 116 

A’nyemaqen (EKASZ) suture zones, respectively (Fig. 1a; Allègre et al. 1984; Yin 117 

and Harrison. 2000; Pan et al. 2012; Metcalfe, 2013; Zhu et al., 2013; Zhai et al., 118 

2016). It is generally accepted the three suture zones (EKASZ, JSSZ, and LSLSZ) in 119 

northern Tibet represent remnants of the Paleo-Tethys that opened in the early 120 

Paleozoic and closed in the Permian–Triassic, whereas the IYZSZ in southern Tibet 121 

represents the Neo-Tethys mainly developed in the Mesozoic (Fig. 1a; Yin and 122 

Harrison, 2000; Pan et al., 2012; Metcalfe, 2013; Zhu et al., 2013; Xu et al., 2015; 123 

Zhai et al., 2013, 2016; Hu et al., 2014, 2015; Kapp and DeCelles, 2019). 124 

The BNSZ in central Tibet forms the boundary between the Lhasa and southern 125 

Qiangtang terranes (Fig. 1a), and represents the remnant of the Meso-Tethys 126 

(Girardeau et al., 1984; Metcalfe, 2013; Zhai et al., 2013; Zhang et al., 2014a; Chen et 127 

al., 2017; Fan et al., 2017; Kapp and Decelles, 2019). This suture zone extends 128 

eastward for ~2500 km from Kashmir to the Bangong Co, Gerze, Dongqiao, Amdo, 129 

Dengqen, and Jiayuqiao areas (Allégre et al., 1984; Girardeau et al., 1984; Pan et al., 130 

2012). At its eastern end, this suture zone connects with the Myitkyina, Meratus, and 131 

Lok-Ulo suture zones of Southeast Asia (Metcalfe, 2013; Liu et al., 2016). 132 GS
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The BNSZ is dominated by scattered fragments of latest Paleozoic to Mesozoic 133 

ophiolites (Shi et al., 2012; Wang et al., 2016; Zhang et al., 2016, 2017; Wei et al., 134 

2019), ocean island suites (Fan et al., 2014, 2017, 2018b; Zhang et al., 2014a), 135 

intra-oceanic arcs (Shi et al., 2008; Liu et al., 2014; Zeng et al., 2016; Huang et al., 136 

2017; Tang et al., 2019; Fan et al., 2019; Yan and Zhang, 2020), flysch deposits 137 

(Huang et al., 2017; Fan et al., 2018a), and high-pressure metamorphic rocks (e.g., the 138 

Dongco eclogite; Zhang et al., 2016, 2017). In addition, widespread Paleozoic to 139 

Mesozoic sedimentary and volcanic rocks occur on both sides of the BNSZ (Zhang et 140 

al., 2013; Li et al., 2014, 2018, 2020; Chen et al., 2015; Fan et al., 2015; Liu et al., 141 

2017; Hu et al., 2017). World-class porphyry copper–gold mineral deposits, formed at 142 

170–110 Ma (e.g., Duolong deposit), and Fe, Pb–Zn, and W mineral deposits are 143 

documented in and around the BNSZ (Geng et al., 2016; Li et al., 2018). 144 

 145 

PETROLOGY OF THE ZHONGGANG IGNEOUS–SEDIMENTARY ROCKS 146 

Igneous and sedimentary rocks occur over an area of more than 400 km2 within 147 

the Zhonggang area of the middle segment of the BNSZ (Fig. 2a; Fan et al., 2014). 148 

The Zhonggang igneous–sedimentary rocks are taupe, gray–green, and bright white in 149 

remote sensing images, and can be distinguished easily from the ophiolites and flysch 150 

deposits in the BNSZ (brown and gray–green) and Jurassic sedimentary strata on the 151 

southern Qiangtang Terrane (yellow–brown; Fig. 2b).  152 

The Zhonggang igneous–sedimentary rocks comprise a thick basaltic basement 153 

(>2 km thick; Fig. 2c) beneath a cover sequence of limestone (Fig. 2c), limestone with 154 GS
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intercalated basalt (Figs. 2d, 3a), basalt–tuff–limestone (Fig. 3b), interbedded 155 

limestone–tuff (Fig. 3c), basalt–trachyandesite–limestone (Fig. 3d), and 156 

trachyandesite–limestone (Fig. 3e). Despite slight modification by alteration (Fig. 4a), 157 

primary igneous textures of the basalt intercalated with the limestone are mostly 158 

preserved; it has spilitic textures, and contains skeletal microcrystalline plagioclase 159 

(Fig. 4a). The trachyandesite is in the upper part of the Zhonggang igneous–160 

sedimentary rocks, and is conformable with the basalt and limestone (Figs. 3d–3e); it 161 

has interwoven textures, and contains weakly oriented microcrystalline plagioclase 162 

(Fig. 4b). The limestone in the cover sequence is compositionally pure with 163 

recrystallized calcite (Fig. 4c), and the tuff contains clasts and matrix, both of which 164 

are dominated by basalt and limestone (Fig. 4d). 165 

Chert (Fig. 3f) and colluvial conglomerate (Fig. 3g) occur within the 166 

northeastern margin of the Zhonggang igneous–sedimentary rocks in the 167 

Zhagangnisang area (Fig. 2a). The chert contains minor calcite clasts in addition to 168 

chalcedony (Fig. 4e). The colluvial conglomerate contains gravels and matrix, both of 169 

which are entirely poorly sorted limestone (e.g., reef limestone) and basalt with 170 

angular to subangular shape (Figs. 3g, 4f), indicating a rapid accumulation of 171 

sediments with proximal and restricted provenance. Terrigenous detritus (e.g., quartz) 172 

was not observed within the limestone, chert, colluvial conglomerate, or tuff, 173 

indicating a setting distal to land. In the Zhanong area, the Zhonggang igneous–174 

sedimentary rocks contain gabbro that intrudes as dykes into the basalt and limestone 175 

(Fan et al., 2014). In the Zhonggang area, the Zhonggang igneous–sedimentary rocks 176 GS
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were thrust onto the Mugagangri Group, and formed widespread exotic blocks within 177 

the matrix of the flysch deposits (Figs. 3h–3i). 178 

 179 

ANALYTICAL METHODS AND RESULTS 180 

Methods for zircon U–Pb, whole-rock major- and trace-element, and Sr–Nd 181 

isotope analyses are provided in the Data Repository. 182 

 183 

Whole-rock major- and trace-element geochemistry 184 

A total of 38 samples (4 trachyandesite, 34 basalt, loss-on-ignition < 4 wt.%) 185 

were collected for whole-rock major- and trace-element analysis, some of which (2 186 

trachyandesite, 32 basalt) are previous reported (Fan et al., 2014; Yu et al., 2015; 187 

Wang et al., 2016). Data are provided in Table DR1. The samples have undergone 188 

varying degrees of alteration (Fig. 4a), resulting in variable values of LOI and 189 

changes in the concentrations of mobile elements (e.g., Na, K, Ca, Cs, Rb, Ba, and Sr) 190 

compared with protolith values. However, concentrations and ratios of immobile 191 

elements (e.g., REE, Nb, Ta, Zr, Hf, Ti, and P) and transition metal elements (e.g., V, 192 

Ni, and Cr) have not been affected by these processes and can therefore be used to 193 

investigate the petrogenesis and tectonic setting of the samples (Verma, 1981; Hart 194 

and Staudigel, 1982; Hu et al., 2019). 195 

The Zhonggang basalt samples have variable SiO2 (44.9–52.5 wt.%) and MgO 196 

(3.29–8.56 wt.%) contents, variable Mg# values [100 × molar Mg/(Mg + Fe)] (43–66), 197 

and high TiO2 contents (1.90–4.57 wt.%). The Zhonggang trachyandesite samples 198 GS
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have high SiO2 (53.2–55.4 wt.%) and TiO2 (1.78–2.21 wt.%) contents, and low MgO 199 

contents (1.58–2.46 wt.%) and Mg# values (26–41). All of the basalt samples are 200 

classified as alkaline basalts, based on the Nb/Y vs. Zr/TiO2 classification diagram, 201 

and the trachyandesite samples are classified as trachyandesite and trachyte (Fig. 5; 202 

Winchester and Flody, 1977). 203 

All of the Zhonggang trachyandesite and basalt samples are enriched in light rare 204 

earth elements (LREE; LaN/YbN = 5.61–13.7 and 4.72–18.1, respectively) and 205 

high-field-strength elements (Nb, Ta, Zr, and Hf), yielding chondrite-normalized REE 206 

patterns and primitive-mantle-normalized trace element patterns that are similar to 207 

those of OIB (Figs. 6a–6d; Sun and McDonough, 1989). 208 

 209 

Zircon U–Pb ages 210 

Three trachyandesite samples were selected for zircon U–Pb dating by laser 211 

ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS). Data are 212 

provided in Table DR2. 213 

Zircon grains selected for dating included whole crystals and fragments of long 214 

euhedral crystals with lengths of 40–120 μm and length-to-width ratios of 1.5:1 to 3:1. 215 

All crystals are relatively homogeneous, and show oscillatory zoning in 216 

cathodoluminescence (CL) images (Fig. 7), consistent with an igneous origin 217 

(Belousova et al., 2002; Hoskin and Schaltegger, 2003). These zircons yield 218 

weighted-mean 206Pb/238U ages of 141.0 ± 2.4 Ma (MSWD = 1.7), 140.0 ± 2.2 Ma 219 

(MSWD = 2.2), and 135.3 ± 2.5 Ma (MSWD = 0.9), respectively (Fig. 7). 220 GS
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 221 

Whole-rock Sr–Nd isotopic compositions 222 

A total of 16 samples (2 trachyandesite samples, 14 basalt samples) were 223 

selected for whole-rock Sr–Nd isotope analysis in this and previous studies (Table 224 

DR3; Wang et al., 2016). Initial Sr isotope ratios and εNd(t) values were calculated 225 

using the new mean-age of ca. 140 Ma reported in this study. 226 

The Zhonggang igneous rocks have a wide range of initial 87Sr/86Sr ratios 227 

(0.703992–0.705428), and positive Nd(t) values of +3.88 to +5.99 (Fig. 8). Strontium 228 

is more mobile than Nd during seawater alteration (Verma, 1981), so the wide range 229 

of initial 87Sr/86Sr ratios might reflect alteration. 230 

 231 

DISCUSSION 232 

 233 

Ages of the Zhonggang igneous–sedimentary rocks 234 

The Early Cretaceous ages (e.g., whole-rock 40Ar/39Ar ages of 141–123 Ma of 235 

basalt, and zircon U-Pb ages of 132–116Ma of gabbro; Fig. DR1; Bao et al., 2007; 236 

Fan et al., 2014; Zhang et al., 2014a) from the Zhonggang igneous rocks indicate the 237 

formation timing of these rocks in the Early Cretaceous. However, some researchers 238 

suggest that these ages might be problematic, because the CL images of dated zircons 239 

from the gabbro are not typical of mafic rocks, and the Ar-Ar isotopic system of the 240 

basalts may have been reset (Ma et al., 2017; Li et al., 2019a). Therefore, the timing 241 

of formation of the Zhonggang igneous–sedimentary rocks remains controversial. 242 GS
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The dated trachyandesite is conformable with the basalt and limestone (Figs. 3d–243 

3e), indicating that the age of the trachyandesite records the timing of formation of the 244 

Zhonggang igneous–sedimentary rocks. The zircon grains have broad, weakly-, or 245 

unzoned cores, and weak to strong zoning toward the rims (Fig. 7), typical of zircon 246 

grains within trachyandesites (Akal et al., 2012; Tang et al., 2012; Feng et al., 2015; 247 

Shu et al., 2017; Xu et al., 2019; Liu et al., 2020) and andesites (Wang et al., 2015; 248 

Zeng et al., 2016; Liu et al., 2018). Therefore, the zircon U–Pb ages of 141–135 Ma 249 

record the timing of crystallization of the trachyandesite. The new age data provide 250 

strong evidence for Early Cretaceous (141–135 Ma) formation of the Zhonggang 251 

igneous–sedimentary rocks. 252 

 253 

Petrogenesis of the Zhonggang igneous rocks 254 

 255 

The role of crustal contamination 256 

Thorium and tantalum are sensitive indicators of crustal contamination, which 257 

increases Th/Ta ratios (Condie, 1993). All of the Zhonggang basalts and 258 

trachyandesites have relatively low Th/Ta ratios (0.57–2.76, and 0.47–1.16, 259 

respectively), similar to those of volcanic rocks derived from primitive mantle (Th/Ta 260 

= 2.3), and much lower than those of the upper crust (Th/Ta >10; Condie, 1993). This 261 

indicates that the basalts and trachyandesites were not contaminated by crustal 262 

material. Moreover, there is no negative correlation between SiO2 and Nd(t) values 263 

(Fig. 9a), which is further evidence against crustal contamination. 264 GS
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 265 

Magma source 266 

The REE characteristics of mafic rocks constrain the features of the magma 267 

source (McKenzie and O’Nions, 1991; Ellam, 1992; Zhao and Zhou, 2007). Basaltic 268 

magmas are commonly derived from the partial melting of mantle lherzolite, and their 269 

REE patterns are controlled mainly by the contents of garnet and spinel in their 270 

magma source rather than by the contents of olivine, clinopyroxene, or orthopyroxene, 271 

or by pressure and temperature (McKenzie and O’Nions, 1991; Horn et al., 1994; 272 

Schwandt et al., 1998; Oyan et al., 2017). In general, basalts derived from spinel 273 

lherzolite have flat chondrite-normalized REE patterns with weak or absent 274 

fractionation between LREE and heavy REE (HREE). However, HREE (e.g., Yb) are 275 

more compatible in garnet than the other REE (McKenzie and O’Nions, 1991; Oyan 276 

et al., 2017), so basalt derived from garnet lherzolite shows strong fractionation 277 

between LREE and HREE, and has high LaN/YbN and CeN/YbN ratios (McKenzie and 278 

O’Nions, 1991; Hart and Dunn, 1993; Hauri et al., 1994). In addition, partial melting 279 

of spinel lherzolite does not affect its Sm/Yb ratio, because Sm and Yb have similar 280 

partition coefficients; however, such melting might decrease the La/Sm ratio and Sm 281 

content of the melt (Aldanmaz et al., 2000). Therefore, partial melts of spinel 282 

lherzolite plot on melting trends sub-parallel to, and nearly coincident with, a mantle 283 

array defined by depleted to enriched source compositions (Fig. 9b; Aldanmaz et al., 284 

2000). In contrast, garnet partitions Yb (Dgarnet/melt = 6.6) strongly relative to Sm 285 

(Dgarnet/melt = 0.25; Johnson, 1994), so partial melts of garnet lherzolite mantle with 286 GS
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residual garnet define trends on plots of Sm/Yb vs. La/Sm that slope steeply relative 287 

to the trends defined by melts of spinel lherzolite (Fig. 9b; Aldanmaz et al., 2000; 288 

Zhao and Zhou, 2007). 289 

The Zhonggang basalts have LREE-enriched chondrite-normalized REE patterns 290 

(LaN/YbN = 4.72–18.1, Fig. 6a), and high CeN/YbN ratios (4.52–14.7), similar to those 291 

of basalts derived from garnet lherzolite (McKenzie and O’Nions, 1991; Hart and 292 

Dunn, 1993; Hauri et al., 1994). Furthermore, the Zhonggang basalts plot in the field 293 

of garnet lherzolite on the Sm/Yb vs. La/Sm diagram (Fig. 9b; Aldanmaz et al., 2000). 294 

These observations indicate that the Zhonggang basalts formed by partial melting of a 295 

garnet lherzolite mantle source. 296 

The Zhonggang trachyandesites have similar initial 87Sr/86Sr ratios and Nd(t) 297 

values to the Zhonggang basalts (Fig. 8). They have high Sm/Yb (3.22–4.45), and 298 

La/Sm (2.43–4.41) ratios, and they plot in similar positions to the basalts, within the 299 

field of garnet lherzolite on the Sm/Yb vs. La/Sm diagram (Fig. 9b). Moreover, the 300 

Zhonggang trachyandesites and basalts show a continuous evolutionary trend on the 301 

immobile elements (e.g., Si, Al, Nb, Ta, Th, and Ce) vs. MgO diagrams (Fig. DR2). 302 

These features lead to the conclusion that the Zhonggang trachyandesites were formed 303 

by fractional crystallization of the Zhonggang basalts. 304 

 305 

Geodynamic setting of the Zhonggang igneous–sedimentary rocks 306 

There are two possible geodynamic settings for the Zhonggang igneous–307 

sedimentary rocks: (1) an ocean island sequence within a deep marine basin (Fan et 308 GS
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al., 2014, 2018a); (2) an ocean island-like sequence formed in a collisional setting 309 

(Zhu et al., 2016; Li et al., 2019a). These settings are discussed below. 310 

 311 

Ocean island sequences in deep ocean basins 312 

The general view of ocean island sequence is mostly based on the prototypical 313 

Hawaiian model that formed on the fast moving Pacific plate (Ramalho et al., 2010a). 314 

The Hawaiian ocean islands record an initial basement-building stage, with frequent 315 

and voluminous eruptions of OIB-type lava. Towards the end of basement-building, 316 

the plate moves away from the hotspot center and magmatism diminished gradually. 317 

Erosion, mass-wasting events, and cooling and sinking of plates cause ocean islands 318 

to subside and eventually disappear beneath the surface of the ocean as submarine 319 

guyots and seamounts (Darwin, 1842; Menard and Ladd, 1963; Detrick and Crough, 320 

1978; Grigg, 1982; Menard, 1983; Morgan et al., 1995; Ramalho et al., 2010a). 321 

Limestone cover sequence deposited on the guyot is expected to receive little 322 

magmatism as the guyot has moved away from the hotspot (Fig. 10a; Sano and 323 

Kanmera, 1991; Kusky et al., 2013). Large amounts of colluvial conglomerate form 324 

on the margins of ocean islands, with clasts and matrix dominated by poorly-sorted 325 

limestone and basalt clasts (Fig. 10a). Cherts form at the base of the ocean island (Fig. 326 

10a). It is expected that terrigenous material (e.g., quartz) is absent from sedimentary 327 

and pyroclastic rocks that form far from continental margins (Fig. 10a; Sano and 328 

Kanmera, 1991; Kusky et al., 2013). 329 

An alternative to the Hawaiian model is provided by ocean islands such as Cape 330 GS
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Verde and Selvagen within the Atlantic Ocean, which form on slow moving or 331 

near-stationary plates (Ramalho et al., 2010a). Here their formation is conceptualized 332 

as the Cape Verde model. During formation of these islands, the slow or 333 

near-stationary plate permits volcanic islands to remain close to hotspot centers over 334 

long periods of time, so that alternating basaltic magmatism and limestone deposition 335 

results in basalt intercalated with limestone and pyroclastic rock layers (Fig. 10b; 336 

Robertson et al., 1984; Geldmacher et al., 2001; Dyhr and Holm, 2010; Ramalho et al., 337 

2010b). Trachyandesite, trachyte, and phonolite are found within modern ocean island 338 

sequences (e.g., Hawaii, Samoa, Azores, and Cape Verde; Geldmacher et al., 2001; 339 

Beier et al., 2007; Ramalho et al., 2010a; Mourão et al., 2012; Haase et al., 2019). 340 

In summary, the thick basaltic basement covered by limestone, limestone 341 

interbedded with basalt and tuff, marginal colluvial conglomerates, and chert, in 342 

association with the absence of terrigenous material (e.g., quartz) from the limestone, 343 

colluvial conglomerate, and pyroclastic rocks, are characteristic features of ocean 344 

island sequences (Figs. 10a–10b). 345 

 346 

Ocean island-like sequences formed in collisional settings 347 

Ocean island-like sequences in collisional settings form within post-collisional 348 

submarine basins on continental crust (Zhu et al., 2016; Li et al., 2019a), and it is 349 

difficult to reconcile the existence of thick basaltic basement and a cover sequence of 350 

related colluvial conglomerate with the features of this setting. Uplifted orogenic belts 351 

typically surround post-collisional submarine basins, and the uplifted rocks provide 352 GS
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terrigenous clasts that are preserved within sedimentary rocks (e.g., limestone and 353 

conglomerate). Typically, Ti-rich alkaline basalts interbedded with terrigenous 354 

sandstones, siltstones, and shales form in this setting (Sutton, 1978; Soesoo et al., 355 

1997). These rocks differ from ocean island sequences, which lack terrigenous clasts 356 

(Figs. 10a–10b). 357 

358 

Zhonggang igneous–sedimentary rocks: Remnants of a typical Cape Verde-type 359 

ocean island within the Meso-Tethys Ocean 360 

The Zhonggang igneous–sedimentary rocks comprise a thick basaltic basement 361 

covered by limestones with interbedded basalts and tuffs (Figs. 2d, 3a–3c), and a 362 

characteristic colluvial conglomerate (Fig. 3g). These rocks resemble modern Cape 363 

Verde-type ocean island sequences (Fig. 10b; Robertson et al., 1984; Geldmacher et 364 

al., 2001; Dyhr and Holm, 2010; Ramalho et al., 2010b). The absence of terrigenous 365 

clasts (e.g., quartz) from the limestone, colluvial conglomerate, and tuff (Figs. 4c–4f) 366 

is inconsistent with the collisional model, but supports the ocean island model. We 367 

therefore infer that the Zhonggang igneous–sedimentary rocks are remnants of a Cape 368 

Verde-type ocean island. Further support for this inference is provided by the 369 

following two lines of evidence. 370 

(1) Ocean islands that form within deep ocean basins accrete onto the371 

accretionary wedge as exotic blocks within a matrix of flysch deposits during 372 

subduction of oceanic lithosphere. In contrast, ocean island-like sequences produced 373 

in collisional settings form after the accretionary wedge, so they typically occur above 374 GS
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the accretionary wedge after collision. The widespread occurrence of exotic 375 

block-in-matrix structures on contacts between the Zhonggang igneous–sedimentary 376 

rocks and the flysch deposits (Figs. 3h–3i) provide strong evidence that the 377 

Zhonggang igneous–sedimentary rocks are ocean island remnants. 378 

(2) All of the Zhonggang basalts and trachyandesites are enriched in LREE (Figs. 379 

6a, 6c), and have positive Nb–Ta anomalies (Figs. 6b, 6d). They are derived from a 380 

garnet-facies mantle source, and the ascending magmas were not contaminated by the 381 

crust (Figs. 9a–9b). These characteristics are similar to those of igneous rocks from 382 

modern intraplate ocean islands (Sun and McDonough, 1989; Niu et al., 2011; Haase 383 

et al., 2019). Furthermore, the whole-rock Sr–Nd isotopic compositions of the 384 

Zhonggang igneous rocks are similar to those of igneous rocks from modern intraplate 385 

ocean islands (e.g., Cape Verde and Azores, Atlantic Ocean; Figs. 8, 11; Widom et al., 386 

1997; Pfänder et al., 2007; Tanaka et al., 2008; Niu et al., 2011; Garapić et al., 2015; 387 

Mata et al., 2017). 388 

In summary, we infer that the Zhonggang igneous–sedimentary rocks are 389 

remnants of a typical Cape Verde-type ocean island that formed within the deep ocean 390 

basin of the Meso-Tethys Ocean (Fig. 11). 391 

 392 

Timing of closure of the Meso-Tethys Ocean 393 

The Zhonggang igneous–sedimentary rocks are remnants of a typical Cape 394 

Verde-type ocean island that formed at 141–135 Ma, which indicates that the 395 

Meso-Tethys Ocean was still opening at this time (Fig. 12a). Therefore, final closure 396 GS
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of the Meso-Tethys Ocean and the subsequent Lhasa–Qiangtang continental collision 397 

must have occurred after ca. 135 Ma. Furthermore, we infer that the final closure of 398 

the Meso-Tethys Ocean was diachronous from east to west during the late Early 399 

Cretaceous (130–100 Ma; Fig. 12b; Fan et al., 2018a), based on paleomagnetic data 400 

showing that north-directed movement of the Lhasa Terrane ceased by ca. 132 Ma  401 

(Ma et al., 2018), the transition from marine to non-marine environments occurred at 402 

125–118 Ma within the Nyima area of the Lhasa Terrane (Fig. 1b; Kapp et al., 2007), 403 

and continental fluvial–lacustrine strata and a related angular unconformity formed 404 

within the BNSZ and surrounding areas at 118–92 Ma (118–113 Ma within Baingoin 405 

in the east, 108–103 Ma within Gerze in the center, and 96–92 Ma within Ritu in the 406 

west; Fig. 1b; Li et al., 2016; Hu et al., 2017; Fan et al., 2018a; Zhu et al., 2019; Lai et 407 

al., 2019). However, if the Meso-Tethys Ocean closed during the late Early 408 

Cretaceous (130–100 Ma), the Middle Jurassic (ca. 166 Ma) and the latest Jurassic (ca. 409 

145 Ma) geological events in the BNSZ and southern Qiangtang Terrane must be 410 

considered. 411 

The unconformity and associated provenance changes that support an event at ca. 412 

166 Ma are recorded from the Amdo region, where the Amdo microcontinent and 413 

associated gneiss underwent amphibolite- to granulite-facies metamorphism at 190–414 

170 Ma (Guynn et al., 2006; Zhang et al., 2014b). Some researchers have linked the 415 

ca. 166 Ma event to the Amdo–Qiangtang collision (Zhu et al., 2016; Hao et al., 2019; 416 

Li et al., 2019b). Some researchers also argued that the ca. 166 Ma event may be 417 

associated with the accretion of the ca. 185 Ma oceanic plateau (Zhang et al., 2014a) 418 GS
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onto the southern Qiangtang continental margin (Yan and Zhang, 2020), or ridge 419 

subduction (Li et al., 2020). Combined with the 141–135 Ma ocean island revealed by 420 

this study (Fig. 12a) and the 169–148 Ma ophiolitic mélange near the Amdo region 421 

(Zhong et al., 2017; Tang et al., 2020), we conclude that the ca. 166 Ma event was 422 

more likely related to the subduction of microcontinent, oceanic plateau or ocean 423 

ridge within the Meso-Tethys Ocean, rather than the Lhasa-Qiangtang collision. 424 

As for the ca. 145 Ma event, we proposed it is associated with subduction of a 425 

Jurassic intra-oceanic arc, rather than the Lhasa-Qiangtang collision. Remnants of this 426 

Jurassic intra-oceanic arc within the Meso-Tethys Ocean extend eastwards for ~1500 427 

km through the Ritu, Julu, Zhongcang, Dongco, Baingoin areas, and into the Naqu 428 

area (Tang et al., 2019; Fan et al., 2019; Yan and Zhang, 2020). The intra-oceanic arc 429 

might have initially formed at ca. 180 Ma (Fan et al., 2019; Li et al., 2019b), and 430 

evolved during 172–162Ma (Shi et al., 2008; Liu et al., 2014; Zeng et al., 2016; 431 

Huang et al., 2017; Tang et al., 2019; Fan et al., 2019; Yan and Zhang, 2020). 432 

The 160–155 Ma granodiorites were emplaced directly onto 180–162 Ma 433 

intra-oceanic arc sequences within the Dongco area (Fig. 2a). The granodiorites 434 

contain large numbers of inherited zircons with similar age spectra to those of detrital 435 

zircons within the surrounding graywackes of the accretionary wedge, suggesting that 436 

many of these graywackes were assimilated during formation of the 160–155 Ma 437 

Dongco granodiorites (Fan et al., 2016). Relationships amongst the 160–155 Ma 438 

Dongco granodiorites, 180–162 Ma intra-oceanic arc, and accretionary wedge 439 

indicate that the 180–162 Ma intra-oceanic arc was accreting, or had accreted, onto 440 GS
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the accretionary wedge during the Late Jurassic (160–155 Ma). Subsequent Late 441 

Jurassic–Early Cretaceous (150–130 Ma) subduction of the intra-oceanic arc might 442 

have occurred, causing the ca. 145 Ma geological event (Fig. 12a) in central Tibet. In 443 

addition, subduction of an intra-oceanic arc, which has a greater height and buoyancy 444 

than oceanic crust, commonly chokes the receiving subduction zone (Hawkins et al., 445 

1984; Mann and Taira, 2004; Chen et al., 2018), which slows or stops movement of 446 

the subducting plate (Fig. 12a). The 141–135 Ma Zhonggang igneous–sedimentary 447 

rocks are remnants of a typical Cape Verde-type ocean island that formed on a 448 

slow-moving or near-stationary plate within the Meso-Tethys Ocean, which provides 449 

further evidence for subduction of an intra-oceanic arc at 150–130 Ma (Fig. 12a). 450 

 451 

 452 

CONCLUSIONS 453 

(1) The Zhonggang igneous–sedimentary rocks formed at 141–135 Ma, and are 454 

remnants of a Cape Verde-type ocean island formed within the deep ocean basin of 455 

the Meso-Tethys Ocean. They provide strong evidence that the Meso-Tethys Ocean 456 

was still opening at ca. 135 Ma. 457 

(2) Final closure of the Meso-Tethys Ocean and the Lhasa–Qiangtang collision 458 

might have been diachronous, from east to west, during the late Early Cretaceous 459 

(130–100 Ma). 460 

 461 
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Figure Captions 888 

 889 

Figure 1 (a) Tectonic framework of the Tibetan Plateau. EKASZ, East Kunlun– 890 

A’nyemaqen Suture Zone; JSSZ, Jinshajiang Suture Zone; LSLSZ, Longmuco–891 

Shuanghu–Lancangjiang Suture Zone; BNSZ, Bangong–Nujiang Suture Zone; IYZSZ, 892 

Indus–Yarlung Zangbo Suture Zone. (b) Geological map of the middle and western 893 

segments of the BNSZ, showing the igneous and sedimentary rocks in the Zhonggang 894 

and Tarenben areas. (c) Field photograph of Zhonggang igneous–sedimentary rocks of 895 

the BNSZ. 896 

 897 

Figure 2 (a) Geological map of the Zhonggang area. Cz, Cenozoic; K1q, Lower 898 

Cretaceous Qushenla Formation comprising volcanic (108–103 Ma; Hao et al., 2019) 899 

and non-marine clastic rocks; J3K1s, Upper Jurassic–Lower Cretaceous Shamuluo 900 

Formation comprising marine sandstone, conglomerate, and limestone; J1-2, Lower–901 

Middle Jurassic Sewa, Shaqiaomu, and Jiebuqu formations dominated by marine 902 

sandstone and limestone; JM, Mugagangri Group comprising flysch deposits; DO, 903 

Dongco ophiolites that represent the remnants of a 180–162 Ma intra-oceanic arc (Fan 904 GS
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et al., 2019; Li et al., 2019b); DG, 160–155 Ma Dongco granodiorite emplaced in the 905 

Dongco intra-oceanic arc sequence (Fan et al., 2016); OI, remnants of Middle 906 

Triassic–Jurassic intra-plate ocean island; ZISR, Zhonggang igneous–sedimentary 907 

rocks. (b) Remote sensing image from Google Earth showing the Zhonggang 908 

igneous–sedimentary rocks. (c) A typical two-layered structure comprising a thick 909 

basaltic basement and a limestone cover sequence. (d) Limestones interbedded with 910 

basalts within the cover sequence (Fan et al., 2014). 911 

 912 

Figure 3 (a) Limestone interbedded with amygdaloidal basalt. (b) Basalt–tuff–913 

limestone sequence. (c) Limestone interbedded with tuff. (d) Basalt–trachyandesite–914 

limestone sequence. (e) Trachyandesite–limestone sequence. (f) Chert. (g) Reef 915 

limestone gravel within the colluvial conglomerate. (h, i) Typical exotic 916 

blocks-in-matrix structure between the Zhonggang igneous–sedimentary rocks and the 917 

surrounding flysch deposits.  918 

 919 

Figure 4 Photomicrographs of the Zhonggang igneous–sedimentary rocks in 920 

cross-polarized light. (a) Basalt with carbonate alteration in the cover sequence. (b) 921 

Trachyandesite. (c) Limestone. (d) Limestone–tuff sequence. (e) Chert. (f) Colluvial 922 

conglomerate. Pl, plagioclase; Cal, calcite; B, basalt debris; Ls, limestone debris.  923 

 924 

Figure 5 Immobile incompatible element discrimination diagram showing 925 

trachyandesite and basalt data.  926 

 927 

Figure 6 (a) Chondrite-normalized REE variation diagram for the basalt. (b) 928 
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Primitive-mantle-normalized trace element variation diagram for the basalt. (c) 929 

Chondrite-normalized REE variation diagram for the trachyandesite. (d) 930 

Primitive-mantle-normalized trace element variation diagram for the trachyandesite. 931 

Normalizing values are from Sun and McDonough, 1989. OIB, ocean island basalt; 932 

BCC, bulk continental crust. 933 

 934 

Figure 7 Representative cathodoluminescence images of zircon grains and zircon U–935 

Pb concordia plots.  936 

 937 

Figure 8 Diagram of εNd(t) vs. initial 87Sr/86Sr showing the basalt and trachyandesite 938 

samples, where (t) refers to the eruption ages (modified after Meng et al., 2015; 939 

Zhong et al., 2017). OIB, ocean island basalt; MORB, mid-ocean ridge basalt; DMM, 940 

depleted MORB mantle; EM, enriched mantle; LCC, lower continental crust; GLOSS, 941 

global subducting sediment.  942 

 943 

Figure 9 (a) εNd(t) vs. SiO2, (b) Sm/Yb vs. La/Sm (Aldanmaz et al., 2000). gt, garnet; 944 

sp, spinel. DM, depleted mantle; N-MORB, normal-mid-ocean-ridge basalt; PM, 945 

primitive mantle. 946 

 947 

Figure 10 Schematic illustrations of typical intra-plate ocean island lithostratigraphic 948 

sequences for (a) Hawaii-type ocean island. (b) Cape Verde-type ocean island. 949 

 950 

Figure 11 Initial Sr–Nd isotope plot for the trachyandesite and basalt (modified after 951 

Widom et al., 1997; Elliott et al., 2007; Tanaka et al., 2008; Garapić et al., 2015; Mata 952 

et al., 2017).  953 

GS
A 

Bu
lle

tin
 a

cc
ep

te
d 

m
an

us
cr

ipt
 



 44 / 44 
 

 954 

Figure 12 Schematic illustration of the Zhonggang igneous–sedimentary rocks: (a) 955 

During development of the ocean island; (b) After the Lhasa–Qiangtang collision. 956 

 957 
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Fig. 11 

 

 

Fig. 12 
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