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a b s t r a c t

This paper illustrates long-term trends in human population and climate from the Late Pleistocene to the
Late Holocene (14,000e2500 cal. yr. BP) in order to assess to what degree climate change impacted
human societies in the Near East. It draws on a large corpus of archaeo-demographic data, including
anthropogenic radiocarbon dates (n ¼ 10,653) and archaeological site survey (n ¼ 22,533), and 16 hydro-
climatic records from cave speleothems and lake sediments. Where possible, inferred population dy-
namics and climatic trends have been made spatially congruent, and their relationships have been
statistically tested. Demographic proxies and palaeoclimatic records have been compared for the greater
Near East as a whole and for seven major geo-cultural regions (Anatolia, Arabia, Cyprus, Iran, Levant,
Mesopotamia, and South Caucasus). This approach allows us to identify regionalised patterns in popu-
lation and climate trends. The results suggest a clear relationship between population and climate in the
Late Pleistocene and Early Holocene (14,000e8326 cal. yr. BP) with population increasing in concomi-
tance with wetter climatic conditions. During the Middle Holocene (8326-4200 cal. yr. BP) there is an
increased regionalisation of demographic patterns, followed by marked interregional contrasts in the
Late Holocene (4200-2500 cal. yr. BP). We identify a decoupling of demographic and climatic trends from
the Middle Holocene onwards, and relate this to the existence of more complex societies. These were less
vulnerable to gradual climatic shifts due to their logistical infrastructure, social organisation and tech-
nological capacity. We also assess the impact of five Rapid Climate Changes (RCC) which occurred during
the study period on population levels. Although all five RCC (the so-called 10.2 k, 9.2 k, 8.2 k, 4.2 k, and
3.2 k cal. yr. BP events) are visible to some degree in our palaeoclimatic and demographic proxies, there
are marked regional variations in magnitude and duration.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Population growth occupies a central role in public debate due
to its implications for subsistence strategies, environmental
change, and migration, and its relationship with exogenous factors
such as climate variations. In the archaeological and anthropolog-
ical debate, population has been identified as a driver for cultural
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change (Naroll, 1956; Carneiro, 1962) and an explanation for vari-
ation in subsistence strategies (Boserup, 1965; Binford 1968;
Shennan 2000; Peregrine 2004), social complexity (Johnson and
Earle 2000; Feinman 2011), socioeconomic outputs (Bettencourt
et al., 2007; Ortman et al., 2014; Altaweel and Palmisano 2019;
Smith 2019) and intra-group conflicts (Goldstone 1993; Kohler
et al., 2009; Turchin and Nefedov 2009). More recently, interest
in human-environment interactions has prompted an increasing
number of studies investigating the impact of human population on
landscape, including to what degree population fluctuations were
affected by climatic shifts (Langgut et al., 2016; Lawrence et al.,
2016; Kaniewski and Van Campo 2017; Bevan et al., 2019; Roberts
et al., 2019; Stephens et al., 2019). Building past human popula-
tion models over the longue dur�ee (and assessment of the causes of
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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fluctuations) is critical for our understanding of cultural and envi-
ronmental changes at a range of scales.

In this context, the Near East represents an excellent laboratory
in which to investigate long-term relationships between de-
mographic and climatic trends. This area is a mosaic of different
cultural and environmental landscapes, which each experienced
linked but different socio-ecological trajectories (Wilkinson 2003;
Rosen 2007; Ur 2009, 2015; Roberts et al., 2011; Wilkinson et al.,
2014; Izdbeski et al., 2016; Lawrence et al., 2017; Jones et al.,
2019; Palmisano et al., 2019; Woodbridge et al., 2019). It also
endured pronounced regional dry/wet episodes during the Late
Pleistocene and Holocene which would have impacted on human
behaviour (Burstyn et al., 2019; Jones et al., 2019).

The rise and fall of population and the emergence or collapse of
complex societies has been attributed to shifts in climatic regimes.
For example, the Younger Dryas stadial (~12,700e11,700 cal. yr. BP),
a period of increased aridity and cooling, has been interpreted as a
cause for a reduction in site occupation intensity (Belfer-Cohen and
Bar-Yosef 2000; Guerrero et al., 2008; Goring-Morris and Belfer-
Cohen 2010) and as a driver towards more productive techniques
in plant cultivation as a response to declining natural sources
(Cappers et al., 2002). A recent study by Roberts et al. (2018)
showed that neolithisation and population increase occurred in
the Fertile Crescent earlier than in the Anatolian plateau, and
argued that this delay was caused by more favourable climatic
conditions in the former area during the climatic deterioration of
the Younger Dryas stadial (~12,700e11,700 cal. yr. BP). The uneven
impact of these climatic shifts across the whole Near East could
explain local cultural variations manifesting at different speeds and
magnitudes. Some trends are also visible at pan-regional scales. For
example, studies focused on Anatolia, Northern Mesopotamia and
the Southern Levant have all suggested that from 4000/3500 cal. yr.
BP onwards demographic trends become decoupled from those of
climate, perhaps due to the technological advancement, organisa-
tional capacity and logistical infrastructure of more complex soci-
eties which makes populations more resilient to drought and food
stress (Rosen 2007; Lawrence et al., 2016; Roberts et al., 2019).
Alongside these longer-term trajectories, the Near East experienced
several major rapid climate changes during the Holocene (RCC, the
so-called 10.2 k, 9.2 k, 8.2 k, 4.2 k, and 3.2 k cal. yr. BP events). These
are also considered to have affected demographic trends and trig-
gered social responses, although there is much debate on the de-
gree and nature of these. The 10.2 k cal. yr. BP event could be a
factor in a cultural break visible across the Northern Levant and
Upper Mesopotamia (Borrell et al., 2015). A consensus is beginning
to emerge around the 9.2 k and 8.2 k cal. yr. BP events suggesting
that they had a more limited impact on Near Eastern communities
(Flohr et al., 2016; Allcock 2017), but the 4.2 k. cal. yr. BP event has
prompted an animated debate, with some scholars arguing it was
responsible for massive population decline and societal collapse
(Weiss et al. 1993, 2017; Kaniewski et al., 2018) and other preferring
more nuanced views (Wilkinson 1997, 2007; Roberts et al., 2011;
Greenberg 2017; Cookson et al., 2019). There is a broader agree-
ment on the role of the 3.2 k cal. yr. BP event as a major driver of
political and social collapse (Langgut et al., 2013; Cline, 2015;
Izdebski et al., 2016; Kaniewski et al. 2015, 2019).

In this paper, we draw upon a large corpus of archaeological
data (in the form of settlements from archaeological surveys and
radiocarbon dates) and palaeoclimatic records across the whole
Near East in order to provide the first systematic empirical analysis
on a pan-continental scale in the very long run. Our assumption is
that, all other factors remaining constant, increased aridity will
negatively affect soil moisture, and therefore vegetation, food
production and human population. However, this relationship is
not straightforward, and is mitigated by human responses to
2

change, including social and technological adaptation and popu-
lation movement. The goal of the paper is to examine to what de-
gree climate and population trends correlate with one another. In
order to do this we compare trends visible in the summed proba-
bility distributions (SPD) of calibrated radiocarbon dates with
several palaeoclimatic records. We also test the robustness of the
SPD generated trends by comparing them with more traditional
archaeological proxies for population (raw site count and estimated
settled area) in three sub-regions. With some exceptions, studies
concerning population patterns in the Near East have tended to
focus on relatively small areas and short time periods. Here we
include the entirety of the greater Near East in the radiocarbon
dataset, from the Arabian Peninsula to the South Caucasus,
including Anatolia, the Levant, Mesopotamia and Iran. Chronolog-
ically we range from the Late Pleistocene to the Late Holocene (ca.
14,000e2500 cal. yr. BP). The three sub-regions used for compari-
son are determined by the availability of collated high-quality
archaeological survey data. They include South-central Anatolia,
Upper Mesopotamia and the Southern Levant. The fluctuations in
demographic and climatic variables are quantitatively assessed to
examine the correlation between the different demographic
proxies, the correlations between climate change and population
dynamics through time, and the impact of RCC events.

2. Geographical setting and materials

2.1. The study area

The Near East is a large area with a diversity of landscapes and
climate regimes, including fertile drylands, alluvial plains, coast-
lands, highmountain chains and extensive deserts. Most of the area
experiences warmer summers and colder winters, with rainfall
occurring in the winter. Extremely dry conditions prevail in the
southern part of the region, the Arabian Peninsula, which is mostly
arid except in the highlands of Yemen and Oman where precipi-
tation is increased by the Indian Monsoonal system (Enzel et al.,
2015; Jones et al., 2019). The coasts of the Mediterranean and
Black Seas, the Levant and Anatolia enjoy relatively abundant
rainfall and rich agricultural lands (Fisher 2013). Across the entire
region there are a series of marked average annual rainfall gradi-
ents, with values exceeding 2000 mm in the Caucasus and Zagros
Mountains but less than 100 mm in the Arabian Peninsula and
Southern Negev (Hemming et al., 2010; Lelieveld et al., 2012).

In order to deal with this variation, we have subdivided the Near
East into seven major geo-cultural regions (Anatolia, Arabia,
Cyprus, Iran, Levant, Mesopotamia, and South Caucasus; see Fig. 1).
The regional classification is still very broad, and each area en-
compasses a range of landscapes. In delineating our study areas, we
have attempted to balance regional scale and relative geographical
and cultural homogeneity, with sufficient data coverage for
archaeo-demographic proxies, particularly radiocarbon dates, to be
effective. The geographical extent of our regions, from the Eastern
Mediterranean to the Indus valley and from the Black Sea to the
Arabian Sea, allows us to compare regionalised patterns of popu-
lation and climate. While we have attempted to guarantee spatial
and temporal congruence between the demographic and climatic
records, this has not always been possible due to the distribution of
paleoclimate records and archaeological data. Several of our
climate records do not cover the entire chronological scope from
the Late Pleistocene to the Late Holocene (14,000e2500 cal. yr. BP),
but given the paucity of resources in the regionwe have included all
those currently available in a quantified form. In this study, we refer
to the triplex subdivision of the Holocene established by the In-
ternational Commission on Stratigraphy (Walker et al., 2018): Early
Holocene/Greenlandian (11,700e8326 cal. yr. Bp), Middle



Fig. 1. Study area and spatial distribution of radiocarbon dates. Settlements data from a) South-central Anatolia, b) southern Levant, and c) Upper Mesopotamia.
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Holocene/Northgrippan (8326e4200 cal. yr. BP, and Late Holocene/
Meghalayan (4200 cal. yr. BP e 1950 AD).
2.2. Archaeo-demographic proxies

Population estimates build on the assumption that the density
of the archaeological evidence found in a given study area is pro-
portional to population (see Drennan et al., 2015 for a useful
overview). The most popular proxies for inferring long-term
changes in human populations in the Near East have been raw
counts of archaeological sites and sums of estimated settlement
3

sizes. These are commonly derived from archaeological field
investigation such as landscape survey or site mapping (e.g.
Sanders 1965; Adams 1965, 1981; Wright and Johnson 1975;
Gophna and Portugali 1988; Finkelstein and Gophna 1993;
Wilkinson 1999; Casana 2009; Ur 2013; Lawrence et al., 2016,
2017). Over the past two decades, SPDs of archaeological radio-
carbon dates have begun to be used to infer demographic trends in
prehistory (see Rick 1987; Shennan and Edinborough 2007;
Weninger et al., 2009; Shennan et al., 2013; Silva and Vander
Linden, 2017; de Pablo et al., 2019). These approaches have had
limited impact in the Near East, and where attempted have focused
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on single regions or very specific time periods (cf. Borrell et al.,
2015; Flohr et al., 2016; Palmisano et al., 2019; Woodbridge et al.,
2019). Here we make use of a total of 10,653 radiocarbon dates
from 993 sites collected from existing online digital archives
(ArAGATS project: 2019; BANADORA: CDRC 2016; Borrell et al.,
2015; CalPal: Weninger et al., 2018; CONTEXT: B€ohner and Schyle
2006; EUROEVOL: Manning et al., 2016; Flohr et al., 2016; IRPA/
KIK: Van Strydonck and De Roock 2011; ORAU , 2016; PPND: Benz
2014; RADON: Hinz et al., 2012; TAY project: 2019; 14SEA:
Reingruber and Thissen 2017), and electronic and print publica-
tions. To our knowledge, this is the largest collation of published
radiocarbon dates for the Near East. We have not been able to
include unpublished dates or those published in non-digital grey
literature. Wherever possible the radiocarbon dates were cross-
checked against different sources and georeferenced consistently
(see Fig. 1). All the radiocarbon dates come from archaeological
contexts and most of them are taken from samples of bone, char-
coal, and seeds (see Table 1). Radiocarbon dates with poorly un-
derstood marine reservoir offsets (all shells), a standard error
greater than 300 years, or that do not have anthropogenic causes
(e.g. radiocarbon samples collected from environmental cores)
have been excluded and are not part of the above total. The total
number of dates exceeds the minimum sample size of 200e500
required to produce reliable SPDs of calibrated radiocarbon dates
within a time interval of 8e10,000 years (Michczy�nska and Pazdur,
2004; Michczy�nska et al., 2007; Williams, 2012, 580e581). As a
consequence, our dataset can be considered to be sufficiently large
to overcome many of the potential sampling biases that might
affect the patterns. The SPDs of calibrated radiocarbon dates are
effective until 3000/2500 cal. yr. BP because after that archaeolo-
gists rely more on short-lived pottery types for dating archaeo-
logical layers. This period is also affected by the Hallstatt
radiocarbon calibration plateau (ca. 2750e2350 cal. yr. BP) which
makes it difficult to obtain refined radiocarbon-based chronologies.

Both archaeological survey data (raw count, estimated settle-
ment size) and radiocarbon dates are imperfect proxies and are
subject to several issues that may affect the relationship between
the archaeological data and past population levels. These include
biases in research focus towards particular periods or regions,
variations in the methods adopted and the intensity of the inves-
tigation, taphonomic loss and the visibility of diagnostic artefacts
(Cherry 1983; Surovell et al., 2009; Contreras and Meadows 2014;
Torfing 2015, 2016; Becerra-Valdivia et al., 2020). The generation of
SPD datasets requires excavation and sampling for radiocarbon
dating. In areas of the world such as the Near East where modern
states do not routinely integrate archaeological work into their
planning and construction industries, the majority of archaeolog-
ical excavation is driven by academic research projects and their
attendant interests. As a result, such areas may be more affected by
the concentration of research on particular topics, such as the
emergence of farming, which in turn emphasises particular pe-
riods, than areas with a long tradition of commercial archaeology.
Table 1
Summary of the archaeo-demographic proxies for each case study region. See Fig. 1 for th
(b), and Upper Mesopotamia (c).

Region 14C dates (n) Site numbers

Anatolia 2640 Only for a selected sub-region (13
South-Caucasus 665 No
Cyprus 494 No
Levant 3843 Only for a selected sub-region (20
Mesopotamia 1587 Only for a selected sub-region (50
Iran 1019 No
Arabia 405 No

4

This is less of a problem for archaeological surveys, which generally
attempt to capture all sites within a landscape regardless of period
(unfortunately often with the exception of very recent occupation).
Unlike survey, SPDs do not capture variables such as site size or
type. Expansion in the size of sites can lead to a counter-intuitive
state of affairs in which the number of sites reduces but the pop-
ulation likely increased. This occurred in Southern Mesopotamia
during the period of initial urban emergence from 6000 cal. yr. BP
(Adams 1981), and in some areas of Upper Mesopotamia during the
Early Bronze Age (Lawrence andWilkinson 2015). However, SPDs of
calibrated radiocarbon dates generally provide a better chrono-
logical resolution than artefactual data because the latter rely on
the identification of changes in lithic and ceramic assemblages to
define chronological periods and these changes may occur rela-
tively slowly. Archaeological surveys which rely on surface collec-
tion cannot include stratigraphic information or data on
proportions of pottery types, resulting in further chronological
imprecision.

Despite these issues, several studies have shown broad agree-
ment in the demographic trends produced by the SPD of radio-
carbon dates and other archaeological indices (e.g. raw site count,
estimated settlement size) (Tallavaara et al., 2010; French 2015;
French and Collins 2015; Demjan and Dreslerov�a 2016; Palmisano
et al., 2017; Nielsen et al., 2019). The "Changing the Face of the
Mediterranean" project, a Plymouth University-UCL collaboration,
has confirmed that SPDs can be regarded as a robust proxy for
modelling past human population in a region adjacent to our study
area (see Bevan et al., 2019; Berger et al., 2019; Palmisano et al.,
2019; Roberts et al., 2019; Stoddart et al., 2019; Weiberg et al.,
2019). Here we assess the limitations of the different proxies
through a cross-comparison between multiple archaeo-
demographic proxies. Archaeological site derived proxies (site
count, settlement size) are compared to the SPD of calibrated
radiocarbon dates for three sub-regions, South-central Anatolia, the
Southern Levant and Upper Mesopotamia, to develop a better un-
derstanding of long-term population dynamics (see Table 1). The
sub-regions were chosen because they have sufficient high quality
systematic archaeological survey data to assess general trends. A
fourth sub-regionwhich has a similar archaeological survey dataset
in our study region is Southern Mesopotamia, but here the paucity
of excavation since the early 1990s means the number of published
radiocarbon dates falls below the threshold for robust analysis. The
majority of the cited papers where analogous work has been un-
dertaken focus on relatively homogenous fertile lowland environ-
ments, and our study regions are similar. Thismeans they are a poor
test of the validity of the SPD data for dissimilar environments such
as desert Arabia or mountainous Eastern Anatolia and the Caucasus,
which also had rather different settlement histories. Further work
is needed to bring together archaeological settlement datasets in
these regions of sufficient size and scale to compare to the SPD
record. However, SPDs are beginning to be used in some of these
regions (Petraglia et al., 2020), and in the absence of appropriate
e spatial extent of the three sub-regions South-central Anatolia (a), Southern Levant

Site areas Sub-regional division

36) Only for a selected sub-region South-central Anatolia
No NA
No NA

,688) No Southern Levant
9) Only for a selected sub-region Upper Mesopotamia

No NA
No NA
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settlement datasets we would argue that they can act as an
empirically derived heuristic device for examining the causal
relationship between climate change and population. This is not to
claim that SPDs of radiocarbon dates are a more appropriate proxy
than archaeological survey data for population. We use them here
due to their wider spatial and temporal availability, and chrono-
logical precision. Ideally we would use both archaeo-demographic
proxies throughout the whole study area and for the entire study
period, but settlement datasets at these scales are not yet available.

The archaeological settlement data for South-central Anatolia
and Upper Mesopotamia were collected and harmonised from re-
ports and gazetteers of archaeological surveys of varying intensity
(see the Appendix B for references). Settlement data were recorded
as geo-referenced points (unprojected WGS84) per standardised
cultural periods, which have been defined in absolute calendric
years to provide maximum comparative potential among archae-
ological sites. Here we include those places identified as habitation
sites or possible habitations and have removed sites such as cem-
eteries or mines where no evidence of settlement was recovered.
The archaeological survey data cover a period spanning from
10,000e2500 cal. yr. BP as, unlike the radiocarbon dates, there are
insufficient data for the earlier periods. We recorded a total of 1336
sites and 3543 occupation phases for south-central Anatolia and
509 sites divided into 1772 site-phases for Upper Mesopotamia
(Table 1 and Fig. 1: a, c; see the Appendix B for the full list of
archaeological surveys). A total of 20,688 sites and 66,183 occupa-
tion phases were collected for the Levant and then standardised
from two extant online databases: 1) The Digital Archaeological
Atlas of the Holy Land (Savage and Levy 2014), and 2) The West
Bank and East Jerusalem Archaeological Database (Greenberg and
Keinan 2009). One major caveat in this latter dataset is that the
estimated size of settlements for each cultural period was not
consistently available, and therefore we have only used the raw site
count as a proxy for the population.
2.3. Palaeoclimatic records

For simplicity, in the present study we have used a palae-
oclimatic proxy reflecting past hydro-climatic patterns and omitted
those proxies indicating variability in temperature or pollen-based
climate reconstructions. We have only included datasets where full
results have been published and raw data are available. The
palaeoclimatic dataset includes 16 stable oxygen isotope ratios
(d18O) of speleothems and lake sediments collected from different
regions (see Fig. 1 and Table 2) which provide relative precipitation
levels. In the arid and semi-arid regions which make upmost of the
study area, we expect precipitation levels to correlate closely with
vegetation and surface water availability (Jones et al., 2019).
Although the spatial coverage of the available records is hetero-
geneous, with some areas such as Cyprus and the central part of the
Fertile Crescent lacking natural palaeoclimatic archives, it is
possible to identify regional climate variability across the whole
Near East. A further issue to bear in mind is that most of our
palaeoclimatic records (12 out of 16) are located at more than
650m above sea level and reflect past climatic conditions in upland
landscapes (see Table 2), while most of our archaeological data
comes from lowland basins.

Stable oxygen isotopes from caves and lakes are used as hy-
drological indicators due to their rapid response to changes in
water availability, and their fine-grained temporal resolution based
on radiocarbon or uranium-series dating (Bar-Matthews et al.,
2003; Fleitmann et al., 2007; Finn�e et al., 2017). The higher and
lower values of stable oxygen isotopes indicate respectively drier
and wetter conditions. However, the interpretation of d18O values is
5

not always straightforward as they can be affected by several
environmental factors (e.g. vegetation, recharge conditions, open
water evaporation) occurring in the original context of a given re-
cord. In addition, some authors have recently suggested that the
d18O of the speleothem calcite represents the precipitation amount
of the winter season rather than average annual conditions
(Wassenburg et al., 2016; Deininger et al., 2017; Bini et al., 2019),
and there is no unifying explanation for values across the Medi-
terranean basin (Moreno et al., 2014). A recent study by Baker et al.
(2019) has highlighted that those sites from regions (eg. Northern
Europe, northern America) with an annual mean temperature less
than 10 �C have an oxygen isotope composition strongly related to
the isotopic composition of local rainfall. Instead, those regions,
such as the Mediterranean basin and Near East, with an annual
mean temperature between 10 and 16 �C, can be more susceptible
to moisture balance change due to the evaporative fractionation of
stored karst water and selective recharge. Conversely, the d18O
values of lacustrine carbonate are believed to correlate with hydro-
climate conditions during summer (Leng and Marshall 2004; Bini
et al., 2019) although more complex explanations have been pro-
posed (Zielhofer et al., 2019). These palaeoclimatic records can be
sensitive to air mass trajectories and to shifts in evaporative
concentration.

It is not the main goal of this paper to describe in detail the
uncertainties of each climate record, and several recent reviews
provide excellent syntheses of the available data (Roberts et al.,
2008; Burstyn et al., 2019; Finn�e et al., 2019; Jones et al., 2019).
We invite the reader to refer to these and the original publications
for detailed descriptions of each record (see Table 2). All the
palaeoclimatic records of this study were collected from existing
online repositories and databases (NOAA; SISAL database:
Atsawawaranunt et al., 2019). We selected those records which
were freely accessible online, could provide reasonable spatial
coverage and included multimillennial time duration across the
Holocene. While some records have a fine and detailed chronology
(for example, Jeita and Sofular caves) other ones have a mean
sampling interval greater than 200 years (for example Jerusalem
West cave and Lake Zeribar).
3. Methods

In this paper we draw on developed methods to infer past
population dynamics from archaeological settlements data
(Palmisano et al., 2017) and to test statistically the SPDs of cali-
brated radiocarbon dates (cf. Shennan et al., 2013; Timpson et al.,
2014; Crema et al., 2016; Bevan et al., 2017). We provide here a
general description of those methods, which are explained in detail
in the original publications. All analyses and figures are reproduc-
ible thanks to the dissemination of the datasets and four scripts
written in R statistical computing language (Appendix A).
3.1. Archaeology settlement data derived proxies

The archaeological settlement data (raw site count, aggregated
estimated settlement size) have been binned into a series of 200-
year time slices starting at 10,000 cal. yr. BP (period t1:
10,000e9800 cal. yr. BP) and ending at 2600 cal. yr. BP (period t37:
2800-2600 cal. yr. BP). Because the length of cultural periods varies
according to the precision of the dating of archaeological artefacts
(e.g. pottery), with the earlier periods often spanning hundreds of
years, we applied aoristic analysis to deal with the temporal un-
certainty of occupation periods and generated aoristic weights (for
a more detailed explanation of the methodology see Crema et al.,
2010, 1118e1121; Crema 2012, 446e448; Palmisano et al., 2017,



Table 2
List of palaoeclimate records.

Map
no.

Site name Archive Proxy Longitude Latitude Elevation
(masl)

Chronological
Coverage (cal. yr. BP)

Reference

1 Lake G€olhisar lake
sediments

d18O 29.6 37.13 930 10,559-302 Eastwood et al., (2007); Roberts et al., (2008)

2 Sofular cave speleothem d18O 31.93 41.42 700 50,275-present Fleitmann et al., (2009); Shah et al., (2013)
3 Eski Acıg€ol lake

sediments
d18O 34.54 38.55 1270 20,381-1444 Roberts et al., (2001) and 2008

4 Dim cave speleothem d18O 32.11 36.53 232 13,094-9738 Ünal-_Imer et al., (2015); Atsawawaranunt et al.,
(2019)

5 Karaca cave speleothem d18O 39.40 40.54 1536 77,300-5904 Rowe et al., (2012); Atsawawaranunt et al., (2019)
6 Lake Van lake

sediments
d18O 42.81 38.63 1648 16,128-56 Wick et al., (2003); Roberts et al., (2008)

7 Jeita cave speleothem d18O 35.65 33.95 100 20,367-372 Cheng et al. (2015)
8 Lake Hula lake

sediments
d18O 35.6 33.10 60 15,105e205 Roberts et al. (2008)

9 Jerusalem West
cave

speleothem d18O 35.15 31.78 700 168,714-present Frumkin et al., (1999); Shah et al., (2013)

10 Soreq cave speleothem d18O 35.03 31.45 400 30,031-present Bar-Matthews et al., (2003); Shah et al., (2013)
11 Kuna Ba cave speleothem d18O 45.64 35.16 660 3988-present Sinha et al. (2019)
12 Lake Zeribar lake

sediments
d18O 46.11 35.53 1300 20,746-108 Stevens et al., (2001); Roberts et al., (2008)

13 Lake Mirabad lake
sediments

d18O 47.72 33.08 800 9338-55 Stevens et al., (2006); Roberts et al., (2008)

14 Gol-e-Zard cave speleothem d18O 52 35.84 2535 4920e3770 Carolin et al., 2019(Carolin et al., 2019)
15 Hoti cave speleothem d18O 57.35 23.08 800 9607-6026 Neff et al. (2001)
16 Qunf cave speleothem d18O 54.18 17.1 650 10,558e2700, 1312-308

BP
Fleitmann et al., (2007); Shah et al., (2013)
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63e65). The method assumes that the total probability of an
archaeological event (site occupation phase in our case) within a
given time span is 1, which indicates an absolute certainty that the
site was in use in that time span. If we then divide by the length of
the site’s chronological range, we can represent the probability of
existence for each temporal block (implicitly adopting a default
uniform assumption). For instance, using time-steps of 200 years, a
Middle Bronze Age site-phase ranging from 2000 to 1600 BC has an
aoristic weight of 0.50 for each time-step (2000e1800,
1800e1600). In addition, to mitigate the discrepancy between long
individual phases within typo-chronological schemes and likely
shorter term durations of site occupations, we applied Monte Carlo
methods to generate randomised start occupation periods for those
sites with low-resolution information, assuming a mean length of
occupation of 200 years within each cultural period (cf. Crema
2012, 450e451; Orton et al., 2017, 5e6; Palmisano et al., 2017,
63e64). The 200-year duration was used to correspond to the
median duration of the cultural periods (or site-phases) of the
settlements employed in this study and to offer a clear contrast for
those periods having large time spans (e.g.1000 years or more). The
resulting probabilistic distributions (aoristic weights, randomised
start dates) provide a robust dataset to compare with other
archaeo-demographic proxies.

3.2. Creating SPD of calibrated radiocarbon dates

The SPD of calibrated radiocarbon dates is the result of counting
up (summed in the manner of a histogram) the calibrated raw
radiocarbon years of each organic sample, which are expressed in
the form of probability statements with error ranges. The idea is
that the more people living in a given region, the more garbage, the
more organic materials, and the more radiocarbon collected, and
dated (Rick 1987).

We used the R package rcarbon (version 1.4.1; see Bevan and
Crema 2020 ; Crema and Bevan 2020) for generating and statisti-
cally assessing the SPDs of calibrated radiocarbon dates. We cali-
brated and summed individual radiocarbon dates within a broader
temporal coverage than our study period, between 15,000 and
6

2000 cal. yr. BP, to avoid any edge effects. We reduced any bias of
oversampling of specific chronological phases or events (for
example, multiple dates being taken from a single floor layer) by
aggregating uncalibrated radiocarbon dates within 50-year bins;
dates with a gap greater than 50 years were assigned to a separate
bin. We then calibrated the radiocarbon dates and pooled mean
probabilities within the bins to have only one date distribution for
each 50-year archaeological context (cf. Timpson et al., 2014).
Hence, the probability distributions of 10,653 calibrated radio-
carbon dates from 993 sites have been aggregated into 4873 (50-
year) site bins and finally summed to produce SPDs for the Near
East as a whole and for the seven sub-regions (Anatolia, Arabia,
Cyprus, Iran, Levant, Mesopotamia, and South Caucasus). We opted
to sum unnormalised distributions of calibrated radiocarbon dates
as some recent work (Weninger et al., 2015; Bevan et al., 2017) has
suggested that normalised dates create artificial peaks in the
resulting SPDs due to the steepening portions of the radiocarbon
calibration curve (we have used the IntCal20 curve; Reimer et al.,
2020).

We compared the observed SPD of calibrated radiocarbon dates
with two theoretical null models of demographic change to sta-
tistically determine if the inferred population fluctuations indicate
meaningful departures from what may be expected by mere
chance. Put simply, the observed SPD were compared with condi-
tional random sets of hypothetical dates produced according to two
theoretical null models of population growth (exponential and lo-
gistic). First, we fitted both an exponential and a logistic model of
demographic growth to the observed data, and then back-
calibrated new random samples (equal to the number of site-
bins) drawn from the fitted model (Bevan and Crema 2020: mod-
elTest). These hypothetical samples were then calibrated and their
probability distributions summed to generate an expected SPD of
the fitted null model. We repeated the same process 1000 times to
provide a test of global goodness-of-fit and a 95% confidence en-
velope (in grey in the relevant figures). Departures of the observed
SPD (solid black line in the figures) above and below the confidence
envelope indicate respectively periods of increase (in red in the
relevant figures) or decrease (in blue in the relevant figures) greater
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than expected according to a null model of growth. Although both
logistic and exponential models are theoretical abstractions not
describing any empirically derived population growth, they are
useful for assessing significant patterns in population fluctuations
across time (Turchin 2001). The logistic model, based on the
Malthusian assumption that population growth is limited by a
maximum imposed by the carrying capacity of the environment,
could fit a scenario characterised by a dramatic increase in popu-
lation with the introduction of farming and a gradual demographic
slowdown in the later periods as local resource limits are reached
(Bevan et al., 2017; Palmisano et al., 2019). The exponential null
model has the advantage of mimicking site loss through time and/
or expected multi-millennial demographic trends (Shennan et al.,
2013).

Finally, we assessed regional variation in population dynamics
by performing a permutation test to assess towhat degree the SPDs
of each region depart from a null model representing the pan-
regional demographic trends across the whole Near East (cf.
Crema 2016; Bevan and Crema 2019: permTest). This technique
shuffles the labels identifying from which region each bin comes
and generates 1000 SPDs fromwhich a 95% confidence envelope is
derived. Deviations from the null model indicate periods in which
the population increase (in red) or decline (in blue) of each region is
greater than the pan-regional trend.

4. Results

4.1. Demographic trends inferred from SPDs of radiocarbon dates

We generated a normalised (black line) and unnormalised (in
grey) SPD of calibrated radiocarbon dates (Fig. 2a) for the period
from 14,000e2500 cal. yr. BP. Despite our preference for summing
unnormalised calibrated dates, which avoids artificial spikes in the
resulting SPDs, the two curves appear very similar, as shown by a
high Pearson correlation coefficient (r¼ 0.91, p-value < 0.01). Given
that most dates come fromwood charcoal or unidentified material,
we also produced an SPD of unnormalised radiocarbon dates from
short-lived radiocarbon samples (e.g. bones, collagen, seeds,
grains). The SPDs including all dates (Fig. 2a) and only short-lived
dates (Fig. 2b) are highly correlated (r ¼ 0.95, p-value ¼ 0.01,
Pearson) and the so-called old wood effect seems not to have
significantly affected the resulting post-calibration probability
densities. Fig. 2c and d shows the comparison of the SPD of
unnormalised calibrated radiocarbon with logistic and exponential
null models respectively. The observed SPDs (black solid line) show
coincident positive (in red) and negative (in blue) deviations from
the 95% confidence interval only from 5300 cal. yr. BP onwards
(Fig. 2c and d). The inferred demographic trends show significant
departures from the null model and on the basis of the global p-
value (<0.01) we can say that the population did not grow neither
logistically nor exponentially from the Late Pleistocene to the Late
Holocene (14,000e2500 cal. yr. BP). The SPD of calibrated radio-
carbon dates suggests that population increased prominently at
around 12,700e12,600 cal. yr. BP, remained steady during the
Younger Dryas stadial (~12,500e11,700), and saw significant
growth at the beginning of the Holocene (~11,600e11,300 cal. yr.
BP). Continuous growth of population occurred until 8500 cal. yr.
BP. In the Middle Holocene (between 8500 and 5500 cal. yr. BP), the
population was quite stable and was characterised by alternating
periods of moderate increase and strong decline. The population
increased strongly between 5300 and 4200 cal. yr. BP and peaked
during 3200e2900 cal. yr. BP. The final decline in SPD after
2800 cal. yr. is likely not reflective of past population, but is rather
due to the fact that researchers rely less on radiocarbon dating
given the problem represented by the Hallstatt plateau, as
7

explained above, and greater refinement in ceramic typologies.
Fig. 3 shows the regionally subdivided SPD of unnormalised

radiocarbon dates compared against the pan-regional trend (grey
envelope) described above. We examined to what degree regional
demographic fluctuations depart from the pan-regional trends via a
permutation test (cf. Crema et al., 2016). This technique also deals
with issues resulting from the different sizes of the samples, as the
grey envelopes of pan-regional trends produced are larger in those
regions with fewer radiocarbon dates, reflecting greater uncer-
tainty. All seven regions show significant departures from the pan-
regional trend over the long-term (p-value < 0.01). The population
level was quite low across the whole Near East during the Epi-
paleolithic, with the Levant and Mesopotamia showing significant
positive departures from the pan-regional trend (Fig. 3d and e). In
contrast, during the Holocene we have greater regional variation.
Anatolia and the South Caucasus show similar demographic trends
with a marked increase of population between 8000 and 7000 cal.
yr. BP and during the Bronze Age (5000-3000 cal. Yr. BP), punctu-
ated by a general decline in the Chalcolithic. The South Caucasus,
unlike Anatolia, shows a significant positive departure from the
pan-regional trend during the Late Bronze and Iron Ages (3500-
2500 cal. yr. BP; Fig. 3b). The Levant and Cyprus show similar
population patterns across the Holocene with some striking dif-
ferences in particular periods. For instance, in Cyprus population
departs positively from the global pattern during the Aceramic
Neolithic (11,000e9500 cal. yr. BP) and the Late Bronze Age
(Fig. 3c), while in the Levant we can see that population levels off
significantly between 9000 and 7200 cal. yr. BP and reaches a peak
in the Early Iron Age (3200-2800 cal. yr. BP, Fig. 3d). Mesopotamia
shows positive deviations during the Pre-Pottery Neolithic (PPN),
Neolithic and Early Bronze Age, while population declines notice-
ably in the later periods (Iron Age), likely related to a combination
of a lack of excavations, an increase in ceramic typology accuracy
and the Hallstatt plateau in the radiocarbon curve discussed above
(Fig. 3e). Iran shows alternating patterns of population booms and
busts across the whole Holocene (Fig. 3f). Finally, the Arabian
Peninsula shows a significant departure from the pan-regional
trend during the Neolithic (7400-6400 cal. yr. BP) and a marked
demographic drop in the Bronze Age (Fig. 3g). However, in this area
the available radiocarbon dates are patchy and, therefore, the
inferred population dynamics should be regarded cautiously.

Pairwise Pearson’s correlations between all regional SPDs have
been calculated in order to assess how demographic patterns
differed among the regions in three discrete sub-periods: 1) Late
Pleistocene and Early Holocene (14,000e8326 cal. yr. BP, Table 3);
2) Middle Holocene (8326e4200 cal. yr. BP, Table 4); 3) Late Ho-
locene (4200e2500 cal. yr. BP, Table 5). The results show similar
demographic trends across the Near East in the Late Pleistocene-
Early Holocene except for the South Caucasus (Table 3), increased
regionalisation during the Middle Holocene (Table 4), and marked
interregional differences in the Late Holocene (Table 5; see Fig. 4a).

4.2. Assessing population dynamics from multiple proxies: a
standalone evaluation

Here, we compare the demographic trends for three areas
where we have both site survey data and radiocarbon dates: Ana-
tolia, Southern Levant and Upper Mesopotamia (Fig. 5). The
archaeological settlement data derived proxies (raw count, total
aggregated estimated size, aoristic weight, randomised start
occupation dates) and the SPD of calibrated radiocarbon dates have
been normalised on a scale from 0 to 1 in order to make them
comparable. All proxies have been binned into 200-year time slices
to correspond to the median site-phase lengths.

In Anatolia, we can see a correspondence between the sites



Fig. 2. a) Summed Probability Distribution (SPD) of normalised (black line) and unnormalised (in grey) calibrated radiocarbon dates; the bar-code like strip represents the median
values of multiple calibrated radiocarbon bins; b) unnormalised SPD of short-lived radiocarbon dates; c) unnormalised SPD (solid line) vs. a fitted logistic and d) exponential null
model (95% confidence grey envelope). Blue and red vertical bands indicate respectively chronological ranges within the observed SPD deviates negatively and positively from the
null model. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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derived proxies and the SPD of radiocarbon dates (see Fig. 5a and
Table 6). The correlation between the SPDs of radiocarbon dates
and the other proxies is stronger between 10,000 and 4000 cal. yr.
BP (Table 7). This is due to the fact that in the later periods the SPDs
tend to underestimate the population as archaeologists rely more
on ceramic-based typo-chronologies. However, the settlement data
appear to be poorly correlated with the SPD of south-central Ana-
tolia (Table 6). This issue is related to the fact that the SPD curve for
central Anatolia is skewed by the disproportionately large number
of dates from Çatalh€oyük (282 out of 902), and by the fact that
radiocarbon dates have not been published for several known
Bronze and Iron Ages centres. In the Levant, the settlement derived
proxies and the SPDs appear to be strongly correlated (Fig. 5b,
Tables 8 and 9). The Early Bronze Age (5400e4000 BP) is over-
represented in the SPD, and there is a major spike in the early
part of the Iron Age (3300e2500 BP). Both of these can be inter-
preted as a result of biases in research intensity. The EBA saw the
8

emergence of complex polities and as a result has received signif-
icant scholarly attention, while the interests of Biblical Archaeology
in the Southern Levant have resulted in a large number of projects
focused on this period. In Upper Mesopotamia, the settlement
derived proxies and the SPD of radiocarbon dates are quite well
correlated during the period between 8400 and 4000 cal. yr. BP
(Fig. 5c; Tables 10 and 11). Fluctuations in the SPD during the Late
Chalcolithic (6500e5000 cal. yr. BP) are not reflected in either of
the settlement record proxies and as in the Southern Levant there is
a peak in the Early Bronze Age which may in part reflect biases in
research agendas. The settlement data in this region is especially
poor for the Early Holocene, when the SPD suggests very high levels
of population. Here unusual research interest in early farming
communities is likely inflating the SPD, while surveys reliant on
ceramics as key indicators of archaeological sites struggle to iden-
tify pre-pottery occupation. Conversely, from 4000 cal. yr. BP on-
wards the SPD depict a drastic drop in the population, while



Fig. 3. Regional summed probability distributions (SPDs) of calibrated radiocarbon dates for a) Anatolia, b) South Caucasus, c) Cyprus, d) Levant, e) Mesopotamia, f) Iran, and (g)
Arabia compared with a 95% Monte Carlo envelope of the pan-regional model produced via permutation of sub-regional dates.
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surveys suggest a minor decline followed by a major increase.
While the initial decline during the Late Bronze Age may be
genuine, during the Iron Age surveys have identified large numbers
of small rural sites, often at new locations away from the long-term
occupations on settlement mounds (Wilkinson 2003). Very few of
these have been subject to excavation and are therefore not
9

captured by the SPD.
To summarise, the overall agreement between the radiocarbon

SPD dates and the settlement-based proxies corroborates the use of
the former as a quite good indicator for inferring past human
population dynamics. However, it is important to stress that these
proxies should be used complementarily and contextually to



Table 3
Pearson Correlation Coefficient r-valuematrix in the Late Pleistocene and Early Holocene between the regional SPDs (14,000e8326 cal. yr. BP). Strong correlations are indicated
by bold numbers. *p-value < 0.05

Anatolia South
Caucasus

Cyprus Levant Mesopotamia Iran Arabia

Anatolia 1.00
South Caucasus �0.15 1.00
Cyprus *0.60 �0.25 1.00
Levant *0.67 �0.14 *0.71 1.00
Mesopotamia *0.72 �0.16 *0.47 *0.58 1.00
Iran *0.71 �0.31 *0.51 *0.73 *0.71 1.00
Arabia *0.65 �0.31 0.22 0.32 *0.77 *0.59 1.00

Table 4
Pearson Correlation Coefficient r-value matrix in the Middle Holocene between the regional SPDs (8326-4200 cal. yr. BP). Strong correlations are indicated by bold numbers.
*p-value < 0.05

Anatolia South
Caucasus

Cyprus Levant Mesopotamia Iran Arabia

Anatolia 1.00
South Caucasus *0.39 1.00
Cyprus 0.29 �0.01 1.00
Levant *0.48 0.23 *0.41 1.00
Mesopotamia *0.68 0.13 *0.51 *0.47 1.00
Iran 0.20 �0.19 �0.08 *0.39 0.03 1.00
Arabia *-0.47 �0.28 �0.35 �0.26 *-0.42 0.30 1.00

Table 5
Pearson Correlation Coefficient r-value matrix in the Late Holocene between the regional SPDs (4200-2500 cal. yr. BP). Strong correlations are indicated by bold numbers. *p-
value < 0.05.

Anatolia South
Caucasus

Cyprus Levant Mesopotamia Iran Arabia

Anatolia 1.00
South Caucasus *-0.38 1.00
Cyprus *0.33 0.22 1.00
Levant 0.08 *0.75 0.10 1.00
Mesopotamia *0.43 *-0.68 0.03 *-0.50 1.00
Iran *0.46 �0.16 *0.49 0.06 0.23 1.00
Arabia �0.15 *0.59 �0.06 *0.76 *-0.64 �0.06 1.00
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provide a more complete picture. Broadly speaking, the curves
inferred from survey data tend to minimise the population levels in
the earlier periods while the SPDs of radiocarbon dates over-
estimate population in prehistoric periods. Survey projects tend to
rely on pottery for dating, and therefore prehistoric sites with no
pottery or very long lived types are underrepresented. Excavators at
such sites tend to take more radiocarbon dates than those working
in later periods. A clear caveat in the SPD for Anatolia and Upper
Mesopotamia is that they fail to show the demographic booms
inferred from increased site counts and total settled area related to
the Hittite (ca. 3600-3200 cal. yr. BP; Fig. 5a) and Neo-Assyrian (ca.
2900-2600 cal. yr. BP) Empires (Fig. 5c). In the discussion section
below, we interpret our wider results in the light of these
limitations.
4.3. A reconstruction of climate during the Late Pleistocene and the
Holocene

The available palaeoclimatic records indicate that after a long
period of cooling in the Late Pleistocene (the Younger Dryas:
~12,700e11,700 cal. yr. BP), which reversed the gradual climatic
warming of the Bølling-Allerød interstadial (~14,700e12,700 cal. yr.
BP), the onset of the Holocene was characterised by a switch to-
wards warmer and wetter climatic conditions (Grootes and Stuiver
1997; Roberts et al., 2008; Dean et al., 2015). The transition from the
10
Late Pleistocene to the Early Holocene seems to have occurred
abruptly, as suggested by some records from Anatolia (see Fig. 6:
3e4, 6), the Levant (Fig. 6:7e10), and the Iranian plateau (Fig. 6:12).
The d18O values of the Sofular and Karaca caves are in contrast with
all the other records in this study, showing a gradual decrease of
precipitation since the beginning of the Holocene (Fig.6; 2). How-
ever, the records from these two caves seem to reflect change in the
d18O values of the Black Sea, the main source of moisture for these
sites, rather than variation in rainfall (Fleitmann et al., 2009;
G€oktürk et al., 2011). The Holocene was characterised by wetter
conditions between 10,000 and 7000 cal. yr. BP with peaks in
rainfall at ~8500 and 7500 cal. yr. BP (Fig. 6; Burstyn 2019; Jones
et al., 2019). After 7000 cal. yr. BP there is a progressive shift to-
wards more arid conditions in most of the records. Although the
general trends described above are quite homogeneous across the
whole Near East, the records fromHoti and Qunf caves, both located
in Oman on the Eastern side of the Arabian peninsula (Fig. 6:
15e16), show a decrease in precipitation one millennium later,
at ~ 6000 cal. yr. BP, due to the strength of the Indian Ocean
monsoon (Neff et al., 2001; Fletimann et al., 2007). The Late Ho-
locene was generally a dry period characterised by pronounced
sub-centennials fluctuations of dry episodes (4300e3800 cal. yr.
BP; 3200-2900 cal. yr. BP) punctuated by a period of increasing
precipitation (~3800e3200 cal. yr. BP; Grant et al., 2012; Burstyn
et al., 2019).



Fig. 4. Box-plots showing the pairwise Pearson correlation values between all regional SPDs (a) and between population and climatic trends (b); n ¼ number of correlations
performed.
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At a shorter timescale, the Holocenewas characterised bymulti-
centennial and multi-decadal dry and wet episodes that caused
abrupt changes in the longer millennial climatic trends. In this
study, wewill focus on fivemajor RCCs (the 10.2 k, 9.2 k, 8.2 k, 4.2 k,
and 3.2 k cal. yr. BP ‘events’) that have been the focus of academic
debate addressing the human responses to climate change (see
Table 12). The 10.2 k cal. yr. BP event took place between 10,200 and
9800 cal. tr. BP and is visible in some palaeoclimatic records from
Anatolia (Fig. 6:1e2, 5e6) and the Levant (Fig. 6: 7e8; Table 12).
The 9.2 k cal. yr. BP event seems to have a relatively small impact in
the Near East as the only records showing a substantial decrease in
precipitation are Lake G€olhisar and Sofular cave in Anatolia
(Fig. 6:1e2) and the Hoti and Qunf caves in Oman (Fig. 6: 15e16;
Table 12; Fleitmann et al., 2015). The 8.2 k cal. yr. BP event took
place between 8250 and 8000 cal. yr. BP and was characterised by a
decrease in global temperatures and snow accumulation rate
(Thomas et al., 2007; Cheng et al., 2009). This event is visible in
most of the records used in this study, although Lake Hula in
Northern Israel (Fig. 6:8) and LakeMirabad in Iran (Fig. 6:13) saw an
increase in rainfall (Table 12). The 4.2 cal. yr. BP was a cold and dry
episode between 4300 and 3800 cal. yr. BP, which marked the
transition to the Late Holocene and a shift towards more arid cli-
matic conditions. Several scholars have argued that it caused
considerable environmental stress affecting Near Eastern societies
(Weiss 2016; Kaniewski et al., 2018; Bini et al., 2019). This abrupt
climatic shift is evident in almost all records and seems to indicate a
drying phase across the whole Near East (Fig. 6; Table 12). The final
significant RCC occurred between 3200 and 2900 cal. yr. BP and is in
line with the longer multi-millennial drying trend characterising
the Late Holocene (Fig. 6; Kaniewski et al., 2015 and 2019). The
high-resolution climate records such as Sofular Cave in Turkey, Jeita
Cave in Lebanon, Kuna Ba cave in northern Iraq, and the Qunf cave
in Oman indicate that this climatic event was characterised by
11
pronounced multi-decadal fluctuations of wet and dry episodes
(Fig. 6: 2, 7, 14, and 16; Kuzucuo�glu, 2009; Shah et al., 2013; Cheng
et al., 2015.)
4.4. Comparing demographic and climatic trends over long and
short timescales: a regional analysis

The SPDs of calibrated radiocarbon dates and the z-scores of
those palaeoclimate records with a sufficiently fine resolution have
been binned into 50-year time slices. The use of a 50-year time
window is only possible for those palaeoclimate records having a
mean sampling interval lower than 50-years across the whole
chronological scope (Fig. 6:2,7,11,14e16).

The palaeoclimate records with a coarser chronological resolu-
tion and with dates greater than 50 years from one to another have
been binned into 100-year (Fig. 6: 4), 300-year (Fig. 6:1,3,5,6,8)
400-year (Fig. 6:13), 500-year (Fig. 6:10,12) and 600-year (Fig. 6:9)
time slices. The SPD were binned into coarser time slices when
compared with these palaeoclimate records. For those palae-
oclimatic records with a finer resolution and a long chronological
span, we have calculated a 500-year time window Pearson corre-
lation with ten 50-year bins in each time window (Fig. 6: 2,7, and
16). The advantage of this approach is to identify periods of cor-
respondence and divergence between human population size and
palaeoclimate records over shorter periods from the Late Pleisto-
cene to the late Holocene (14,000e2500 cal. yr. BP). We then
calculated Pearson correlations with maximum and minimum
values ranging respectively between 1 and -1 in order to assess if
the population dynamics are positively or negatively correlated
with hydro-climatic trends.

In Anatolia, the long-term demographic and climatic trends
show diverging patterns, as shown by strong negative Pearson
correlation values ranging between �0.39 and �0.74, with the only



Fig. 5. Normalised archaeo-demographic proxies for a) Anatolia, b) Southern Levant, and c) Upper Mesopotamia.

Table 6
Pearson Correlation Coefficient r-value matrix between the demographic proxies of Anatolia between 10,000 and 2600 cal. yr. BP). Strong correlations are indicated by bold
numbers. *p-value < 0.05

Count Area Aoristic weight Random SPD Anatolia SPD Central Anatolia

Count 1.00
Area 0.97* 1.00
Aoristic weight 0.89* 0.95* 1.00
Random 0.84* 0.89* 0.93* 1.00
SPD Anatolia 0.61* 0.54* 0.55* 0.49* 1.00
SPD Central Anatolia �0.40* �0.33 �0.24 �0.22 0.09 1.00

Table 7
Pearson Correlation Coefficient r-value matrix between the demographic proxies of Anatolia between 10,000 and 4000 cal. yr. BP. Strong correlations are indicated by bold
numbers. *p-value < 0.05

Count Area Aoristic weight Random SPD Anatolia SPD Central Anatolia

Count 1.00
Area 0.99* 1.00
Aoristic weight 0.97* 0.96* 1.00
Random 0.94* 0.94* 0.96* 1.00
SPD Anatolia 0.67* 0.65* 0.73* 0.70* 1.00
SPD Central Anatolia ¡0.49* ¡0.47* �0.35 �0.31 0.10 1.00
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Table 8
Pearson Correlation Coefficient r-value matrix between the demographic proxies of
southern Levant between 10,000 and 2600 cal. yr. BP. Strong correlations are indi-
cated by bold numbers. *p-value < 0.05

Count Aoristic weight Random SPD

Count 1.00
Aoristic weight 0.95* 1.00
Random 0.93* 0.97* 1.00
SPD 0.69* 0.69* 0.57* 1.00

Table 9
Pearson Correlation Coefficient r-value matrix between the demographic proxies of
southern Levant between 10,000 and 4000 cal. yr. BP. Strong correlations are indi-
cated by bold numbers. *p-value < 0.05

Count Aoristic weight Random SPD

Count 1.00
Aoristic weight 0.97* 1.00
Random 0.93* 0.96* 1.00
SPD 0.85* 0.87* 0.82* 1.00

Table 10
Pearson Correlation Coefficient r-value matrix between the demographic proxies of
Upper Mesopotamia between 8400 and 2600 cal. yr. BP. Strong correlations are
indicated by bold numbers. *p-value < 0.05

Count Area Aoristic weight Random SPD

Count 1.00
Area 0.67* 1.00
Aoristic weight 0.81* 0.80* 1.00
Random 0.70* 0.64* 0.88* 1.00
SPD �0.10 0.38* 0.01 0.02 1.00

Table 11
Pearson Correlation Coefficient r-value matrix between the demographic proxies of
Upper Mesopotamia between 8400 and 4000 cal. yr. BP. Strong correlations are
indicated by bold numbers. *p-value < 0.05

Count Area Aoristic weight Random SPD

Count 1.00
Area 0.75* 1.00
Aoristic weight 0.85* 0.92* 1.00
Random 0.62* 0.69* 0.76* 1.00
SPD 0.06 0.63* 0.54* 0.46* 1.00
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exception being Lake Van (r ¼ 0.58, p-value <0.01). This is not
surprising given that the population constantly and incrementally
increases from the onset of the Holocene, while most of the
palaeoclimatic records show a slow and gradual multi-millennial
trend towards more arid conditions (Fig. 7). However, on a short-
time scale, we can see that the demographic rise in the Epi-
palaeolithic and Early Neolithic coincided with a wetter climate at
the beginning of the Holocene, as shown by the correlation value
with the shorter duration dataset from Dim cave (r ¼ 0.67, p-value
<0.01). The significant increase in the population occurring be-
tween 8500 and 8000 cal. yr. BP seems to correspond with wetter
conditions detectable in some records (Fig. 7: 1,5e6), while the
decline during the Chalcolithic shows a good correspondence with
a climatic drying phase after 7500 cal. yr. BP visible in all records
except Lake G€olhisar. The population increased again between
5300 and 4400 cal. yr. BP despite a general arid trend and seems to
have been negatively affected by the RCCs at 4.2 and 3.2 cal. yr. BP.
Although to a minor degree for the total area of the sites, these two
events are also present in the archaeological settlement data
derived proxies (Fig. 5a).

Given the lack of available palaeoclimatic records in the South
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Caucasus, we compared the SPD against the nearest climatic re-
cords in our dataset, such as Karaca cave and Lake Van (Fig. 8). The
lack of data does not allow for a direct comparison between de-
mographic and climatic trends for the earlier periods. The increases
in population during the Neolithic and the Early Bronze Age (EBA),
interspersed by a substantial decline during the Chalcolithic, seem
to correspond with two relatively wet periods separated by a dry-
ing climate between 7000 and 5600 cal. yr. BP. The population
declined significantly in coincidence with the RCC at 4.2 cal. yr. BP
and peaked dramatically during the Late Bronze age and Iron Age
despite arid conditions.

As for the South Caucasus, we compared the SPD of radiocarbon
dates from Cyprus with the closest palaeoclimatic records on the
Levantine (Jeita Cave and Lake Hula) and Anatolian (Dim cave)
coasts. An increase in the population andwetter climatic conditions
during the Early Holocene appears synchronous, as suggested by
strong Pearson correlation values between the SPD with the cli-
matic trends provided by Dim cave (r ¼ 0.67, p-value<0.01) and
Jeita cave (Fig. 9). The 500-year moving window approach seems to
identify a sort of sinusoidal cycle of alternating strong and negative
correlations between demographic and climatic trends during the
Middle Holocene. In the Late Holocene, the population grew sub-
stantially and peaked during the Late Bronze Age (3500-3000 cal.
yr. BP) despite drier climatic conditions. However, the SPD curve
and the climate patterns from Jeita cave are highly correlated be-
tween 3500 and 2500 cal. yr. BP (Fig. 9).

In the Levant, the population began to increase during the
Epipalaeolithic, and a demographic bulge occurred in concordance
with wetter climatic conditions between 10,500 and 9500 (Fig. 10).
The initial demographic boom was followed by a decline in popu-
lation during the Pottery Neolithic (ca. 8500-6500 cal. yr. BP),
perhaps due to an overall climatic drying trend. The population
peaked during the Early Bronze Age despite a drying of the climate
and then declined markedly between 4200 and 3200 cal. yr. BP, a
period characterised by pronounced sub-centennial dry-wet epi-
sodes superimposed onto an overall millennial drying trend.
However, the population reached a peak in the Iron Age during a
period of increasingly arid climatic conditions (Fig. 10).

InMesopotamia, the population saw a first substantial growth in
coincidence with ameliorated climatic conditions after the onset of
the Holocene and boomed significantly between 9300 and 8300,
when a peak in rainfall was reached (Fig. 11). A climatic drying
trend between 8000 and 5000 seems to correlate with a fall in the
population. Population peaked during the Early Bronze Age despite
an even more arid climate. While a drop in population at the end of
the Early Bronze Age could be related to the 4.2 k cal. yr. BP event,
and the following decline during the Late Bronze Age is also
confirmed by several studies using archaeological survey data (e.g.
Ur 2013; Lawrence et al., 2017), very low demographic levels in the
Iron Age are unrealistic and most likely due to a lack of a systematic
collection of radiocarbon samples for this period. In fact, as indi-
cated by the northern Mesopotamia settlements data (Fig. 5c),
population started increasing and boomed during the Assyrian
Empire.

In Iranwe have a gradual increase in the population at the same
time as wetter climatic conditions with the onset of the Holocene
(Fig. 12). The significant booms and busts of the population during
the Pottery Neolithic and Chalcolithic seem to be correlated with
the climatic fluctuations inferred from the Lakes Zeribar and Mir-
abad. The time-series of the SPD curve and these two palae-
oclimatic records are slightly offset because Lake Zeribar and Lake
Mirabad have a mean sample interval greater than 170 years and
were dated with conventional radiocarbon rather than with AMS
techniques, meaning they are likely to be less accurate. In the Early
Bronze Age, the population peaked again despite a shift towards



Fig. 6. Selected palaeoclimate proxies from the Middle East. The grey vertical bands indicate the Younger Dryas (YD), 10.2, 9.2, 8.2, 4.2 and 3.2 k yr. BP events.
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arid conditions and then declined around the time of the 4.2 k cal.
yr. BP event. Again, just as in Mesopotamia, the lower level of SPD
curve during the Late Bronze and Iron Ages are likely due to
research biases and do not represent past realities.

We do not have radiocarbon dates from the Arabian Peninsula
for the earlier periods and, therefore, we cannot assess how the
population responded to better climatic condition during the
transition from the Late Pleistocene to the Early Holocene. We see
that population grew substantially in the Neolithic, when the
climate is relatively wet, and then declined in concomitance with a
drying period from 6000 cal. yr. BP onwards (see Petraglia et al.,
14
2020, Fig. 13). The population increased again in the Bronze Age
and reached a peak in the Iron Age despite arid climate conditions.

The box-plots of all the Pearson correlation values show that
population dynamics were positively correlated with climatic
trends during the Late Pleistocene/Early Holocene (median ¼ 0.65)
while they decouple during the Middle and Late Holocene (Fig. 4b).
It is important to stress that the correlation values could be even
more negative during the Late Holocene given that in some regions
the SPD of radiocarbon dates tend to depict unrealistic low popu-
lation levels in the later periods (from ~3500 cal. yr. BP) when
climate trends are towards more arid conditions. In fact, the site-



Table 12
Table showing the occurrence of the RCC in the paleoclimate records used in the present study.

Map no. Site name 10. 2 k 9.2 k 8.2 k 4.2 k 3.2 k Region

1 Lake G€olhisar Yes Yes Yes Yes Yes Anatolia
2 Sofular cave Yes Yes Yes Yes Yes Anatolia
3 Eski Acıg€ol / / Yes Yes Yes Anatolia
4 Dim cave / / Yes Yes Yes Anatolia
5 Karaca cave Yes / Yes Yes Yes Anatolia
6 Lake Van Yes / / Yes Yes Anatolia
7 Jeita cave Yes / Yes Yes Yes Levant
8 Lake Hula Yes / / Yes Yes Levant
9 Jerusalem West cave / / Yes Yes Yes Levant
10 Soreq cave / / Yes Yes Yes Levant
11 Kuna Ba cave / / / Yes Yes Mesopotamia
12 Lake Zeribar / / Yes / Yes Iran
13 Lake Mirabad / / / / Yes Iran
14 Gol-e-Zard cave / / / Yes Yes Iran
15 Hoti cave / Yes Yes Yes / Arabia
16 Qunf cave / Yes Yes Yes Yes Arabia

Fig. 7. SPD of unnormalised calibrated radiocarbon dates for Anatolia vs. a logistic null model (95% confidence grey envelope) compared with palaeoclimate records. Blue and red
vertical bands indicate respectively chronological ranges within the observed SPD deviates negatively and positively from the null model. The green dots represent significant (p-
value < 0.05) positive or negative Pearson’s correlations (r) values ranging from þ1 to �1 by using a 500-year-time moving window. The orange rectangle represents two examples
of 500-year-time moving window (between 9600 and 9100 and 4800-4300 cal. yr. BP) in which the SPD of calibrated radiocarbon dates is significantly positively correlated with the
climatic trends from Lake Sofular. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 8. SPD of unnormalised calibrated radiocarbon dates for South Caucasus vs. a logistic null model (95% confidence grey envelope) compared with palaeoclimate records Karaca
Cave and Lake Van. Blue and red vertical bands indicate respectively chronological ranges within the observed SPD deviates negatively and positively from the null model. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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derived proxies from South-central Anatolia, Southern Levant and
Upper Mesopotamia show higher population levels when
compared to the SPDs of radiocarbon dates during the Late Holo-
cene (Fig. 5). Thus, rather than a single step change between the
Early Holocene and the Middle and Late Holocene, we would argue
that from the second half of the Middle Holocene onwards we see
an ongoing decrease in correlation between demographic and
climate proxies.
5. Discussion

In this section, we illustrate more comprehensively where and
when correlations between population dynamics and climatic
trends occurred and describe how socio-ecological trajectories
varied across the Near East from the Early to the Late Holocene. We
are aware that the spatial and chronological scope of this work does
not allow us to disentangle all the possible causal linkages between
human-climate interactions, and caution is needed when con-
structing narratives of this kind. Our intention is to offer a first
systematic assessment through the rigorous analysis of archaeo-
logical and climatic evidence. As stated above, our underlying
assumption is that, all other factors remaining constant, increased
aridity leads to population decline, and conversely that increased
humidity supports population increase. Where these correlations
are not present, or the magnitude of population change differs from
that which we might expect given the magnitude of climate
change, other factors may be involved. These include adaptive
strategies such as social transformation and technological change,
rapid declines in population and the complexity of social organi-
sation, or migration. We should also remember that human groups
are complex systems subject to endogenous change which may be
unrelated to climate. We interpret our datasets within this
framework.
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5.1. Late Pleistocene and the Early Holocene (14,000e8326 cal. yr.
BP)

The Late Pleistocene was characterised by the BøllingeAllerød
interstadial, an abrupt warm and moist period (between 14,700
and 12,700) followed by a drying and cold climate during the
Younger Dryas (ca. 12,700e11,700). The climate instability of the
Late Pleistocene ended with the onset of the Holocene (ca.
11,700 cal. yr. BP), an overall thermally stable period characterised
by higher average temperatures and wetter climatic conditions,
which fostered radical environmental changes such as the growth
of woodland vegetation, the retreat of permanent snowlines, and
sea level rise (Lotter 2003; Roberts et al., 2008; Dean et al., 2015).
Recent work has demonstrated that the domestication of cereal and
legumes may have taken 2000e3000 years (Fuller et al., 2012;
Asouti and Fuller 2012), and the climatic stability of the Holocene
likely facilitated the establishment of farming. It is unlikely that
such a long-term process could have occurred during the Late
Pleistocene, a period characterised by pronounced climatic oscil-
lations (Richerson et al., 2001). Put simply, the new multi-
millennial moist climatic regime of the Early Holocene could have
provided favourable conditions for the full domestication of crops,
increasing sedentism and population growth (Richerson et al.,
2001; Weninger 2017; Shennan 2018, 29e30, 37e38).

However, the Late Pleistocene-Early Holocene transition shows
a more complex scenario with different regionalised climatic pat-
terns. Several spatial climatic models in recent work by Roberts
et al. (2018: Fig. 9) suggest that, despite a general drying phase
across the Near East, favourable climatic conditions could have
existed in the Fertile Crescent during the Younger Dryas (ca.
12,700e11,700 cal. yr. BP). As a consequence, unlike other Near
Eastern regions, the Fertile Crescent experienced a stable climatic
regime and could have acted as a refugia for plant and animal



Fig. 9. SPD of unnormalised calibrated radiocarbon dates for Cyprus vs. a logistic null model (95% confidence grey envelope) compared with palaeoclimate records. Blue and red
vertical bands indicate respectively chronological ranges within the observed SPD deviates negatively and positively from the null model. The red dots represent significant (p-
value < 0.05) positive or negative Pearson’s correlations (r) values ranging fromþ1 to�1 by using a 500-year-time moving window. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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resources and local human populations. This phenomenon may be
visible in the SPDs of calibrated radiocarbon dates, where a rapid
and continuous population growth occurred between 13,000 and
11,000 only in the Levant and Mesopotamia (Fig. 3: d-e;
Figs. 10e11). In the other regions, the population level was quite flat
and in Anatolia lied below the confidence envelope of the pan-
regional trend (Fig. 3: a). With the onset of the Holocene, amelio-
rated climatic conditions and the demic spread of farming favoured
population growth across the whole Near East. In Anatolia, a first
substantial growth occurred in correspondence with the earliest
evidence of sedentism and farming in south-central Anatolia at
around 10,300 cal. yr. BP, as shown by the earliest archaeological
levels from Boncuklu (Baird et al., 2012) and Aşıklı H€oyük (Stiner
2014). A more dramatic increase in the population occurred be-
tween 8500 and 8000 cal. yr. BP when the whole of Anatolia was
fully neolithicised (Brami 2015, Fig. 7). Both the Levant and Meso-
potamia seem to have a static or declining population immediately
after 11,000 cal. yr. BP, with some regional differences. The Levant
experienced further population growth between 10,500 and 9500,
after which followed a gradual decline (Fig. 10). In Upper Meso-
potamia, a drastic decline of the population between 10,200 and
9800 cal. yr. BP was likely due to the 10.2 cal. yr. BP event that
caused rapid cooling and drying, negatively affecting plant and
animal biomass and the local incipient agrarian communities
(Borrell et al., 2015, Fig. 11). However, the population started
increasing again after the cooling event and boomed during the
Pottery Neolithic between 9300 and 8200 cal. yr. BP, when
17
permanent villages started spreading into fertile plains and along
major rivers (Bader 1993; Campbell 2012; 421e422). This dramatic
increase in population occurred simultaneously with the wettest
climatic conditions across the whole Holocene (Fig. 11). A dramatic
increase of population in Cyprus occurred with the onset of the
Aceramic Neolithic at 11,000 cal. yr. BP and continued until
9500 cal. yr. BP (Fig. 9). This increase of population is perhaps
related to several colonising events, where farmer-herder com-
munities from the Levantine coast settled on the island (Peltenburg
2004; Simmons 2011). In Iran, a first increase in the population
occurred during the Pre-Pottery Neolithic (PPN) with the earliest
sedentary sites (e.g. Ganji Dareh, Asiab, Sarab) and in the first half of
the ninth millennium BP when the communities on the Iranian
plateau and highlands adopted a fully Neolithic lifestyle (Hole
1987; Zeder 2005; Helwing 2012, Fig. 12).

To summarise, after a climatic advantage to populations in re-
gions such as the Levant and the Fertile Crescent during the
Younger Dryas stadial, the onset of the Holocene brought an overall
increase in temperature and rainfall across the whole Near East and
facilitated the adoption of a sedentary lifestyle and demographic
growth. The demic spread of the Neolithic package from the Levant
at the beginning of the Holocene (~12,000 cal. yr. BP) to the South
Caucasus by ~8000 cal. yr. BP (Fig. 3; cf. Bellwood 2013, 129e135)
seems to have prompted a chronologically variable first substantial
increase in population across different regions. In particular, pop-
ulation started growing during the Aceramic Neolithic and more
markedly during the Pottery Neolithic (Fig. 3). On a multi-



Fig. 10. SPD of unnormalised calibrated radiocarbon dates for the Levant vs. a logistic null model (95% confidence grey envelope) compared with palaeoclimate records. Blue and red
vertical bands indicate respectively chronological ranges within the observed SPD deviates negatively and positively from the null model. The red dots represent significant (p-
value < 0.05) positive or negative Pearson’s correlations (r) values ranging fromþ1 to�1 by using a 500-year-time moving window. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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millennial scale, the regional SPDs of calibrated radiocarbon dates
show population growth in concomitance with increasing wet cli-
matic conditions during the Early Holocene (see Figs. 7, 9e12). In
addition, the regional demographic trends appear to be similar
during the Late Pleistocene-Early Holocene (14,000e8326 cal. yr.
BP; see Table 3 and Fig. 4a) and suggest a clear relationship between
population and climate among early farming communities (see
Fig. 4b).

5.2. Middle Holocene (8326e4200 cal. yr. BP)

The beginning of the Middle Holocene was marked by the so-
called 8.2 k cal. yr. BP event, an abrupt cold and arid episode that
is visible in climate records across the whole Near East between
~8250 and 8000 cal. yr. BP (see Table 12). However, the inferred
demographic trends seem to indicate that this climatic shift did not
severely impact Near Eastern communities, and there is no evi-
dence of a widespread abandonment of settlements. The popula-
tion levels were quite steady in all regions with a slight decrease in
Mesopotamia and Levant (Fig. 3:d-e), while Iran experienced an
increase in population (Fig. 3f). The decline in the Levant began at
18
around 8600 cal. yr. BP onwards and is unlikely to be linked to the
8.2 cal. yr. BP event. Given the prevailing stable warm and wet
climatic conditions, our data supports the hypothesis that the
abandonment of the Late Pre-Pottery Neolithic B (PPNB) farming
villages was endogenous and related to the overexploitation of local
resources after the substantial population increase at the onset of
the PPNB (Goring-Morris and Belfer-Cohen 2010; Finlayson 2013,
130). Alternatively, the pronounced sub-centennial rainfall fluctu-
ations between moist and dry conditions occurring between 9500
and 8000 cal. yr. BP (visible in the higher resolution climate records
from Jeita and Soreq caves; Fig. 10:7,10) could have affected the
fragile socio-economic systems of the Levantine communities (Bar-
Yosef 2002; Stein et al., 2010). However, the overall drop in rainfall
between 8250 and 8000 cal. yr. BP was relatively low across the
whole Near East, and it is possible that Neolithic societies could
have overcome this change through adaptation strategies such as
the diversification of subsistence practices and storage facilities
(Flohr et al., 2016, 35e36).

After the 8.2 kya event, the Middle Holocene trend was for a
gradual shift towards more arid climatic conditions, with a more
marked drying after ~7000 cal. yr. BP (see Fig. 6). In this context, we



Fig. 11. SPD of unnormalised calibrated radiocarbon dates for Mesopotamia vs. a logistic null model (95% confidence grey envelope) compared with palaeoclimate records. Blue and
red vertical bands indicate respectively chronological ranges within the observed SPD deviates negatively and positively from the null model. The red dots represent significant (p-
value < 0.05) positive or negative Pearson’s correlations (r) values ranging fromþ1 to�1 by using a 500-year-time moving window. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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have increasing regionalisation in the demographic and climatic
trends. The only regions that show similar population dynamics are
Anatolia and Mesopotamia (see Fig. 3: a, e; Table 3), wherewe see a
gradual demographic decline from 8000 cal. yr. BP onwards fol-
lowed by a substantial demographic boom during the Late Chal-
colithic and Early Bronze Age between ~5500 and 4200 cal. yr. BP. A
decline in population in these regions seems to be synchronous
with a multi-millennial drying phase that was characterised by
severe and rapid aridification after 7000 cal. yr. BP (see Figs. 7 and
11). This population pattern, visible not only from the SPDs of
radiocarbon dates but also from the time-series of archaeological
survey data (as raw count, estimated size, and probabilistic
weights; see Fig. 5aec; cf. Ur 2013; Alcock 2017; Lawrence et al.,
2017), indicate that a substantial drying phase during the middle
Chalcolithic could have triggered settlement abandonment and a
relocation of agro-pastoral communities to areas with more stable
and abundant resources, such as the Orontes river valley (Clarke
2016, 113). However, during the Late Chalcolithic and the Early
Bronze Age (~5500 and 4300 cal. yr. BP.) the population grew
dramatically in Anatolia and Mesopotamia despite a more arid
climate (Clarke 2016, 114). In this period, the societies in Anatolia
and Mesopotamia became more adaptive to climate change
through technological advancements in metal manipulation, sub-
sistence strategies and logistic infrastructure (Rosen 2007), as well
as sophisticated social organisation. This period saw the emergence
of large urban centres exceeding 100 ha and polities characterised
by complex social hierarchies (cf. Allcock 2017; McMahon 2019).
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Urban-based institutions may have facilitated resilience by inte-
grating diverse economic spheres enabling risk pooling (Wilkinson
et al., 2014).

Unlike Anatolia and Mesopotamia, in the Levant population
started increasing from the mid-seventh millennium cal. yr. BP
when cultural changes and successful adaptations culminated in
more complex societies and villages exceeding 10 ha (see Figs. 5c
and 10; Levy 1998; Rowan 2013). After a decline at 5600 cal. yr.
BP, the population grew dramatically during the EBA I-II (ca. 5300-
4800 cal. yr. BP) despite drier climatic conditions cf. (Finkelstein
1994; Finkelstein and Gophna 1993; Palmisano et al., 2019). This
may be linked to specialised agricultural production, especially
olives, and more integrated regional economies (Badreshany et al.,
2019). Overall population levels remained relatively high during
the fifth-millennium cal. yr. BP despite a deterioration in climate,
but fluctuations between 4700 and 4000 cal. yr. BP seem to be
correlated strongly with the patterns drawn from the high-
resolution paleoclimate records from Jeita cave (Fig. 10).

In the South Caucasus, the population boomed with the onset of
the Neolithic, when the first communities of farmers settled in the
Kura-Araxes interfluve cultivating domesticated cereals and prac-
tising animal husbandry (Fig. 8; Berthon 2014; Sagona 2018,
124e125). Unfortunately, we do not have paleoclimate records
from the South Caucasus but it seems that a decline in population
between 7000 and 5500 cal. yr. BP occurred in concomitance of a
drying phase as indicated by the hydro-climate records fromKaraca
cave and Lake Van (Fig. 8). However, a substantial demographic



Fig. 12. SPD of unnormalised calibrated radiocarbon dates for Iran vs. a logistic null model (95% confidence grey envelope) compared with palaeoclimate records. Blue and red
vertical bands indicate respectively chronological ranges within the observed SPD deviates negatively and positively from the null model. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 13. SPD of unnormalised calibrated radiocarbon dates for Arabia vs. a logistic null model (95% confidence grey envelope) compared with palaeoclimate records. Blue and red
vertical bands indicate respectively chronological ranges within the observed SPD deviates negatively and positively from the null model. The red dots represent significant (p-
value < 0.05) positive or negative Pearson’s correlations (r) values ranging fromþ1 to�1 by using a 500-year-time moving window. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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increase occured during the Bronze Age and peaked between 5000
and 4500 cal. yr. BP when the climate shifts abruptly towards more
arid climatic conditions (Fig. 8).

We do not have palaeoclimate records from Cyprus and we rely
on the closest available records from the Levant. The population
level appears to be low at the beginning of the Middle Holocene
with substantial growth in the late ceramic Neolithic between 6300
and 6000 cal. yr. BP when large villages with evidence of storage
facilities and social stratification predominated (Peltenburg 1996,
Fig. 9). However, a marked aridification occurred at around
6000 cal. yr. BP at the same time as a widespread abandonment of
villages and a switch from agro-pastoralism to hunting, perhaps as
a response to resource depletion and climatic stress (Knapp et al.,
1994; Clarke 2016, 110). In the Late Chalcolithic and the EBA
(5000e4000 cal. yr. BP), the population increased again as farming
strategies became more intensive with greater evidence of
increased livestock numbers, storage facilities and advancements in
food-processing technology (Peltenburg 1998; Webb 2014).

In Iran, unlike the other regions, there was no gradual decline of
the population with the shift towards more arid climatic condi-
tions. It seems that during the Middle Holocene the population
experienced booms and bust in coincidence with wet and dry cli-
matic oscillations as shown by the palaeoclimatic records from the
lakes Zeribar and Mirabad (see Fig. 12). As for the other regions, the
more complex Bronze Age societies of Iran were more resilient to
climatic variations and experienced a substantial demographic
boom despite a rapid shift to a more arid drying phase between
5300 and 4500 cal. yr. BP (Fig. 12).

In the Arabian Peninsula, the "Holocene moist phase" between
8200 and 6200 cal. yr. BP could have favoured the rise of rich
ecological niches that provided the basis for successful subsistence
strategies and human settlement (Magee 2014, 42e45). In this
context, an increase of population during the Neolithic could be
related either to the migration of pastoralist groups looking for
fertile grassland from the southern Levant to Arabia (cf. K€ohler-
Rollefson 1992, 13e14) or to the autochthonous development of
the Neolithic package that allowed successful subsistence strategies
triggering a substantial demographic growth (Cleuziou and Tosi
2007; Crassard 2009; see Fig. 13). After 6200 cal. yr. BP popula-
tion dropped severely as a consequence of an abrupt drying phase
that could have undermined the fragile eco-systems onwhich local
Neolithic communities relied. Our data show an approximate cor-
respondence with the so-called ‘Dark Millennium’, from 5900 to
5300 cal. yr. BP when arid conditions precluded mobile pastoral
opportunities causing the abandonment of much of the peninsula
(Petraglia et al., 2020). After a new demographic increase between
5600 and 5300 cal. yr. BP the population declined sharply during
the Late Neolithic and the EBA at the same time as pronounced sub-
centennial oscillations between wet and dry episodes super-
imposed onto an overall more arid climate (Fig. 13).
5.3. Late Holocene (4200e2500 cal. yr. BP)

The Late Holocene was the most arid period across the chro-
nological spectrum analysed in this study. The onset of this period
was characterised by the so-called 4.2 k. cal. yr. BP event, an abrupt
shift towards more arid climate conditions and dry and wet epi-
sodes between 4300 and 3800 cal. yr. BP. The magnitude, duration
and impact of this event has been much debated, with significant
variation in each visible across the Near East (Weiss et al., 1993;
Riehl et al., 2014; Weiss 2016 and 2017; Kaniewski et al., 2018;
Cookson et al., 2019; see Fig. 6). The SPDs of calibrated radiocarbon
date show a substantial drop in population during the 4.2 ka cal. yr.
BP event in all the Near Eastern regions (Fig. 3) with the exception
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of Cyprus which experienced demographic growth (see Fig. 9). The
patterns visible in the SPD are less evident in the archaeological
survey data, although they are present in Anatolia and Meso-
potamia (Fig. 5a and c). In the Levant, the settlement data do not
show a sharp decline in population but rather continuity (Fig. 5b). It
may be that the comparative precision of the SPD dataset allows us
to identify short term events which are not resolvable in settlement
pattern data based on ceramic typologies. For example, the chro-
nological period known as the Late Third Millennium in Meso-
potamia and EBA IV in the Levant spans 4500 and 4000 cal. yr. BP
(cf. Regev et al., 2012; H€oflmayer et al., 2014; Ur 2010), meaning
settlements occupied before, during and after an event at 4.2 k. cal.
yr. BP could be conflated. The widespread decline in population
should also be considered in relation to the end of the Middle
Holocene, when, despite a more arid climate, Bronze Age Near
Eastern communities experienced a demographic boom. An
explanation could be that the rapid expansion of new large sites
established in climatically marginal zones and sustained by a
population drawn from outlying communities could have exerted
growing pressure on local resources (cf. Wilkinson et al., 2014;
Lawrence and Wilkinson 2015). As a consequence, an abrupt
deterioration of the climatic conditions of even a small magnitude
could have had a great impact on the stability of communities and
large urban centres reliant on intensive agricultural production to
feed large populations (Weiss et al., 1993; Wilkinson 1997;
Wilkinson et al., 2007; Ur 2010; Massa and Şaho�glu 2015; Schwartz
2017; Altaweel and Palmisano 2019; Cookson et al., 2019). A decline
in precipitation at the end of the fifth-millennium cal. yr. BP
resulted in drought stress to crops and reduced yields that may
have caused a shortage of food and then triggered a domino effect
leading to famine, migration and societal conflict (Ur 2010: Riehl
2012; Riehl et al., 2014). However, mitigation and adaptative stra-
tegies such as the switch tomore drought-tolerant crop species and
from agricultural to pastoral resources avoided the total collapse of
urban centres that, nevertheless, shrank in size (eg. Tell Brak, Tell
Mozan; Riehl 2008; Krakauker 2010; Riehl et al., 2012; Wilkinson
et al., 2014). It is worth noting that the population after the
collapse was still well within the expected values for an exponen-
tial growth model, while the final part of the Middle Holocene
represents a substantial positive deviation. Wemight then consider
the boom period of urbanisation in the Early Bronze Age to be the
outlier, with ‘collapse’ representing a return to more sustainable
population levels.

After the decline in population visible across the Near East be-
tween ~4300 and 3800 cal. yr. BP (Fig. 2:c-d), the SPDs of calibrated
radiocarbon dates indicate strikingly different regional patterns
(Table 5; Fig. 4a). It seems that different geo-cultural areas expe-
rienced a variety of socio-ecological trajectories which are reflected
in their demographic signal. However, this pattern should be
considered cautiously given that in Anatolia and northern Meso-
potamia we have detected no good agreement between SPDs and
settlements derived proxies after 4000 cal. yr. BP (see Fig. 5:a and
c). The following period saw a slight increase in precipitation be-
tween ~3800 and 3200 cal. yr. BP within an overall drying phase
(Grant et al., 2012; Burstyn et al., 2019). In this context, Near Eastern
communities seem to flourish again, as witnessed by an increase of
the population in several regions (Fig. 3). From 4000 cal. yr. BP
onwards, the SPDs tend to underestimate real population levels as
archaeologists increasingly rely on ceramic dating methods. The
archaeological survey data for Anatolia indicate an increase in
population during the Middle Bronze Age and a peak during the
Late Bronze Age with the establishment of the Hittite Empire (cf.
Allcock 2017; Woodbridge et al., 2019, Fig. 5a). The Levant and
Mesopotamiawere characterised by patterns of demographic boom
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in the MBA (~4000-3600 cal. yr. BP) and Iron Age (3200e2600 cal.
yr. BP) punctuated by a decline in population in the LBA between
~3500 and 3200 cal. yr. BP (see Finkelstein 1996; Ur 2013; Lawrence
et al., 2017; Palmisano et al., 2019, Fig. 5b and c and 10-11). The so-
called 3.2 k cal. yr. BP event seems not to have impacted so severely
on the demographic trends in the Near East between 3200 and
2900 cal. yr. BP. However, there were different regional responses.
Anatolia was strongly impacted by the 3.2 k cal. yr. BP, which may
have amplified the internal conflict and weakening of the Hittite
Empire at the end of the LBA (Yakar 1993; Allcock 2017, 77;
Kaniewski et al., 2015 and 2019; Woodbridge et al., 2019, Figs. 4a
and 6). In contrast, the Levant was characterised by increases in
population during the IA I-II (~3100e2700 cal. yr. BP; Figs. 4b and
9). This period was characterised by the end of the Egyptian and
Hittite domination in the southern and northern Levant respec-
tively, enabling the establishment of medium-sized regional king-
doms such as Israel, Judah, Moab, Edom, Ammon and Phoenician
city-states in Lebanon (Palmisano et al., 2019). In Mesopotamia,
the SPD curve likely overstates a real decline in the Late Bronze Age
but fails to capture a demographic peak during the expansionist
phase of the Assyrian Empire facilitated by the rapid growth of
imperial capitals and a transformation of the rural landscape
(Wilkinson et al., 2005; Lawrence et al., 2016; Düring 2018, Figs. 5c
and 11).

Elsewhere, highly divergent trajectories also suggest political
and technological changes seem to have had more of an impact
than climate. In Iran, an interplay of different factors, including the
end of the Shutrukid Dynasty due to the military defeat against the
Babylonian king Nebuchadnezzer I and drier climatic conditions
could have caused a demographic crisis and the subsequent
abandonment of urban centres, political fragmentation and

increasing pastoralism (Potts 1999, 370e305; �Alvarez-Mon 2012,
754e755; Fig. 11). By contrast in the South Caucasus, the period
between LBA and IA I (3500e2800 cal. yr. BP) was characterized by
increased social complexity and the intensification of agriculture
through the use of irrigation. This may be seen as a successful
adaptative strategy to cope with the multimillennial drying phase
of the Late Holocene (Sagona 2018, 378e379; Fig. 8) and helped to
produce a demographic boom. Late Bronze Age Cyprus was char-
acterised by significant social changes culminating in the increase
of new settlements and urban centres and an apparent societal
upheaval resulting in the abandonment of several Middle Cypriot
settlements (Knapp 1997; Steel 2013, 865e870). Although the 3.2 k
cal. yr. BP event may be implicated here (Kaniewski et al., 2019),
Cyprus does not seem to have been affected by an island-wide
demographic crisis since some sites such as Enkomi and Kition
continued, and Aegean migrants settled along the coastal regions
where polities survived and new trading harbours such as Amathus
and Kourion were established (Iacovou 2008, 640; Fig. 9). In the
Arabian Peninsula, we can see a negative correlation between
climate and population, with the latter increasing substantially
despite a drying trend (Fig. 13). In fact, the deteriorating climatic
conditions during the Late Holocene could have acted as a stimulus
to innovation for the Bronze Age and Iron Age communities. Major
shifts in settlement and social organisation were brought by the
domestication of the dromedary camel, an excellent resource of
meat and dairy products, and later the adoption of the qanat or
falaj, a system of subterranean irrigation channels (Boucharlat and
Lombard 1985; Magee 2014, 197e222).
5.4. The decoupling of climatic and demographic trends and the
impact of RCCs

The dramatic increase of population with the onset of the
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Holocene in the Early Neolithic is correlated positively with a trend
towards wetter climatic conditions that could have favoured the
diachronous demic diffusion of farming from the Levant
(~11,700 cal. yr. BP) to the South Caucasus by 8000 cal. yr. BP. Unlike
the Early Holocene, characterised by a growing population, in the
Middle Holocene we see cycles of demographic booms and busts,
some of which are synchronous with short periods of amelioration
or deterioration of climatic conditions (Clarke et al., 2016). During
the second half of the Middle Holocene (~5500 cal. yr. BP), and into
the Later Holocene, we can identify a decoupling of climate and
human population. The climatic and demographic trends, despite
regional variations, are either negatively correlated or not corre-
lated at all (Fig. 4b). We interpret this as due to technological
advancement and the building up of infrastructure of more com-
plex societies less vulnerable to a more arid climate (Lawrence
et al., 2016; Roberts et al., 2019).

During the Early and Late Holocene RCC events seems to have
exerted a minor impact on Near Eastern Communities. While the
10.2 k cal. yr. BP event seems to have determined a cultural break in
the local communities in Upper Mesopotamia and northern Levant
(Borrell et al., 2015), the 9.2 k and 8.2 k cal. yr. BP events do not
appear to be linked to a decline population or a broad abandon-
ment of settlements (Flohr et al., 2016). On the other hand, despite
the decoupling between population and climate during the second
half of theMiddle Holocene, the 4.2 k cal. yr. BP event seems to have
exerted a dramatic impact on Near Eastern communities and
caused a widespread demographic crisis. In this instance the
abandonment of settlements or their reduction in size is perhaps
the result of the interplay between unfavourable climatic condi-
tions and a system of large urban centres that grew rapidly during
the Early Bronze Age and were reliant on fragile systems of food
provision (Wilkinson et al., 2014; Lawrence and Wilkinson 2015).
The collapse in population visible during this RCC event should
therefore be viewed in the context of the preceding demographic
boom. The impact of the 3.2 ka cal. yr. BP event was more region-
alised and did not affect population patterns across the whole Near
East in the sameway as the 4.2 cal. yr. BP event. The Late Bronze Age
collapse may have impacted specific polities, such as the Hittite and
Egyptian empires, but social and technological capacity was
retained, and new political entities, such as the emergent kingdoms
of the Levant, were able to sustain high populations (Rosen 2007,
101e102). We might speculate that as societies become increas-
ingly affluent and complex, straightforward demographic proxies
are less useful in demarcating responses to RCC events. Such soci-
eties may be capable of maintaining food production at a level
which prevents large scale site abandonment or mortality, and
therefore visibility in the sorts of proxies we have used in this pa-
per, while still experiencing dramatic shifts in material wealth and
social and political organisation.

6. Conclusions

This paper has highlighted, for the first time, the correlations
between demographic and climatic trends from the Late Pleisto-
cene to the Late Holocene (14,000e2500 cal. yr. BP) across the Near
East. To do so, we used most of the known and freely accessible
palaeoclimatic records available for the area and three types of
archaeo-demographic proxies (radiocarbon dates, settlement esti-
mated size, raw site counts). We argue that population trends are
best estimated using a multi-proxy approach in order to compare
independent archaeological indices and statistically assess to what
extent they correlate with one another. This approach allows us to
explore the strengths and weaknesses of each line of evidence and
to build more robust narratives, both in the very long run and in
specific well-defined periods. Unfortunately, high quality
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integrated datasets of archaeological settlement data are not (yet)
available across the whole Near East. However, the overall agree-
ment between the SPDs of calibrated radiocarbon dates and the
settlement-based proxies for three sub-regions (South-central
Anatolia, Southern Levant, and Upper Mesopotamia) suggests SPDs
can be a good indicator for reconstructing past population dy-
namics during particular periods. SPDs can be used up to ~2800 cal.
yr. BP as a good indicator, while archaeological survey data can
extend until more recent periods (e.g. Medieval). In some regions,
such as Anatolia, Mesopotamia and Iran, SPDs tend to underesti-
mate the population from around ~4000-3500 cal. yr. BP when
compared with the settlement derived proxies. However, archae-
ological settlement derived proxies have the opposite problem of
"dwarfing" population levels in the earlier periods, especially
before the widespread use of pottery. Where they can be confi-
dently interpreted, the chronological precision available through
SPDs of radiocarbon dates mean they are a useful addition to set-
tlement data for comparison with palaeoclimatic records, espe-
cially in relation to very short term ‘events’. Given the patchiness of
the available data, we are aware of the caveats in inferring popu-
lation trends by using only SPDs of calibrated radiocarbon dates and
our results should be considered as a preliminary assessment.

The long-term demographic trends show similar trajectories
between regions in the Late Pleistocene-Early Holocene
(14,000e8326 cal. yr. BP), increasing regionalisation of de-
mographic patterns in the Middle Holocene (8326e4200 cal. yr.
BP), and marked inter-regional contrasts during the Late Holocene
(4200e2500 cal. yr. BP). Comparisons between palaeoclimatic and
demographic proxies have revealed either no statistical correlation
or an overall negative correlation between population fluctuations
and hydro-climate patterns when taking into account the whole
chronological scope between 14,000 and 2500 cal. yr. BP. In other
words, human populations grew and declined independently from
long-term climate trajectories, and possible correlations are only
visible for shorter periods. Unfortunately, most of the available
hydro-climate patterns available for the Near East have a mean
sampling interval greater than 150 years and, therefore, only a few
of themmake it possible to assess the correlations between climate
and population for short periods. In addition, the patchiness of the
available hydro-climate records and their dispersed spatial distri-
bution means coherent spatial and chronological comparisons with
the archaeo-demographic proxies are not always possible.

Although we have highlighted general trends suggesting a good
correlation between climate and population during the Early Ho-
locene and a decoupling from the second half of the Middle Holo-
cene, the Near East shows a wide spectrum of regional socio-
ecological trajectories. For instance, the transition from the Late
Pleistocene to the early Holocene was characterised by high
regional variation, with the Levant and Mesopotamia potentially
acting as refugia during the Younger Dryas stadial
(~12,700e11,700 cal. yr. BP; Roberts et al., 2018), attracting popu-
lation while other areas declined. This regionality is also visible in
the RCCs occurring in the Early and Middle Holocene (10.2, 9.2 and
8.2 k cal. yr. BP events), all of which had a limited and differential
impact across the Near East. Even the more widespread 4.2 k and
3.2 k cal. yr. BP events prompted different local responses. The 4.2 k
cal. event appears to have had the greatest impact, but our results
show that this must be taken in the context of a booming pre-event
population which likely put pressure on resources and constrained
the ability of communities to adapt. The 3.2 k. cal. event had
perhaps the most regionalised impact of all. This might reflect the
generally increasing robustness of food production systems in the
face of climate fluctuations on the one hand, and the growing
importance of social and especially political organisation as factors
in resilience levels on the other.
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Future research efforts will focus on the integration of the SPDs
of calibrated radiocarbon dates with multiple archaeo-
demographic proxies (raw site count, aggregated estimated set-
tlement size, number of burials) covering the whole Near East in
order to deliver more robust results and reconstruct population
dynamics over a chronological spectrum extending up to Medieval
and post-Medieval times. Additional archaeological datasets would
also enable a more detailed investigation of the individual regional
trends identified here.

It is clear from the present work that while a wealth of
archaeological data exist across the Near East, a higher number of
well dated palaeoclimatic archives are needed to provide a more
even spatial and chronological coverage, and to produce more ac-
curate interpretations of past human-climate interactions. The
subdivision of our seven geo-cultural regions is justified on the
basis of traditional research trajectories, real differences in physical
geography and by the need to guarantee sufficient data to produce
meaningful results. However, an increase in the spatial resolution of
available palaeoclimatic data would allow us to subdivide further,
and potentially to assess relationships across a wider range of en-
vironments. This would allow to assess how social behaviours
changed in different ecological niches. Furthermore, the integration
of vegetation pollen-based reconstruction would allow us to assess
not only correlations between climate and population but also the
impact of climate and population change on vegetation and the
wider landscape.
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