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New multicellular marine macroalgae from the early Tonian of northwestern 
Canada 

DESCRIPTION OF METHODS 
Field methods 
In order to constrain the paleoenvironment of these fossils, we measured three 
stratigraphic sections through the fossiliferous interval. We sampled shale slabs (n = 90; 
containing up to 100 macrofossil specimens per slab), collected from seven distinct 
horizons within the Dolores Creek Formation (Figure 1). All samples will be reposited 
with the Royal Ontario Museum in Toronto and the Yukon Geological Survey. Although 
many samples were obtained from scree, seventeen shale slabs were collected in situ and 
exhibit a range of preservation of individual fossils (n = 250).  

Fossil Measurements 
Fossil specimens were each cleaned and prepared for morphological study. Digital 
photographic images were processed through Image J software (Rasband and U.S. 
National Institutes of Health, 1997), allowing for detailed linear measurements (length 
and width of specimens, length and width of segments, and number of segments; see Data 
S2) where visible. Where present, the smaller size class fossils were measured from well-
preserved samples.  

Analytical microscopy 
Macrofossils were analyzed and characterized for their preservational quality and 
morphological complexity. Selected specimens were analyzed using scanning electron 
microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), and tomographic x-ray 
microscopy (µCT) at the University of Missouri X-ray Microanalysis Core. The SEM and 
EDS analyses were conducting using a Zeiss Sigma 500 variable pressure system 
equipped with dual, co-planar Bruker XFlash spectrometers. All SEM and EDS analyses 
were conducted at identical beam and chamber conditions, including a 20 keV beam 
accelerating voltage, 40 nA high current mode, 60 µm aperture, and 20 Pa chamber 
pressure with a 99.999% nitrogen atmosphere. Z-contrast imaging was conducted using a 
high-definition 5-segment backscatter detector, and a cascade current detector was used 
for secondary electron imaging in low vacuum. The EDS elemental mapping was used to 
characterize the composition of the specimens, with both detectors in tandem, 360 
seconds live-time, and using a 120 µm aperture to provide higher x-ray count rate. A 
specimen with three-dimensional preservation was further analysed through µCT (Zeiss 
Xradia 510 Versa) to observe any preserved three-dimensional structure. The operating 
conditions were as follows: 80 kV source voltage, 7 W source power, LE3 filter, 0.4X 
objective, 4.5 sec exposure, 2001 projections at 360 degrees, voxel size 11.09 µm. 

Re-Os Geochronology 
Samples for Re-Os geochronology (GL-1408) were collected from a black shale interval 
between stromatolitic dolostone in the upper Dolores Creek Formation, ~20 meters below 
the contact with the conformably overlying Black Canyon Creek Formation south of Tarn 
Lake and 6.7 km to the northwest of the fossil locality (64º43.83’, 133º17.84’W; Fig S3). 
Samples were excavated from the outcrop along strike from a narrow stratigraphic range, 
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as well as vertical profile between 121.6 and 123.2 m stratigraphic height. To remove any 
weathered surfaces, samples were cut with a diamond-tipped lapidary saw blade and 
polished with a diamond pad to remove any metal contamination from the saw blade. 
Then 30–50 g aliquots were crushed to a fine powder (ca. 30 μm) using a SPEX zirconia 
ceramic puck and grinding container to homogenize each sample. The Re-Os analytical 
protocol was carried out at the Durham Geochemistry Centre (Source Rock and Sulfide 
Geochronology and Geochemistry, and Arthur Holmes Laboratories) during 2014 
following established methodologies (cf.(Selby and Creaser, 2003; Cumming et al., 
2013). In brief, sample powders of ~1 g were digested and equilibrated with CrVI-H2SO4 
and a known quantity of a mixed 185Re + 190Os tracer solution. Purification of the Re and 
Os fractions were achieved by solvent extraction, microdistillation, and anion 
chromatography. The isotope compositions of Re and Os were determined via negative 
thermal ionization mass spectrometry (NTIMS) using a ThermoScientific TRITON mass 
spectrometer. Analytical blanks were 10.0 ± 3.0 pg for Re and 0.06 ± 0.15 pg for Os 
(1SD, N = 3), with an average 187Os/188Os value of 0.25 ± 0.05. The results for standard 
in-house solutions (50 pg aliquot of DROsS; 125 pg Re std aliquot) are the similar to 
those reported for the analytical period and recommended values (Nowell et al., 2008; Du 
Vivier et al., 2014)( 185Re/187Re = 0.598021 ± 0.00110; 187Os/188Os = 0.160890 ± 
0.00061, 1SD, N = 5). Uncertainties for 187Re/188Os and 187Os/188Os are determined by 
full error propagation of uncertainties in Re and Os mass spectrometer measurements, 
blank abundances and isotopic compositions, spike calibrations, and reproducibility of 
standard Re and Os isotope values.  
 
The Re-Os age was determined through regression of Re-Os data in 187Os/188Os vs. 
187Re/188Os space using 2σ level absolute uncertainties and the error correlation, rho, 
using the benchmark ‘‘Isoplot” algorithm (Ludwig, 2011) and the Monte Carlo sampling 
method for error propagation with the 187Re decay constant of 1.666e−11 ± 5.165e−14 a−1 
(Smoliar et al., 1996) using the beta version of Isochron program (Li et al., 2019).  
 
SUPPLAMENTAL TEXT 
Re-Os results 
Regression of Re-Os data from the Dolores Creek Formation yields a Model 1 Re-Os 
isochron age of 896 ± 45 Ma (2σ, n = 5, mean square of weighted deviates [MSWD] = 
0.92; uncertainty with and without the decay constant uncertainty is 44.67 and 44.76 Ma, 
respectively) with an initial 187Os/188Os composition (Osi) of 0.38 ± 0.09 (Fig. S1; Data 
S2; Table S1). This calculated age is essentially identical to the Monte Carlo approach 
(898 ± 68 Ma including both analytical and model age uncertainties; Fig. S1). The greater 
uncertainty in the age derived by the Monte Carlo approach further illustrates that a 
Model 1 Isoplot outcome underestimates the total age uncertainty arising from only 
considering analytical uncertainties (Li et al., 2019). Here, we consider the best estimate 
of the depositional age of the Dolores Creek Formation to be 898 ± 68 Ma. The linear 
correlation between 187Re/188Os and 187Os/188Os and lack of a linear correlation between 
187Os/188Os and 1/192Os indicates that the uncertainty in this age can be attributed to 
variation in the 187Os/188Os of basin waters throughout the depositional timespan recorded 
by the sampled stratigraphic intervals rather than open-system behavior of the Re-Os 
isotope system.  
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Uncertainty with and without the decay constant uncertainty is 44.67 and 44.76 Ma, 
respectively (Fig. S1). The greater uncertainty in the age derived by the Monte Carlo 
approach further illustrates that a Model 1 Isoplot outcome underestimates the total age 
uncertainty arising from only considering analytical uncertainties (Li et al., 2019). The 
linear correlation between 187Re/188Os and 187Os/188Os and lack of a linear correlation 
between 187Os/188Os and 1/192Os indicates that the uncertainty in this age can be attributed 
to variation in the 187Os/188Os of basin waters throughout the depositional timespan 
recorded by the sampled stratigraphic intervals rather than open-system behavior of the 
Re-Os isotope system.  
 
 
Stratigraphic overview 
 The Dolores Creek Formation is the lowermost of three formations comprising the 
Hematite Creek Group in the Wernecke Mountains, Yukon (Fig. 1, S2, S3; (Turner, 
2011)). The Dolores Creek Formation is overlain conformably by the Black Canyon 
Creek Formation, which in turn is transitional above into the Tarn Lake Formation (Fig. 
1). Together, these three formations comprise a single shoaling-upward sequence (Fig. 1; 
(Turner, 2011)). The Hematite Creek Group unconformably overlies the late 
Mesoproterozoic Pinguicula Group, which comprises shales and dolostone. It is overlain 
by the Katherine Group, which consists of ~1.5 km of predominantly sandstone, 
subordinate siltstone and shale, and minor carbonate. In the Wernecke Mountains, the 
contact between the upper Hematite Creek Group (Tan Lake Formation) and lowermost 
Katherine Group is gradational. In the Mackenzie Mountains (Northwest Territories), the 
Katherine Group is overlain by the thick (>2 km) Little Dal Group, which consists mainly 
of dolostone (Fig. S2). Only the lowermost ~300 m of the Little Dal Group is preserved 
in the Wernecke Mountains, where it is deeply truncated by an angular unconformity 
developed beneath Cryogenian strata. (Fig. 1). The Hematite Creek, Katherine, and Little 
Dal groups in the Wernecke Mountains collectively comprise the Tonian Mackenzie 
Mountain Supergroup (MMS).  In the Mackenzie Mountains, the MMS is capped by the 
Little Dal Group. The Tsezotene Formation, which overlies the basal Tabasco Formation 
in the Mackenzie Mountains, is inferred to be correlative with the Hematite Creek Group 
in the Wernecke Mountains (Fig. S2). Broadly equivalent strata of the Fifteenmile Group 
occur in the Proterozoic inliers in the Ogilvie Mountains to the west in Yukon (Fig. S2).  
 
Age constraints on the Hematite Creek Group and Dolores Creek fossils 
The minimum age of the MMS is provided by a U-Pb zircon Isotope Dilution-Thermal 
Ionization Mass Spectrometry (ID-TIMS) age of 775.10 ± 0.54 Ma on a diabase that 
crosscuts the MMS in the neighbouring Mackenzie Mountains (Milton et al., 2017). This 
diabase is considered part of the Gunbarrel magmatic event, which includes the Little Dal 
Basalt capping the MMS in the Mackenzie Mountains (Fig. S2). The base of the 
Mackenzie Mountain Supergroup is constrained to be younger than ca. 1000 Ma based on 
detrital muscovite Ar-Ar ages of 1033 Ma from the lower Hematite Creek Group  
(Thorkelson, 2000) and detrital zircon U-Pb ages of ca. 1000 Ma from presumed 
equivalent strata in the Hart River inlier to the west ((Rainbird et al., 1997); Fig. S2). The 
Re-Os isochron age of 896 ± 45 Ma (this study) was obtained on the Dolores Creek 
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Formation approximately 6.7 km northwest of the fossil locality (Fig. S3). Though not 
precise, these ages are consistent with other ages on the MMS and equivalent strata 
across northwestern Canada that indicate an early Tonian age for the Hematite Creek 
Group (Fig. S2). Based on these collective dates and stratigraphic framework of the 
Hematite Creek Group, we infer an age of ca. 950–900 Ma for the Dolores Creek fossils.   
 
Depositional setting of the Dolores Creek fossils 
The Dolores Creek Formation characteristically comprises ~300 m of interbedded grey to 
black shale and microbial carbonates. In the northern part of the outcrop belt in the 
Wernecke Mountains, the carbonates are mainly microbialaminite facies inferred to have 
been deposited in shallow-water lagoonal to peritidal environments. In the vicinity of the 
fossil locality, the Dolores Creek Formation increases abruptly in thickness to ~1000 m 
(Figs. S4, S5, S6). Here, we have informally divided the Dolores Creek Formation into a 
lower and upper unit. The lower Dolores Creek Formation is ~600 m thick and consists 
mainly of shale and siltstone with minor intraclast breccias and wackes interpreted to 
have been deposited as gravity flow debrites. The unit gradually coarsens upwards and 
includes a minor but increasing amount of carbonate, first in the form of debrite clasts, 
then as minor microbially laminated beds and blocks of stromatolites (olistoliths) and 
finally in-place stromatolite bioherms. The upper Dolores Creek Formation consists of 
shales and biostromes of columnar stromatolites, with the shales becoming increasingly 
organic-rich towards the top of the section, which corresponds stratigraphically to the 
location of the Re-Os age sample site.  
 
The facies in the Dolores Creek Formation suggest an initially deepwater slope 
environment at this locality, with a proximal, prograding shelf margin to the north. Given 
the abrupt appearance of the lower Dolores Creek Formation here, we infer that the shelf 
margin represents a fault escarpment that formed in response to an extensional episode 
that initiated subsidence and formed the Hematite Creek Basin (Turner, 2011). 
Stromatolites on the shelf margin (Figs. S5, S6) shed debris as the shelf margin gradually 
prograded southward (in present coordinates) filling the deeper sub-basin.   
 
The fossil interval occurs in gravity flow deposits above the fine-grained siliciclastic 
sediments and at the base of a shoaling upward cycle of shale to carbonate between 500–
520 meters from the base of the measured section. Given that the first semi-continuous 
stromatolitic units occur only about 20 meters above the fossiliferous interval (Fig. S4, 
S6), by which point debrites also disappear, we infer that the fossils were deposited in an 
upper slope environment. It follows that both the fossils and other redeposited intraclastic 
debris were derived from the shelf margin. Hence, we conclude that the fossils record 
algae that inhabited the seafloor at the shelf edge, presumably between stromatolitic 
build-ups that rimmed the margin. Episodic gravity flow depositional events presumably 
ripped up benthic algae from the shelf margin, transporting them down slope where they 
were entombed: this rapid burial contributed porewater anoxia and fossilization under 
sulfate-reducing conditions. 
 
Although, the lower Dolores Creek Formation lacks sedimentary structures that would 
provide unambiguous evidence for a marine setting for the fossils, the thickness of the 
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fine-grained siliciclastic package (~1 kilometer) is hard to reconcile with a lacustrine 
depositonal setting. Further, the overlying Black Canyon Formation, which represents the 
continuation of the progradational high-stand systems tract spanning the Dolores Creek 
Formation, consists mainly of meter-scale shale-carbonate cycles deposited in a shallow, 
restricted, but tidally influence environment. Evidence of tidal currents is found in the 
occurrence of bidirectional current indicators (ripples, cross-bedding, and imbricated 
tabular clasts), abundant reactivation surfaces, and draping of bedforms by fine-grained 
dololutite (Fig. S7A). Cauliflower structure (Fig. S7B), interpreted to record chert 
replacing enterolithic anhydrite, is common throughout the Black Canyon Formation and 
into the lower Tarn Lake Formation. These anhydrite nodules provide evidence for the 
availability of sulphate, which was presumably seawater and contributed to fossil 
preservation. Microbialaminite facies characteristic of inter- to supratidal environments 
are also abundant in the Black Canyon Formation (Fig. S7C; (Turner, 2011)). In 
summary, we suggest that the Dolores Creek biota likely inhabited mid-shelf to marginal 
marine setting in the Hematite Creek Basin. 
 
Algal Fossil Record 
Marine fossils interpreted as algae are found throughout the Proterozoic. For example, the 
organic-walled microfossils Dictyosphaera, Shuiyousphaeridium, and 
Gigantosphaeridium from the Paleoproterozoic Ruyang Group in North China have been 
interpreted as microscopic and phytoplanktonic green algae (Agić et al., 2015, 2017). 
Similarly, eosolenid tubular fossils with a sub-millimeter width and transverse septa from 
late Mesoproterozoic strata in Siberia (German and Podkovyrov, 2009) and early 
Neoproterozoic strata in North China (Li et al., 2020), as well as, annulated and 
millimeter-sized tubular fossils such as Proteroarenicola, Pararenicola, Sinotubulites, 
and Parmia from early Neoproterozoic rocks in North China (Dong et al., 2008; Li et al., 
2020), India (Sharma and Shukla, 2012), and Russia (Gnilovskaya, 1998), may also be 
green algae, although strong cases for the affinity of these taxa have not been formally 
made. Enigmatic, long-ranging macroscopic fossils such as Chuaria (Tang et al., 2017) 
and Grypania date back to ca. 1870 Ma (Han and Runnegar, 1992) and have been 
previously interpreted as algae (Walter et al., 1976), but this interpretation remains 
contentious (Sharma and Shukla, 2009). The ca. 1560 Ma Gaoyuzhuang biota of North 
China include carbonaceous compressions up to 30 cm in length that have also been 
interpreted as algae (Zhu et al., 2016), but these carbonaceous compressions lack cellular 
preservation, and it is uncertain which algal group they might represent. 
 
The late Mesoproterozoic–Tonian fossil record in northern Canada 
Late Mesoproterozoic to Neoproterozoic strata of northern Canada hosts a diverse fossil 
assemblage that includes Ediacaran-type impressions (Narbonne and Hofmann, 1987; 
Narbonne et al., 1994, 2014), the Rusty assemblage (Butterfield, 2005b), the Wynniatt 
assemblage (Butterfield, 2005b, 2005a), and red algal microfossils (Bangiomorpha; 
(Butterfield, 2000)). Recent discoveries of Tonian fossils including vase-shaped 
microfossils (Strauss et al., 2014; Cohen et al., 2017a) and scale microfossils (Cohen and 
Knoll, 2012; Cohen et al., 2017b) have invigorated the continued search for early life in 
older units in the Arctic resulting in new reports of fungal microfossils (Ourasphaira 
giraldae, (Loron et al., 2019)), evidence for eukaryovory (Loron et al., 2018) and green 
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algal macrofossils (this study) from ca. 100–900 Ma. The appearance of Bangiomorpha 
(ca. 1050, (Butterfield, 2000; Gibson et al., 2018), Ourasphaira giraldae (<1,013 ± 25 to 
>892 ± 13 Ma; (Loron et al., 2019)), and the Dolores Creek green algal fossils reported in 
this study provide evidence of a more complex ecosystem during the Tonian Period than 
previously documented. 
 
Other Tonian algal fossils 
The fossil record of early algae is sparse and characterized by great uncertainty. 
Proterocladus from the ca. 790 Ma Svanbergfjellet Formation in Spitsbergen and ca. 
1000 Ma Nanfen Fromation in North China has been interpreted as a siphonocladous 
green alga (Butterfield et al., 1994; Tang et al., 2020). The ca. 1000 Ma fossil 
Palaeovaucheria clavata from the ~1000 Ma Lakhanda Group of southeastern Siberia 
has been interpreted as a putative xanthophyte algae (Hermann, 1990). Bangiomorpha 
pubescens from the ca. 1050 Ga Angmaat and Hunting formations in northwestern 
Canada (Butterfield, 2000; Gibson et al., 2018) is the oldest taxonomically-resolved algal 
fossil and has been interpreted as a bangiophyte red alga. Other multicellular fossils from 
the Tonian strata of Victoria Island (Canada; ca. 850 Ma) and Svalbard (ca. 820 Ma) have 
been interpreted as stem group eukaryotes, but these problematic fossils are much 
smaller, typically ~50 µm wide and several hundred micrometers in length (Butterfield, 
2015). 
 
Early Neoproterozoic macroalgal assemblages are typically dominated by simple forms 
(Xiao and Dong, 2006; Xiao and Tang, 2018). Algal thalli have previously been reported 
with well-differentiated stipe and holdfast structures in Longfengshania from the Tonian 
Little Dal Group which caps the MMS in northwestern Canada (Hofmann, 1985). 
Sinosabellidites and pararenicolids from the Liulaobei Formation in North China (Dong 
et al., 2008) also exhibits a cylindrical thallus ornamented with transverse annulations 
and bear a distinct holdfast structures. These morphological innovations highlight the 
growing competition for resources and/or space between species (Wang et al., 2015). 
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SUPPLEMENTAL FIGURES AND TABLES 

 

Fig. S1. Re-Os isotope data analysis for the Dolores Creek Formation using the 
benchmark ‘‘Isoplot” algorithm (A) and Monte Carlo simulation (B, C) (Li et al., 2019. 
(A) Regression of Re-Os data yielded a Model 1 Re-Os isochron age of 896 ± 45 Ma (2σ, 
n = 5, mean square of weighted deviates [MSWD] = 0.92; uncertainty with and without 
the decay constant uncertainty is 44.67 and 44.76 Ma, respectively) with an initial 
187Os/188Os composition (Osi) of 0.38 ± 0.09. (B) Uncertainties from the Monte Carlo 
simulation with analytical uncertainty contribution shown in red with the analytical and 
model uncertainties shown in blue (error ellipses are 2 sigma). (C) Contour plot of Monte 
Carlo simulation yielding essentially an identical age to the benchmark Isoplot algorithm 
(898 ± 68 Ma including both analytical and model age uncertainties). Elemental 
abundances and isotopic compositions are presented in Data S1. 
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 Fig. S2. Regional correlations of the Proterozoic stratigraphy in NW Canada, showing 
available radiometric age constraints and key fossil occurrences. Thick orange correlation 
line is the sub-Cryogenian unconformity and thick blue line marks the Cryogenian-
Ediacaran boundary. Gp–Group; Fm–Formation; FMG–Fifteenmile Group; Chan.–
Chandindu Formation; Ck.–Creek; Hem. Ck.–Hematite Creek Group; LD–Little Dal 
Group; Rav.– Ravensthroat formation; JB–June Beds; GT.–Gametrail Formation; Mt.–
Mount; conglom.– conglomerate; Ft. Co.–Fort Collinson Formation; Pt.–Point; Hd.–
Head. Geochronology from (Jefferson and Parrish, 1989; Thorkelson, 2000; Macdonald 
et al., 2010; Van Acken et al., 2013; Strauss et al., 2014; Rooney et al., 2015; Baldwin et 
al., 2016; Milton et al., 2017; Gibson et al., 2018) this paper. All geochronologic age 
uncertainties are 2σ. Re-Os age uncertainties also include uncertainty in the 187Re decay 
constant (λ) except when not reported by original authors (denoted as *). Fossils include 
Ediacaran-type impressions (Narbonne and Hofmann, 1987; Narbonne et al., 1994, 
2014), vase-shaped microfossils (Strauss et al., 2014; Cohen et al., 2017a), scale 
microfossils (Cohen and Knoll, 2012; Cohen et al., 2017b), green algal macrofossils (this 
paper), Rusty assemblage (58), Wynniatt assemblage (Butterfield, 2005b, 2005a), fungal 
microfossils (Loron et al., 2019), and red algal microfossils (Butterfield and Chandler, 
1992; Butterfield, 2000). 
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Fig. S3. Geological map of the main outcrop belt of the Tonian Mackenzie Mountain 
Supergroup (MMS) in the Wernecke Mountains, showing location of the fossil and Re-
Os sample localities. Map is modified from the Yukon Geological Survey Bedrock 
Geology Dataset (Yukon Geologic Survey, 2018). PPz-Paleoproterozoic; MPz-
Mesoproterozoic. 
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Fig. S4. Stratigraphic logs of the section of the Dolores Creek Formation containing the 
fossils (HCS = Hematite Creek Section), and a partial parallel section (HC1), which 
lacked fossils.  
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Fig. S5. Two views of the ridgeline near Hematite Creek where the Dolores Creek fossils 
occur (white star; N64º41.2’N, 133º13.3’W). Red line shows stratigraphic section HCS. 
RC = Rubble Creek Formation (Pinguicula Group); l. DC = “lower” Dolores Creek 
Formation; u. DC = “upper” Dolores Creek Formation; BCC = Black Canyon Creek 
Formation; TL = Tarn Lake Formation. Lower resolution image used for submission. 
  



 
 

12 
 

 
Fig. S6. Field photos showing the Hematite Creek Section fossil locality (A) and 
sedimentary facies (B–E). B and C show the dominantly silty shale facies in which fossils 
occur. (D) Debrite bed with tabular intraclasts within silty shales. (E) Columnar 
stromatolites within a bioherm above the fossil locality. Layers in columns and cements 
between columns consist of gray limestone outlined by ferruginous orange dolostone, 
which is a characteristic style of preservation of stromatolites encases in shales within the 
Dolores Creek Formation. Hammer in (D) is 28 cm in length. Increments on ruler in (C) 
are 1 cm. Scale bars in (D) and (E) are 20 mm wide. Lower resolution image used for 
submission. 
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Fig. S7. Characteristic shallow-water carbonate facies in the Black Canyon Creek 
Formation, which directly overlies the Dolores Creek Formation. (A) Mixed grainstones, 
intraclastic breccia, and dololutite facies showing abundant evidence for tidal activity. 
Horizontal arrows indicate current directions from cross-bedding, ripple cross-lamination, 
and imbricated tabular intraclasts. Arrowheads show tidal reactivation surfaces. Arrow 
feather symbol shows bedform surfaces draped by fine-grained sediment (dololutite) 
deposited from slack water. This facies is also the source of the abundant intraclasts in 
this photograph, which were ripped up and reworked by tidal currents. (B) Cauliflower 
chert nodules (outlined by orange lichen, which prefers silica over carbonate), interpreted 
to be replaced anhydrite nodules. (C) Characteristic ‘microbialaminite’ facies in the 
Black Canyon Creek Formation, interpreted to record microbially influenced deposition 
in intertidal to supratidal environments. Lower resolution image used for submission. 
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Fig. S8. Dolores Creek macrofossils showing three-dimensional preservation. (A–B) 
Specimens with longitudinal striations. (C) Smaller macroalga overlies large specimen. 
All specimens from ROMIP66170. Scale bars = 1 mm. Lower resolution image used for 
submission. 
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Fig. S9. Histogram of specimen widths showing two distinct size classes: smaller 
specimens (30–50 μm) and larger specimens (600–800 μm). 
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Fig. S10. Schematic diagram of a macroalgal specimen from the larger size class, 
illustrating double septa, an ellipsoidal to globose holdfast, and longitudinal striations. 
Smaller size class specimen with branching is shown for size comparison. 
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Fig. S11. Dolores Creek macrofossils of the larger size class, highlighting the presence of 
double septa. (A–B) Double septa highlighted with white arrows. (C–F) Specimens have 
double septa and contain longitudinal striations. Specimens are from ROMIP66167 
with the exception of B and E from ROMIP66169. Scale bars = 1 mm. Lower resolution 
image used for submission. 
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Fig. S12. Dolores Creek macrofossils (larger size class) with putative holdfasts (white 
arrows). Specimens are from ROMIP66167 with the exception of C-D from 
ROMIP66169. White scale bars = 1 mm. Black scale bars = 5 mm. Lower resolution 
image used for submission. 
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Fig. S13. Macrofossils from the smaller size class. (A) Branching specimen highlighted 
with dotted outline (B) Smaller specimens (C) Deformed smaller specimen (D) Smaller 
adjacent to large specimen (E) Smaller overlapping larger specimen (F) Specimens can 
be comparable in length to the larger macroalgae (G) Overlapping specimens (H) 
Distribution of several specimens including a small branching organism (I) Location of G 
on the sample showing the distribution of fossils. All specimens from ROMIP66167. 
White scale bars = 1mm, Black scale bars = 5mm. Lower resolution image used for 
submission. 
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Fig. S14. Variable preservation textures within the larger size class macrofossils of the 
Dolores Creek Formation. (A) BSE SEM image showing platy, linear structures 
(probably clays) and pits (probably molds of pyrite framboids) on macrofossils. (B) 
Enlarged image of pits and (C) EDS elemental map showing that the pits contain iron. 
(D-F) EDS elemental maps showing platy features have an increase in the relative 
enrichment in iron, aluminium, and potassium supporting a clay origin. (G) EDS 
elemental map showing specimen with a relative enrichment in iron. (H) EDS elemental 
map showing same specimen as G with a limited relative enrichment in sulfur. (I) BSE 
SEM image showing iron oxide pseudomorphs, probably representing weathering 
product of pyrite framboids. A-F are sample ROMIP66163, G-I are sample 
ROMIP66165. Lower resolution image used for submission. 
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Fig. S15. Additional macroalgal specimens of the larger size class, demonstrating the 
abundance and preservation of fossils. Sample Numbers: (A) ROMIP66170. (B) 
ROMIP66169. (C) ROMIP66162. (D) ROMIP66160. (E) ROMIP66167. (F) 
ROMIP66168. (G) ROMIP66167. (H) ROMIP66167. (I) ROMIP66161. (J) 
ROMIP66167. (K) ROMIP66169. (L) ROMIP66167. (M) ROMIP66166. (N) 
ROMIP66164. White scale bars = 1 mm, Black scale bars = 3 mm. Lower resolution 
image used for submission. 
 
  



 
 

22 
 

Movie S1 (separate file). X-ray microtomography of Dolores Creek macroalgal 
specimen from sample ROMIP66170 from the larger size class, highlighting the three-
dimensional preservation of fossils. 

Dataset S1. Synopsis of the Re-Os data for sample suites GL1408. 

 

 
 
Dataset S2 (separate file). Fossil Measurement Data 
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