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Abstract 
Background:  

Predicting the risk of glycated hemoglobin (HbA1c) elevation can help identify patients 

with the potential for developing serious chronic health problems such as diabetes. Early 

preventive interventions based upon advanced predictive models using electronic health 

records (EHR) data for identifying such patients can ultimately help provide better health 

outcomes.  

Objective: 

Our study investigates the performance of predictive models to forecast HbA1c elevation 

levels by employing several machine learning models. We also investigate utilizing the 

patient's EHR longitudinal data in the performance of the predictive models. Explainable 

methods have been employed to interpret the decisions made by the blackbox models. 

Methods:  

This study employed Multiple Logistic Regression, Random Forest, Support Vector 

Machine and Logistic Regression models, as well as a deep learning model (Multi-layer 

perceptron) to classify patients with normal (<5.7%) and elevated (≥5.7%) levels of 

HbA1c. We also integrated current visit data with historical (longitudinal) data from 

previous visits. Explainable machine learning methods were used to interrogate the 

models and provide an understanding of the reasons behind the decisions made by the 

models. All models were trained and tested using a large dataset from Saudi Arabia with 

18,844 unique patient records. 

Results:  

The machine learning models achieved promising results for predicting current HbA1c 

elevation risk. When employed with longitudinal data, the machine learning models 

outperformed the Multiple Logistic Regression model employed in the comparative 

study. The multi-layer perceptron model achieved an accuracy of 83.22% for the AUC-



ROC when used with historical data. All models showed close level of agreement on the 

contribution of random blood sugar and age variables with and without longitudinal data. 

 

Conclusions:  

This study shows that machine learning models can provide promising results for the task 

of predicting current HbA1c levels (≥5.7% or less). Utilizing the patient's longitudinal 

data improved the performance and affected the relative importance for the predictors 

used. The models showed results that are consistent with comparable studies.  

 

Keywords: Glycated Hemoglobin HbA1c; Prediction; Machine Learning; Deep 

Learning; Neural Network; Multi-Layer Perceptron; Electronic Health Records; Time-

series Data; Longitudinal Data; Diabetes. 

 

Introduction 
 

The level of glycated hemoglobin (HbA1c) is used to measure the average glucose 

concentration in red blood cells [1, 2]. Unlike other glucose blood tests such as Random 

Blood Sugar (RBS) and Fasting Blood Sugar (FBS), HbA1c provides a long-term 

measure of a patient’s blood glucose levels [3]. The HbA1c test can therefore provide 

physicians with a reliable means of monitoring a patient’s hyperglycemia without 

requiring the patient to undertake overnight fasting prior to being tested. 

 

A concentration of 6.5% for the Glycated Haemoglobin (HbA1c) in patient blood is 

considered as a cut-off point for the diagnosis of diabetes [4]. However, patients with a 

concentration of less than 6.5% are not completely excluded from a diabetes diagnosis as 

the range of elevation levels (5.7%≤ HbA1c <6.5%) can indicate the future onset of 

diabetes. Therefore, HbA1c can act as an early predictor for the potential development of 

Type-2 Diabetes Mellitus (T2DM) [2]. Ackermann et al suggested using the HbA1c test 

as a measure for identifying those adults who are at a greater risk of developing T2DM in 

the future  [3]. 

 

Research has shown that reducing HbA1c levels can significantly reduce the possibility 

of developing serious complications. Hence, close monitoring of HbA1c levels is 

recommended for all diabetic patients and also for those with the potential for developing 

diabetes [5]. It is also suggested that diabetic and non-diabetic patients with raised 

HbA1c levels should be clinically checked and monitored as a preventive intervention to 

avoid developing T2DM [6].  

 

Currently, the clinical data collected from patient visits consists of a set of readings for 

vital signs and lab tests, diagnosis, physician’s notes, and treatments that are stored in 

Electronic Health Records (EHR). These are collected on an irregular basis, according to 

clinical needs, and stored with an associated timestamp.  

 

In recent years, machine learning models have shown powerful capabilities for analyzing 

and understanding complex data across a wide variety of applications. Our research 



question for this study is: “Can HbA1c prediction be improved by using machine learning 

and utilizing longitudinal data that are normally available in EHR systems?”.  

 

This paper reports an investigation into the performance of machine learning models to 

predict current HbA1c levels as a binary classification problem using the EHR data. Non-

diabetic patients with an HbA1c level of 5.7% or more are considered to have an elevated 

HbA1c, while those with lower levels than that are considered normal. The models 

combine current visit data with extra features (independent variables) extracted from 

previous visits by patients. We used explainable methods to rank the features in order of 

their importance to the decision made by each of the models. To the best of our knowledge, 

this work is the first to employ machine learning models that use longitudinal data from 

EHR systems for the purpose of HbA1c elevation risk prediction. This work is also the 

first to utilize explainable machine learning techniques to explain the classification 

decisions made by the black box models (SVM and MLP) in predicting HbA1c elevation 

risk (≥5.7%), in order to better understand the behavior of the model.   

 

 

Related Work 

 

EHR data has been intensively investigated for a variety of medical decision support 

tasks [7]. These tasks include the analysis of complex patterns and prediction of major 

medical events (for example, diagnostic imaging and genes interactions) [8, 9]. Several 

studies have demonstrated the successful employment of EHR data with prediction 

models [10]. For instance, machine learning, has been intensively used in diagnosing 

diabetes, and discovering its related patterns, using EHR data [11-15]. However, we are 

not aware of any studies that have explored machine learning models for the prediction of 

current elevated HbA1c levels using EHR data from a non-diabetic population, as well as 

the impact of patient longitudinal data on the effectiveness of such predictive machine 

learning models. 

 

Several studies have investigated the association between HbA1c levels and clinical 

variables using statistical models [16] [17]. A study by Rose et al [18] discussed the 

correlation between RBS and HbA1c levels. Stanley et al [19] used a linear regression 

model for imputation of missing HbA1c data. Their model calculates HbA1c levels for 

patient records with missing HbA1c values as continuous and categorical values and uses 

4 predictors extracted from an EHR system: RBS, FBS, along with age and gender, as 

predictors to calculate the level of HbA1c for a diabetic population. Simone et al [20] 

used linear regression models to predict HbA1c levels after 6 years for non-diabetic 

patients using different populations. 

 

A study by Wells et al [21] in 2018 was the first to focus on predicting current HbA1c 

elevation levels for non-diabetic patients using an EHR dataset. Multiple Logistic 

Regression (MLR) was employed to calculate the probability of a patient having an 

elevated HbA1c level (≥5.7%). The dataset was extracted from an EHR system used in 

the USA. The authors used 8 independent variables fitted to the model using Restricted 

Cubic Splines (RCS) with 3-knots to formulate the final equation. The performance of the 



MLR model was compared to that of the models used by Baan et al [22] and Griffin et al 

[23]. However, the models by Baan and Griffin aimed at predicting the onset of patients’ 

diabetes rather than predicting HbA1c levels for non-diabetic patients. In addition, the 

experimental dataset used by Wells et al to train and test their model was imbalanced 

with 74% of the samples having normal HbA1c levels (<5.7%) and only 26% of the 

samples having elevated HbA1c levels (≥5.7%). 

 

We have performed a differentiated replication of the study by Wells et al [21] using the 

more balanced KAIMRC dataset [24]. While the significant variables identified in our 

replication were in general agreement with those of the original study, there were some 

differences in the ranking of importance for these, suggesting that such models do need to 

be ‘tuned’ to the characteristics of different populations. 

 

 

 

 

Methods 
 

To study the impact of employing advanced predictive models with EHR data to predict 

current HbA1c levels, we employed the Multiple Logistic Regression (MLR), Random 

Forest (RF), Support Vector Machine (SVM) and Logistic Regression (LR) models; as 

well as a deep learning model, Multi-layer Perceptron (MLP) [25]. The problem was 

formulated into binary classification problem whereby the target variable, HbA1c level, 

was encoded with 1 when the level of HbA1c is 5.7% or more and with 0 otherwise. The 

results obtained from using these models were compared to those obtained from 

employing the model used by Wells et al with the KAIMRC dataset (detailed in the 

Dataset subsection). The performance of the models was investigated using current visit 

data only and also with additional longitudinal data from current and previous visits. The 

performance of each model was evaluated using measures commonly employed in 

clinical applications. For the SVM and MLP models, the relative importance of the 

features was also calculated using explainable machine learning techniques.  

 

Using black box machine learning models in healthcare can have adverse effects on the 

trust and confidence placed in their outcomes; the risk of misclassification is potentially 

too high for clinicians to confidently use black box models for high risk healthcare 

decisions, and not being able to interpret a model’s decision exacerbates this problem 

[26]. Explainable methods for machine learning models allow interpretable outcomes that 

can expose the reasons behind the decision made by the model [27]. This transparency 

provides both health professionals and patients with the confidence and trust in the 

outcome of the models. The widely-used SHAP (SHapley Additive exPlanations) values 

[28] and LIME scores [29] techniques have therefore been employed to provide a degree 

of transparency to our deep learning model.  

 

SHAP values are derived from Shapley values used in game theory, and provide a 

method of calculating the contribution of each feature (variable) to the final prediction 

via the GradientSHAP approximation. This is achieved for each feature by comparing 



 the prediction the model makes when the feature is present with the prediction obtained 

when the feature takes some baseline value [28]. Consequently, the SHAP values for a 

given input ‘explain’ how each feature affects the output of the model when compared to 

the baseline (or ’default’) output of the model. We use SHAP values to interpret our 

black box models, as they can be efficiently calculated, and their use enables a global 

view of the model to be constructed through the computation of SHAP values from 

across the whole dataset. 

 

SHAP values are computed using the feature’s mean marginal contribution across 

different coalitions of all features. Shapley values themselves are computationally 

intensive to compute, and so approximation methods are commonly used when 

calculating the values. 

 

To ensure that the SHAP values we calculate are not too greatly affected by the 

approximation method used, we also compute the LIME [29] scores for the models, 

across the entire dataset. LIME tries to estimate locally faithful linear explanations (i.e. 

explanations that correspond to how the model behaves around the instance being 

explained) for any classifier. LIME achieves this by creating local linear classifiers that 

approximate the behavior of the original model in the vicinity of the data being 

explained. As linear models are inherently interpretable through their parameters, they 

can be used to generate explanations of the original model. Both SHAP and LIME have 

the advantage that they are model-agnostic techniques, and so we are able to apply both 

methods to both of our black box classification models (SVM and MLP). 

 

 

Dataset 

 

The data used in this study is taken from the King Abdullah International Research 

Center (KAIMRC) dataset. The data has been collected from King Abdulaziz Medical 

City located in the central and western regions of Saudi Arabia (KSA), which the World 

Health Organization (WHO) ranked as the second highest in the Middle East for 

prevalence of diabetes, and 17th in the world [30]. According to the International 

Diabetes Federation (IDF), the diabetes prevalence rate in Saudi Arabia is 18.3%. 

Therefore, the availability of the data from this population provides considerable 

opportunities for research into the early prediction of diabetes.  

 

The dataset contains a full history of patient details, vital signs, and lab test readings for 

each patient visit for the period from 2016 to the end of 2018. As the aim of this study is 

to identify non-diabetic patients that are at a high risk of HbA1c elevation, all patients 

previously diagnosed with hyperglycemia were eliminated from the experimental dataset. 

The remaining cohort formed our experimental dataset, and was categorized by using the 

American Diabetes Association’s (ADA) guidelines [31]. Patients with HbA1c readings 

of more than 5.7% are considered as being in the pre-diabetic range while those with less 

than 5.7% are considered to be in the normal range.  

 



Most medical datasets are imbalanced [32]  [33] [34]. Such imbalances occur when the 

proportion of one class of patients in the dataset is greater than its counterpart class [35] 

[36]. However, unusually, our experimental dataset is not imbalanced. Slightly over half 

of the patients in our experimental dataset (52.1%) were found to have elevated levels of 

HbA1c (≥5.7%) while 47.9% of patients had normal HbA1c levels (<5.7%). This can be 

ascribed to the high incidence of diabetes in the region from which the dataset was 

collected [37]. 

 

A detailed illustration of the patients’ class distribution (HbA1c levels) by age groups and 

gender is shown in Figure 1. This shows that as the age of patients increases, so  

the proportion of patients who have elevated HbA1c levels is steadily increasing. The 

dataset also exhibits a balanced gender distribution, with 49.4% of the patients being 

male and 50.6% female. However, the proportion of male patients with elevated levels of 

HbA1c (≥5.7%) is greater than for the female patients. Also, female patients with normal 

levels of HbA1c (<5.7%) made more visits than males. Table 1 shows the profile for the 

distribution of HbA1c elevation levels organized by gender. 

 

 

 

 
Figure 1. HbA1c Elevation levels distributed over age range and gender in the KAIMRC 

dataset (before sampling). 

 

 

Table 1.  Profile for the class distribution over gender. 

Characteristics HbA1c <5.7% HbA1c ≥5.7% 
    

Number of patients 

(Total:18,844) 

Total (%) 9,018 (47.9%) 9,826 (52.1%) 

Male% 41 .73% 56.42% 

Female% 58.27% 43.58% 

Total 79,607 77,993 



Number of visits (Total: 

157,600)  

Male% 39.72% 53.32% 

Female% 60.28% 46.68% 

 

 

 

Feature Selection and Data Sampling 

 

Six main variables (features) were extracted from the KAIMRC EHR dataset to be used 

in this study. These features were selected firstly for their theoretical association with 

hyperglycemia and secondly for their availability in the KAIMRC dataset, and are: Age, 

Body Mass Index (BMI), Estimated Glomerular Filtration Rate (eGFR), Random Blood 

Sugar (RBS), Total cholesterol (CHOL) and non-high-density lipoprotein (non-HDL). 

For the lab codes of the features used, refer to Table 1 in Multimedia Appendix 1.  The 

descriptive statistics (using the data for the current visit only for unique patients), units, 

and P values for the selected features are presented in Table 2. 

 

Table 2.  Descriptive statistics of the selected features from the KAIMRC dataset. 

Feature Unit HbA1c 

<5.7% 

HbA1c ≥5.7% P Value 

     
Age mean (SD) Years 43.94 (16.38) 58.92 (15.12) <0.001 

BMI mean (SD) Kg/m2 29.11 (6.75) 30.90 (6.55) <0.001 

eGFR mean (SD) mL/min/1.73 m2  100.03 (29.22) 85.81 (28.239) <0.001 

RBS mean (SD) mmol/L 5.45 (1.26) 7.88 (4.19) <0.001 

Cholesterol mean (SD) mmol/L 4.65 (1.07) 4.42 (1.20) <0.001 

non-HDL mean (SD) mmol/L 3.45 (1.01) 3.37 (1.115) <0.001 

 

 

It is very common in clinical practice that physicians may require that some lab tests and 

vital signs be recorded frequently. In these cases, the average value of all readings taken 

on a given day (the basic time interval used for this study) was used. For inpatient visits, 

only data for the first day were considered and where there were missing values, the first 

available values from the visit were used.  

 

For the purpose of this study we aim at predicting the HbA1c levels (≥5.7%) for current 

(last) patient visits only. Unlike the sampling approach used by Wells et al, which was 

based on independent hospital visits for patients (including for the same patients), the 

sampling approach used in this study includes independent patients, to ensure only 

unseen patients data are used for testing the models.  Since we aim at identifying patients 

with elevated levels of HbA1c from non-diabetic population, patients previously 

diagnosed with diabetes were excluded. We also excluded non-adult patients and those 

with erroneous or missing values [24]. Figure 2 shows the details of the tasks performed 

to refine the sample selection. This resulted in a reduction in the size of the experimental 

dataset from 114,057 patients with 750,709 visits to 18,844 unique patients with 157,600 

visits. 



 
Figure 2. Details of the sampling approach performed on the KAIMRC dataset. 

 

 

The inputs (input features space) for the models used in this study were continuous 

values. Values for age, eGFR, RBS and CHOL features were directly available in the 

KAIMRC dataset. The values for the BMI and non-HDL variables were calculated from 

other available features using the formulae in Multimedia Appendix 2. 

 

Input Preparation for the Models 

 

The input structure for the deep learning model was organized as a matrix, based on 

current and previous time-stamped patient visits. It contained the current visit data 

concatenated with approximated values for the selected features from all previous visits, 

which we refer to as the “Approximated Time Series Data”. 

 

Each patient visit is described by the selected features, represented as 𝑥1,  𝑥2, ⋯ , 𝑥𝑛 

Those features are formed as episodes based on the time-stamped values available in each 

visit (𝑣𝑖). 

 

 

𝐼𝑛𝑝𝑢𝑡 = [

𝑣1 𝑥11 𝑥12 ⋯ 𝑥1𝑛

𝑣2 𝑥21 𝑥22 ⋯ 𝑥2𝑛

⋮ ⋮ ⋮ ⋯ ⋮
𝑣𝑠 𝑥𝑠1 𝑥𝑠2 ⋯ 𝑥𝑠𝑛

]   (Eq:1) 

 

Here 𝑥𝑖𝑗 is the feature value at a patient visit 𝑣𝑖 (0 < 𝑖 ≥ 𝑠, 0 < 𝑗 ≥ 𝑛); 𝑠 is the number 

of time series steps (the length of the input sequence); and 𝑛 is the number of features for 

each time step, which is set to 6 as explained earlier.  



 

If the number of visits (longitudinal time-series visits) for a patient is fewer than 𝑠, the 

input for this patient is padded out with the mean value of the available visits to 

compensate for the missing time-series data (Multimedia Appendix 3 shows an example 

of the padding approach used). Where the number of longitudinal visits for a patient is 

more than 𝑠, the Piece-wise Aggregation Approximation (PAA) technique [38] is applied 

to the data for these visits to take account of all data from patient visits.  

 

PAA transforms the longitudinal time-series data using 𝑠 as a number of sliding windows 

(or segments), into a reduced number of time steps data (approximated) employing the 

mean value of the series falling within that window (segment) [39]. We tested the models 

with several values for the size of the sliding window (𝑠), and 3 was shown to be the 

optimal value. The formula used to calculate the approximated time-series data is: 

 

�̃�𝑖 =  
𝑠

𝑟
 ∑ 𝑥𝑗

(𝑟−
1
𝑠

)𝑖

𝑗=(𝑟−
1
𝑠

)(𝑖−1)+1

, 𝑠 < 𝑟 − 1 

 

where �̃�𝑖 represents the approximated value for 𝑥 and 𝑟 is the total number of visits for a 

patient. 𝑠 is the reduced number of time-series steps (Multimedia Appendix 4 shows an 

example of the PAA technique used). 

 

 

The approximated time-series data forming the output of the PAA is then concatenated 

with the current visit data to form the final input for the deep learning model. Since the 

MLR, RF, SVM and LR models are not capable of handling the multi-dimensional data 

(formed as matrices), for these the output of the PAA was re-organized into a single-

dimensional input by vectorizing the matrix used in equation (Eq1) as below: 

 

𝐼𝑛𝑝𝑢𝑡 = [𝑥11 𝑥12 𝑥13 ⋯ 𝑥𝑠𝑛]  (Eq:3) 

 

The last data pre-processing task before training the predictive models was data scaling. 

The experimental dataset was scaled using the normalization technique that re-scales the 

ranges of each of the features to be between 0 and 1 using minimum and maximum 

values of that feature. 

 

 

Predictive Models and Experimental Setups  

 

As a baseline comparison, we employed the Multiple Logistic Regression (MLR) model 

used by Wells et al, and compared the results from this with those from 4 commonly used 

machine learning models. 



 

The MLR model is used to create a mathematical equation that can best calculate the 

probability of a value by the assigning weights (coefficients) to the independent variables 

(features) based on their importance [40]. In this study we employed the same approach 

used by Wells et al by which the continuous features were fitted into the MLR model 

using Restricted Cubic Splines (RCS) technique with 3-knots. When using the 

longitudinal input, the variables that caused collinearity were excluded. 

 

Random Forest (RF) is an algorithm very commonly used for classification. It combines 

several decision trees that are generated during the training process. Each decision tree is 

trained using a random subset of the training dataset.  The final classification is then 

based on the majority voting results of all generated decision trees [41]. The quality 

function used in the employed RF model is Gini, with a value of 100 for the number of 

trees parameters. 

 

Logistic regression (LR) is commonly used to solve binary classification problems. It 

calculates the odds ratio of the variables, and is similar to multiple linear regression but 

uses a binomial distribution of the dependent variable (i.e. more than 1). Thus, it includes 

a logit function that handles different types of relationships between the dependent and 

independent variables [42] [43].  

 

Support Vector Machine (SVM) was introduced by Vapnik [44] in 1998. It can solve 

both classification and regression problems. It uses the training feature space to decide on 

the separation boundaries (hyperplane) that best divides the training dataset into regions, 

one for each class. The very close points to the hyperplanes are the support vectors. 

SVMs also use kernels to help enhance class separation by mapping the training features 

into a higher dimensional space with an increased number of dimensions [45] [44]. The 

kernel function used in SVM model employed is Radial Base Function (RBF) with a 

value of 1 for the cost parameter (C). 

 

Multi-layer perceptron (MLP), also known as a feed-forward neural network, is one of 

the most common deep learning approaches. MLP is mainly used to address supervised 

learning problems by learning the dependencies between the input layer (the features or 

variables) and output layer (the classification decision) using a fully connected hidden 

layer in-between. The layers, including hidden ones, contain a number of neurons that are 

connected to the neurons of the next and previous layers via weights and non-linear 

functions. MLP uses a backpropagation algorithm to update the weights and biases within 

the hidden layers to minimize the output error rate [46] [25]. 

 

To optimize the MLP model, fine tuning of the structure and hyperparameters has been 

performed, involving the number of hidden layers and neurons, activation functions, 

optimizers and loss functions. The optimized structure of the MLP model used in this 

study contained 3 hidden layers. The number of neurons in the hidden layers were 48, 48, 

and 24, respectively. The final layer (the output layer) contained 2 neurons for the final 

output of the model (𝑌1 for normal or 𝑌2 for elevated HbA1c). A relu activation function 

was used in the 3 hidden layers and a sigmoid in the output layer. The detailed structure 



of the MLP model is shown in Figure 3. The model was trained using an Adam optimizer 

with Mean Squared Error as the loss function. 

 

 

 
Figure 3. The structure used for multi-layer perceptron (MLP) trained with the 

longitudinal data. 

 

 

 

Evaluation of Model Performance 

 

The models all employed the same data pre-processing, training, and testing techniques. 

The models were validated using the 10-fold cross-validation technique. The K-fold CV 

is one of the most commonly approximation approaches used  for validating the obtained 

results [47, 48]. For the MLP model, 100 epochs were used to train each fold.  

 

As our measure for evaluating and comparing the performance of the proposed models, 

we used the area under the receiver operating characteristic (AUC-ROC), which is equal 

to the concordance statistic [49]. We also report values for a set of measures that are 

commonly used in clinical applications: balanced accuracy (that calculates the recall 

average for each class), overall accuracy, F1-score, precision and precision-recall area 

under the curve (PR-AUC). 

 

To determine the importance that the black box models (SVM and MLP) place 

upon each variable, we first compute the SHAP values and LIME scores for all samples 

in our dataset and then calculate the average absolute SHAP value and LIME score for 

each predictor. 

 



 

Results 
 

Table 3 shows the performance metrics obtained using the MLR, RF, SVM, LR and MLP 

models with and without the longitudinal data.  The results show that the models 

achieved competitive performance using the reported measures. The LR and MLP models 

trained with and without the longitudinal data achieved better performance with regards 

to the AUC-ROC measure than the MLR (statistical model employed by Wells et al), as 

well as the RF and SVM models. (More details about AUC-ROC and PR-AUC curve 

plots are presented in Multimedia Appendix 5.). The results also show that the SVM, LR 

and MLP models trained with and without the longitudinal data achieved better 

performance than the MLR and RF using the balanced accuracy measure. 

 

Table 3 also shows that all models, including the MLR, achieved better performance 

using all reported measures when they are trained with the features from patients’ 

longitudinal data. The MLP with longitudinal data slightly outperformed all other models 

with respect to the reported measures.  

 

 

Table 3.  Classifiers performance for current HbA1c levels prediction. 

Model With 

longitudinal 

data 

AUC-ROC, % 

(SDf) 

Balanced 

Accuracy, % 

(SD) 

Accuracy, % 

(SD) 

F1, % (SD) Precision, 

% (SD) 

PR-AUC, % 

(SD) 

MLRa No 81.38% (3.82) 72.74% (4.15) 73.59% (3.79) 74.91% (5.12) 73.20% (5.05) 82.14% (6.04) 

Yes 82.45% (4.09) 73.49% (4.19) 74.30% (4.02) 75.11% (6.00) 74.36% (5.26) 83.45% (6.29) 

RFb No 80.82% (1.14) 72.57% (1.17) 72.64% (1.14) 73.97% (1.04) 73.42% (1.84) 82.03% (1.35) 

Yes 82.38% (1.04) 73.86% (0.98) 73.91% (0.95) 75.07% (0.86) 74.81% (1.68) 84.06% (1.17) 

SVMc No 81.05% (1.04) 73.69% (1.35) 73.88% (1.33) 75.76% (1.18) 73.42% (1.90) 80.56% (1.48) 

Yes 82.04% (0.89) 74.25% (1.11) 74.40% (1.08) 76.08% (0.92) 74.20% (1.65) 83.16% (1.19) 

LRd No 81.51% (1.26) 73.18% (1.10) 73.17% (1.08) 73.96% (1.03) 74.88% (1.69) 82.49% (1.46) 

Yes 82.59% (1.04) 74.11% (1.15) 74.05% (1.13) 74.55% (0.98) 76.31% (1.72) 84.13% (1.04) 

MLPe No 82.07% (1.06) 73.61% (1.04) 73.83% (1.03) 75.87% (1.10) 73.07% (1.62) 83.42% (1.19) 

Yes 83.22% (0.92) 74.45% (1.18) 74.55% (1.18) 75.99% (1.95) 74.78% (2.07) 84.85% (0.78) 
aMLR: Multiple Logistic Regression.  
bRF: Random Forest.  
cSVM: Support Vector Machine.  
dLR: Logistic Regression.  
eMLP: Multi-Layer Perceptron.  
fSD: Standard deviation. 

 

 

Figure 4 summarizes the 10-folds performance achieved for the set of measures where 

the models were trained without longitudinal data, and Figure 5 shows the performance 

where they were trained with the longitudinal data. Both figures show a more consistent 

prediction trend for RF, LR, SVM as well as MLP with and without longitudinal data, as 

the measures for these models show a small variation between the folds. As shown in 

Figures 4 and 5, the SD values for MLR with and without longitudinal data are larger 



than for the rest of the models. This indicates that the machine learning models used can 

not only enhance the performance, but also improve the classification confidence for 

HbA1c prediction. 

 
Figure 4. Boxplots showing the detailed 10-folds performance of all models trained 

without longitudinal data. 

 

 

  
Figure 5. Boxplots showing the detailed 10-folds performance of all models trained with 

longitudinal data. 

 

 

 

Table 4 shows the ranked order of importance of the set of predictors used for training the 

models. Further detail on the actual importance values for each model is provided in 

Multimedia Appendix 6. (Refer to Multimedia Appendix 7 for more details of the MLR 

and LR calculator.) Calculating the importance of the predictors for the MLP models 

using vectorized longitudinal data was not possible due to the collinearity caused by 

having multiple variables for BMI. The order of importance results obtained using the 

SHAP method for both the SVM and MLP are identical to those obtained using LIME, 

providing greater confidence in the explainability methods used (see Multimedia 

Appendix 6). 



 

 

 

Table 4.  Order of importance of predictors for the models. 

Model  
Longitudinal 

data 
1st   2nd   3rd   4th   5th   6th   

MLR No Age  RBS  BMI CHOL  Non-HDL eGFR  

RF 
No Age  RBS  BMI eGFR  CHOL Non-HDL  

Yes RBS Age CHOL eGFR  Non-HDL  BMI 

LR 
No RBS  Age  Non-HDL  CHOL  BMI  eGFR  

Yes RBS Age Non-HDL  eGFR CHOL  BMI 

SVM (SHAP 

& LIME) 

No Age  RBS  BMI  Non-HDL  CHOL  eGFR  

Yes RBS Age CHOL  Non-HDL  BMI eGFR 

MLP (SHAP 

& LIME) 

No RBS Age Non-HDL  CHOL BMI eGFR 

Yes RBS  Age  eGFR  CHOL  Non-HDL  BMI   

 

Table 4 and the figures in Multimedia Appendix 6 show that all of the models are heavily 

and interchangeably reliant on Age and RBS when making classification decisions. The 

RF and SVM models, when trained with longitudinal data, ranks RBS over Age.   Figures 

6 and 7 highlight the importance our best performing model, MLP, places upon the 

features in our dataset using SHAP and LIME, respectively. Both figures show that the 

RBS contributes the most to the MLP’s final prediction, whilst the patient’s BMI 

contributes the least. 

 

For all models trained with longitudinal data, BMI is ranked lower than when the models 

are trained without longitudinal data. However, the importance value produced for the 

BMI variable from the models is still not insignificant (see Figures in Multimedia 

Appendix 7). This indicates that models are able to find subtle relationships in the 

longitudinal data that are more relevant to the prediction than BMI, rendering it less 

important. 

 

 

 

 
Figure 6. Relative importance of predictors obtained from MLP trained with longitudinal 

data using SHAP. 

 



 

 
Figure 7. Relative importance of predictors obtained from MLP trained with longitudinal 

data using LIME. 

 

 

When using the MLP and LR models trained on the longitudinal data the eGFR variable 

is ranked higher than CHOL and BMI, in contrast to when these are trained on the current 

visit only.  None of the other models trained with the current visit only, except RF, 

consider it important. Again, we ascribe this to the information that the model learns from 

the variations of eGFR values between a patient’s visits (longitudinal EHR data).  

 

SHAP values are calculated on the sample level. Figures 8 and 9 illustrate the SHAP 

values for 2 randomly selected sample patients from our dataset. These figures highlight 

how different inputs have different SHAP values. The patient in Figure 8 (for whom our 

model correctly predicts elevated HbA1c levels (≥5.7%)) has a higher RBS value than 

the patient in Figure 9 (for whom our model correctly predicts normal HbA1c levels 

(<5.7%)). This explains why our MLP model places much more importance on the RBS 

value of the patient in Figure 6. 

 

 
Figure 8. An example shows the SHAP values for a randomly selected sample patient 

with elevated HbA1c levels (≥5.7%). 

 



 
Figure 9. An example shows the SHAP values for a randomly selected sample patient 

with normal HbA1c levels (<5.7%). 

 

 

 

The task of predicting HbA1c elevation risk can be challenging. Figure 10 provides a 

visualization of the datapoints for the 2 classes (pre-diabetic with ≥5.7%) and (normal 

with <5.7%) after mapping the datapoints (for the test data) into 2 dimensions using t-

SNE [50]. The overlap in the datapoints visualized in the figure demonstrates the 

challenge of separating the patients with and without elevated levels of HbA1c (≥5.7%) 

in the KAIMRC dataset. We avoided intensive feature engineering techniques in the 

sampling approach used. However, the approaches adopted are able to achieve promising 

results with an accuracy of 83.22% for the AUC-ROC using MLP with historical data.  

 

 

 
Figure 10. 2-Dimension visualization using t-SNE for a randomly selected subset of the 

data. 

 

 



In summary, all models show promising results for predicting the current HbA1c 

elevation levels (≥5.7%) using EHR data. The results emphasize that the HbA1c 

predictive models can exhibit more learnability when they are trained with the patient 

longitudinal observations that are normally available from EHR systems. 

 

Discussion and conclusion 
 

 

EHR systems were adopted for the purpose of improving healthcare outcomes and were 

not originally intended for research purposes [19]. Patient data stored in EHR systems 

can be obtained at irregular intervals, as lab instructions are carried out with different 

frequencies based on the physician's decisions and a patient’s visit patterns. It is very 

common that medical data extracted from EHR systems suffer from problems such as 

irregularity, incompleteness, and noisy and imbalanced data [13]. These can be 

challenging obstacles for any technology used for predictive analytics. 

 

The sampling approach used did not affect the balanced nature of the dataset used. As 

shown in Figure 2, there were 56,185 unique patients before removing the records with 1 

or more missing values. The number of unique patients with elevated HbA1c levels 

(≥5.7) before removing the incomplete records was 27,354 with 48.68% 

(27,354/56,185). The number of unique patients with normal HbA1c levels was 28,831 

with 51.32% (28,831/56,185). We would argue that the absence or the presence of the 

HbA1c readings is not random. Being a sample collected from the population of Saudi 

Arabia, the likelihood of a patient taking an HbA1c test is large because of the prevalence 

of diabetes [51]. This may affect the reproducibility of this work using different 

populations from different countries especially those with lower rates of diabetes. 

 

It is hoped that these outcomes will encourage further investigation into the predictability 

of current HbA1c levels (≥5.7%) using more of the readings normally provided in EHR 

data. For example, other important readings such as FBS and triglycerides have shown 

clinical correlations with diabetes [52]. In addition, our dataset contained only 3 years of 

patient data, which limits the number of patient visits recorded. Figure 11 shows the 

number of visits made by patients from 2016 to 2018. Figure 12 details the number of 

visits made by patients (after removing the outliers) over HbA1c levels. Both figures 

show that the majority of the patients have made relatively few visits. 52% (8713/ 16818) 

of the patients have made 4 visits or fewer during the 3 years (1.3 visit per year). This 

also justifies the size of the sliding window (𝑠 = 3) as the optimal input size for the 

models employed. However, we hypothesize that the longitudinal behavior of the features 

used can be enriched by employing more values obtained over longer periods. Therefore, 

incorporating more features and their longitudinal behavior over longer periods into the 

models used in this study would be likely to improve the prediction performance of our 

chosen models. 



 
Figure 11. Histogram showing the trend in the number of visits made by patients. 

 

 
Figure 12. The details for the number of visits made over number of patients across 

HbA1c levels. 

 

 

Variations in the data/model produce slightly different attribution values. However, due 

to the critical nature of many healthcare applications, it is always important to verify that 

our models make ‘sensible’ predictions. Without the use of SHAP/LIME, this would be 

hard to verify for any non-linear model. Although it is possible to see that the models 

have high performance, we would be unable to verify that a model is not making spurious 

correlations. Furthermore, through the use of SHAP, we can verify that MLPs trained on 

the longitudinal data are learning to use the extra information contained in the 

longitudinal data (as indicated by the higher importance of eGFR), allowing us to 

pinpoint the reason these models gain higher performance. 

 

To investigate the effect of temporal dependencies in the data, this study has involved 

investigating the use of other deep learning models along with the MLP, such as Long-

Short Term Memory (LSTM) and Bidirectional LSTM [25, 53] for HbA1c prediction. 



Table 5 reports the results of using these models. The MLP model achieved similar 

performance to the LSTM and BiLSTM models using all reported measures. This 

suggests that directly modelling the temporal dynamics in the data is not very helpful. 

This could be due to the short lengths of the time series, or to weak temporal dependency. 

 

Table 5.  LSTM and BiLSTM Classifiers performance for current HbA1c levels 

prediction. 

Model With 

longitudinal 

data 

AUC-ROC, % 

(SDf) 

Balanced 

Accuracy, % 

(SD) 

Accuracy, % 

(SD) 

F1, % (SD) Precision, 

% (SD) 

PR-AUC, % 

(SD) 

LSTMa Yes 83.26% (0.91) 74.17% (1.05) 74.59% (1.23) 75.64% (1.50) 74.59% (3.26) 81.88% (0.95) 

BiLSTMb Yes 83.16% (0.87) 74.21% (1.24) 74.30% (1.15) 75.46% (1.39) 75.19% (2.36) 84.75% (0.75) 
aLSTM: Long-Short Term Memory. 
bBiLSTM: Bidirectional LSTM. 

 

Generalizing our findings using other datasets is challenging because of the accessibility 

and privacy restrictions that apply to medical datasets. For this reason, and because of the 

lack of similar studies that have employed machine learning for HbA1c prediction using 

EHR data, comparing the performance achieved by the models outlined in this work with 

those developed by other researchers will require the availability of alternative 

anonymized datasets. 

 

Conclusions 

 

We believe that this study is the first to investigate the performance of machine learning 

models used with EHR data for predicting current HbA1c elevation risk (≥5.7%) for 

non-diabetic patients. It is also the first to investigate employing the longitudinal data that 

are normally stored on EHR systems to enhance the prediction of HbA1c elevation levels.  

Our findings show that the MLP model achieves better results when a patient’s 

longitudinal data are combined with current visit data, and the use of longitudinal data 

also affects the relative importance for the predictors used. 

 

As this work formed a continuation of previous work [24], we avoided changing the 

sampling approach used. However, studying the impact of applying different sampling 

approaches could be valuable to explore in future work, as would the use of a larger 

dataset with more variables and the recording of longitudinal behavior over longer 

periods. 
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