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1 Introduction

In flat space, the four-point amplitude of closed string theory takes a very compact form
known as the Virasoro-Shapiro (VS) amplitude1 [1, 3]. This formula encodes many essential
properties of string theory such as a Regge trajectory describing massive states with arbi-
trarily high spin, and exponential suppression at high-energy which was one of the earliest
indications that string theory could be a promising candidate for quantum gravity. Given

1The Virasoro amplitude is the amplitude for four tachyonic scalars in bosonic string theory found by
Virasoro [1] and generalised to n points by Shapiro [2]. The tree-level four-point amplitude in IIB string
theory [3] which we will be considering here is given by the Virasoro amplitude multiplied by a kinematic
factor and it has become the convention to refer to it as the Virasoro-Shapiro amplitude.
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that the effects of quantum gravity are expected to become most important in curved back-
grounds like the interior of black holes and the early Universe, it is therefore very important
to understand how to generalise the VS amplitude beyond the flat space limit. At present
it is technically challenging to calculate string amplitudes in curved backgrounds from first
principles, but progress can be made in AdS backgrounds using holographic methods. In
particular IIB string theory in AdS5×S5 is the best understood example due to its duality
to N = 4 SYM [4].

This relates IIB gravity amplitudes to N = 4 SYM single trace2 1/2-BPS correlators.
From the early days of the AdS/CFT correspondence, many direct calculations of four-point
AdS amplitudes at tree-level and in the supergravity limit have been performed, resulting
in predictions for the corresponding correlators on the CFT side [8–19]. Although the
action for superstrings in AdS5×S5 is known using the Green-Schwarz [20, 21] and pure
spinor [22] formalisms, explicit construction of vertex operators is not fully understood so
computing amplitudes beyond the supergravity approximation in this background directly
from string theory remains challenging (see [23–25] for recent progress). On the other hand,
a great deal of progress has recently been achieved on the CFT side despite the CFT being
strongly coupled, using the constraints imposed by superconformal and crossing symmetry
as well as the simplification of the spectrum predicted by AdS/CFT (hereby summarised
as ‘bootstrap methods’). All tree-level single trace 1/2-BPS correlators in the supergravity
limit have been obtained in this way [26–28] and more recently string corrections have
also been bootstrapped [29–34] with groundwork laid in in [35, 36]. Loop corrections to
four-point AdS amplitudes have also been obtained via bootstrap methods both in the
supergravity limit [37–42] as well as string corrections [30, 43–45]. The more recent of
these works have also made use of a hidden 10d conformal symmetry [46].

This paper can be viewed as partly going back to the direct calculation approach but
in a hugely simplified form. We notice that the tree-level string corrections obtained via
bootstrap methods can be obtained via AdS×S contact diagrams arising from a simple
10d scalar effective action. The starting point is the observation that if we write the flat
space VS amplitude as an infinite series in α′ (which is proportional to the square of the
string length), the leading term will describe supergravity while higher order terms describe
string corrections, which can be derived from a simple effective field theory consisting of
a scalar field with quartic interactions. For example, the first string correction is simply a
constant proportional to α′3 which arises from a φ4 interaction, and the next correction is
O(α′5) and quadratic in the Mandelstam variables so can be derived from a four-derivative
interaction (∂φ.∂φ)2. In this way, we can construct the four-field piece of the linearised
(about flat space) effective action at all orders in α′, fixing coefficients by comparing to
the VS amplitude. This can be made more precise. All the fields of type IIB supergravity
can be described with a chiral scalar superfield, φ, in 10d N = 2 superspace [47], and it is
this scalar superfield that appears in the superaction. The Virasoro-Shapiro amplitude for
IIB string theory is a superamplitude containing a factor δ16(Q) [48]. Similarly the corre-

2In fact the operators dual to supergravity are only single trace in the large N limit but have multi-trace
corrections at subleading order [5, 6]. These have recently been given explicitly to all orders in N [7]. Here,
however we work at leading order and so these multi-trace corrections will play no role.
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sponding linearised effective action is a superaction and one integrates a scalar superfield
(prepotential) over 16 Grassmann odd variables

∫
d16θ [49]. The action of four Grass-

man derivatives on the scalar produces the Riemann curvature and so φ4 in the effective
superpotential produces the familiar R4 correction to supergravity.

Remarkably, we will find that the interacting part of all single trace 1/2-BPS correla-
tors can be obtained from a similar scalar effective action describing tree-level IIB string
theory on AdS5×S5 (rather than a flat) background. The resulting correlators are natu-
rally packaged together into a 10d structure. This 10d structure is very reminiscent of and
indeed was partly inspired by the 10d conformal structure of these correlators observed
in [46]. However, here the 10d conformal structure is not apparent and does not play a
role. We can read off some coefficients of the AdS×S effective action directly from the flat
space one, but not all terms can be read off in this way. Firstly, since covariant derivatives
will no longer commute in general, there is the possibility of commutator terms which van-
ish in flat space. Furthermore it is also possible to add terms proportional to the curvature
which vanish in the flat space limit. The effective action will therefore have additional
terms with unfixed coefficients.

We do not here prove the existence of the effective field theory on AdS5×S5, but justify
it a posteriori by showing that it reproduces all known results for four-point correlators of
single trace 1/2-BPS operators at orders in α′3 and α′5, which were previously obtained
via bootstrap methods in [29–34]. We also present a general algorithm for extending these
predictions to arbitrarily high order in α′ and use it to obtain new predictions at α′6 and
α′7. A key technical tool that allows us to derive correlation functions from the 10d effective
field theory is the use of a natural generalisation of contact Witten diagrams [50] (which
are integrals over AdS space) to integrals over the full AdS×S space, treating AdS and S on
an equal footing. We are not aware of such generalised Witten diagrams directly appearing
in the literature before, although similar structures on the sphere are given in [51] where
analogues of geodesic Witten diagrams (which give conformal blocks) on the sphere were
considered. The generalised Witten diagrams involve introducing propagators connecting
the (5 + 5)-dimensional bulk of AdS5×S5 to a generalised notion of a boundary. Although
the 5-sphere is compact, we can formally define its boundary using embedding coordinates
analogous to those of AdS5. This definition is physically sensible when describing 1/2-BPS
operators since it essentially encodes the condition that they are traceless and symmetric
in R-symmetry indices. Expanding the 10d Witten diagrams in modes on the S5 then gives
a prediction for all four-point correlators of single trace 1/2-BPS operators corresponding
to a fixed order in the α′ expansion of string theory in AdS5×S5. Comparing these results
to those obtained using localisation techniques [31, 52, 53] allows us to fix some ambiguities
in the effective action.

This paper is organised as follows. In section 2 we provide an overview of the general
strategy including a general discussion of the effective action and define generalised contact
diagrams in AdS×S as well as their Mellin transforms. In section 3 we use these techniques
to compute the leading correction to 1/2-BPS correlators which occurs at α′3. In section 4
we develop an algorithm for extending these calculations to arbitrary order in α′. Using this
algorithm, we reproduce previous results at α′5 in section 5, and obtain new predictions at
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α′6 and α′7 in sections 6 and 7, respectively. We present conclusions and future directions
in section 8. There are also two appendices. In appendix A, we present more details about
the parametrisation of 1/2-BPS correlators, and in appendix B we list further results at α′7.

Note added. Whilst completing this we were informed by the authors of [54] of their
very impressive work obtaining higher orders in α′ corrections on AdS5×S5 via bootstrap
methods, nicely complementing the results here. We thank them for coordinating the arXiv
release.

2 General setup

In this section we will describe the basic ingredients that we will use in this paper. In
the first subsection, we will describe our strategy for deducing an effective action from
the VS amplitude in flat space and translating it to AdS5×S5. In the next section, we
review 1/2-BPS correlators in N = 4 SYM, which will be the analogue of the Virasoro
amplitude in AdS5×S5. In the next subsection, we review the embedding space for AdS5
and S5 and explain how to define covariant derivatives and contact Witten diagrams in these
coordinates. In the next subsection we then show how to compute contact diagrams directly
in this product space using novel bulk-to-boundary propagators which are manifestly ten-
dimensional. For a given order in the α′ expansion of the Virasoro amplitude, this will allow
us to compute the infinite tower of 1/2-BPS correlators by computing Witten diagrams from
a 10d effective action and expanding them in modes on the sphere. The correlators are most
elegantly expressed in Mellin space, which we review in the last subsection. In particular,
we find that expanding our 10d Witten diagrams in terms of spherical coordinates gives rise
to a spherical analogue of the Mellin transform and implies a generalised Mellin amplitude
where AdS5 and S5 are on equal footing. We illustrate this approach by deriving a formula
for all single trace 1/2-BPS four-point correlators in the supergravity approximation. The
question of stringy corrections will be addressed in subsequent sections.

2.1 Effective action

The flat space Virasoro-Shapiro amplitude takes the form

AVS(S, T ) = 1
STU

Γ
(
1− α′S

4

)
Γ
(
1− α′T

4

)
Γ
(
1− α′U

4

)
Γ
(
1 + α′S

4

)
Γ
(
1 + α′T

4

)
Γ
(
1 + α′U

4

) , S + T + U = 0 , (2.1)

where S, T, U are the standard four-point kinematic invariants. Note that we have factored
out a supermomentum delta function which encodes all the external supergravity states.
In AdS5×S5 the analogue is to factor out an Intriligator polynomial from the interacting
part of 1/2-BPS correlators in the boundary, as we explain in the next subsection. Our
goal will then be to construct a bosonic 10d effective action which describes the remaining
quantity. A priori it is not obvious that such an effective action should exist in curved
background, but we justify it by showing that it reproduces previous results.
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The flat space Virasoro amplitude in (2.1) has expansion

AVS(S, T ) = 1
STU

exp
( ∞∑
n=1

2
(
α′

4

)2n+1 ζ2n+1
2n+ 1(S2n+1+T 2n+1+U2n+1)

)

= 1
STU

+ 2ζ3

(
α′

4

)3
+
(
S2 + T 2 + U2

)
ζ5

(
α′

4

)5
+ 2STU (ζ3)2

(
α′

4

)6

+ 1
2
(
S2 + T 2 + U2

)2
ζ7

(
α′

4

)7
+ . . . (2.2)

Excluding the first term, which corresponds to supergravity, we can view the remaining
terms as arising from a scalar effective action. From this point of view, the α′3 cor-
rection which gives a constant contribution to the four-point amplitude, comes from a
φ4 interaction. Higher order terms can then be obtained by applying derivatives to the
φ4 interaction corresponding to the invariants S, T, U . So S = −2k1.k2 → 2∂µφ∂µφφ2,
T = −2k1.k3 → 2∂µφφ∂µφφ etc.

Specifically then the VS amplitude is equivalent to the following four-field terms in an
effective superpotential for supergravity linearised about flat space:

V flat
V S (φ) = 1

23.4!

(
2ζ3

(
α′

2

)3
φ4 + 3ζ5

(
α′

2

)5
(∂φ.∂φ)2 + 2(ζ3)2

(
α′

2

)6
(∂φ.∂φ)(∂µ∂νφ∂µ∂νφ)

+ 3ζ7

(
α′

2

)7
(∂µ∂νφ∂µ∂νφ)2 + . . .

)
. (2.3)

We now uplift the effective superpotential to an AdS5×S5 background by replacing the flat
derivatives with covariant AdS×S derivatives. This uplift is not unique however. Firstly the
covariant derivatives no longer commute with each other leading to ambiguities. Secondly
there could be terms involving lower number of derivatives, compensated by the AdS radius,
R which would vanish in the flat space limit. So to O(α′7) the superpotential translates to

V AdS×S
VS (φ) = 1

8.4!

((
α′

2

)3
Aφ4 +

(
α′

2

)5 (
3B(∇φ.∇φ)2 + 6C∇2∇µφ∇µφφ2

)

+
(
α′

2

)6 (
D(∇φ.∇φ)(∇µ∇νφ∇µ∇νφ) + 6E∇µ∇2∇νφ∇µ∇νφφ2

)
+
(
α′

2

)7 (
6F (∇µ∇νφ∇µ∇νφ)2 + 6G1 (∇µ∇ν∇µ∇ρ∇σ∇ρφ) (∇ν∇σφ)φ2

+ . . .
)

+ . . .

)
. (2.4)

There are four more eight-derivative terms with coefficients G2, G3, G4, G5 whose explicit
expressions are given in (7.2) and appendix B. Here, unlike in flat space, the coefficients
A,B,C, .. themselves can have an expansion in the dimensionless parameter α′/R2 where R
is the radius of AdS (or S). So whereas in flat space 2k-derivative terms only occur at order
α′k+3, in AdS×S, 2k-derivative terms occur at α′k+3 and all higher orders in principle.

One could also imagine replacing the coefficient of 1/STU in (2.2) with an expansion
in α′/R2, which is not included in (2.4), however this is forbidden by superconformal
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symmetry of N = 4 SYM correlators. In more detail, the non-renormalisation results
of [55] imply that supergravity correlators must contain a contribution from free theory
and there is a non-trivial cancellation between the two terms which links them together.
Since free theory does not receive α′ corrections, there cannot be α′/R2 corrections to
coefficient of 1/STU .

The zeroth order terms in the expansion of A,B,D, F are then determined by the
Virasoro amplitude. Specifically, then

A(α′) = 2ζ3 +A1
α′

2R2 +A2

(
α′

2R2

)2
+ . . .

B(α′) = ζ5 +B1
α′

2R2 + . . .

C(α′) = C0 + C1
α′

2R2 + . . .

D(α′) = 2(ζ3)2 +D1
α′

2R2 + . . .

E(α′) = E0 + E1
α′

2R2 + . . .

F (α′) = 1
2ζ7 + F1

α′

2R2 + . . .

Gi(α′) = Gi;0 +Gi;1
α′

2R2 + . . . for i = 1, 2, 3, 4, 5 (2.5)

For simplicity, we will set R = 1 from now on throughout this paper, but it will be
understood that these higher order terms vanish in the flat space limit.

Computing 10dWitten diagrams using novel generalised bulk-to-boundary propagators
and expanding them in terms of S5 coordinates will give all single trace 1/2-BPS four-point
correlators in N = 4 SYM described by tree-level string theory in AdS5×S5. We introduce
all of these things in the following subsections.

2.2 1/2-BPS correlators

In N = 4 SYM there are six real scalars transforming in the adjoint rep of SU(N) and
the fundamental rep of SO(6), φIY M (X). Here we view the 4d Minkowski space via null 6d
embedding coordinates XA with X.X = 0 manifesting the conformal SO(2, 4) symmetry.
We also project with a null 6d coordinate YI , Y.Y = 0 to obtain φYM (X,Y ) = φIY M (X)YI
manifesting the internal SO(6) symmetry. Then the single trace 1/2-BPS operators are
defined as

Op(X,Y ) = 1
pNp/2Tr(φ

p
YM ). (2.6)

Note that we normalise the operators with an additional factor of 1/√p compared to the
normalisation giving a normalised two-point function, first derived in [56]. This normali-
sation is inspired by the ten-dimensional conformal symmetry of [46].
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It is then useful to collect together the four-point functions of all single trace 1/2-BPS
operators Op(X,Y ) into a single object 〈OOOO〉 as follows

〈OOOO〉 =
∞∑

p,q,r,s=2
〈OpOqOrOs〉int , (2.7)

where 〈OpOqOrOs〉int represents the interacting part of the correlator, which always con-
tains a particular factor I(Xi, Yi) due to superconformal symmetry [55] which we thus
divide out

〈OpOqOrOs〉int = 〈OpOqOrOs〉 − 〈OpOqOrOs〉free
I(Xi, Yi)

. (2.8)

From now on we will usually drop the explicit ‘int’ subscript at the end of the correlators.
Here I is a polynomial in Xi and Yi which is a common factor of all interacting 1/2-

BPS four-point functions [55]. It is the counterpart of the δ16(Q) factor of flat space
superamplitudes [57]. We give its explicit form in appendix A.

2.3 Generalised contact Witten diagrams

In this subsection we will first review standard AdS contact Witten diagrams. Then we
define analogous objects on the sphere (following similar ideas in [51]) and finally we in-
troduce a generalisation of Witten diagrams using bulk-to-boundary propagators which
are intrinsically ten-dimensional and treat AdS and S on equal footing. This will have a
big pay-off since we will obtain the whole tower of 1/2-BPS correlators by expanding the
Witten diagrams in spherical coordinates.

The Witten diagrams are most conveniently expressed using embedding coordinates
for both AdSd+1 and Sd+1:

X̂2 = −
(
X̂−1

)2
−
(
X̂0
)2

+
d∑
i=1

(
X̂i
)2

= −1 ,

Ŷ 2 =
d∑

i=−1

(
Ŷ i
)2

= 1 . (2.9)

In the present context, d = 4. In terms of these coordinates, covariant derivatives can be
defined using projection tensors

PBA = δBA + X̂AX̂
B , PJI = δJI − ŶI Ŷ J , (2.10)

which satisfy the useful identities

PBA X̂A = 0 , PJI Ŷ J = 0 ,
PBAPCB = PCA , PJI PKJ = PKI . (2.11)

In particular, the covariant derivative of a tensor is given by [58, 59]

∇ATA1...AN = PC
AP

C1
A1
...PCN

AN
∂C
(
PE1

C1
...PEN

CN
TE1...EN

)
. (2.12)
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As an application, let’s consider two transverse tensors T and U of rank N + 1 and N ,
respectively. Using the chain rule, we see that

TBA1...AN∇BUA1...AN = −∇BTBA1...ANUA1...AN + ... (2.13)

where the ellipsis denote

∂C
(
TBA1...AN

2 PC
B UA1...AN

)
− TBA1...AN∂C

(
PC

BP
C1
A1
...PCN

AN

)
UCC1...CN . (2.14)

When we act on projection tensors with derivatives, this gives terms which vanish when
contracted with the transverse tensors, so the second term vanishes. Since the first term
is a total derivative, (2.13) implies that Lagrangians written in embedding coordinates
enjoy the same equivalence relations as flat space Lagrangians under integration by parts.
The above discussion of covariant derivatives can equally be applied to the sphere case by
simply sending A,B,C indices to I, J,K etc.

Now we first recall the standard AdS contact Witten diagrams in embedding space.
These are defined as integrals over AdSd+1 of products of bulk-to-boundary propagators,3

G(X̂,Xi) = C∆i

(−2X̂.Xi)∆i
, (2.15)

which at four points then yields:

D
(d)
∆1∆2∆3∆4

(Xi) = 1
(−2)2Σ∆

∫
AdS

dd+1X̂

(X̂.X1)∆1(X̂.X2)∆2(X̂.X3)∆3(X̂.X4)∆4
, (2.16)

where Σ∆ = (∆1+∆2+∆3+∆4)/2. The powers of minus 2 can be absorbed into the prop-
agators, as (−2X̂.Xi) but for notational simplicity we pull them out. These D functions
have the following form in Mellin space [58]

D
(d)
∆1∆2∆3∆4

(Xi) = NAdSd+1
∆i

×
∫

dδij
(2πi)2

∏
i<j

Γ(δij)
(Xi.Xj)δij

∑
i

δij = ∆j , (2.17)

where the normalisation is given by

NAdSd+1
∆i

=
1
2π

d/2Γ(Σ∆ − d/2)
(−2)Σ∆

∏
i Γ(∆i)

. (2.18)

For later use we define normalised D functions without the factor N as

D∆i
(Xi) = N−1D

(d)
∆i

(Xi) . (2.19)

Note that the normalised D functions are independent of the spacetime dimension d as can
be seen from (2.17) and they are distinguished by the presence or not of the superscript (d).

3Properly normalised to yield a delta function at the boundary, the bulk-to-boundary propagator will
include a normalisation C∆ = Γ(∆)

2πd/2Γ(∆−d/2+1) [58, 60]. These are normally omitted from the definition of
the contact diagrams or D functions and we do so here. We will also later absorb factors of C∆i into the
definition of the Mellin amplitude.
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We can also consider direct analogues of these contact diagrams on the sphere. Bulk-
to-boundary propagators on the sphere were introduced in [51] G(Ŷ , Yi) ∝ (−2Ŷ .Yi)pi
and in this context it is then very natural to introduce functions Bp1p2p3p4(Yi), spherical
analogues of the contact Witten diagrams D∆1∆2∆3∆4 as:

Bp1p2p3p4(Y1, Y2, Y3, Y4) = (−2)2Σp
∫
S
dd+1Ŷ (Ŷ .Y1)p1(Ŷ .Y2)p2(Ŷ .Y3)p3(Ŷ .Y4)p4 , (2.20)

where Σp = (p1+p2+p3+p4)/2. Even though the sphere is compact, we can formally
define a boundary when describing 1/2-BPS operators in N = 4 SYM since the condition
Y.Y = 0 simply encodes tracelessness of the R-symmetry indices. The B functions are
polynomials in the Yi and can be explicitly evaluated purely combinatorially, following
similar techniques to those found in the appendix of [51] (where the two- and three-point
analogues were obtained):

Bp1p2p3p4(Yi) = N Sd+1
pi

∑
{dij}

∏
i<j

(Yi.Yj)dij
Γ(dij + 1)

∑
i

dij = pj , (2.21)

where

N Sd+1
pi = 2.2Σp π

d/2+1∏
i Γ(pi+1)

Γ(Σp+d/2+1) . (2.22)

In (2.21) the sum is over all sets of numbers dij = dji such that
{

(d12, d13, d14, d23, d24, d34) : 0 ≤ dij = dji, dii = 0,
4∑
i=1

dij = pj

}
. (2.23)

These constraints on dij leave just two free parameters. Note the close similarity this
explicit expansion of the B functions (2.21) has with the Mellin transform of the AdS
contact terms (2.17). We can thus view the expansion parameters dij as analogues of the
Mellin variables δij .

It is now natural to combine the above AdS and S bulk-to-boundary propagators into
one 10d object, which we refer to as a generalised bulk-to-boundary propagator in AdS×S:

G(X̂, Ŷ ;X,Y ) =
(
−2X̂.X − 2Ŷ .Y

)−∆
, (2.24)

where X and Y satisfy
X2 = Y 2 = 0 . (2.25)

Using the definition in (2.12), we see that

∇2G =
(
∇2
X̂

+∇2
Ŷ

)
G = ∆(∆− d)

(
(−2X̂.X)2 − (−2Ŷ .Y )2

) (
−2X̂.X − 2Ŷ .Y

)−∆−2
.

(2.26)

Hence, the propagator obeys massless equations of motion when d = ∆:

∇2G = 0 , (2.27)
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which will become important in the next section. Whereas X describes the boundary of
AdS, Y is not a boundary point since the sphere is compact.

As mentioned in the introduction, we will derive predictions for four-point correlators
of 1/2-BPS operators from an effective action by computing analogues of Witten diagrams
directly in the product geometry AdS×S. For now we will just develop some general prop-
erties of AdSd+1×Sd+1 contact Witten diagrams which are defined simply as4

D
AdSd+1×Sd+1

∆1∆2∆3∆4
(Xi, Yi) = 1

(−2)2Σ∆

∫
AdS×S

dd+1X̂dd+1Ŷ

(P1+Q1)∆1(P2+Q2)∆2(P3+Q3)∆3(P4+Q4)∆4
,

(2.28)

where we introduce the shorthand

Pi = X̂.Xi , Qi = Ŷ .Yi . (2.29)

It is then straightforward to expand this AdS×S contact diagram out into an infinite
number of standard AdS contact diagrams multiplied by sphere analogues. In particular,
using

1
(P +Q)∆ =

∞∑
p=0

(−1)p (p+ 1)∆−1
Γ(∆)

Qp

P p+∆ (2.30)

four times and then inserting (2.16) and (2.20) gives the expansion:

DAdS×S
∆1∆2∆3∆4

(Xi, Yi)=
∞∑
pi=0

4∏
i=1

(−1)pi (pi+1)∆i−1
Γ(∆i)

D
(d)
p1+∆1,p2+∆2,p3+∆3,p4+∆4

(Xi)Bp1p2p3p4(Yi) .

(2.31)

2.4 AdS×S contact diagrams in Mellin space

Inserting the expression for the AdS contact term, D, as a Mellin integral (2.17) and
the sphere analogue B as an expansion (2.21) into the expression for the AdS×S con-
tact term (2.31), we get after some simplifications a Mellin representation for the AdS×S
contact term:

D
AdSd+1×Sd+1

∆1∆2∆3∆4
(Xi, Yi)

= πd+1

(−2)Σ∆
∏
i Γ(∆i)

×
∞∑
pi=0

(−1)Σp
∫

dδij
(2πi)2

∑
(dij)

∏
i<j

(Yi.Yj)dij
(Xi.Xj)δij

Γ(δij)
Γ(dij + 1)


× (Σp+d/2+1)Σ∆−d−1 , where

∑
i 6=j

δij = pj + ∆j

∑
i 6=j

dij = pj . (2.32)

4We keep d and ∆i general here but we will be focussing on the case ∆i = d = 4 later.
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We thus define the AdSd+1×Sd+1 Mellin amplitude, M∆i
[f ](δij , dij), for any such

four-point expression, f , via a similar expression

f(Xi, Yi)

= 1
4!

πd+1

(−2)Σ∆

(∏
i

C∆i

Γ(∆i)

)
×
∞∑
pi=0

(−1)Σp
∫

dδij
(2πi)2

∑
(dij)

∏
i<j

(Yi.Yj)dij
(Xi.Xj)δij

Γ(δij)
Γ(dij + 1)

×M∆i
[f ] ,

where
∑
i 6=j

δij = pj + ∆j

∑
i 6=j

dij = pj . (2.33)

Thus the Mellin amplitude of an AdS×S contact diagram is not in general a constant as
for the AdS case, but rather a Pochhammer:

1
4!

(∏
i

C∆i

)
×DAdSd+1×Sd+1

∆1∆2∆3∆4
(Xi, Yi) ↔ M∆i

(δij , dij) = (Σp+d/2+1)Σ∆−d−1 .

(2.34)

2.5 Relation between contact diagrams in AdS×S and AdS

Although we will not use this fact in the rest of the paper it is worth pointing out here an
intriguing relation between the AdS×S contact diagrams and the better known standard
AdS contact diagrams. This relation can be seen by comparing their respective Mellin
transforms (2.32) and (2.17).

First consider the special case Σ∆ = d+1. In this case the final Pochhammer in (2.32)
is absent and the Mellin transform becomes proportional to

∞∑
pi=0

(−1)Σp
∫

dδij
(2πi)2

∑
(dij)

∏
i<j

(Yi.Yj)dij
(Xi.Xj)δij

Γ(δij)
Γ(dij + 1)

 =
∫

dδδδij
(2πi)2

∏
i<j

Γ(δδδij)
(Xi.Xj + Yi.Yj)δδδij

 ,
where

∑
i 6=j

δδδij = ∆j , (2.35)

where the equality is obtained by performing the sums over pi and then changing variables
from δij → δδδij = δij − dij .

Comparing this with the Mellin transform of the AdS contact term (2.17) we see that
this is proportional to a D function with Xi.Xj → Xi.Xj + Yi.Yj . In other words it is
proportional to a pure AdS contact term with embedding coordinates Xµ

i = (XA
i , Y

I
i ),

corresponding to a (2d+ 2)-dimensional bulk. More precisely we have the relation5

D
AdSd+1×Sd+1

∆1∆2∆3∆4
(Xi, Yi) = πd+1

(−2)Σ∆
∏
i Γ(∆i)

×D∆1∆2∆3∆4(Xi, Yi) Σ∆ = d+ 1 . (2.36)

Note that this case Σ∆ = d+1 corresponds precisely to the case of a dimensionless contact
term in the flat space limit,

∫
d2d+2xφ∆1 ...φ∆4 . The above relation (2.36) is an example

of the enhanced higher dimensional conformal symmetry observed in [46]. We will look at
this explicitly for N = 4 SYM in the next subsection.

5We here compare with the dimension independent, normalised D function (2.19), since in 2d + 2
dimensions the D(d) function itself diverges when Σ∆ = d + 1 due to the Γ in the numerator of (2.18).
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Now let us modify the above discussion for the case with Σ∆ 6= d + 1. Here the
direct relation between AdS×S and AdS contact terms is spoiled by the presence of the
Pochhammer at the end of (2.32) which depends on Σp that we are summing over. A
simple way of reproducing this Pochhammer whilst still having a summed up formula is
then to rescale all the Y variables and differentiate. Concretely, we can write

D
AdSd+1×Sd+1

∆1∆2∆3∆4
(Xi,
√
rYi)

= 2
Γ(Σ∆ − d− 1)

1
rd/2

(
d

dr

)Σ∆−d−1
rΣ∆−d/2−1D

(2d+2)
∆1∆2∆3∆4

(Xi,
√
rYi) , (2.37)

where the D function is for a (2d+ 2)-dimensional bulk.

2.6 Tree-level supergravity

While the main focus of this paper is obtaining tree-level string corrections to N = 4 SYM
correlators from an effective action involving massless scalars in 10d, it is interesting to
first look at the tree-level supergravity prediction following the approach described in the
previous subsection. While we do not expect this to arise from an effective superpotential,
all single trace 1/2-BPS correlators were shown in [46] to possess a 10d conformal structure
and in particular can be obtained by expanding out D2422. Now for D2422 we have Σ∆ =
5 = d+1 so this is a case where the AdS contact term and the AdS×S contact terms agree,
so (2.36) applies. The tree-level SUGRA result can be written [46]

〈OOOO〉sugra ∝
1

(X1.X3+Y1.Y3)
1

(X1.X4+Y1.Y4)
1

(X3.X4+Y3.Y4)D2422(Xi, Yi) . (2.38)

Inserting the Mellin representation of D2422 (2.17) and changing variables δij → δij − 1
for i, j = 1, 3, 4 and δij unchanged otherwise, this can be written in the form (2.33) with
∆i = 4 with the Mellin amplitude

Msugra ∝
1

(δδδ13−1)(δδδ14−1)(δδδ34−1) = 1
(δ13−d13−1)(δ14−d14−1)(δ34−d34−1) . (2.39)

3 α′3 corrections

Having outlined the general procedure for computing stringy corrections to four-point
1/2-BPS correlators in N = 4 SYM using an effective action in AdS5×S5, we will now
illustrate how it works for the first correction to the supergravity prediction, which occurs
at order α′3.

In particular, the first term of the effective action (2.4) is just a φ4 interaction:

Sα′3 = 1
8.4!

(
α′

2

)3
× 2ζ3 ×

∫
AdS×S

d5X̂d5Ŷ φ(X̂, Ŷ )4 . (3.1)

To obtain the corresponding CFT correlators we mimic the standard AdS/CFT procedure
for obtaining correlators from AdS, but in a fully 10d covariant way, including the sphere
manifestly. Using the generalised bulk-to-boundary propagators in (2.24) we obtain the
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AdS×S Witten diagram for this contact interaction, yielding the following proposal for the
α′3 corrections to the correlators:

〈OOOO〉|α′3 = 1
8.4!

(
α′

2

)3
× 2ζ3 ×

(C4)4

(−2)16

∫
AdS×S

d5X̂d5Ŷ

(P1+Q1)4(P2+Q2)4(P3+Q3)4(P4+Q4)4

= 1
8.4!

(
α′

2

)3
(C4)4 × 2ζ3 ×DAdS5×S5

4444 . (3.2)

We can now extract any specific 1/2-BPS correlator from (3.2) by expanding to the
appropriate power in Yi (see (2.7)). First note that the 10d bulk-to-boundary propagator
Taylor expands as

(Pi +Qi)−4 =
∞∑
p=2

(−1)p (p− 1)3
6 (Pi)−p−2(−Qi)p−2 . (3.3)

So the individual correlators are given by:6

〈Op1Op2Op3Op4〉|α′3

= 1
8.4!

(
α′

2

)3
× 2ζ3 ×

(C4)4

(−2)16

∏
i

(pi − 1)3
3!

∫
AdS5

d5X̂
∏
i

1
(Pi)pi+2 ×

∫
S5
d5Ŷ

∏
i

(Qi)pi−2

= 1
8.4!

(
α′

2

)3
(C4)4 × 2ζ3 ×

(∏
i

(pi − 1)3
3!

)
D

(4)
p1+2,p2+2,p3+2,p4+2(Xi)

×Bp1−2,p2−2,p3−2,p4−2(Yi) . (3.4)

To see what it looks like in Mellin space we plug the Mellin transform of D (2.17)
and the expansion of B (2.21) into this expression (or just use (2.32) ) giving the Mellin
amplitude (defined in (2.33))

Mα′3 = 1
8

(
α′

2

)3
× 2ζ3 × (Σp−1)3 . (3.5)

This correctly reproduces the results of [32, 61, 62] for the Mellin amplitude of 1/2-BPS
correlators at this order.

4 Algorithm for computing general α′ corrections

At higher orders in α′ the effective action (2.4) has terms with covariant derivatives acting
on the scalar field. Thus before proceeding we describe an efficient way to evaluate gener-
alised contact diagrams with derivatives in AdS×S in position space. Then we present a
general formula for converting them to Mellin space.

6This is (2.31) with ∆i = d = 4 and with pi → pi − 2 to account for the fact that the lowest correlator
is labelled with pi = 2 rather than pi = 0. We do not need to worry about the minus signs in the factors
(−1)p in (3.3) since Bp1p2p3p4 = 0 if p1 + p2 + p3 + p4 is odd.
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4.1 Generalised Witten diagrams

Computing the action of the covariant derivatives becomes quickly quite complicated and
so it is useful to develop an algorithm to do this automatically. We will motivate the
algorithm by building up from simple cases. First we consider the application of multiple
covariant derivatives at a single point in AdS. From (2.12) this is given recursively as

∇A∇B...∇Cφ = PA′A PB
′

B ...PC′C ∂A′ (∇B′ ...∇C′φ) , ∇Aφ = PA′A ∂A′φ . (4.1)

So the application of two covariant derivatives gives

∇B∇Aφ = PB′B PA
′

A ∂B′PA
′′

A′ ∂A′′φ = PB′B PA
′

A ∂B′∂A′φ+ PBAX̂.∂φ . (4.2)

The first term arises from the partial derivative ∂A′ being commuted through PB′′B′ whereas
the second term arises from the partial derivative hitting PB′′B′ . To arrive at this form one
then uses the definition of P given in (2.10) as well as the useful formulae (2.11). We
denote this result graphically as

∇B∇A =
A

B
+

A

B

, (4.3)

where each vertex corresponds to an index ordered vertically such that the bottom one is
the index of the first derivative to act. An isolated vertex at position A denotes (P.∂)A
(with the understanding that the derivative has been commuted all the way to the right)
whereas an edge between vertices A and B denotes PABX̂.∂.

Now consider three covariant derivatives. Here we obtain

∇C∇B∇Aφ

= PC
′

C PB
′

B PA
′

A ∂C′

(
PB

′′

B′ PA
′′

A′ ∂B′′∂A′′ + PB′A′X̂.∂
)
φ

=
(
PC

′

C PB
′

B PA
′

A ∂C′∂B′∂A′ + PACPB
′

B X̂.∂∂B′ + PCBPA
′

A X̂.∂∂A′ + PABPC
′

C X̂.∂∂C′ + PABPC
′

C ∂C′

)
φ

=

A

B

C

+

A

B

C

+

A

B

C

+

A

B

C

+

A

B

C

, (4.4)

and we give the corresponding diagrammatic form below each term. All terms apart from
the last arise either from the derivative, ∂C , hitting a P (which we denote with a solid line)
or commuting through (leaving an isolated vertex at C). The last term arises from the
derivative, ∂C , hitting the X̂.∂ term associated with the solid line between A and B. We
denote this by a dotted line from C to B. Thus a solid line with a dotted line attached to
the top of it loses its decoration, X̂.∂.

For the general case of several derivatives acting at a point we can work recursively:
each additional derivative either commutes through everything, corresponding to an iso-
lated vertex, or it hits a P corresponding to a solid line, or it hits a X̂.∂, denoted by a
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dotted line. We add all such lines in all possible ways. So the n-derivative term is given
diagrammatically by summing all graphs containing n vertices in a vertical line, with any
number of solid edges between any two points, such that no vertex is attached to more
than one solid edge, and with any number of dotted edges from the vertex at the top of a
solid edge to a higher vertex either isolated or at the bottom of a solid edge.

The above examples are already enough to illustrate the key ingredients of the general
algorithm for obtaining an explicit expression for several covariant derivatives at a point,
∇A1∇A2 . . .∇An by summing over all possible graphs.

Algorithm for ∇A1∇A2 . . .∇Anφ.

1. Draw n vertices vertically. Each corresponds to an embedding space index ordered
so the bottom one corresponds to An and the top one to A1.

2. Draw any number of solid edges between any two vertices such that each vertex is
connected to at most one solid edge.

3. Draw any number of dotted edges from the upper vertex of a solid edge up to either
a higher disconnected vertex or a higher vertex that is the lower vertex of a solid
edge. No vertex can be attached to more than one dotted edge.

4. Sum over all the resulting graphs with the following interpretation:

A = PA′A ∂A′ A

B

= PABX̂.∂ A

B

= PAB (4.5)

So solid edges come with a decoration X̂.∂ unless they have a dotted line attached
to the top in which case the decoration is removed. (Otherwise the dotted lines can
be ignored.)

Now a derivative interaction term consists of covariant derivatives acting on different
scalars with indices contracted together pairwise. This we denote graphically by putting
together two or more of the above vertical graphs and adding grey edges corresponding to
the contractions. So for example we obtain ∇B∇Aφ1∇B∇Aφ2 by taking two copies of all the
two-derivative diagrams (4.3) and gluing the corresponding vertices together

∇B∇Aφ1∇B∇Aφ2 =
φ1 φ2

+
φ1 φ2

+
φ1 φ2

+
φ1 φ2

= PABPCD(∂A∂Cφ1)(∂B∂Dφ2) + PAB(∂A∂Bφ1)X̂.∂φ2

+ PAB(∂A∂Bφ2)X̂.∂φ1 + PAA (X̂.∂φ1)(X̂.∂φ2) . (4.6)

Similarly we obtain ∇C∇B∇Aφ1∇Aφ2∇Bφ3∇Cφ4 by taking the three-derivative dia-
gram (4.4) together with three more vertices to the right and gluing the vertices corre-
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spondingly

∇C∇B∇Aφ1∇Aφ2∇Bφ3∇Cφ4

=

φ1 φ2 φ3 φ4

+

φ1 φ2 φ3 φ4

+

φ1 φ2 φ3 φ4

+

φ1 φ2 φ3 φ4

+

φ1 φ2 φ3 φ4

= PAA′PBB′PCC′(∂A∂B∂Cφ1)(∂A′φ2)(∂B′φ3)(∂C′φ4)
+ PBB′PAC(X̂.∂∂Bφ1)(∂Aφ2)(∂B′φ3)(∂Cφ4)
+ PAA′PBC(X̂.∂∂Aφ1)(∂A′φ2)(∂Bφ3)(∂Cφ4)
+ PCC′PAB(X̂.∂∂Cφ1)(∂Aφ2)(∂Bφ3)(∂C′φ4)
+ PCC′PAB(∂Cφ1)(∂Aφ2)(∂Bφ3)(∂C′φ4) . (4.7)

The general algorithm for interaction terms is then a straightforward extension of the
one above for covariant derivatives acting on a single scalar.

Algorithm for contact interactions in AdS.

1. For each scalar φi with ni covariant derivatives acting on it, draw all the corresponding
contributing vertical graphs using the above algorithm. Place the graphs for each
scalar next to each other horizontally (taking the outer product over the list of graphs
at each point).

2. Draw grey lines between corresponding contracted vertices in the interaction term.

3. Finally sum over all the resulting graphs with the following interpretation:

4. Each connected path of solid and grey lines with end points in the vertical line φi
and φj corresponds to PAB∂Aφi∂Bφj .

5. Each solid line above φi corresponds to X̂.∂φi, as long as it doesn’t have a dotted line
attached to its upper vertex. (If it does have such a dotted line it has no additional
contribution.)

See the above two examples (4.6) and (4.7).
So far we have only discussed AdS covariant derivatives. The above rules can be used

with the obvious modifications if instead we are viewing the action on a sphere (i.e. A,B
indices become I, J indices, X̂ → Ŷ and PAB → PIJ in (2.10)). But our main purpose
here is to consider AdS×S covariant derivatives. Thus each vertex now represents a 10d
index µ = (A, I), but there needs to be some non-trivial re-interpretation in the case of
the product geometry.

Algorithm for contact interactions in AdS×S. The first three steps of the algorithm
are as for the AdS case above. Then
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4. Each connected path of solid and grey lines with end points in the vertical line above
φi and φj respectively corresponds to Pµν∂µφi∂νφj , but:

5. Each solid line above φi, as long as it doesn’t have a dotted line attached to its upper
vertex, breaks this manifest 10d structure by contributing a multiplicative factor
X̂A∂Aφi, if the index running through it is in AdS or −Ŷ I∂Iφi if the index running
through is in the sphere. (The minus sign appears in the latter case, since this
term arises from a derivative hitting P in (2.10) which has a minus sign in for the
internal case.)

6. Finally there is an additional subtlety related to the dotted lines. The dotted line ties
together the index type corresponding to the otherwise potentially disconnected parts
of the graph, and then contributes a factor of +1 if the index running through is in
AdS or −1 if the index running through is in the sphere. (Recall that the dotted lines
arise from derivatives ∂X̂ or ∂Ŷ hitting the decoration X̂A∂Aφi or −Ŷ I∂Iφi. Thus
firstly, this vanishes unless, the derivative type (AdS or S) is the same as that of the
solid line (hence tying together the index type), and secondly it gives ±1 depending
on whether it is AdS or S.)

Thus for example the AdS×S covariant version of (4.7) is, with each of the five lines
corresponding to the five graphs in (4.7)

∇ρ∇ν∇µφ1∇µφ2∇νφ3∇ρφ4

=Pµµ′Pνν′Pρρ′(∂µ∂ν∂ρφ1)(∂µ′φ2)(∂ν′φ3)(∂ρ′φ4)
+ Pνν′PAC(X̂.∂X̂∂νφ1)(∂Aφ2)(∂ν′φ3)(∂Cφ4)−Pνν′PIK(Ŷ .∂Ŷ ∂νφ1)(∂Iφ2)(∂ν′φ3)(∂Kφ4)
+ Pµµ′PBC(X̂.∂X̂∂µφ1)(∂µ′φ2)(∂Bφ3)(∂Cφ4)−Pµµ′PJK(Ŷ .∂Ŷ ∂µφ1)(∂µ′φ2)(∂Jφ3)(∂Kφ4)
+ Pρρ′PAB(X̂.∂X̂∂ρφ1)(∂Aφ2)(∂Bφ3)(∂ρ′φ4)−Pρρ′PIJ(Ŷ .∂Ŷ ∂ρφ1)(∂Iφ2)(∂Jφ3)(∂ρ′φ4)
+ PCC′PAB(∂Cφ1)(∂Aφ2)(∂Bφ3)(∂C′φ4)− PKK′PIJ(∂Kφ1)(∂Iφ2)(∂Jφ3)(∂K′φ4) .

(4.8)

In particular, note that only the first line is manifestly 10d covariant (has only 10d µ, ν

indices). Also compare carefully the penultimate with the final line. These arise from
similar graphs (the last two in (4.7) ) but one with a dotted line and one without. In the
final line, as well as the decoration X̂.∂X̂ or Ŷ .∂Ŷ being absent, the dotted line has tied
together the two otherwise disconnected parts of the graph, meaning for example that all
indices are either AdS or S, with no mixed ones, unlike the penultimate line.

Finally, note that in practice for our purposes here, the derivatives will always be
acting on bulk to boundary propagators (2.24) and thus partial derivatives acting on a
single scalar ∂µ1∂µ2 . . . ∂µniφi, gives (−1)ni(∆i)niXµ1 ..Xµni etc.

4.2 Mellin space

The previous subsection gave an algorithm for obtaining explicit expressions for the in-
tegrands of generalised Witten diagrams in AdS×S coming from contact interactions
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with derivatives. This will result in integrands corresponding to decorations of the (no-
derivative) contact diagram D (2.28). The decorations are in the form of polynomials in
Xi.Xj , Yi.Yj , Qi and Pi which are homogeneous at each point (i.e. scale the same under
the local scaling Xi.Xj → eiejXi.Xj , Yi.Yj → eiejYi.Yj , Qi → eiQi and Pi → eiPi ). Each
term of such a decoration thus has the form

1
4!

∏
i C∆i

(−2)2Σ∆

∫
AdS×S

dd+1X̂dd+1Ŷ ×

∏
i

Q
nQi
i P

nPi
i × (∆i)ni

(Pi +Qi)∆i+ni

×
∏
i<j

(Xi.Xj)n
X
ij (Yi.Yj)n

Y
ij

 ,
(4.9)

with ni = nPi + nQi +∑
j n

X
ij +∑

j n
Y
ij . We define ΣX ,ΣY to represent the sum of all the

nXij , n
Y
ij respectively, ΣQ,ΣP represents half the sum of all the nQi , nPi and Σn half the sum

of the ni, so Σn = ΣP + ΣQ + ΣX + ΣY . Such a decorated integral will modify (2.31) to

(−2)2ΣX+2ΣY
∞∑
pi=0

( 4∏
i=1

(−1)pi (pi + 1)∆i+ni−1
Γ(∆i)

D
(d)
pi+∆i+ni−nPi

(Xi)Bpi+nQi (Yi)
)

×

∏
i<j

(Xi.Xj)n
X
ij (Yi.Yj)n

Y
ij

 . (4.10)

Inserting the Mellin transform of D (2.17) and expansion of B (2.21) and performing some
re-definitions and simplifications then gives the Mellin amplitude (defined in (2.33)):

M∆i
[(4.9)] = (−2)ΣX2ΣY (−1)2ΣQ×∏

i<j

(δij)nXij (dij−n
Y
ij+1)nYij

(∏
i

(pi+nXi +∆i)nPi (pi−nQi −nYi +1)
nQi

)

×
(

Σp−ΣY +d

2+1
)

Σ∆−d−1+ΣX+ΣY
,

where
∑
i 6=j

δij = pj + ∆j

∑
i 6=j

dij = pj . (4.11)

We will use this general formula, in conjunction with the algorithm of the previous subsec-
tion to compute higher order terms in the α′ expansion of 1/2-BPS correlators in the next
sections.

5 α′5 corrections

After α′3, the next terms in the effective action for string corrections occur at α′5. In the
flat space limit, such terms contain four derivatives, so first we wish to consider all the
possible terms in the effective action on AdS×S involving four derivatives. At first there
are many terms one can write down, but then using integration by parts as well as the
equations of motion reduces the number down quickly. We find that in fact there are only
two linearly independent terms one can write down involving four derivatives:

(∇φ.∇φ)2 and ∇2∇µφ∇µφφ2 . (5.1)
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These are the two terms appearing in the effective action (2.4). Any other four-derivative
term can be written in terms of these, using integration by parts and the equations of
motion. For example

∇µ∇νφ∇µφ∇νφ ∼ −
1
2 (∇φ.∇φ)2 ,

(∇µ∇νφ∇µ∇νφ)φ2 ∼ (∇φ.∇φ)2 −∇2∇µφ∇µφφ2 . (5.2)

Although at this level the independent integrands can be obtained by hand, they can also be
nicely checked on a computer by using the algorithm of the previous section and converting
to Mellin space where the IBP identities are made manifest. Simply list all possible four-
derivative integrands on the computer, use the algorithm to obtain the corresponding
integrand, convert them to Mellin amplitudes, and then solve for the independent ones.

We see here for the first time that the effective action has an ambiguity - a term
not determined by the Virasoro-Shapiro amplitude: in the flat space limit the second
integrand in (5.1) will vanish (as we can commute the Laplacian through so it acts directly
on φ giving zero by the equations of motion) and so remains undetermined. The complete
effective action at this order is thus (see (2.4))

Sα′5 = 1
8

(
α′

2

)5 (
ζ5S

main
α′5 + C0S

amb
α′5 +A2S

main
α′3

)
, (5.3)

where

Smain
α′5 = 3

4!

∫
AdS×S

d5X̂d5Ŷ (∇φ.∇φ)(∇φ.∇φ) ,

Samb
α′5 = 6

4!

∫
AdS×S

d5X̂d5Ŷ∇2∇µφ∇µφφ2 ,

Smain
α′3 = 1

4!

∫
AdS×S

d5X̂d5Ŷ φ4 . (5.4)

Replacing the scalar fields by bulk-to-boundary propagators and applying the covariant
derivatives directly on them then gives a prediction for the 1/2-BPS correlators at this order
in α′. First consider the main contribution (5.4):

〈OOOO〉|α′5;main

= 1
4!

(C4)4

(−2)16

∫
AdS×S

d5X̂d5Ŷ
N12N34 +N13N24 +N14N23

(P1 +Q1)5(P2 +Q2)5(P3 +Q3)5(P4 +Q4)5 × 44 , (5.5)

where
Nij = Xi.Xj + Yi.Yj + PiPj −QiQj . (5.6)

This can then be straightforwardly expanded to give any correlator directly and explicitly
in position space in terms of AdS and S contact diagram functions, as is done for a gen-
eral integral in (4.10). The corresponding Mellin amplitude can also be read off directly
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from (4.11)

Mmain
α′5 = 4

[
(Σp−1)5

(
s2 + t2 + u2

)
+ (Σp−1)4

(
−10

(
s̃ s + t̃ t + ũu

)
− 5 (cs s + ct t + cu u)

)
+ (Σp−1)3

(
20
(
s̃2 + t̃2 + ũ2

)
+ 4

(
c2
s + c2

t + c2
u

)
+ 20

(
s̃ cs + t̃ ct + ũ cu

))
+ (Σp−1)3

(
−12 Σ2

p

) ]
. (5.7)

Here we have used (4.11) to obtain the Mellin amplitude (with ∆i = 4, d = 4 and pi →
pi − 2) and then solved the constraints∑

i

δij = pj + 2
∑
i

dij = pj − 2

in terms of new variables (s, t, u) and (s̃, t̃, ũ), which are defined as follows [34]:

δ12 = −s+ cs , δ14 = −t+ ct , δ13 = −u ,
δ23 = −t , δ24 = −u+ cu , δ34 = −s ,
d12 = s̃+ cs , d14 = t̃+ ct , d13 = ũ ,

d23 = t̃ , d24 = ũ+ cu , d34 = s̃ ,

s = s+ s̃ , t = t+ t̃ , u = u+ ũ , (5.8)

where s+ t+ u = −p3 − 2 , s̃+ t̃+ ũ = p3 − 2 and s + t + u = −4. We also define

cs = p1 + p2 − p3 − p4
2 , ct = p1 + p4 − p2 − p3

2 , cu = p2 + p4 − p3 − p1
2 . (5.9)

Now let us take a closer look at the ambiguity in the second line of (5.4). Using the
equations of motion in (2.27), the integrand can be written as

∇2∇µφ∇µφφ2 =
[
∇2
X̂
,∇A

]
φ∇Aφ+

[
∇2
Ŷ
,∇I

]
φ∇Iφ . (5.10)

Moreover, after some algebra we find that[
∇2
X̂
,∇A

]
φ = −d∇Aφ,

[
∇2
Ŷ
,∇I

]
φ = d∇Iφ , (5.11)

so the ambiguity can be written as

∇2∇µφ∇µφφ2 = −d
((
∇X̂φ

)2 − (∇Ŷ φ)2)φ2 . (5.12)

The corresponding Witten diagram expression is given by

〈OOOO〉|α′5;amb = − 1
4!

(C4)4

(−2)16

∫
AdS×S

d5X̂d5Ŷ∏
i (Pi +Qi)4

∑
i<j

Lij
(Pi +Qi) (Pj +Qj)

× 43 , (5.13)

where
Lij = Xi.Xj + PiPj − Yi.Yj +QiQj . (5.14)
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This takes a very simple form in Mellin space

Mamb
α′5 = 4 (Σp − 1)3

(
c2
s + c2

t + c2
u + Σ2

p − 16
)
. (5.15)

Moreover, after multiplying the α′3 term in (3.5) by (α′/(2R2))2 (where we set R = 1),
it can be thought of as an additional ambiguity at α′5, which is the origin of the third line
in (5.4). Restoring the prefactors in (5.3), the α′5 correction to the Mellin amplitude for
1/2-BPS correlators can be written as a sum over three terms:

Mα′5 = 1
8

(
α′

2

)5 (
ζ5Mmain

α′5 + C0Mamb
α′5 +A2Mmain

α′3

)
, (5.16)

whereMmain
α′3 = (Σp−1)3 (it is given in (3.5) but without the explicit normalisation there).

The coefficients of the subleading terms can be fixed by comparing to the localisation result
in [31] and are given by

C0 = −3
2 ζ5 , A2 = −30 ζ5 . (5.17)

We find perfect agreement with the results from bootstrap methods of [33] (rewritten in
this notation in [34]).7

6 α′6 corrections

At order α′6 we have to consider all possible terms in the effective action involving six
derivatives. Using a computer, it is straightforward to enumerate all possibilities and com-
pute their Mellin amplitudes using the algorithm explained in section 4 to find all linearly
independent terms. After doing so, we find that there are only two linearly independent
terms involving six derivatives:

(∇φ.∇φ)(∇µ∇νφ∇µ∇νφ) and ∇µ∇2∇νφ∇µ∇νφφ2 , (6.1)

which appear in the effective action in (2.4). The first term is the main correction at α′6
while the second term is an ambiguity which vanishes in the flat space limit and is thus
not determined by the flat space Virasoro-Shapiro amplitude.

The complete action at order α′6 is given by (see (2.4))

Sα′6 = 1
8

(
α′

2

)6 (
2(ζ3)2Smain

α′6 + E0S
amb
α′6 +B1S

main
α′5 + C1S

amb
α′5 +A3S

main
α′3

)
, (6.2)

where

Smain
α′6 = 1

4!

∫
AdS×S

d5X̂d5Ŷ (∇φ.∇φ)(∇µ∇νφ∇µ∇νφ) ,

Samb
α′6 = 6

4!

∫
AdS×S

d5X̂d5Ŷ∇µ∇2∇νφ∇µ∇νφφ2 , (6.3)

and the rest was defined in (5.4) (in particular, they arise from taking all the terms con-
tributing at α′5 and multiplying them with α′/(2R2) with unfixed numerical coefficients

7We thank Francesco Aprile for explicitly checking this agreement.
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(note that we set R = 1)). We then find that the main contribution to 1/2-BPS correlators
at this order is

〈OOOO〉|α′6;main

= 1
4!

1
6

(C4)4

(−2)16

∫
AdS×S

d5X̂d5Ŷ∏
i (Pi +Qi)5

[
N12M34

(P3 +Q3) (P4 +Q4) + perms
]
× 44 × 52 , (6.4)

where the correlator is understood to come from the first line of (6.3), Nij was defined
in (5.6) and

Mij = (Xi.Xj + PiPj + Yi.Yj −QiQj)2 − 1
5 (PiPj −QiQj)2 . (6.5)

Before discussing the Mellin amplitude of the main contribution, let us briefly describe
the ambiguity whose integrand can be written as

∇µ∇2∇νφ∇µ∇νφφ2 = −d
(
(∇A∇Bφ)2 − (∇I∇Jφ)2

)
φ2 , (6.6)

where A and I indices label X̂ and Ŷ coordinates, respectively. We obtained the right
hand side by commuting the ∇2 with ∇ν and using the equations of motion as we did in
the previous subsection. The Witten diagram expression associated with (6.6) is

〈OOOO〉|α′6;amb

= 1
4!

(C4)4

(−2)16

∫
AdS×S

d5X̂d5Ŷ∏
i (Pi +Qi)4

∑
i<j

Kij

(Pi +Qi)2 (Pj +Qj)2 × 43 × 52 , (6.7)

where
Kij = (Xi.Xj + PiPj)2 − (Yi.Yj −QiQj)2 − 1

5
(
(PiPj)2 − (QiQj)2

)
. (6.8)

Converting this to Mellin space gives the ambiguity

Mamb
α′6 =− 32

[
(Σp−1)5

(
s2 + t2 + u2

)
+ (Σp−1)4

(1
2
(
s c2

s+t c2
t +u c2

u

)
− (Σp+3)

[
2
(
s s̃+ t t̃+u ũ

)
+ (s cs+t ct+u cu)

])
+ (Σp−1)3

(
−
(
c3
s + c3

t + c3
u

)
− 2

(
c2
s s̃+ c2

t t̃+ c2
u ũ
)

+ 10 Σp

(
s̃2 + t̃2 + ũ2

)
+ 10 Σp

(
s̃ cs + t̃ ct + ũ cu

)
+ 3 Σp

(
c2
s + c2

t + c2
u

)
− 2 Σ3

p − 16 Σp

)]
. (6.9)

Converting (6.4) to Mellin space, the Mellin amplitude of the main contribution is

Mmain
α′6 = M̂main

α′6 −
1
12M

amb
α′6 , (6.10)
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where

M̂main
α′6 = 8

3
[

(Σp−1)6

(
s3 + t3 + u3

)
+ (Σp−1)5

(
6 Σp

(
s2 + t2 + u2

)
−18

(
s2 s̃+ t2 t̃+ u2 ũ

)
−9

(
s2 cs+t2 ct+u2 cu

))
+ (Σp−1)4

(
90
(
s s̃2+t t̃2+u ũ2

)
+ 39

2
(
s c2

s+t c2
t +u c2

u

)
+90

(
s s̃ cs+t t̃ ct+u ũ cu

)
− 60 Σp

(
s s̃+ t t̃+ u ũ

)
− 30 Σp (s cs + t ct + u cu)

)
+ (Σp−1)3

(
− 120

(
s̃3 + t̃3 + ũ3

)
− 9

(
c3
s + c3

t + c3
u

)
− 180

(
s̃2 cs + t̃2 ct + ũ2 cu

)
− 78

(
c2
s s̃+ c2

t t̃+ c2
u ũ
)

+ 120 Σp

(
s̃2 + t̃2 + ũ2

)
+ 27 Σp

(
c2
s + c2

t + c2
u

)
+ 120 Σp

(
s̃ cs + t̃ ct + ũ cu

)
− 50 Σ3

p − 16 Σp

)]
. (6.11)

This Mellin amplitude shows a similar structure as (5.7). Every line is multiplied by a
Pochhammer depending on the power of {s, t,u} and the rest is at most cubic in the
variables {s, t,u, s̃, t̃, ũ, cs, ct, cu,Σp}.

Additionally, after multiplying the three terms which span the α′5 correction in (5.16)
by α′, they become additional ambiguities at α′6, see the expansion (2.5). The com-
plete Mellin amplitude for 1/2-BPS correlators at order α′6 can be written as a sum over
five terms:

Mα′6 = 1
8

(
α′

2

)6
(2 (ζ3)2Mmain

α′6 + E0Mamb
α′6 +B1Mmain

α′5 + C1Mamb
α′5 +A3Mmain

α′3 ) , (6.12)

where we restore the coefficients from (6.4).8
We can fix two of the coefficients by comparing the Mellin amplitude to the result

from localisation in [52, 53]. To compare (6.12) to [52] we take s → s
2 − 2, t → t

2 − 2 and
specialise to pi = 2 (where s̃ = t̃ = ũ = 0):

M2222
α′6 = 1

8

(
α′

2

)6
× 60

(
672(ζ3)2 s t u+ 14

(
3B1 + 4

(
(ζ3)2 − 6E0

)) (
s2 + t2 + u2

)
+A3 − 96B1 + 768E0 − 3200(ζ3)2

)
, (6.13)

where u = 4− s− t. We can now compare this expression to the result in [52] and partially
fix the coefficients to

E0 = B1
8 + 2(ζ3)2

3 , A3 = 0 , (6.14)

which leads to the α′6 correction to the correlator for pi = 2:

M2222
α′6 = 1

8

(
α′

2

)6
× 2 (ζ3)2 × (3)6

[
s t u− 1

4
(
s2 + t2 + u2

)
− 4

]
. (6.15)

It is noteworthy that localisation predicts the coefficient A3 = 0. Localisation also predicts
the absence of any α′4 corrections i.e. A1 = 0 [31]. Indeed, as we discuss in the conclusions,

8Note that the number of ambiguities is consistent with the number obtained via the bootstrap method.
We thank Francesco Aprile, James Drummond, Hynek Paul and Michele Santagata for discussions on this.
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it is natural to expect all odd terms in the expansion of the coefficients in α′/R2 (see (2.5))
to vanish in which case we would have B1 = C1 = 0 also, then the α′6 correction to the
Mellin amplitude in (6.12) is completely fixed.

7 α′7 corrections

Using the algorithm explained in section 4 to find all linearly independent terms in the
effective action involving eight derivatives, we find that there are six independent terms,
notably the main contribution

(∇µ∇νφ∇µ∇νφ)2, (7.1)

and five ambiguities:

(∇µ∇ν∇µ∇ρ∇σ∇ρφ) (∇ν∇σφ)φ2 ,
(
∇2∇µ∇ν∇ρ∇νφ

)
(∇µ∇ρφ)φ2 ,(

∇2∇µ∇ν∇ρ∇νφ
)

(∇ρφ) (∇µφ)φ , (∇µ∇ν∇ρ∇ν∇ρφ) (∇σ∇µφ) (∇σφ)φ ,

(∇µ∇ν∇ρ∇σ∇ρφ) (∇µ∇σφ) (∇νφ)φ . (7.2)

See appendix B for details on the ambiguities. The complete effective action at this order
is then given by (see (2.4))

Sα′7 = 1
8

(
α′

2

)7(1
2ζ7S

main
α′7 +G1;0S

amb1
α′7 +G2;0S

amb2
α′7 +G3;0S

amb3
α′7 +G4;0S

amb4
α′7 +G5;0S

amb5
α′7

+D1S
main
α′6 + E1S

amb
α′6 +B2S

main
α′5 + C2S

amb
α′5 +A4S

main
α′3

)
, (7.3)

where the main contribution is

Smain
α′7 = 6

4!

∫
AdS×S

d5X̂d5Ŷ (∇µ∇νφ∇µ∇νφ)2, (7.4)

and the contributions from the five α′7 ambiguities in (7.2) to the effective action are given
in appendix B together with their Witten diagram expressions and Mellin amplitudes. The
contributions from lower α′ orders were defined in (5.4) and (6.3). The prediction for the
main contribution to the 1/2-BPS correlator at this order is:

〈OOOO〉|α′7;main = 2
4!

(C4)4

(−2)16

∫
AdS×S

d5X̂d5Ŷ∏
i (Pi +Qi)6 [M12M34 + perms]× 44 × 54 , (7.5)

where Mij was defined in (6.5). The Mellin amplitude of the main contribution is

Mmain
α′7 =M̂main

α′7 + 63
8 M

amb1
α′7 − 31

4 M
amb2
α′7 − 25

32M
amb3
α′7 −Mamb4

α′7 − 32Mmain
α′5

− 85
2 M

amb
α′5 − 1024Mmain

α′3 , (7.6)
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where M̂main
α′7 is:

M̂main
α′7 = 32

[
(Σp−1)7

(
s4 + t4 + u4)

+ (Σp−1)6
(
8 Σp

(
s3 + t3 + u3)− 28

(
s3 s̃+ t3 t̃+ u3 ũ

)
− 14

(
s3 cs + t3 ct + u3 cu

))
+ (Σp−1)5

(
Σp (26 Σp + 9)

(
s2 + t2 + u2)+ 252

(
s2 s̃2 + t2 t̃2 + u2 ũ2)

+ 252
(
s2 s̃ cs + t2 t̃ ct + u2 ũ cu

)
+ 57

(
s2 c2

s + t2 c2
t + u2 c2

u

)
− 144 Σp

(
s2 s̃+ t2 t̃+ u2 ũ

)
− 72 Σp

(
s2 cs + t2 ct + u2 cu

) )
+ (Σp−1)4

(
− 840

(
s s̃3 + t t̃3 + u ũ3)− 75

(
s c3
s + t c3

t + u c3
u

)
− 1260

(
s s̃2 cs + t t̃2 ct + u ũ2 cu

)
− 570

(
s c2
s s̃+ t c2

t t̃+ u c2
u ũ
)

+ 720 Σp
[(

s s̃2 + t t̃2 + u ũ2)+
(
s s̃ cs + t t̃ ct + u ũ cu

)]
+ 1

2 (336 Σp − 1)
(
s c2
s + t c2

t + u c2
u

)
− Σp (139 Σp + 27)

[
2
(
s s̃+ t t̃+ u ũ

)
+ (s cs + t ct + u cu)

] )
+ (Σp−1)3

(
840

(
s̃4 + t̃4 + ũ4)+ 191

8
(
c4
s + c4

t + c4
u

)
+ 1680

(
s̃3 cs + t̃3 ct + ũ3 cu

)
+ 1140

(
s̃2 c2

s + t̃2 c2
t + ũ2 c2

u

)
+ 300

(
c3
s s̃+ c3

t t̃+ c3
u ũ
)
− 960 Σp

(
s̃3 + t̃3 + ũ3)

− 191
2 Σp

(
c3
s + c3

t + c3
u

)
− 1440 Σp

(
s̃2 cs + t̃2 ct + ũ2 cu

)
− 671 Σp

(
c2
s s̃+ c2

t t̃+ c2
u ũ
)

+ 610 Σ2
p

[(
s̃2 + t̃2 + ũ2)+

(
s̃ cs + t̃ ct + ũ cu

)]
+ 573

4 Σ2
p

(
c2
s + c2

t + c2
u

)
− 1471

8 Σ4
p − 116 Σ2

p

)]
, (7.7)

and the Mellin amplitudes of the ambiguities are given in appendix B. Note that this ex-
hibits a similar structure to (5.7) and (6.11), since every line is multiplied by a Pochham-
mer depending on the power of {s, t,u} and the rest is at most quartic in the variables
{s, t,u, s̃, t̃, ũ, cs, ct, cu,Σp} .

Collecting all possible contributions at this order, the complete Mellin amplitude for
the 1/2-BPS correlator at α′7 is given by eleven terms:

Mα′7 = 1
8

(
α′

2

)7 (1
2 ζ7Mmain

α′7 +G1;0Mamb1
α′7 +G2;0Mamb2

α′7 +G3;0Mamb3
α′7 +G4;0Mamb4

α′7

+G5;0Mamb5
α′7 +D1Mmain

α′6 + E1Mamb
α′6 +B2Mmain

α′5 + C2Mamb
α′5 +A4Mmain

α′3

)
.

(7.8)

The coefficients of the subleading terms remain unfixed at this order, to fix them we would
need additional information. As an example, let us look at the lowest charge correlator
with pi = 2 (as in the previous section we shift s→ s

2 − 2 , t→ t
2 − 2):

M2222
α′7 = 1

8

(
α′

2

)7
× 60

(
a1
(
s2 + t2 + u2

)2
+ a2 s t u + a3

(
s2 + t2 + u2

)
+ a4

)
, (7.9)
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with u = 4− s− t and

a1 = 1512 ζ7, a2 = 336 (D1 + 48 (G5;0 − 2 ζ7)) ,
a3 = 42B2 + 28 (D1 − 6 (2E1 − 18G1;0 − 20G2;0 + 40G3;0 − 12G5;0 + 23 ζ7)) ,
a4 = A4 − 32 (3B2 + 50D1 − 12 (2E1 − 18G1;0 − 20G2;0 + 40G3;0 − 204G5;0 + 335 ζ7)) .

(7.10)

8 Conclusion

In this paper, we postulate a simple effective field theory describing four-point tree-level
string interactions in AdS5×S5. Using a new formulation of Witten diagrams and the
Mellin transform which treats AdS and S on equal footing, we show that this simple
description reproduces previous results for all four-point correlators of 1/2-BPS operators
in N = 4 SYM up to order α′5, and propose a general algorithm for extending this to
arbitrary high order, which makes new predictions at α′6 and α′7. The coefficients of the
effective action can be determined by writing down an effective action which gives rise
to the flat space VS amplitude and lifting it to AdS5×S5, although there are curvature-
dependent ambiguities which cannot be fixed in this way and need additional input from
other methods such as localisation. After fixing all the coefficients in the effective action,
the 10d Mellin amplitudes we derive from it can be thought of as the analogue of the VS
amplitude in AdS5×S5.

Note that here we have focused on the limit of tree-level string theory for which all
orders in the α′ effective action are known in flat space. However, the coefficients of the
first three terms in the flat space effective action (2.3) (i.e. up to ∂6φ4) are actually known
at the full non-perturbative level as functions of the string coupling [63–67].9 These results
imply that the coefficients in (2.5) can be promoted to full functions of the complex Yang-
Mills coupling τ = θ/(2π) + 4πiNα′2 (where θ is the Yang-Mills theta-angle and we recall
that Nα′2 = g−2

YM if we set the AdS radius R = 1). Specifically they are promoted as(
α′

2

)3
A0 =

(
α′

2

)3
2ζ3 → 1

(24πN)3/2 × E
(3

2 , τ, τ̄
)

(
α′

2

)5
B0 =

(
α′

2

)5
ζ5 → 1

(24πN)5/2 ×
1
2E

(5
2 , τ, τ̄

)
(
α′

2

)6
D0 =

(
α′

2

)6
2(ζ3)2 → 1

(24πN)3 × 3 E
(

3, 3
2 ,

3
2 , τ, τ̄

)
(8.1)

where A0, B0, D0, are the leading coefficients in the first, second, and fourth lines of (2.5),

E(s, τ, τ̄) = 2ζ2s(=(τ))s(1 + . . . ) (8.2)

are non-holomorphic Eisenstein series and

E(3, 3
2 ,

3
2 , τ, τ̄) = 2

3(ζ3)2(=(τ))3(1 + . . . ) (8.3)

9We thank Congkao Wen for drawing our attention to this.

– 26 –



J
H
E
P
0
4
(
2
0
2
1
)
2
3
7

is a generalised Eisenstein series. In the above two equations the ellipses denote perturba-
tive and non-perturbative terms which vanish when =(τ)→∞. The precise definitions of
the functions can be found for example in [53].

Furthermore recently in [53, 57, 68] the corresponding dual (but lowest charge only) cor-
relators were considered and completely fixed via localisation to all orders. This then fixes
the remaining ambiguities at this order (assuming B1 = C1 = 0 as we discuss around (6.15)
and the second bullet point below) in terms of the above functions as

C0 = −3
2B0 , A2 = −30B0 , E0 = D0

3 . (8.4)

These relations follow from the earlier results in (5.17) and (6.14), respectively.
In summary, the 10d effective action in (2.4) appears to be a very useful way to describe

IIB string theory in AdS5×S5 and a powerful tool for computing four-point correlators in
N = 4 SYM. There are a number of interesting questions that remain:

• The strategy we have taken in this paper was to postulate a local 10d effective theory
describing the string corrections to IIB supergravity in AdS5×S5 and then use it to
compute four-point correlators in N = 4 SYM. Just as on flat background [47], IIB
supergravity linearised on the AdS×S superspace background is again described by a
chiral scalar superfield with a certain fourth order constraint [69, 70]. It presumably
then makes sense to integrate a superpotential consisting of a holomorphic function of
this scalar in chiral AdS×S superspace. Ultimately however we do not derive the ex-
istence of this superpotential, but justify it a posteriori by the fact that it reproduces
previous results for correlators that were obtained using bootstrap methods [30–34].
But this does then lead to the question of the existence of an effective chiral superpo-
tential describing the full nonlinear theory. Such an object has been discussed before,
notably in [71–73]. An obstruction to its existence was found in [71, 72]. However,
despite this it was shown in [73] that all terms in the full non-linear effective action
consisting of the curvature and five-form field strength are correctly reproduced by
such a superpotential. This latter fact perhaps explains the existence of a super-
potential in AdS5×S5 (since the AdS5×S5 superspace has only the five form field
strength turned on). In any case it would be interesting to explore this point further.

• As mentioned above, the effective action has ambiguities corresponding to curvature
corrections which are invisible in the flat space limit. For low orders in α′, we find that
these ambiguities can be fixed by comparing to results from localisation. If it were
possible to find a systematic way to fix all the ambiguities, the next question would
be whether we can resum the α′ expansion to obtain a compact form analogous to
the flat space VS amplitude. If so, how does the analytic structure become modified
in curved background? Note here that, as observed below (6.15), the explicit results
for these ambiguities obtained via localisation are completely consistent with all odd
powers in the expansion of α′/R2 vanishing. Since the curvature has opposite sign
for AdS (−20/R2) and S (+20/R2), it is perhaps quite natural to expect that only
even powers of the curvature should contribute. Moreover, we find that the nonzero
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coefficients which can be fixed by comparing to localisation results take a very simple
form proportional to the leading coefficients. It would therefore be interesting to see
if this simplicity or any other constraints can be derived from underlying symmetries
of the superstring in AdS5×S5, such as the combination of bosonic and fermionic
T-dualities discovered in [74, 75]. It should also be noted that the modular functions
appearing in (8.1) are a consequence of the SL(2,Z) symmetry of IIB string theory,
which can be understood from compactifying M-theory on a torus and identifying
the IIB coupling τ with the complex structure of the torus [76, 77].

• It would also be interesting to extend this approach to higher-point correlators. The
four-point AdS×S contact diagrams have a direct generalisation to n points. An
important feature of 1/2-BPS four-point correlators in N = 4 SYM that allowed us
to write down a simple effective action was the ability to factor out a polynomial which
encodes all the supersymmetry. This is analogous to factoring out a supersymmetric
delta function δ16(Q) from a maximally supersymmetric four-point superamplitude
in flat space. A similar property holds for n-point maximally nilpotent correlators —
those with fermionic degree n−4 [78–80]. These have recently been studied at strong
coupling in [57] and one might expect them to be computable from a 10d scalar
effective action just as for the four point ones. The next to maximally nilpotent
correlators are much more complicated from the point of view of superconformal
invariance (for example see [81]). However the five-point case has recently been
computed in the tree-level supergravity limit in [82] and a perhaps there is some
generalisation of our methods which could apply there too.

• Another important direction would be to extend this approach to other backgrounds.
As explained above, in N = 4 SYM the supersymmetry factors out of certain cor-
relators in a very simple way making it possible to derive them from a 10d scalar
theory in the bulk. We expect this factorisation to hold when the bulk geometry is
AdSp × Sq with p = q, but not when p 6= q. For AdSq×Sq with q = 3, 5, it was
recently shown that supergravity correlators enjoy conformal symmetry which can
be used to lift the lowest charge 1/2-BPS four-point correlator to all higher charge
correlators [46, 83, 84]. It would be interesting to investigate the relation of this
higher dimensional conformal symmetry with the explicit higher dimensional inte-
grals (AdS×S Witten diagrams) we write down here. While the approach in the
above references is restricted to supergravity, ours naturally describes string correc-
tions. However note that the results of [32–34] strongly hint that much of the higher
dimensional conformal structure survives for the string corrections. It would therefore
be interesting to investigate how these two approaches are related.

• It would also be conceptually very satisfying to derive the effective action directly
from CFT without assuming local spacetime description in the bulk. Indeed, deriving
the emergence of spacetime from a non-gravitational theory in the boundary is one of
the main reasons for the huge interest in AdS/CFT. This is also essentially the goal
of the bootstrap approach [32–34]. A systematic approach to such a derivation was
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achieved in the context of a toy model consisting of a scalar field in AdS in [35] using
crossing and conformal symmetry of boundary CFT correlators. This calculation was
adapted to stress tensor correlators in N = 4 SYM in [36]. The fact that IIB string
theory in AdS5×S5 can be reduced to a simple 10d effective field theory therefore
suggests the exciting prospect that this program might be realised for a full-blown
theory of quantum gravity. This would presumably require better understanding of
the relation to the higher dimensional conformal symmetry discussed above.

• Finally there is the important question of performing loop computations of ampli-
tudes directly on the gravitational side of the duality (rather than bootstrapping
loop results from the CFT side as has been achieved in recent years [30, 38–45]).
One of the obstacles to performing loop computations directly on the gravity side is
the sheer technical complexity of summing over all the supergravity fields and one
could hope there is a way of leveraging the tree-level simplicity we have uncovered
here to help at loop level. For example, it would be interesting to look for a split
representation [58] for generalised bulk-to-bulk propagators written in terms of gen-
eralised bulk-to-boundary propagators. Generalising the unitarity methods recently
developed in [85] to AdS×S may be also useful.

We hope to report further on these directions in the future.
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A The polynomial I(Xi, Yi)

The polynomial I(Xi, Yi) which factors out of all 1/2-BPS four-point functions (2.8) is:

I(Xi, Yi) = (x− y)(x̄− y)(x− ȳ)(x̄− ȳ)(X1.X3)2(X2.X4)2(Y1.Y3)2(Y2.Y4)2

xx̄ = X1.X2X3.X4
X1.X3X2.X4

(1− x)(1− x̄) = X1.X4X2.X3
X1.X3X2.X4

yȳ = Y1.Y2Y3.Y4
Y1.Y3Y2.Y4

(1− y)(1− ȳ) = Y1.Y4Y2.Y3
Y1.Y3Y2.Y4

. (A.1)

I is crossing symmetric, under simultaneously permuting Xi, Yi with Xj , Yj . It is also a
polynomial and written out fully in terms of the SO(2, 4) and SO(6) invariants Xi.Xj and
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Yi.Yj is given as

I(Xi, Yi) = (X1.X4) 2 (X2.X3) 2Y1.Y2Y1.Y3Y2.Y4Y3.Y4

+X1.X2X1.X4X3.X4X2.X3 (Y1.Y3) 2 (Y2.Y4) 2

+X1.X3X1.X4X2.X4X2.X3 (Y1.Y2) 2 (Y3.Y4) 2

−X1.X2X1.X4X3.X4X2.X3Y1.Y3Y1.Y4Y2.Y3Y2.Y4

−X1.X3X1.X4X2.X4X2.X3Y1.Y2Y1.Y4Y2.Y3Y3.Y4

−X1.X3X1.X4X2.X4X2.X3Y1.Y2Y1.Y3Y2.Y4Y3.Y4

−X1.X2X1.X4X3.X4X2.X3Y1.Y2Y1.Y3Y2.Y4Y3.Y4

+X1.X2X1.X3X2.X4X3.X4 (Y1.Y4) 2 (Y2.Y3) 2

+ (X1.X2) 2 (X3.X4) 2Y1.Y3Y1.Y4Y2.Y3Y2.Y4

−X1.X2X1.X3X2.X4X3.X4Y1.Y3Y1.Y4Y2.Y3Y2.Y4

+ (X1.X3) 2 (X2.X4) 2Y1.Y2Y1.Y4Y2.Y3Y3.Y4

−X1.X2X1.X3X2.X4X3.X4Y1.Y2Y1.Y4Y2.Y3Y3.Y4 . (A.2)

B α′7 ambiguities

The ambiguities at order α′7 were introduced in (7.2) and we spell out their Witten diagram
expressions and the corresponding Mellin amplitudes in the following.

The first ambiguity at α′7 contributes to the effective action with

Samb1
α′7 = 6

4!

∫
AdS×S

d5X̂d5Ŷ (∇µ∇ν∇µ∇ρ∇σ∇ρφ) (∇ν∇σφ)φ2, (B.1)

it corresponds to a four-derivative interaction and its contribution to the 1/2-BPS correlator
is given as

〈OOOO〉|α′7;amb1 = 1
4!

(C4)4

(−2)16

∫
AdS×S

d5X̂d5Ŷ∏
i (Pi +Qi)4

∑
i<j

Kamb1
ij

(Pi +Qi)2 (Pj +Qj)2 × 43 × 5 ,

(B.2)

where

Kamb1
ij = 45

[
(Xi.Xj + PiPj)2 + (Yi.Yj +QiQj)2

]
− 9 (PiPj +QiQj)2

− 180QiQj Yi.Yj + 26PiPj QiQj . (B.3)

We write the corresponding Mellin amplitude as

Mamb1
α′7 = M̂amb1

α′7 + 204Mamb
α′5 + 12288Mmain

α′3 , (B.4)

where
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M̂amb1
α′7 = 288

[
(Σp−1)5

(
s2 + t2 + u2)

+ (Σp−1)4

(
1
2
(
s c2
s + t c2

t + u c2
u

)
− (Σp + 3)

[
2
(
s s̃+ t t̃+ u ũ

)
+ (s cs + t ct + u cu)

])
+ (Σp−1)3

(
1
12
(
c4
s + c4

t + c4
u

)
− Σp

(
c2
s s̃+ c2

t t̃+ c2
u ũ

2)+ 1
18
(
c2
s c

2
t + c2

s c
2
u + c2

t c
2
u

)
− 1

2Σp
(
c3
s + c3

t + c3
u

)
+ 29

36Σ2
p

(
c2
s + c2

t + c2
u

)
− 5

6 cs ct cu Σp

+ 2
(
Σ2
p + 6

) [(
s̃2 + t̃2 + ũ2)+

(
s̃ cs + t̃ ct + ũ cu

)]
− 1

6Σ2
p

(
Σ2
p + 72

))]
. (B.5)

The next three ambiguities also correspond to four-derivative terms. The contribution
to the effective action from the second ambiguity is

Samb2
α′7 = 6

4!

∫
AdS×S

d5X̂d5Ŷ
(
∇2∇µ∇ν∇ρ∇νφ

)
(∇µ∇ρφ)φ2, (B.6)

which corresponds to the correlator

〈OOOO〉|α′7;amb2 = 1
4!

(C4)4

(−2)16

∫
AdS×S

d5X̂d5Ŷ∏
i (Pi +Qi)4

∑
i<j

Kamb2
ij

(Pi +Qi)2 (Pj +Qj)2×43×52×2 ,

(B.7)

where

Kamb2
ij = 5

[
(Xi.Xj + PiPj)2 + (Yi.Yj +QiQj)2

]
− (PiPj +QiQj)2

− 20QiQj Yi.Yj + 2PiPj QiQj . (B.8)

The Mellin amplitude is

Mamb2
α′7 = M̂amb2

α′7 + 248Mamb
α′5 + 14336Mmain

α′3 , (B.9)

where

M̂amb2
α′7 = 320

[
(Σp−1)5

(
s2 + t2 + u2)

+ (Σp−1)4

(
1
2
(
s c2
s + t c2

t + u c2
u

)
− (Σp + 3)

[
2
(
s s̃+ t t̃+ u ũ

)
+ (s cs + t ct + u cu)

])
+ (Σp−1)3

(
3
40
(
c4
s + c4

t + c4
u

)
− Σp

(
c2
s s̃+ c2

t t̃+ c2
u ũ

2)+ 1
20
(
c2
s c

2
t + c2

s c
2
u + c2

t c
2
u

)
− 1

2Σp
(
c3
s + c3

t + c3
u

)
+ 4

5Σ2
p

(
c2
s + c2

t + c2
u

)
− 9

10 cs ct cu Σp

+ 2
(
Σ2
p + 6

) [(
s̃2 + t̃2 + ũ2)+

(
s̃ cs + t̃ ct + ũ cu

)]
− 1

40Σ2
p

(
7 Σ2

p + 480
))]

. (B.10)
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The third ambiguity contributes to the effective action with

Samb3
α′7 =

∫
AdS×S

d5X̂d5Ŷ
(
∇2∇µ∇ν∇ρ∇νφ

)
(∇ρφ) (∇µφ)φ, (B.11)

and the prediction for its contribution to the 1/2-BPS correlator is given by

〈OOOO〉|α′7;amb3 =
1
4!

(C4)4

(−2)16

∫
AdS×S

d5X̂d5Ŷ∏
i (Pi +Qi)4

[
Kamb3

123
(P1 +Q1)2 (P2 +Q2) (P3 +Q3)

+ perms
]
× 44 × 5× 2 ,

(B.12)

where we sum over all permutations and

Kamb3
ijk =P 2

i (4PjPk −Xj .Xk) +Q2
i (4QjQk + Yj .Yk) + 5Pi (PkXi.Xj + Pj Xi.Xk)

− 5Qi (Qk Yi.Yj +Qj Yi.Yk) + 5 (Xi.Xj Xi.Xk + Yi.Yj Yi.Yk) . (B.13)

The corresponding Mellin amplitude is

Mamb3
α′7 = M̂amb3

α′7 − 704Mamb
α′5 − 32768Mmain

α′3 , (B.14)

where

M̂amb3
α′7 =− 640

[
(Σp−1)5

(
s2 + t2 + u2)

+ (Σp−1)4

(
1
2
(
s c2
s + t c2

t + u c2
u

)
− (Σp + 3)

[
2
(
s s̃+ t t̃+ u ũ

)
+ (s cs + t ct + u cu)

])
+ (Σp−1)3

(
1
20
(
c4
s + c4

t + c4
u

)
− Σp

(
c2
s s̃+ c2

t t̃+ c2
u ũ

2)− 1
10
(
c2
s c

2
t + c2

s c
2
u + c2

t c
2
u

)
− 1

2Σp
(
c3
s + c3

t + c3
u

)
+ 13

20Σ2
p

(
c2
s + c2

t + c2
u

)
− 3

10 cs ct cu Σp

+ 2
(
Σ2
p + 6

) [(
s̃2 + t̃2 + ũ2)+

(
s̃ cs + t̃ ct + ũ cu

)]
− 1

5Σ2
p

(
Σ2
p + 60

))]
. (B.15)

The next ambiguity contributes to the effective action as

Samb4
α′7 =

∫
AdS×S

d5X̂d5Ŷ (∇µ∇ν∇ρ∇ν∇ρφ) (∇σ∇µφ) (∇σφ)φ, (B.16)

and the corresponding correlator is given by

〈OOOO〉|α′7;amb4 =
1
4!

(C4)4

(−2)16

∫
AdS×S

d5X̂d5Ŷ∏
i (Pi +Qi)4

[
Kamb4

123
(P1 +Q1)3 (P2 +Q2)2 (P3 +Q3)

+ perms
]
× 44 × 5× 2 ,

(B.17)
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where

Kamb4
ijk =P 2

i Qi
[
5 (5Pj +Qj) (Xj .Xk + Yj .Yk)− 4QjQk (6Pj +Qj) + 20P 2

j Pk
]

− PiQ2
i

[
5 (Pj + 5Qj) (Xj .Xk + Yj .Yk) + 4PjPk (Pj + 6Qj)− 20Q2

jQk
]

− P 2
i [Qj (Pj +Qj)Yi.Yk + 5Yi.Yj (Xj .Xk + Yj .Yk + PjPk −QjQk)]

+Q2
i [Pj (Pj +Qj)Xi.Xk − 5Xi.Xj (Xj .Xk + Yj .Yk + PjPk −QjQk)]

+ PiQi [25 (PjPk −QjQk) (Xi.Xj + Yi.Yj) + (Pj +Qj) (5Qj Yi.Yk − 5Pj Xi.Xk)
+ 25 (Xi.Xj + Yi.Yj) (Xj .Xk + Yj .Yk)] . (B.18)

The contribution of this ambiguity to the Mellin amplitude is

Mamb4
α′7 = M̂amb4

α′7 − 128Mmain
α′5 , (B.19)

where

M̂amb4
α′7 =32

[
(Σp−1)5

(
Σ2
p

(
s2 + t2 + u2)+

(
s2 c2

s + t2 c2
t + u2 c2

u

)
+
[
s2 (c2

t + c2
u

)
+ t2 (c2

s + c2
u

)
+ u2 (c2

s + c2
t

)] )
+ (Σp−1)4

(
− 5

(
s c3
s + t c3

t + u c3
u

)
− 10

(
s c2
s s̃+ t c2

t t̃+ u c2
u ũ
)
− 10 Σ2

p

(
s s̃+ t t̃+ u ũ

)
− 5 Σ2

p (s cs + t ct + u cu)− 10
[
s s̃
(
c2
t + c2

u

)
+ t t̃

(
c2
s + c2

u

)
+ u ũ

(
c2
s + c2

t

)]
− 5

[
s cs

(
c2
t + c2

u

)
+ t ct

(
c2
s + c2

u

)
+ u cu

(
c2
s + c2

t

)] )
+ (Σp−1)3

(
4
(
c4
s + c4

t + c4
u

)
+ 20

(
s̃2 c2

s + t̃2 c2
t + ũ2 c2

u

)
+ 8

(
c2
s c

2
t + c2

s c
2
u + c2

t c
2
u

)
+ 20

(
c3
s s̃+ c3

t t̃+ c3
u ũ
)

+ 20 Σ2
p

(
s̃2 + t̃2 + ũ2)− 8 Σ2

p

(
c2
s + c2

t + c2
u

)
+ 20 Σ2

p

(
s̃ cs + t̃ ct + ũ cu

)
+ 20

[
s̃2 (c2

t + c2
u

)
+ t̃2

(
c2
s + c2

u

)
+ ũ2 (c2

s + c2
t

)]
+ 20

[
s̃ cs

(
c2
t + c2

u

)
+ t̃ ct

(
c2
s + c2

u

)
+ ũ cu

(
c2
s + c2

t

)]
− 12 Σ4

p

)]
. (B.20)

Finally, the fifth ambiguity contributes to the effective action with

Samb5
α′7 =

∫
AdS×S

d5X̂d5Ŷ (∇µ∇ν∇ρ∇σ∇ρφ) (∇µ∇σφ) (∇νφ)φ , (B.21)

which corresponds to a six-derivative interaction and its contribution to the 1/2-BPS cor-
relator is

〈OOOO〉|α′7;amb5 =
1
4!

(C4)4

(−2)16

∫
AdS×S

d5X̂d5Ŷ∏
i (Pi +Qi)4

[
Kamb5

123
(P1 +Q1)3 (P2 +Q2)2 (P3 +Q3)

+ perms
]
× (−44) ,

(B.22)
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where

Kamb5
ijk =P 3

i [Pj (4 (Qj + 21Pj)Pk − 45Xj .Xk)] +Q3
i [Qj (4 (Pj + 21Qj)Qk + 45Yj .Yk)]

+ P 2
i Qi [8 (Qj−4Pj)PjPk + 4 (Qj−5Pj) (Qj+6Pj)Qk − 40PjXj .Xk − 5QjYj .Yk]

+ PiQ
2
i [8 (Pj−4Qj)QjQk + 4 (Pj−5Qj) (Pj+6Qj)Pk + 40QjYj .Yk + 5PjXj .Xk]

+ P 2
i

[
Pj (129Pj + 4Qj)Xi.Xk + 15Xi.Xj (17PjPk − 3Xj .Xk) + 120P 2

j Yi.Yk

+ Qj (−5QkYi.Yj + (−4Pj +Qj)Yi.Yk) + 5Yi.YjYj .Yk]

+Q2
i

[
−Qj (129Qj + 4Pj)Yi.Yk − 15Yi.Yj (17QjQk + 3Yj .Yk)− 120Q2

jXi.Xk

− Pj (−5PkXi.Xj + (−4Qj + Pj)Xi.Xk) + 5Xi.XjXj .Xk]
+ PiQi [8 (Pj +Qj) (PjXi.Xk −QjYi.Yk)
+20 (−Xi.Xj (Pj (2Pk + 15Qk) + 2Xj .Xk) + Yi.Yj (Qj (2Qk + 15Pk)− 2Yj .Yk))]

+ Pi
[
150Pk

(
(Xi.Xj)2 − (Yi.Yj)2

)
+ 300PjXi.Xj (Xi.Xk + Yi.Yk)

]
+Qi

[
−150Qk

(
(Xi.Xj)2 − (Yi.Yj)2

)
+ 300QjYi.Yj (Xi.Xk + Yi.Yk)

]
+ 150

(
(Xi.Xj)2 − (Yi.Yj)2

)
(Xi.Xk + Yi.Yk) . (B.23)

The corresponding Mellin amplitude is

Mamb5
α′7 = M̂amb5

α′7 − 11
2 M

amb1
α′7 + 5Mamb2

α′7 + 1
8M

amb3
α′7 −Mamb4

α′7 + 64Mmain
α′5

+ 66Mamb
α′5 + 4096Mmain

α′3 , (B.24)

where

M̂amb5
α′7 = 128

[
(Σp−1)6

(
s3 + t3 + u3)

+ (Σp−1)5

(
1
2
(
s2 c2

s + t2 c2
t + u2 c2

u

)
+ 1

2 Σp (Σp + 8)
(
s2 + t2 + u2)

− (Σp + 7)
[
2
(
s2 s̃+ t2 t̃+ u2 ũ

)
+
(
s2 cs + t2 ct + u2 cu

)])
+ (Σp−1)4

(
− 5

2
(
s c3
s + t c3

t + u c3
u

)
− 5

(
s c2
s s̃+ t c2

t t̃+ u c2
u ũ
)

+ 6 (4 Σp + 7)
[(

s s̃2 + t t̃2 + u ũ2)+
(
s s̃ cs + t t̃ ct + u ũ cu

)]
− Σp (13 Σp + 24)

[(
s s̃+ t t̃+ u ũ

)
+ 1

2 (s cs + t ct + u cu)
]

+ 1
2 (14 Σp + 19)

(
s c2
s + t c2

t + u c2
u

))
+ (Σp−1)3

(
17
8
(
c4
s + c4

t + c4
u

)
− 60 Σp

(
s̃3 + t̃3 + ũ3)− 17

2 Σp
(
c3
s + c3

t + c3
u

)
+ 10

(
c3
s s̃+ c3

t t̃+ c3
u ũ
)

+ 10
(
s̃2 c2

s + t̃2 c2
t + ũ2 c2

u

)
− 90 Σp

(
s̃2 cs + t̃2 ct + ũ2 cu

)
− 47 Σp

(
c2
s s̃+ c2

t t̃+ c2
u ũ
)

+ 51
4 Σ2

p

(
c2
s + c2

t + c2
u

)
+ 50 Σ2

p

(
s̃2 + t̃2 + ũ2)

+ 50 Σ2
p

(
s̃ cs + t̃ ct + ũ cu

)
− 1

8 Σ2
p

(
81 Σ2

p + 352
))]

. (B.25)
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