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Abstract

Background: Predicting the risk of glycated hemoglobin (HbA1c) elevation can help identify patients with the potential for
developing serious chronic health problems, such as diabetes. Early preventive interventions based upon advanced predictive
models using electronic health records data for identifying such patients can ultimately help provide better health outcomes.

Objective: Our study investigated the performance of predictive models to forecast HbA1c elevation levels by employing several
machine learning models. We also examined the use of patient electronic health record longitudinal data in the performance of
the predictive models. Explainable methods were employed to interpret the decisions made by the black box models.

Methods: This study employed multiple logistic regression, random forest, support vector machine, and logistic regression
models, as well as a deep learning model (multilayer perceptron) to classify patients with normal (<5.7%) and elevated (≥5.7%)
levels of HbA1c. We also integrated current visit data with historical (longitudinal) data from previous visits. Explainable machine
learning methods were used to interrogate the models and provide an understanding of the reasons behind the decisions made by
the models. All models were trained and tested using a large data set from Saudi Arabia with 18,844 unique patient records.

Results: The machine learning models achieved promising results for predicting current HbA1c elevation risk. When coupled
with longitudinal data, the machine learning models outperformed the multiple logistic regression model used in the comparative
study. The multilayer perceptron model achieved an accuracy of 83.22% for the area under receiver operating characteristic curve
when used with historical data. All models showed a close level of agreement on the contribution of random blood sugar and age
variables with and without longitudinal data.

Conclusions: This study shows that machine learning models can provide promising results for the task of predicting current
HbA1c levels (≥5.7% or less). Using patients’ longitudinal data improved the performance and affected the relative importance
for the predictors used. The models showed results that are consistent with comparable studies.
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Introduction

Background
The level of glycated hemoglobin (HbA1c) is used to measure
the average glucose concentration in red blood cells [1,2]. Unlike
other glucose blood tests, such as random blood sugar (RBS)
and fasting blood sugar (FBS), HbA1c provides a long-term
measure of a patient’s blood glucose levels [3]. The HbA1c test
can therefore provide physicians with a reliable means of
monitoring a patient’s hyperglycemia without requiring the
patient to undertake overnight fasting prior to being tested.

A concentration of 6.5% for the HbA1c in patient blood is
considered as the cutoff point for the diagnosis of diabetes [4].
However, patients with a concentration of less than 6.5% are
not completely excluded from a diabetes diagnosis, as the range
of elevation levels (5.7%≤ HbA1c <6.5%) can indicate the future
onset of diabetes. Therefore, HbA1c can act as an early predictor
for the potential development of type-2 diabetes mellitus
(T2DM) [2]. Ackermann et al [3] suggested using the HbA1c

test as a measure for identifying those adults who are at a greater
risk of developing T2DM in the future.

Research has shown that reducing HbA1c levels can significantly
reduce the possibility of developing serious complications.
Hence, close monitoring of HbA1c levels is recommended for
all diabetic patients and those with the potential for developing
diabetes [5]. It is also suggested that diabetic and nondiabetic
patients with raised HbA1c levels should be clinically checked
and monitored as a preventive intervention to avoid developing
T2DM [6].

Currently, the clinical data collected from patient visits consists
of a set of readings for vital signs and lab tests, diagnoses,
physicians’ notes, and treatments that are stored in electronic
health records (EHRs). These are collected on an irregular basis,
according to clinical needs, and stored with an associated time
stamp.

In recent years, machine learning models have shown powerful
capabilities for analyzing and understanding complex data across
a wide variety of applications. Our research question for this
study was as follows: “Can HbA1c prediction be improved by
using machine learning with longitudinal data that are normally
available in EHR systems?”

This paper reports an investigation into the performance of
machine learning models to predict current HbA1c levels as a
binary classification problem using EHR data. Nondiabetic
patients with an HbA1c level of 5.7% or more are considered to
have an elevated HbA1c, while those with levels lower than this
are considered normal. The models combine current visit data
with extra features (independent variables) extracted from
previous visits by patients. We used explainable methods to
rank the features in order of their importance to the decision
made by each of the models. To the best of our knowledge, this
study is the first to employ machine learning models that use
longitudinal data from EHR systems for the purpose of HbA1c

elevation risk prediction. This study is also the first to use

explainable machine learning techniques to explain the
classification decisions made by black box models, support
vector machine (SVM), and multilayer perceptron (MLP), in
predicting HbA1c elevation risk (≥5.7%), in order to better
understand the behavior of the model.

Related Work
EHR data have been intensively investigated for a variety of
medical decision support tasks [7]. These tasks include the
analysis of complex patterns and prediction of major medical
events (for example, diagnostic imaging and gene interactions)
[8,9]. Several studies have demonstrated the successful
employment of EHR data with prediction models [10]. For
instance, machine learning has been intensively used with EHR
data in diagnosing diabetes and discovering its related patterns
[11-15]. However, we are not aware of any studies that have
explored machine learning models for the prediction of current
elevated HbA1c levels using EHR data from a nondiabetic
population or the impact of patient longitudinal data on the
effectiveness of such predictive machine learning models.

Several studies have investigated the association between HbA1c

levels and clinical variables using statistical models [16,17]. A
study by Rose et al [18] discussed the correlation between RBS
and HbA1c levels. Stanley et al [19] used a linear regression
model for imputation of missing HbA1c data. Their model
calculates HbA1c levels for patient records with missing HbA1c

values as continuous and categorical values and uses 4 predictors
extracted from an EHR system—RBS, FBS, age, and gender—as
predictors to calculate the level of HbA1c for a diabetic
population. Simone et al [20] used linear regression models to
predict HbA1c levels after 6 years for nondiabetic patients using
different populations.

A study by Wells et al [21] in 2018 was the first to focus on
predicting current HbA1c elevation levels for nondiabetic
patients through use of an EHR data set. Multiple logistic
regression (MLR) was employed to calculate the probability of
a patient having an elevated HbA1c level (≥5.7%). The data set
was extracted from an EHR system used in the United States.
The authors used 8 independent variables fitted to the model
using restricted cubic splines with 3 knots to formulate the final
equation. The performance of the MLR model was compared
to that of the models used by Baan et al [22] and Griffin et al
[23]. However, the models by Baan and Griffin aimed at
predicting the onset of patients’ diabetes rather than predicting
HbA1c levels for nondiabetic patients. In addition, the
experimental data set used by Wells et al to train and test their
model was imbalanced with 74% of the samples having normal
HbA1c levels (5.7%) and only 26% of the samples having
elevated HbA1c levels (≥5.7%).

We performed a differentiated replication of the study by Wells
et al [21] using the more balanced King Abdullah International
Medical Research Center (KAIMRC) data set [24]. Although
the significant variables identified in our replication were in
general agreement with those of the original study, there were
some differences in the ranking of importance for these,
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suggesting that such models do need to be “tuned” to the
characteristics of different populations.

Methods

Study Design
To study the impact of using advanced predictive models with
EHR data to predict current HbA1c levels, we employed the
MLR, random forest (RF), SVM, and logistic regression (LR)
models, as well as a deep learning model, MLP [25]. The
problem was formulated into a binary classification problem
whereby the target variable, HbA1c level, was encoded as 1
when the level of HbA1c was 5.7% or more and with 0 otherwise.
The results obtained from using these models were compared
to those obtained from employing the model used by Wells et
al with the KAIMRC data set (detailed in the Data Set
subsection).

The performance of the models was investigated using current
visit data only and with additional longitudinal data from current
and previous visits. The performance of each model was
evaluated using measures commonly employed in clinical
applications. For the SVM and MLP models, the relative
importance of the features was also calculated using explainable
machine learning techniques.

Explainable Methods for Black Box Models
Using black box machine learning models in health care can
have adverse effects on the trust and confidence placed in their
outcomes; the risk of misclassification is potentially too high
for clinicians to confidently use black box models for high risk
health care decisions, and not being able to interpret a model’s
decision exacerbates this problem [26]. Explainable methods
for machine learning models allow interpretable outcomes that
can expose the reasons behind the decision made by the model
[27]. This transparency provides both health professionals and
patients with the confidence and trust in the outcome of the
models. The widely used Shapley Additive Explanations
(SHAP) values [28] and local interpretable model-agnostic
explanations (LIME) score [29] techniques have therefore been
used to provide a degree of transparency to our deep learning
model.

SHAP values are derived from Shapley values used in game
theory and provide a method of calculating the contribution of
each feature (variable) to the final prediction via the
GradientSHAP approximation. This is achieved for each feature
by comparing the prediction the model makes when the feature
is present with the prediction obtained when the feature takes
some baseline value [28]. Consequently, the SHAP values for
a given input “explain” how each feature affects the output of
the model when compared to the baseline (or “default”) output
of the model. We used SHAP values to interpret our black box
models, so they could be efficiently calculated, and their use
enabled a global view of the model to be constructed through
the computation of SHAP values from across the whole data
set.

SHAP values were computed using the feature’s mean marginal
contribution across different coalitions of all features. SHAP

values themselves are computationally intensive to compute,
and so approximation methods are commonly used when
calculating the values.

To ensure that the SHAP values we calculated were not too
greatly affected by the approximation method used, we also
computed the LIME [29] scores for the models across the entire
data set. LIME tries to estimate locally faithful linear
explanations (ie, explanations that correspond to how the model
behaves around the instance being explained) for any classifier.
LIME achieves this by creating local linear classifiers that
approximate the behavior of the original model in the vicinity
of the data being explained. As linear models are inherently
interpretable through their parameters, they can be used to
generate explanations of the original model. Both SHAP and
LIME have the advantage that they are model-agnostic
techniques, and so we were able to apply both methods to both
of our black box classification models (SVM and MLP).

Data Set
The data used in this study were taken from the KAIMRC data
set. The data were collected from King Abdulaziz Medical City
located in the central and western regions of Saudi Arabia, an
area which has been ranked second in the Middle East and
seventeenth in world in diabetes prevalence by the World Health
Organization (WHO) [30]. According to the International
Diabetes Federation, the diabetes prevalence rate in Saudi Arabia
is 18.3%. Therefore, the availability of the data from this
population provides considerable opportunities for research into
the early prediction of diabetes.

The data set contains a full history of patient details, vital signs,
and lab test readings for each patient visit for the period from
2016 to the end of 2018. As the aim of this study was to identify
nondiabetic patients that are at a high risk of HbA1c elevation,
all patients previously diagnosed with hyperglycemia were
excluded from the experimental data set. The remaining cohort
formed our experimental data set and was categorized by using
the American Diabetes Association’s guidelines [31], in which
patients with HbA1c readings of more than 5.7% are considered
as being in the prediabetic range, while those with less than
5.7% are considered to be in the normal range.

Most medical data sets are imbalanced [32-34]. These
imbalances occur when the proportion of one class of patients
in the data set is greater than its counterpart class [35,36].
However, unusually, our experimental data set was not
imbalanced. Slightly over half of the patients in our experimental
data set (9826/18,844, 52.14%) were found to have elevated
levels of HbA1c (≥5.7%) while 47.86% (9018/18,844) of patients
had normal HbA1c levels (<5.7%). This can be ascribed to the
high incidence of diabetes in the region from which the data set
was collected [37].

A detailed illustration of the patients’ class distribution (HbA1c

levels) by age groups and gender is shown in Figure 1. This
shows that as the age of patients increased, so did the proportion
of patients who had elevated HbA1c levels. The data set also
exhibited a balanced gender distribution, with 49.40%
(9308/18,844) of the patients being male and 50.60%
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(9536/18,844) being female. However, the proportion of male
patients with elevated levels of HbA1c (≥5.7%) was greater than
that of the female patients. Also, female patients with normal

levels of HbA1c (<5.7%) made more visits than did males. Table
1 shows the profile for the distribution of HbA1c elevation levels
organized by gender.

Figure 1. HbA1c elevation levels distributed over age range and gender in the King Abdullah International Medical Research Center (KAIMRC) data
set (before sampling). HbA1c: glycated hemoglobin.

Table 1. Profile for the class distribution over gender.

HbA1c ≥5.7%, n/N (%)HbA1c
a <5.7%, n/N (%)Characteristics

Number of patients (N=18,844)

9826/18,844 (52.14)9018/18,844 (47.86)Total

5544/9826 (56.42)3764/9018 (41.74)Male

4282/9826 (43.58)5253/9018 (58.26)Female

Number of visits (N=157,600)

77,993/157,600 (49.49)79,607/157,600 (50.51)Total

41,591/77,993 (53.32)31,620/79,607 (39.72)Male

36,402/77,993 (46.68)47,987/79,607 (60.28)Female

aHbA1c: glycated hemoglobin.

Feature Selection and Data Sampling
Six main variables (features) were extracted from the KAIMRC
EHR data set to be used in this study. These features, which
were selected first for their theoretical association with
hyperglycemia and second for their availability in the KAIMRC
data set, were the following: age, BMI, estimated glomerular

filtration rate (eGFR), RBS, total cholesterol, and
non–high-density lipoprotein. The lab codes of the features used
are available in Multimedia Appendix 1 Table S1. The
descriptive statistics (using the data for the current visit only
for unique patients), units, and P values for the selected features
are presented in Table 2.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e25237 | p. 4https://medinform.jmir.org/2021/5/e25237
(page number not for citation purposes)

Alhassan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Descriptive statistics of the selected features from the King Abdullah International Medical Research Center (KAIMRC) data set.

P valueHbA1c 5.7%, mean (SD)HbA1c
a 5.7%, mean (SD)Feature

<0.00158.92 (15.12)43.94 (16.38)Age (years)

<0.00130.90 (6.55)29.11 (6.75)BMI (Kg/m2)

<0.00185.81 (28.239)100.03 (29.22)eGFRb (ml/min/1.73 m2)

<0.0017.88 (4.19)5.45 (1.26)RBSc (mmol/L)

<0.0014.42 (1.20)4.65 (1.07)CHOLd mean (mmol/L)

<0.0013.37 (1.115)3.45 (1.01)non-HDLe mean (mmol/L)

aHbA1c: glycated hemoglobin.
beFGR: estimated glomerular filtration rate.
cRBS: random blood sugar.
dCHOL: total cholesterol.
enon-HDL: non–high-density lipoprotein.

It is very common in clinical practice that physicians may
require some lab tests and vital signs to be frequently recorded.
In these cases, the average value of all readings taken on a given
day (the basic time interval used for this study) was used. For
inpatient visits, only data for the first day were considered, and,
where there were missing values, the first available values from
the visit were used.

For the purpose of this study, we aimed at predicting the HbA1c

levels (≥5.7%) for current (last) patient visits only. Unlike the
sampling approach used by Wells et al, which was based on
independent hospital visits for patients (including for the same

patients), the sampling approach used in this study included
independent patients to ensure only unseen patients data were
used for testing the models. Although we aimed to identify
patients with elevated levels of HbA1c from a nondiabetic
population, patients previously diagnosed with diabetes were
excluded. We also excluded nonadult patients and those with
erroneous or missing values [24]. Figure 2 shows the details of
the tasks performed to refine the sample selection. This resulted
in a reduction in the size of the experimental data set from
114,057 patients with 750,709 visits to 18,844 unique patients
with 157,600 visits.

Figure 2. Details of the sampling approach performed on the KAIMRC data set. EHR: electronic health record; HbA1c: glycated haemoglobin; KAIMRC:
King Abdullah International Medical Research Center.

The inputs (input features space) for the models used in this
study were continuous values. Values for age, eGFR, RBS and
total cholesterol features were directly available in the KAIMRC

data set. The values for the BMI and non–high-density
lipoprotein variables were calculated from other available
features using the formulae in Multimedia Appendix 2.
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Input Preparation for the Models
The input structure for the deep learning model was organized
as a matrix, based on current and previous time-stamped patient
visits. It contained the current visit data concatenated with
approximated values for the selected features from all previous
visits, which we refer to as the “Approximated Time Series
Data”.

Each patient visit was described by the selected features,
represented as x1, x2 …, xn. These features were formed as
episodes based on the time-stamped values available in each
visit (vi).

Here, xij is the feature value at a patient visit (0 < i ≥ s, 0 < j ≥
n); s is the number of time series steps (the length of the input
sequence); and n is the number of features for each time step,
which was set to 6 as explained earlier.

If the number of visits (longitudinal time series visits) for a
patient was fewer than s, the input for this patient was padded
out with the mean value of the available visits to compensate
for the missing time series data (Multimedia Appendix 3 shows
an example of the padding approach used). Where the number
of longitudinal visits for a patient was more than s, the piecewise
aggregation approximation (PAA) technique [38] was applied
to the data for these visits to account for all data from patient
visits.

PAA transforms the longitudinal time series data using s as a
number of sliding windows (or segments) into a reduced number
of time steps data (approximated) employing the mean value
of the series falling within that window (segment) [39]. We
tested the models with several values for the size of the sliding
window (s), and 3 was shown to be the optimal value. The
formula used to calculate the approximated time-series data was
as follows:

Where represents the approximated value for x, r is the total
number of visits for a patient, and s is the reduced number of
time series steps (Multimedia Appendix 4 shows an example
of the PAA technique used).

The approximated time series data forming the output of the
PAA was then concatenated with the current visit data to form
the final input for the deep learning model. As the MLR, RF,
SVM, and LR models are not capable of handling
multidimensional data (formed as matrices), the output of the
PAA was reorganized for these into a single-dimensional input
by vectorizing the matrix used in equation 1 as below:

Input = [x11x12x13 …xsn]    (3)

The last data preprocessing task before training the predictive
models was data scaling. The experimental data set was scaled
using the normalization technique that rescales the ranges of
each of the features to be between 0 and 1 using minimum and
maximum values of that feature.

Predictive Models and Experimental Setups
As a baseline comparison, we employed the MLR model used
by Wells et al [21], and compared the results from this with
those from 4 commonly used machine learning models.

The MLR model is used to create a mathematical equation that
can best calculate the probability of a value by assigning weights
(coefficients) to the independent variables (features) based on
their importance [40]. In this study we employed the same
approach used by Wells et al by which the continuous features
were fitted into the MLR model using restricted cubic splines
technique with 3 knots. When we used the longitudinal input,
the variables that caused collinearity were excluded.

Random forest is an algorithm very commonly used for
classification. It combines several decision trees that are
generated during the training process. Each decision tree is
trained using a random subset of the training data set. The final
classification is then based on the majority voting results of all
generated decision trees [41]. The quality function used in the
employed RF model is the Gini importance, with a value of 100
for the number of tree parameters.

Logistic regression is commonly used to solve binary
classification problems. It calculates the odds ratio of the
variables and is similar to MLR but uses a binomial distribution
of the dependent variable (ie, more than 1). Thus, it includes a
logit function that handles different types of relationships
between the dependent and independent variables [42,43].

Support vector machine was introduced by Vapnik [44] in 1998.
It can solve both classification and regression problems. It uses
the training feature space to decide on the separation boundaries
(hyperplane) that best divides the training data set into regions,
1 for each class. The very close points to the hyperplanes are
the support vectors. SVMs also use kernels to help enhance
class separation by mapping the training features into a higher
dimensional space with an increased number of dimensions
[44,45]. The kernel function used in the SVM model employed
is a radial base function with a value of 1 for the cost parameter
(C).

A multilayer perceptron, also known as a feed-forward neural
network, is one of the most common deep learning approaches.
It is mainly used to address supervised learning problems by
learning the dependencies between the input layer (the features
or variables) and output layer (the classification decision) using
a fully connected hidden layer in between. The layers, including
hidden ones, contain a number of neurons that are connected to
the neurons of the next and previous layers via weights and
nonlinear functions. MLP uses a backpropagation algorithm to
update the weights and biases within the hidden layers to
minimize the output error rate [25,46].
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To optimize the MLP model, fine-tuning of the structure and
hyperparameters was performed and involved the number of
hidden layers and neurons, activation functions, optimizers, and
loss functions. The optimized structure of the MLP model used
in this study contained 3 hidden layers. The number of neurons
in the hidden layers were 48, 48, and 24, respectively. The final
layer (the output layer) contained 2 neurons for the final output

of the model (Y1 for normal HbA1c or Y2 for elevated HbA1c).
A rectified linear unit activation function was used in the 3
hidden layers, while a sigmoid was used in the output layer.
The detailed structure of the MLP model is shown in Figure 3.
The model was trained using an Adam optimizer with mean
squared error as the loss function.

Figure 3. The structure used for multilayer perceptron trained with the longitudinal data. relu: rectified linear unit.

Evaluation of Model Performance
The models all employed the same data preprocessing, training,
and testing techniques. The models were validated using the
10-fold cross-validation technique. The k-fold cross-validation
is one of the most commonly used approximation approaches
for validating the obtained results [47,48]. For the MLP model,
100 epochs were used to train each fold.

As our measure for evaluating and comparing the performance
of the proposed models, we used the area under the receiver
operating characteristic (AUC-ROC) curve, which is equal to
the concordance statistic [49]. We also report values for a set
of measures that are commonly used in clinical applications:
balanced accuracy (that calculates the recall average for each
class), overall accuracy, F score, precision, and precision-recall
area under the curve (PR-AUC).

To determine the importance that the black box models (SVM
and MLP) place upon each variable, we first computed the
SHAP values and LIME scores for all samples in our data set
and then calculated the average absolute SHAP value and LIME
score for each predictor.

Results

Table 3 shows the performance metrics obtained using the MLR,
RF, SVM, LR, and MLP models with and without the
longitudinal data. The results show that the models achieved
competitive performance using the reported measures. The LR
and MLP models trained with and without the longitudinal data
achieved better performance with regards to the AUC-ROC
measure than did the MLR (statistical model employed by Wells
et al) or the RF and SVM models (more details about AUC-ROC
and PR-AUC curve plots are presented in Multimedia Appendix
5). The results also show that the SVM, LR, and MLP models
trained with and without the longitudinal data achieved better
performance than did the MLR and RF models using the
balanced accuracy measure.

Table 3 also shows that all models, including the MLR, achieved
better performance using all reported measures when they were
trained with the features from patients’ longitudinal data. The
MLP with longitudinal data slightly outperformed all other
models with respect to the reported measures.
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Table 3. Classifiers performance for current glycated hemoglobin level prediction.

PR-AUCb, % (SD)Precision, % (SD)F score, % (SD)Accuracy, % (SD)Balanced accuracy, % (SD)AUC-ROCa, % (SD)Model

MLRc

82.14 (6.04)73.20 (5.05)74.91 (5.12)73.59 (3.79)72.74 (4.15)81.38 (3.82)Nod

83.45 (6.29)74.36 (5.26)75.11 (6.00)74.30 (4.02)73.49 (4.19)82.45 (4.09)Yese

RFf

82.03 (1.35)73.42 (1.84)73.97 (1.04)72.64 (1.14)72.57 (1.17)80.82 (1.14)No

84.06 (1.17)74.81 (1.68)75.07 (0.86)73.91 (0.95)73.86 (0.98)82.38 (1.04)Yes

SVMg

80.56 (1.48)73.42 (1.90)75.76 (1.18)73.88 (1.33)73.69 (1.35)81.05 (1.04)No

83.16 (1.19)74.20 (1.65)76.08 (0.92)74.40 (1.08)74.25 (1.11)82.04 (0.89)Yes

LRh

82.49 (1.46)74.88 (1.69)73.96 (1.03)73.17 (1.08)73.18 (1.10)81.51 (1.26)No

84.13 (1.04)76.31 (1.72)74.55 (0.98)74.05 (1.13)74.11 (1.15)82.59 (1.04)Yes

MLPi

83.42 (1.19)73.07 (1.62)75.87 (1.10)73.83 (1.03)73.61 (1.04)82.07 (1.06)No

84.85 (0.78)74.78 (2.07)75.99 (1.95)74.55 (1.18)74.45 (1.18)83.22 (0.92)Yes

aAUC-ROC: area under the receiver operating characteristic.
bPR-AUC: precision-recall area under the curve.
cMLR: multiple logistic regression.
dWithout longitudinal data.
eWith longitudinal data.
fRF: random forest.
gSVM: support vector machine.
hLR: logistic regression.
iMLP: multilayer perceptron.

Figure 4 summarizes the 10-fold performance achieved for the
set of measures where the models were trained without
longitudinal data, and Figure 5 shows the performance where
they were trained with the longitudinal data. Both figures show
a more consistent prediction trend for RF, LR, SVM, and MLP
with and without longitudinal data, as the measures for these

models show a small variation between the folds. As shown in
Figure 4 and Figure 5, the SD values for MLR with and without
longitudinal data are larger than those for the other models. This
indicates that the machine learning models used can not only
enhance the performance, but can also improve the classification
confidence for HbA1c prediction.
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Figure 4. Box plot showing the detailed 10-fold performance of all models trained without longitudinal data. AUR-ROC: area under the receiver
operating characteristic; LR: logistic regression; MLP: multilayer perceptron; MLR: multiple logistic regression; PR-AUC: precision-recall area under
the curve; RF: random forest; SVM: support vector machine.

Figure 5. Boxplot showing the detailed 10-fold performance of all models trained with longitudinal data. AUR-ROC: area under the receiver operating
characteristic; LR: logistic regression; MLP: multilayer perceptron; MLR: multiple logistic regression; PR-AUC: precision-recall area under the curve;
RF: random forest; SVM: support vector machine.

Table 4 shows the ranked order of importance of the set of
predictors used for training the models. Further details on the
actual importance values for each model are provided in
Multimedia Appendix 6 (refer to Multimedia Appendix 7 for
more details of the MLR and LR calculator). Calculating the
importance of the predictors for the MLR models using

vectorized longitudinal data was not possible due to the
collinearity caused by having multiple variables for BMI. The
order of importance results obtained using the SHAP method
for both the SVM and MLP were identical to those obtained
using LIME and provided greater confidence in the explainable
methods used (see Multimedia Appendix 6).
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Table 4. Order of importance of predictors for the models.

Importance rankModel

6th5th4th3rd2nd1st

MLRa

eGFRfNon-HDLeCHOLdBMIRBScAgeNob

RFg

Non-HDLh CHOLeGFR BMIRBS Age No

BMINon-HDL eGFR CHOLAgeRBSYesh

LRi

eGFR BMI CHOL Non-HDL Age RBS No

BMICHOL eGFRNon-HDL AgeRBSYes

SVMj (SHAPk & LIMEl)

eGFR CHOL Non-HDL BMI RBS Age No

eGFRBMINon-HDL CHOL AgeRBSYes

MLPm (SHAP & LIME)

eGFRBMICHOLNon-HDL AgeRBSNo

BMINon-HDL CHOL eGFR Age RBS Yes

aMLR: multiple logistic regression.
bWithout longitudinal data.
cRBS: random blood sugar.
dCHOL: total cholesterol.
enon-HDL: non–high-density lipoprotein.
feGFR: estimated glomerular filtration rate.
gRF: random forest.
hWith longitudinal data.
iLR: logistic regression.
jSVM: support vector machine.
kSHAP: Shapley Additive Explanations.
lLIME: local interpretable model-agnostic explanations.
mMLP: multilayer perceptron.

Table 4 and the figures in Multimedia Appendix 6 show that
all of the models were heavily and interchangeably reliant on
age and RBS when making classification decisions. The RF and
SVM models, when trained with longitudinal data, ranked RBS
over age. Figure 6 and Figure 7 highlight the importance that

our best performing model, MLP, placed upon the features in
our data set using SHAP and LIME, respectively. Both figures
show that the RBS contributed the most to the MLP’s final
prediction, while the patient’s BMI contributed the least.

Figure 6. Relative importance of predictors obtained from the multilayer perceptron trained with longitudinal data using SHAP. CHOL: total cholesterol;
eGFR: estimated glomerular filtration rate; non-HDL: non–high-density lipoprotein; RBS: random blood sugar; SHAP: Shapley Additive Explanations.
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Figure 7. Relative importance of predictors obtained from multilayer perceptron trained with longitudinal data using LIME. CHOL: total cholesterol;
eGFR: estimated glomerular filtration rate; LIME: local interpretable model-agnostic explanations; non-HDL: non–high-density lipoprotein; RBS:
random blood sugar.

For all models trained with longitudinal data, BMI was ranked
lower than when the models were trained without longitudinal
data. However, the importance value produced for the BMI
variable from the models was still not insignificant (see the
figures in Multimedia Appendix 7). This indicates that models
are able to find subtle relationships in the longitudinal data that
are more relevant to the prediction than is BMI, rendering it
less important.

When MLP and LR models trained on the longitudinal data
were used, the eGFR variable was ranked higher than total
cholesterol and BMI, in contrast to when these were trained on
the current visit only. None of the other models trained with the
current visit only, except for RF, considered it important. Again,

we ascribe this to the information that the model learns from
the variations of eGFR values between a patient’s visits
(longitudinal EHR data).

SHAP values are calculated on the sample level. Figures 8 and
9 illustrate the SHAP values for 2 randomly selected sample
patients from our data set. These figures highlight how different
inputs have different SHAP values. The patient in Figure 8 (for
whom our model correctly predicted elevated HbA1c levels of
≥5.7%) had a higher RBS value than did the patient in Figure
9 (for whom our model correctly predicted normal HbA1c levels
of <5.7%). This explains why our MLP model placed much
more importance on the RBS value of the patient in Figure 6.

Figure 8. An example showing the SHAP values for a randomly selected sample with elevated glycated hemoglobin levels (≥5.7%). CHOL: total
cholesterol; eGFR: estimated glomerular filtration rate; non-HDL: non–high-density lipoprotein; RBS: random blood sugar; SHAP: Shapley Additive
Explanations.

Figure 9. An example showing the SHAP values for randomly selected sample with normal glycated hemoglobin levels (<5.7%). CHOL: total cholesterol;
eGFR: estimated glomerular filtration rate; non-HDL: non–high-density lipoprotein; RBS: random blood sugar; SHAP: Shapley Additive Explanations.

The task of predicting HbA1c elevation risk can be challenging.
Figure 10 provides a visualization of the data points for the 2

classes (prediabetic with ≥5.7%; normal with <5.7%) after
mapping of the data points (for the test data) into 2 dimensions
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with t-distributed stochastic neighbor embedding was performed
[50]. The overlap in the data points visualized in the figure
demonstrates the challenge of separating the patients with and
without elevated levels of HbA1c (≥5.7%) in the KAIMRC data

set. We avoided intensive feature engineering techniques in the
sampling approach used. However, the approaches adopted
were able to achieve promising results with an accuracy of
83.22% for the AUC-ROC using MLP with historical data.

Figure 10. Two-dimensional visualization using t-distributed stochastic neighbor embedding for a randomly selected subset of the data. HbA1c: glycated
hemoglobin.

In summary, all models showed promising results for predicting
the current HbA1c elevation levels (≥5.7%) with EHR data. The
results emphasize that the HbA1c predictive models can exhibit
more learnability when they are trained with the longitudinal
patient data observations typically available from EHR systems.

Discussion

Strengths and Limitations
EHR systems were adopted for the purpose of improving health
care outcomes and were not originally intended for research
purposes [19]. Patient data stored in EHR systems can be
obtained at irregular intervals, as lab instructions are carried out
with different frequencies based on the physician's decisions
and a patient’s visit patterns. It is very common that medical
data extracted from EHR systems suffer from problems such
as irregularity, incompleteness, and noisy and imbalanced data
[13]. These can be challenging obstacles for any technology
used for predictive analytics.

In our study, the sampling approach used did not affect the
balanced nature of the data set used. As shown in Figure 2, there
were 56,185 unique patients present before removal of the
records with 1 or more missing values. The number of unique
patients with elevated HbA1c levels (≥5.7%) before removal of
the incomplete records was 27,354, resulting in a retention of

48.68% (27,354/56,185). The number of unique patients with
normal HbA1c levels was 28,831, resulting in a retention of
51.32% (28,831/56,185). We would argue that the absence or
the presence of the HbA1c readings is not random, as the sample
was collected from the population of Saudi Arabia and thus the
likelihood of a patient taking an HbA1c test is large because of
the prevalence of diabetes in this country [51]. This may affect
the reproducibility of this work using different populations from
different countries especially those with lower rates of diabetes.

It is hoped that these outcomes will encourage further
investigation into the predictability of current HbA1c levels
(≥5.7%) using more of the readings normally provided in EHR
data. For example, other important readings such as FBS and
triglycerides have shown clinical correlations with diabetes
[52]. In addition, our data set contained only 3 years of patient
data, which limits the number of patient visits recorded. Figure
11 shows the number of visits made by patients from 2016 to
2018, while Figure 12 details the number of visits made by
patients (after removal of the outliers) over HbA1c levels. Both
figures show that the majority of the patients have made
relatively few visits: 52% (8713/16818) of the patients made 4
visits or fewer over the 3 years (1.3 visit per year). This also
justifies the size of the sliding window (s=3) as the optimal
input size for the models used. However, we hypothesize that
the longitudinal behavior of the features used can be enriched
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by including more values obtained over longer periods.
Therefore, incorporating more features and their longitudinal
behavior over longer periods into the models used in this study

would likely improve the prediction performance of our chosen
models.

Figure 11. Histogram showing the trend in the number of visits made by patients.

Figure 12. The details for the number of visits made over number of patients. HbA1c: glycated hemoglobin.

Variations in the data or model produce slightly different
attribution values. However, due to the critical nature of many
health care applications, it is always important to verify that the
models make “sensible” predictions. Without the use of
SHAP/LIME, this would be hard to verify for any nonlinear
model. Although it is possible to see that the models have high
performance, we would be unable to verify that a model is not
making spurious correlations. Furthermore, through the use of
SHAP, we can verify that MLPs trained on the longitudinal data
are learning to use the extra information contained in the
longitudinal data (as indicated by the higher importance of

eGFR), allowing us to pinpoint the reason these models gain
higher performance.

To investigate the effect of temporal dependencies in the data,
this study investigated the use of other deep learning models
along with the MLP, including long short-term memory (LSTM)
and bidirectional LSTM [25,53] for HbA1c prediction. Table 5
reports the results of using these models. The MLP model
achieved similar performance to the LSTM and bidirectional
LSTM models according to all reported measures. This suggests
that directly modeling the temporal dynamics in the data is not
very helpful. This could be due to the short lengths of the time
series or a too-weak temporal dependency.
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Table 5. LSTM and BiLSTM Classifiers performance trained with longitudinal data for current HbA1c levels prediction.

PR-AUCb, % (SD)Precision, % (SD)F score, % (SD)Accuracy, % (SD)Balanced Accuracy, % (SD)AUC-ROCa, % (SD)Model

81.88% (0.95)74.59% (3.26)75.64% (1.50)74.59% (1.23)74.17% (1.05)83.26% (0.91)LSTMc

84.75% (0.75)75.19% (2.36)75.46% (1.39)74.30% (1.15)74.21% (1.24)83.16% (0.87)BiLSTMd

aAUC-ROC: area under the receiver operating characteristic.
bPR-AUC: precision-recall area under the curve.
cLSTM: long short-term memory.
dBiLSTM: bidirectional LSTM.

Generalizing our findings using other data sets is challenging
because of the accessibility and privacy restrictions that apply
to medical data sets. For this reason, and because of the lack of
similar studies that have used machine learning for HbA1c

prediction with EHR data, comparing the performance achieved
by the models outlined in this study with those developed by
other researchers will require the availability of alternative
anonymized data sets.

Conclusions
We believe that this study is the first to investigate the
performance of machine learning models used with EHR data
for predicting current HbA1c elevation risk (≥5.7%) for

nondiabetic patients. It is also the first to investigate employing
the longitudinal data that are normally stored on EHR systems
to enhance the prediction of HbA1c elevation levels. Our findings
show that the MLP model achieves better results when a
patient’s longitudinal data are combined with current visit data,
and the use of longitudinal data also affects the relative
importance for the predictors used.

As this work formed a continuation of previous work [24], we
avoided changing the sampling approach used. However,
studying the impact of applying different sampling approaches
could be valuable to explore in future work as would the use of
a larger data set with more variables and the recording of
longitudinal behavior over longer periods.
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